ASTM-D2240-橡胶邵尔硬度测试方法
ASTMD2240硬度计硬度地实用标准试验方法(中文版)
ASTM D2240 硬度计硬度的标准试验方法(中文版) ASTM 标准代号:D 2240-97ε美国国家标准1橡胶特性-(丢洛氏)硬度计测硬度-的标准试验方法本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变ε1注:脚注从1999年2月的注5中消去。
1. 适用范围1.1 本试验方法涉及A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种(丢洛氏)硬度计和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的压痕硬度的程序。
1.2 本试验方法不适用于对纤维织物的试验。
1.3 以SI单位标注的值应视为标准值,括号中的值仅供参考。
1.4 本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D618 对被测塑料做空气调节处理的程序2D785 对塑料和电气绝缘材料的洛氏硬度的试验方法2D1349 橡胶的操作规程—试验时的标准温度3D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程33 试验方法的小结3.1 本试验方法允许在初始压痕时测定硬度,或者在印压一特定时间后进行硬度测定,可两者兼而有之。
注1:当使用最大指针读数时,被用作确定初始硬度值的具有最大读数的指针难以测准稍低的读数。
1本试验方法直接由ASTM“橡胶标准委员会”属下的《D11.10的物理试验委员会》负责最新版本于1997年2月10日通过批准,于1997年3月颁布。
最初是以D2240-64T的形式颁布,上一期的版本为 D2240-952 摘自《ASTM标准年签》,第08.01卷。
3 摘自《ASTM标准年签》,第09.01卷4. 意义与用途4.1 本试验方法是立足于特定条件下、(硬度试验)压头对材料施力而形成穿透深度的形式。
邵氏塑胶硬度测试类型分类及相应参考标准
2163-11
Precision Test Stands and Constant Load Weight
Model No.
320 441 470 471 472 472-1 472-2 473 475 476 476-OO 477 478 479
Load
Description
Spring Loaded Test Stand for Classic or Ergo Style ASTM Type A, B, C, D, DO, E, & O; Asker C; and JIS A Durometers Portable 1kg Constant Load Weight for Classic & Ergo Style ASTM Type A, B, E, & O; Asker C; and JIS A Durometers Test Stand for Classic & o Style Type SL (302SL), OO, or OOO Durometers Deadweight Stand for Classic & Ergo Style ASTM Type A, B, E, & O; Asker C; and JIS A Durometers ConstaLoader™ Deadweight w/Controlled Descent for Classic & Ergo Style ASTM Type A, B, E, & O; Asker C; and JIS A Durometers ConstaLoader™ Deadweight w/Controlled Descent for e 2000™ Style ASTM Type A, A/R, B, B/R, O, & O/R Durometers ConstaLoader™ Deadweight w/Controlled Descent for Pencil Style ASTM Type A, B, & O; ; Asker-1; and Asker-2 Durometers Deadweight Test Stand for Classic & Ergo Style ASTM Type A, B, C, D, DO, E, & O; Asker C, and JIS A Durometers Deadweight Test for Classic & Ergo Style ASTM Type C, D, & DO Durometers Deadweight Stand for Pencil Style ASTM Type A, B, & O; Asker-1; and Asker-2 Durometers Deadweight Stand for Pencil Style ASTM Type OO Durometer Deadweight Stand for Pencil Style ASTM Type C, D, & DO Durometers Deadweight Test Stand for e 2000™ Style ASTM Type A, A/R, B, B/R, O, & O/R Durometers Deadweight Test Stand for e 2000™ Style ASTM Type C, D, & DO Durometers
ASTM-D2240-硬度计硬度的标准试验方法(中文版)
ASTM D2240 硬度计硬度的标准试验方法(中文版)ASTM 标准代号:D 2240-97ε美国国家标准1橡胶特性-(丢洛氏)硬度计测硬度-的标准试验方法本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变ε1注:脚注从1999年2月的注5中消去。
1. 适用范围1.1 本试验方法涉及A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种(丢洛氏)硬度计和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的压痕硬度的程序。
1.2 本试验方法不适用于对纤维织物的试验。
1.3 以SI单位标注的值应视为标准值,括号中的值仅供参考。
1.4 本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D618 对被测塑料做空气调节处理的程序2D785 对塑料和电气绝缘材料的洛氏硬度的试验方法2D1349 橡胶的操作规程—试验时的标准温度3D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程33 试验方法的小结3.1 本试验方法允许在初始压痕时测定硬度,或者在印压一特定时间后进行硬度测定,可两者兼而有之。
注1:当使用最大指针读数时,被用作确定初始硬度值的具有最大读数的指针难以测准稍低的读数。
1本试验方法直接由ASTM“橡胶标准委员会”属下的《D11.10的物理试验委员会》负责最新版本于1997年2月10日通过批准,于1997年3月颁布。
最初是以D2240-64T的形式颁布,上一期的版本为 D2240-952 摘自《ASTM标准年签》,第08.01卷。
3 摘自《ASTM标准年签》,第09.01卷4. 意义与用途4.1 本试验方法是立足于特定条件下、(硬度试验)压头对材料施力而形成穿透深度的形式。
橡胶硬度测试标准
橡胶硬度测试标准橡胶硬度是指橡胶材料的硬度,通常用来评估橡胶的弹性和耐磨性。
橡胶硬度测试是橡胶制品生产和质量控制中的重要环节,对于保证产品质量、满足客户需求具有重要意义。
因此,制定和执行橡胶硬度测试标准是非常必要的。
一、橡胶硬度测试的意义。
橡胶硬度测试是通过测量橡胶材料在一定条件下受力后的变形程度来评估橡胶的硬度。
橡胶硬度测试的结果可以直观地表现出橡胶的柔软程度和弹性,从而判断橡胶制品的质量和性能。
通过橡胶硬度测试,可以及时发现橡胶制品的硬度不合格问题,及时调整生产工艺,保证产品质量。
二、橡胶硬度测试的方法。
目前,常用的橡胶硬度测试方法包括杜氏硬度计、邵氏硬度计和国际通用的希氏硬度计。
其中,希氏硬度计是目前应用最为广泛的一种橡胶硬度测试仪器,它通过在一定条件下用一定的力量将钢球或压头压入橡胶表面,然后测量压头的深度来确定橡胶的硬度值。
在进行橡胶硬度测试时,需要严格按照标准操作程序进行,以确保测试结果的准确性和可靠性。
三、橡胶硬度测试标准的制定。
为了保证橡胶硬度测试的准确性和可比性,各国都制定了相应的橡胶硬度测试标准。
在中国,国家标准《橡胶硬度测定法》(GB/T531-2008)规定了橡胶硬度测试的方法和要求。
该标准规定了橡胶硬度测试时所用的硬度计、试样的制备、测试条件、测试程序和结果判定等内容,为橡胶硬度测试提供了明确的操作指南和依据。
四、橡胶硬度测试标准的执行。
在进行橡胶硬度测试时,必须严格按照相关标准进行操作,确保测试结果的准确性和可靠性。
在测试过程中,应注意保持测试环境的稳定,避免外界因素对测试结果的影响。
同时,还应定期对硬度测试仪器进行检验和校准,确保测试仪器的精度和准确性。
五、橡胶硬度测试的应用。
橡胶硬度测试广泛应用于橡胶制品的生产和质量控制中。
通过橡胶硬度测试,可以评估橡胶制品的硬度和弹性,及时发现产品质量问题,保证产品质量。
同时,橡胶硬度测试还可以用于橡胶材料的选择和比较,帮助用户选择适合的橡胶材料,满足不同的工程需求。
ASTMD硬度计硬度的标准试验方法中文
ASTM-D-硬度计硬度的标准试验方法(中文版)————————————————————————————————作者:————————————————————————————————日期:ASTM D2240 硬度计硬度的标准试验方法(中文版)ASTM 标准代号:D 2240-97ε美国国家标准1橡胶特性-(丢洛氏)硬度计测硬度-的标准试验方法本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变ε1注:脚注从1999年2月的注5中消去。
1. 适用范围1.1 本试验方法涉及A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种(丢洛氏)硬度计和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的压痕硬度的程序。
1.2 本试验方法不适用于对纤维织物的试验。
1.3 以SI单位标注的值应视为标准值,括号中的值仅供参考。
1.4 本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D618 对被测塑料做空气调节处理的程序2D785 对塑料和电气绝缘材料的洛氏硬度的试验方法2D1349 橡胶的操作规程—试验时的标准温度3D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程33 试验方法的小结3.1 本试验方法允许在初始压痕时测定硬度,或者在印压一特定时间后进行硬度测定,可两者兼而有之。
注1:当使用最大指针读数时,被用作确定初始硬度值的具有最大读数的指针难以测准稍低的读数。
1本试验方法直接由ASTM“橡胶标准委员会”属下的《D11.10的物理试验委员会》负责最新版本于1997年2月10日通过批准,于1997年3月颁布。
ASTM D2240 硬度计硬度的标准试验方法(中文版)
ASTM 标准代号:D 2240-97ε美国国家标准橡胶特性-(丢洛氏)硬度计测硬度1-的标准试验方法本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变ε1注:脚注从1999年2月的注5中消去。
1. 适用范围1.1 本试验方法涉及A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种(丢洛氏)硬度计和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的压痕硬度的程序。
1.2本试验方法不适用于对纤维织物的试验。
1.3以SI单位标注的值应视为标准值,括号中的值仅供参考。
1.4本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D618 对被测塑料做空气调节处理的程序2D785 对塑料和电气绝缘材料的洛氏硬度的试验方法2D1349 橡胶的操作规程—试验时的标准温度3D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程33 试验方法的小结3.1 本试验方法允许在初始压痕时测定硬度,或者在印压一特定时间后进行硬度测定,可两者兼而有之。
注1:当使用最大指针读数时,被用作确定初始硬度值的具有最大读数的指针难以测准稍低的读数。
1 本试验方法直接由ASTM“D-11橡胶标准委员会”属下的《D11.10的物理试验委员会》负责最新版本于1997年2月10日通过批准,于1997年3月颁布。
最初是以D2240-64T的形式颁布,上一期的版本为D2240-952摘自《ASTM标准年签》,第08.01卷。
3摘自《ASTM标准年签》,第09.01卷4. 意义与用途4.1 本试验方法是立足于特定条件下、(硬度试验)压头对材料施力而形成穿透深度的形式。
ASTM D2240-05橡胶邵氏硬度
Designation:D2240–05Standard Test Method forRubber Property—Durometer Hardness1This standard is issued under thefixed designation D2240;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This test method covers twelve types of rubber hardness measurement devices known as durometers:Types A,B,C,D, DO,E,M,O,OO,OOO,OOO-S,and R.The procedure for determining indentation hardness of substances classified as thermoplastic elastomers,vulcanized(thermoset)rubber,elas-tomeric materials,cellular materials,gel-like materials,and some plastics is also described.1.2This test method is not equivalent to other indentation hardness methods and instrument types,specifically those described in Test Method D1415.1.3This test method is not applicable to the testing of coated fabrics.1.4All materials,instruments,or equipment used for the determination of mass,force,or dimension shall have trace-ability to the National Institute for Standards and Technology, or other internationally recognized organizations parallel in nature.1.5The values stated in SI units are to be regarded as standard.The values given in parentheses are for information only.Many of the stated dimensions in SI are direct conver-sions from the U.S.Customary System to accommodate the instrumentation,practices,and procedures that existed prior to the Metric Conversion Act of1975.1.6This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2D374Test Methods for Thickness of Solid Electrical Insu-lationD618Practice for Conditioning Plastics for TestingD785Test Method for Rockwell Hardness of Plastics and Electrical Insulating MaterialsD1349Practice for Rubber—Standard Temperatures for TestingD1415Test Method for Rubber Property—International HardnessD4483Practice for Determining Precision for Test Method Standards in the Rubber and Carbon Black IndustriesF1957Test Method for Composite Foam Hardness-Durometer Hardness2.2ISO Standard:3ISO/IEC17025:1999General Requirements for the Com-petence of Testing and Calibration Laboratories3.Summary of Test Method3.1This test method permits hardness measurements based on either initial indentation or indentation after a specified period of time,or both.Durometers with maximum reading indicators used to determine maximum hardness values of a material may yield lower hardness when the maximum indi-cator is used.3.2The procedures for Type M,or micro hardness durom-eters,accommodate specimens that are,by their dimensions or configuration,ordinarily unable to have their durometer hard-ness determined by the other durometer types described.Type M durometers are intended for the testing of specimens having a thickness or cross-sectional diameter of1.25mm(0.050in.) or greater,although specimens of lesser dimensions may be successfully accommodated under the conditions specified in Section6,and have a Type M durometer hardness range between20and90.Those specimens which have a durometer hardness range other than specified shall use another suitable procedure for determining durometer hardness.4.Significance and Use4.1This test method is based on the penetration of a specific type of indentor when forced into the material under specified conditions.The indentation hardness is inversely related to the penetration and is dependent on the elastic modulus and viscoelastic behavior of the material.The geometry of the1This test method is under the jurisdiction of ASTM Committee D11on Rubber and is the direct responsibility of Subcommittee D11.10on Physical Testing.Current edition approved Aug.15,2005.Published September2005.Originally approved st previous edition approved in2004as D2240–04e1.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from International Organization for Standardization(ISO),1rue de Varembé,Case postale56,CH-1211,Geneva20,Switzerland.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.indentor and the applied force influence the measurements such that no simple relationship exists between the measure-ments obtained with one type of durometer and those obtained with another type of durometer or other instruments used for measuring hardness .This test method is an empirical test intended primarily for control purposes.No simple relationship exists between indentation hardness determined by this test method and any fundamental property of the material tested.For specification purposes,it is recommended that Test Method D 785be used for materials other than those described in 1.1.5.Apparatus5.1Hardness Measuring Apparatus,or Durometer,and an Operating Stand ,Type 1,Type 2,or Type 3(see 5.1.2)consisting of the following components:5.1.1Durometer :5.1.1.1Presser Foot ,the configuration and the total area of a durometer presser foot may produce varying results when there are significant differences between them.It is recom-mended that when comparing durometer hardness determina-tions of the same type (see 4.1),that the comparisons be between durometers of similar presser foot configurations and total area,and that the presser foot configuration and size be noted in the Hardness Measurement Report (see 10.2.4and 5.1.1.3).5.1.1.2Presser Foot ,Types A,B,C,D,DO,E,O,OO,OOO,and OOO-S,with an orifice (to allow for the protrusion of the indentor)having a diameter as specified in Fig.1(a,b,c,d,e,f,and g),with the center a minimum of6.0mm (0.24in.)from any edge of the foot.When the presser foot is not of a flat circular design,the area shall not be less than 500mm 2(19.7in.2).N OTE 1—The Type OOO and the Type OOO-S,designated herein,differ in their indentor configuration,spring force,and the results obtained.See Table 1and Fig.1(e and g).5.1.1.3Presser Foot —flat circular designs designated as Type xR ,where x is the standard durometer designation and R indicates the flat circular press foot described herein,for example,Type aR ,dR ,and the like.The presser foot,having acentrally located orifice (to allow for the protrusion of the indentor)of a diameter as specified in Fig.1(a through g).The flat circular presser foot shall be 1860.5mm (0.7160.02in.)in diameter.These durometer types shall be used in an operating stand (see 5.1.2).(a)Durometers having a presser foot configuration other than that indicated in 5.1.1.3shall not use the Type xR designation,and it is recommended that their presser foot configuration and size be stated in the Hardness Measurement Report (see 10.2.4).5.1.1.4Presser Foot,Type M ,with a centrally located orifice (to allow for the protrusion of the indentor),having a diameter as specified in Fig.1(d),with the center a minimum of 1.60mm (0.063in.)from any edge of the flat circular presser foot.The Type M durometer shall be used in a Type 3operating stand (see 5.1.2.4).5.1.1.5Indentor ,formed from steel rod and hardened to 500HV10and shaped in accordance with Fig.1(a,b,c,d,e,or g),polished over the contact area so that no flaws are visible under 203magnification,with an indentor extension of 2.5060.04mm (0.09860.002in.).5.1.1.6Indentor,Type OOO-S ,formed from steel rod and hardened to 500HV10,shaped in accordance with Fig.1(f),polished over the contact area so that no flaws are visible under 203magnification,with an indentor extension of 5.0060.04mm (0.19860.002in.).5.1.1.7Indentor,Type M ,formed from steel rod and hard-ened to 500HV10and shaped in accordance with Fig.1(d),polished over the contact area so that no flaws are visible under 503magnification,with an indentor extension of 1.2560.02mm (0.04960.001in.).5.1.1.8Indentor Extension Indicator ,analog or digital elec-tronic,having a display that is an inverse function of the indentor extension so that:(1)The display shall indicate from 0to 100with no less than 100equal divisions throughout the range at a rate of one hardness point for each 0.025mm (0.001in.)of indentormovement,FIG.1(a)Type A and CIndentor(2)The display for Type OOO-S durometers shall indicate from 0to 100with no less than 100equal divisions throughout the range at a rate of one hardness point for each 0.050mm (0.002in.)of indentor movement,(3)The display for Type M durometers shall indicate from 0to 100with no less than 100equal divisions at a rate of one hardness point for each 0.0125mm (0.0005in.)of indentor movement,and(4)In the case of analog dial indicators having a display of 360°,the points indicating 0and 100may be at the same point on the dial and indicate 0,100,or both.5.1.1.9Timing Device (optional),capable of being set to a desired elapsed time,signaling the operator or holding thehardness reading when the desired elapsed time has been reached.The timer shall be automatically activated when the presser foot is in contact with the specimen being tested,for example,the initial indentor travel has ceased.Digital elec-tronic durometers may be equipped with electronic timing devices that shall not affect the indicated reading or determi-nations attained by more than one-half of the calibration tolerance stated in Table 1.5.1.1.10Maximum Indicators (optional),maximum indicat-ing pointers are auxiliary analog indicating hands designed to remain at the maximum hardness value attained until resetbyFIG.1(b)Type B and D Indentor(continued)FIG.1(c)Type O,DO,and OO Indentor(continued)FIG.1(d)Type M Indentor(continued)the operator.Electronic maximum indicators are digital dis-plays electronically indicating and maintaining the maximum value hardness valued achieved until reset by the operator.5.1.1.11Analog maximum indicating pointers have been shown to have a nominal effect on the values attained,however,this effect is greater on durometers of lesser total mainspring loads;for example,the effect of a maximum indicating pointer on Type D durometer determinations will be less than those determinations achieved using a Type A durometer.Analog style durometers may be equipped with maximum indicating pointers.The effect of a maximum indicating pointer shall be noted at the time of calibration in the calibration report (see 10.1.5),and when reporting hardness determinations (see 10.2.4).Analog Type M,OO,OOO,and Type OOO-S durometers shall not be equipped with maximum indicating pointers.5.1.1.12Digital electronic durometers may be equipped with electronic maximum indicators that shall not affect the indicated reading or determinations attained by more than one half of the spring calibration tolerance stated in Table 1.5.1.1.13Calibrated Spring ,for applying force to the inden-tor,in accordance with Fig.1(a through g)and capable of applying the forces as specified in Table 1.5.1.2Operating Stand (Fig.2):5.1.2.1Type 1,Type 2,and Type 3shall be capable of supporting the durometer presser foot surface parallel to the specimen support table (Fig.3)throughout the travel of each.The durometer presser foot to specimen support table parallel-ism shall be verified each time the test specimen support table is adjusted to accommodate specimens of varying dimensions.This may be accomplished by applying the durometer presser foot to the point of contact with the specimen support table and making adjustments by way of the durometer mounting assem-bly or as specified by the manufacturer.5.1.2.2Operating Stand,Type 1(specimen to indentor type),shall be capable of applying the specimen to the indentor in a manner that minimizes shock.5.1.2.3Operating Stand,Type 2(indentor to specimen type),shall be capable of controlling the rate of descent of the indentor to the specimen at a maximum of 3.20mm/s(0.125FIG.1(e)Type OOO Indentor(continued)FIG.1(f)Type OOO-S Indentor(continued)in./s)and applying a force sufficient to overcome the calibrated spring force as shown in Table 1.5.1.2.4Operating Stand,Type 3(indentor to specimen type),hydraulic dampening,pneumatic dampening,or electro-mechanical (required for the operation of Type M durometers)shall be capable of controlling the rate of descent of the indentor to the specimen at a maximum of 3.2mm/s (0.125in./s)and applying a force sufficient to overcome the calibrated spring force as shown in Table 1.Manual application,Type 1or Type 2operating stands are not acceptable for Type M durometer operation.5.1.2.5The entire instrument should be plumb and level,and resting on a surface that will minimize vibration.Operating the instrument under adverse conditions will negatively affect the determinations attained.5.1.2.6Specimen Support Table ,(Fig.3)integral to the operating stand,and having a solid flat surface.The specimen support platform may have orifices designed to accept various inserts or support fixtures (Fig.3)to provide for the support of irregularly configured specimens.When inserts are used to support test specimens,care must be taken to align the indentor to the center of the insert,or the point at which the indentor is to contact the specimen.Care should be exercised to assure thatthe indentor does not abruptly contact the specimen support table as damage to the indentor may result.6.Test Specimen6.1The test specimen,herein referred to as “specimen”or “test specimen”interchangeably,shall be at least 6.0mm (0.24in.)in thickness unless it is known that results equivalent to the 6.0-mm (0.24-in.)values are obtained with a thinner specimen.6.1.1A specimen may be composed of plied pieces to obtain the necessary thickness,but determinations made on such specimens may not agree with those made on solid specimens,as the surfaces of the plied specimens may not be in complete contact.The lateral dimensions of the specimen shall be sufficient to permit measurements at least 12.0mm (0.48in.)from any edge,unless it is known that identical results are obtained when measurements are made at a lesser distance from an edge.6.1.2The surfaces of the specimen shall be flat and parallel over an area to permit the presser foot to contact the specimen over an area having a radius of at least 6.0mm (0.24in.)from the indentor point.The specimen shall be suitably supported to provide for positioning and stability.A suitablehardnessFIG.1(g)Type E Indentor (continued)TABLE 1Durometer Spring Force Calibration AAll Values are in NIndicated Value Type A,B,E,O Type C,D,DO Type M Type OO,OOO Type OOO-S 00.5500.3240.2030.16710 1.3 4.4450.3680.2940.34320 2.058.890.4120.3850.52030 2.813.3350.4560.4760.69640 3.5517.780.50.5660.87350 4.322.2250.5440.657 1.04960 5.0526.670.5890.748 1.22670 5.831.1150.6330.839 1.40280 6.5535.560.6770.93 1.579907.340.0050.721 1.02 1.7551008.0544.450.765 1.111 1.932N/durometer unit 0.0750.44450.00440.009080.01765Spring Calibration Tolerance60.075N60.4445N60.0176N60.0182N60.0353NARefer to 5.1.1.3for the Type xRdesignation.determination cannot be made on an uneven or rough point of contact with the indentor.6.2Type OOO,OOO-S,and M test specimens should be at least 1.25mm (0.05in.)in thickness,unless it is known thatresults equivalent to the 1.25-mm (0.05-in.)values are obtained with a thinner specimen.6.2.1A Type M specimen that is not of a configuration described in 6.2.2may be composed of plied pieces toobtainFIG.2Durometer OperatingStandFIG.3Small Specimen SupportTablethe necessary thickness,but determinations made on such specimens may not agree with those made on solid specimens because the surfaces of the plied specimens may not be in complete contact.The lateral dimensions of the specimen should be sufficient to permit measurements at least 2.50mm (0.10in.)from any edge unless it is known that identical results are obtained when measurements are made at lesser distance from an edge.A suitable hardness determination cannot be made on an uneven or rough point of contact with the indentor.6.2.2The Type M specimen,when configured as an o-ring,circular band,or other irregular shape shall be at least 1.25mm (0.05in.)in cross-sectional diameter,unless it is known that results equivalent to the 1.25-mm (0.05-in.)values are obtained with a thinner specimen.The specimen shall be suitably supported in a fixture (Fig.3)to provide for positioning and stability.6.3The minimum requirement for the thickness of the specimen is dependent on the extent of penetration of the indentor into the specimen;for example,thinner specimens may be used for materials having higher hardness values.The minimum distance from the edge at which measurements may be made likewise decreases as the hardness increases.7.Calibration7.1Indentor Extension Adjustment Procedure :7.1.1Place precision ground dimensional blocks (Grade B or better)on the support table and beneath the durometer presser foot and indentor.Arrange the blocks so that the durometer presser foot contacts the larger block(s)and the indentor tip just contacts the smaller block (Fig.4).It is necessary to observe the arrangement of the blocks and the presser foot/indentor under a minimum of 203magnification to assure proper alignment.7.1.2Indentor extension and shape shall be in accordance with 5.1.1.5,5.1.1.6,or 5.1.1.7,respective to durometer type.See Fig.1(a through g).Examination of the indentor under 203magnification,503for Type M indentors,is required to examine the indentor condition.Misshapen or damaged inden-tors shall be replaced.7.1.3A combination of dimensional gage blocks shall be used to achieve a difference of 2.54+0.00/–0.0254mm (0.100+0.00/–0.001in.)between them.For Type OOO-S durometers,the gage block dimensions are 5.08+0.00/–0.0508mm (0.200+0.00/–0.002in.).For Type M durometers,the gage blockdimensions are 1.27+0.0/–0.0127mm (0.050+0.00/–0.0005in.)between them (Fig.4).7.1.4Carefully lower the durometer presser foot until it contacts the largest dimensional block(s),the indentor tip should just contact the smaller block,verifying full indentor extension.7.1.5Adjust the indentor extension to 2.5060.04mm (0.09860.002in.).For Type OOO-S durometers,adjust the indentor extension to 5.060.04mm (0.19860.002in.).For Type M durometers,adjust the indentor extension to 1.2560.02mm (0.04960.001in.),following the manufacturer’s recommended procedure.7.1.5.1When performing the procedures in 7.1,care should be used so as not to cause damage to the indentor tip.Fig.4depicts a suitable arrangement for gaging indentor extension.7.1.6Parallelism of the durometer presser foot to the support surface,and hence the dimensional gage blocks,at the time of instrument calibration,may be in accordance with Test Methods D 374,Machinist’s Micrometers,or otherwise ac-complished in accordance with the procedures specified by the manufacturer.7.2Indentor Display Adjustment :7.2.1After adjusting the indentor extension as indicated in 7.1,use a similar arrangement of dimensional gage blocks to verify the linear relationship between indentor travel and indicated display at two points:0and 100.Following the manufacturer’s recommendations,make adjustments so that:7.2.2The indicator displays a value equal to the indentor travel measured to within:–0.0+1.0durometer units measured at 0;60.50durometer units measured at 100;61durometer units at all other points delineated in 7.4.7.2.3Each durometer point indicated is equal to 0.025mm (0.001in.)of indentor travel,except for:7.2.3.1Type M Durometers,each indicated point is equal to 0.0125mm (0.0005in.)of indentor travel;7.2.3.2Type OOO-S Durometers,each indicated point is equal to 0.050mm (0.002in.)of indentor travel.7.2.4The indicator shall not display a value greater than 100or less than 0at the time of calibration.7.2.5Other means of determining indentor extension or indentor travel,such as optical or laser measurement methods,are acceptable.The instrumentation used shall have traceability as described in 1.4.7.2.6The durometer shall be supported in a suitable fashion when performing the procedures described in 7.1and 7.2.7.3Calibration Device :7.3.1The durometer spring shall be calibrated by support-ing the durometer in a calibrating device,see Fig.5,in a vertical position and applying a measurable force to the indentor tip.The force may be measured by means of a balance as depicted in Fig.5,or an electronic force cell.The calibrating device shall be capable of measuring applied force to within 0.5%of the maximum spring force necessary to achieve 100durometer units.7.3.2Care should be taken to ensure that the force is applied vertically to the indentor tip,as lateral force will cause errors in calibration.See 7.1.5.1and 7.1.6.FIG.4Detail of Indentor Extension and DisplayAdjustment7.4Spring Calibration —The durometer spring shall be calibrated at displayed readings of 10,20,30,40,50,60,70,80,and 90.The measured force (9.83mass in kilograms)shall be within the spring calibration tolerance specified in Table 1.Table 1identifies the measured force applied to the indentor for the entire range of the instrument,although it is necessary only to verify the spring calibration at points listed herein.7.5Spring Calibration Procedure :7.5.1Ensure that the indentor extension has been adjusted in accordance with 7.1,and the linear relationship between indentor travel and display is as specified in 7.2.7.5.2Place the durometer in the calibration device as depicted in Fig.5.Apply the forces indicated in Table 1so that forces applied are aligned with the centerline of the indentor in a fashion that eliminates shock or vibration and adjust the durometer according to manufacturers’recommendations so that:7.5.3At the points enumerated in 7.4,the display shall indicate a value equal to 0.025mm (0.001in.)of indentor travel.For Type OOO-S durometers,the display shall indicate a value equal to 0.05mm (0.002in.)of indentor travel.For Type M durometers,the display shall indicate a value equal to 0.0125mm (0.0005in.)of indentor travel within the spring calibration tolerances specified in 7.6.7.6Spring calibration tolerances are 61.0durometer units for Types A,B,C,D,E,O,and DO,62.0durometer units for Types OO,OOO,and OOO-S,and 64.0durometer units for Type M,while not indicating below 0or above 100at the time of calibration (see Table 1).7.7Spring Force Combinations :7.7.1For Type A,B,E,and O durometers:Force,N =0.55+0.075HAWhere HA =hardness reading on Type A,B,E,and O durometers.7.7.2For Type C,D,and DO durometers:Force,N =0.4445HDWhere HD =hardness reading on Type C,D,and DO durometers.7.7.3For Type M durometers:Force,N =0.324+0.0044HMWhere HM =hardness reading on Type M durometers.7.7.4For Type OO and OOO durometers:Force,N =0.203+0.00908HOOWhere HOO =hardness reading on Type OO durometers.7.7.5For Type OOO-S durometers:Force,N =0.167+0.01765HOOO-SWhere HOOO-S =hardness reading on Type OOO-S durometers.7.8The rubber reference block(s)provided for verifying durometer operation and state of calibration are not to be relied upon as calibration standards.The calibration procedures outlined in Section 7are the only valid calibration procedures.7.8.1The use of metal reference blocks is no longer recommended (see Note 2).7.9Verifying the state of durometer calibration,during routine use ,may be accomplished by:7.9.1Verifying that the zero reading is no more than 1indicated point above zero,and not below zero (on durometers so equipped),when the durometer is positioned so that no external force is placed upon the indentor.7.9.2Verifying that the 100reading is no more than 100and no less than 99when the durometer is positioned on a flat surface of a non-metallic material so that the presser foot is in complete contact,causing the indentor to be fully retracted.7.9.2.1It is important that when performing the verification of 100,as described in 7.9.2,that extreme care be taken so as to not cause damage to the indentor.Verification of the 100value is not recommended for durometers having a spring force greater than 10N (Types C,D,and DO).7.9.2.2When performing the verification of 100,as de-scribed in 7.9.2,the non-metallic material shall be of a hardness value greater than 100of the type (scale)of the durometer being employed.Tempered glass of a thickness greater than 6.35mm (0.25in.)has been found satisfactory for this application.7.9.3Verifying the displayed reading at any other point using commercially available rubber reference blocks which are certified to a stated value of the type (scale)of the durometer being employed.The displayed value of the durom-eter should be within 62durometer points of the reference block’s stated value.7.9.4Verification of the zero and 100readings of a durom-eter provide reasonable assurance that the linear relationship between the indicated display and the durometer mechanism remain valid.7.9.5Verification of points between zero and 100provide reasonable assurance that the curvilinear relationship between the indicated display and the durometer mechanism remain valid.7.9.6This is not a calibration procedure,it is a means by which a user may routinely verify that the durometer may be functioning correctly.(See Note 2.)boratory Atmosphere and Test Specimen Conditioning8.1Tests shall be conducted in the standard laboratory atmosphere,as defined in Practice D 618,Section 4.2.8.2The instrument shall be maintained in the standard laboratory atmosphere,as defined in Practice D 618,Section 4.1,for 12h prior to performing atest.FIG.5Example of Durometer CalibrationApparatus8.3The specimen shall be conditioned in accordance with condition40/23exclusive of humidity control,as described in Practice D618,Section8.1,Procedure A and tested under the same conditions,exclusive of humidity control.8.4These procedures may be modified if agreed upon between laboratories or between supplier and user and are in accordance with alternative procedures identified in Practice D618.8.5No conclusive evaluation has been made on durometers at temperatures other than23.06 2.0°C(73.46 3.6°F). Conditioning at temperatures other than the above may show changes in calibration.Durometer use at temperatures other than the above should be decided locally(see Practice D1349).9.Procedure9.1Operating Stand Operation(Type3Operating Stand Required for Type M):9.1.1Care shall be exercised to minimize the exposure of the instrument to environmental conditions that are adverse to the performance of the instrument,or adversely affect test results.9.1.2Adjust the presser foot to support table parallelism as described in5.1.2.1.It is necessary to make this adjustment each time the support table is moved to accommodate speci-mens of varying dimensions.9.1.3Prior to conducting a test,adjust the vertical distance from the presser foot to the contact surface of the test specimen to25.462.5mm(1.0060.100in.),unless it is known that identical results are obtained with presser foot at a greater or lesser vertical distance from the test specimen contact surface, or if otherwise stipulated by the manufacturer.9.1.4Place the specimen on the specimen support table,ina manner that the contact point of the indentor is in accordance with Section6,unless it is known that identical results are obtained when measurements are made with the indentor at a lesser distance from the edge of the test specimen.9.1.5Actuate the release lever(Fig.2)of the operating stand or activate the electromechanical device,allowing the durometer to descend at a controlled rate and apply the presser foot to the specimen in accordance with5.1.2.In the case of “specimen to indentor”type operating stands,operate the lever or other mechanism to apply the specimen to the indentor in a manner that assures parallel contact of the specimen to the durometer presser foot without shock and with just sufficient force to overcome the calibrated spring force as shown in Table 1.9.1.6An operating stand that applies the mass at a con-trolled rate of descent,without shock is mandatory for Type M durometers.Hand-held application or the use of a Type1or Type2operating stand for the Type M durometer is not an acceptable practice,see5.1.2.4.9.1.7For any material covered in1.1,once the presser foot is in contact with the specimen,for example,when the initial indentor travel has ceased,the maximum indicated reading shall be recorded.The time interval of1s,between initial indentor travel cessation and the recording of the indicated reading,shall be considered standard.Other time intervals, when agreed upon among laboratories or between supplier and user,may be used and reported accordingly.The indicated hardness reading may change with time.9.1.7.1If the durometer is equipped with an electronic maximum indicator or timing device(refer to5.1.1.9)the indicated reading shall be recorded within160.3s of the cessation of indentor travel and reported(refer to10.2.9for reporting protocols),unless otherwise noted.9.1.7.2If the durometer is equipped with an analog type maximum indicator(refer to5.1.1.10),the maximum indicated reading may be recorded and shall be reported(refer to10.2.9), unless otherwise noted.9.1.7.3If the durometer is not equipped with the devices described in5.1.1.9or5.1.1.10,the indicated reading shall be recorded within1s as is possible and reported(refer to10.2.9), unless otherwise noted.9.1.8Makefive determinations of hardness at different positions on the specimen at least6.0mm(0.24in.)apart,0.80 mm(0.030in.)apart for Type M;and calculate the arithmetic mean,or alternatively calculate the median.The means of calculating the determinations shall be reported according to 10.2.89.2Manual(Hand Held)Operation of Durometer:9.2.1Care shall be exercised to minimize the exposure of the instrument to environmental conditions that are adverse to the performance of the instrument,or adversely affect test results.9.2.2Place the specimen on aflat,hard,horizontal surface. Hold the durometer in a vertical position with the indentor tip at a distance from any edge of the specimen as described in Section6,unless it is known that identical results are obtained when measurements are made with the indentor at a lesser distance.9.2.3Apply the presser foot to the specimen,maintaining it in a vertical position keeping the presser foot parallel to the specimen,with afirm smooth downward action that will avoid shock,rolling of the presser foot over the specimen,or the application of lateral force.Apply sufficient pressure to assure firm contact between the presser foot and the specimen.9.2.4For any material covered in1.1,after the presser foot is in contact with the specimen,the indicated reading shall be recorded within160.1s,or after any period of time agreed upon among laboratories or between supplier and user.If the durometer is equipped with a maximum indicator,the maxi-mum indicated reading shall be recorded within160.1s of the cessation of initial indentor travel.The indicated hardness reading may change with time.9.2.5Makefive determinations of hardness at different positions on the specimen at least6.0mm(0.24in.)apart and calculate the arithmetic mean,or alternatively calculate the median.The means of calculating the determinations shall be reported according to10.2.8.9.3It is acknowledged that durometer readings below20or above90are not considered reliable.It is suggested that readings in these ranges not be recorded.9.4Manual operation(handheld)of a durometer will cause variations in the results attained.Improved repeatability may be obtained by using a mass,securely affixed to the durometer and centered on the axis of the indentor.Recommendedmasses。
astm耐水解测试标准
astm耐水解测试标准
ASTM(美国材料与试验协会)制定了多个关于耐水解性测试的标准,这些标准涵盖了不同类型的材料,例如聚合物、涂层和涂料等。
以下是一些与耐水解性测试相关的ASTM标准:
1.ASTM D2240 - Standard Test Method for Rubber Property—
Durometer Hardness:
•这个标准测试了橡胶硬度,其中硬度的变化可能与橡胶的耐水解性有关。
2.ASTM D714 - Standard Test Method for Evaluating Degree
of Blistering of Paints:
•该标准涉及对涂层耐水解性的测试,特别是涂层在湿润条件下可能发生的鼓泡程度。
3.ASTM D870 - Standard Practice for Testing Water Resistance
of Coatings Using Water Immersion:
•该标准规定了涂层在水中浸泡的条件下测试其耐水解性的实施方法。
4.ASTM G160 - Standard Practice for Evaluating Microbial
Susceptibility of Nonmetallic Materials by Laboratory Soil Burial:
•这个标准涉及通过埋入土壤进行实验来评估非金属材料的抗水解性。
请注意,具体的测试标准可能因应用领域和材料类型而异。
如果
你对特定材料或产品的耐水解性测试感兴趣,建议查阅相关的ASTM 标准文档,以确保你使用的标准适用于你的具体应用。
D 2240 硬度
名稱: D 2240-02橡膠屬性的標准測試方法—硬度1.范圍1.1此測試方法描述所知的橡膠硬度測量裝置的八種方法:方式A,B,C,D,DO,O,OO 和M。
決定區別物質硬度的分類如熱塑性聚合物,硫化(熱固性)橡膠,彈性體(合成)原料,多孔(發泡)原料,和一些塑料的程序也有描述。
1.2 此測試方法不等同於其它鋸齒狀硬度方法和儀器類型,特別是測試方法D1415中描述的那些。
1.3 此測試方法不適用於測試含有纖維織物的產品。
1.4 標有SI的值被認為是標准值。
括弧內的值僅供參考。
很多標有SI的說明尺寸是直接從美國習俗系統轉換過來的,以方便在“1975的計量轉換法令”之前已存在的使用儀器,操作和程序。
1.5 所有用於測定體積、強度或尺寸的原料、儀器或裝置,應被國家標准及技術協會或其它國際上認可的與其平行的組織描繪的。
1.6 此標准目的不是用來處理所有安全事宜,如果有,與其用途相關。
此標准的使用者有責任在使用之前,建立適當安全和健康的操作並決定適用的管理限制。
2.參考書籍2.1ASTM標准:D 374 實心電子絕緣體厚度的測試方法D 168 調整(改性)塑料測試的常規D 785 塑料及電子絕緣材料Rockwell硬度的測試D 1349 橡膠標准溫度測試常規D 1415 橡膠屬性----國際硬度的測試D 4483 橡膠及黑碳工業測試方法標准的決定精度常規D 1957 混合發泡硬度測試方法3.測試方法總結3.1 此測試方法允許硬度測量基於最初或指定一段時間後或基於兩者。
使用有最大讀數顯示器的硬度表可決定一原料的最大硬度值,表明此原料在使用此儀器時可能產生稍低的硬度。
3.2 此程序用於M類,或微小硬度,適用於那些尺寸或形狀,通常它們的硬度無法用其它類型的硬度計描述的產品。
有一個M類硬度計,硬度范圍在20-90,用於測試厚度或交叉部分直徑為1.25mm或更大的試樣,雖然樣板較小的尺寸可能成功地適合6節中描述的情況。
ASTM D 2240
ASTM 标准代号:D 2240-05ε美国国家标准橡胶特性的标准试验方法-硬度计硬度本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变1. 适用范围1.1 本试验方法涉及已知的硬度:类型A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种橡胶硬度测量装置.和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的硬度试验压头硬度的程序。
1.2本试验方法不等同于硬度试验压头硬度方法,工具类型和特别是其它在测试方法D 1415中描述的。
1.3本试验方法不适用于对纤维织物的试验1.4使用为质量,力,或尺寸的所有的材料,工具应对为标准与技术国际协会,或其他国际公认的实际上类似的组织有可追溯性。
1.5以SI单位标注的值应视为标准值,括号中的值仅供参考。
许多在SI中规定的尺寸是直接由美国习惯系统转换来的以适应仪器,规程,和先于1975年公制转换法存在的程序.1.6本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D374 固体电绝缘材料厚度的标准试验方法D618 对被测塑料做空气调节处理的程序D785 对塑料和电气绝缘材料的洛氏硬度的试验方法D1349 橡胶的操作规程—试验时的标准温度D1415 橡胶特性的测试方法.国际硬度D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程F1957 复合泡沫材料硬度测定器硬度的标准试验方法.ISO/IEC 17025:1999检验和校准实验室的能力的通用要求3 试验方法的概述3.1 该测试方法基于任一的最初缩进或一个指定时间后的缩进,或两者的硬度测量.硬度最大读数用来确定材料的最大硬度值可能会产生低硬度当最高指标被使用时。
ASTM D 2240-2005
Designation:D2240–05Standard Test Method forRubber Property—Durometer Hardness1This standard is issued under thefixed designation D2240;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This test method covers twelve types of rubber hardness measurement devices known as durometers:Types A,B,C,D, DO,E,M,O,OO,OOO,OOO-S,and R.The procedure for determining indentation hardness of substances classified as thermoplastic elastomers,vulcanized(thermoset)rubber,elas-tomeric materials,cellular materials,gel-like materials,and some plastics is also described.1.2This test method is not equivalent to other indentation hardness methods and instrument types,specifically those described in Test Method D1415.1.3This test method is not applicable to the testing of coated fabrics.1.4All materials,instruments,or equipment used for the determination of mass,force,or dimension shall have trace-ability to the National Institute for Standards and Technology, or other internationally recognized organizations parallel in nature.1.5The values stated in SI units are to be regarded as standard.The values given in parentheses are for information only.Many of the stated dimensions in SI are direct conver-sions from the U.S.Customary System to accommodate the instrumentation,practices,and procedures that existed prior to the Metric Conversion Act of1975.1.6This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2D374Test Methods for Thickness of Solid Electrical Insu-lationD618Practice for Conditioning Plastics for TestingD785Test Method for Rockwell Hardness of Plastics and Electrical Insulating MaterialsD1349Practice for Rubber—Standard Temperatures for TestingD1415Test Method for Rubber Property—International HardnessD4483Practice for Determining Precision for Test Method Standards in the Rubber and Carbon Black IndustriesF1957Test Method for Composite Foam Hardness-Durometer Hardness2.2ISO Standard:3ISO/IEC17025:1999General Requirements for the Com-petence of Testing and Calibration Laboratories3.Summary of Test Method3.1This test method permits hardness measurements based on either initial indentation or indentation after a specified period of time,or both.Durometers with maximum reading indicators used to determine maximum hardness values of a material may yield lower hardness when the maximum indi-cator is used.3.2The procedures for Type M,or micro hardness durom-eters,accommodate specimens that are,by their dimensions or configuration,ordinarily unable to have their durometer hard-ness determined by the other durometer types described.Type M durometers are intended for the testing of specimens having a thickness or cross-sectional diameter of1.25mm(0.050in.) or greater,although specimens of lesser dimensions may be successfully accommodated under the conditions specified in Section6,and have a Type M durometer hardness range between20and90.Those specimens which have a durometer hardness range other than specified shall use another suitable procedure for determining durometer hardness.4.Significance and Use4.1This test method is based on the penetration of a specific type of indentor when forced into the material under specified conditions.The indentation hardness is inversely related to the penetration and is dependent on the elastic modulus and viscoelastic behavior of the material.The geometry of the1This test method is under the jurisdiction of ASTM Committee D11on Rubber and is the direct responsibility of Subcommittee D11.10on Physical Testing.Current edition approved Aug.15,2005.Published September2005.Originally approved st previous edition approved in2004as D2240–04e1.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from International Organization for Standardization(ISO),1rue de Varembé,Case postale56,CH-1211,Geneva20,Switzerland.Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.indentor and the applied force influence the measurements such that no simple relationship exists between the measure-ments obtained with one type of durometer and those obtained with another type of durometer or other instruments used for measuring hardness .This test method is an empirical test intended primarily for control purposes.No simple relationship exists between indentation hardness determined by this test method and any fundamental property of the material tested.For specification purposes,it is recommended that Test Method D 785be used for materials other than those described in 1.1.5.Apparatus5.1Hardness Measuring Apparatus,or Durometer,and an Operating Stand ,Type 1,Type 2,or Type 3(see 5.1.2)consisting of the following components:5.1.1Durometer :5.1.1.1Presser Foot ,the configuration and the total area of a durometer presser foot may produce varying results when there are significant differences between them.It is recom-mended that when comparing durometer hardness determina-tions of the same type (see 4.1),that the comparisons be between durometers of similar presser foot configurations and total area,and that the presser foot configuration and size be noted in the Hardness Measurement Report (see 10.2.4and 5.1.1.3).5.1.1.2Presser Foot ,Types A,B,C,D,DO,E,O,OO,OOO,and OOO-S,with an orifice (to allow for the protrusion of the indentor)having a diameter as specified in Fig.1(a,b,c,d,e,f,and g),with the center a minimum of6.0mm (0.24in.)from any edge of the foot.When the presser foot is not of a flat circular design,the area shall not be less than 500mm 2(19.7in.2).N OTE 1—The Type OOO and the Type OOO-S,designated herein,differ in their indentor configuration,spring force,and the results obtained.See Table 1and Fig.1(e and g).5.1.1.3Presser Foot —flat circular designs designated as Type xR ,where x is the standard durometer designation and R indicates the flat circular press foot described herein,for example,Type aR ,dR ,and the like.The presser foot,having acentrally located orifice (to allow for the protrusion of the indentor)of a diameter as specified in Fig.1(a through g).The flat circular presser foot shall be 1860.5mm (0.7160.02in.)in diameter.These durometer types shall be used in an operating stand (see 5.1.2).(a)Durometers having a presser foot configuration other than that indicated in 5.1.1.3shall not use the Type xR designation,and it is recommended that their presser foot configuration and size be stated in the Hardness Measurement Report (see 10.2.4).5.1.1.4Presser Foot,Type M ,with a centrally located orifice (to allow for the protrusion of the indentor),having a diameter as specified in Fig.1(d),with the center a minimum of 1.60mm (0.063in.)from any edge of the flat circular presser foot.The Type M durometer shall be used in a Type 3operating stand (see 5.1.2.4).5.1.1.5Indentor ,formed from steel rod and hardened to 500HV10and shaped in accordance with Fig.1(a,b,c,d,e,or g),polished over the contact area so that no flaws are visible under 203magnification,with an indentor extension of 2.5060.04mm (0.09860.002in.).5.1.1.6Indentor,Type OOO-S ,formed from steel rod and hardened to 500HV10,shaped in accordance with Fig.1(f),polished over the contact area so that no flaws are visible under 203magnification,with an indentor extension of 5.0060.04mm (0.19860.002in.).5.1.1.7Indentor,Type M ,formed from steel rod and hard-ened to 500HV10and shaped in accordance with Fig.1(d),polished over the contact area so that no flaws are visible under 503magnification,with an indentor extension of 1.2560.02mm (0.04960.001in.).5.1.1.8Indentor Extension Indicator ,analog or digital elec-tronic,having a display that is an inverse function of the indentor extension so that:(1)The display shall indicate from 0to 100with no less than 100equal divisions throughout the range at a rate of one hardness point for each 0.025mm (0.001in.)of indentormovement,FIG.1(a)Type A and CIndentor(2)The display for Type OOO-S durometers shall indicate from 0to 100with no less than 100equal divisions throughout the range at a rate of one hardness point for each 0.050mm (0.002in.)of indentor movement,(3)The display for Type M durometers shall indicate from 0to 100with no less than 100equal divisions at a rate of one hardness point for each 0.0125mm (0.0005in.)of indentor movement,and(4)In the case of analog dial indicators having a display of 360°,the points indicating 0and 100may be at the same point on the dial and indicate 0,100,or both.5.1.1.9Timing Device (optional),capable of being set to a desired elapsed time,signaling the operator or holding thehardness reading when the desired elapsed time has been reached.The timer shall be automatically activated when the presser foot is in contact with the specimen being tested,for example,the initial indentor travel has ceased.Digital elec-tronic durometers may be equipped with electronic timing devices that shall not affect the indicated reading or determi-nations attained by more than one-half of the calibration tolerance stated in Table 1.5.1.1.10Maximum Indicators (optional),maximum indicat-ing pointers are auxiliary analog indicating hands designed to remain at the maximum hardness value attained until resetbyFIG.1(b)Type B and D Indentor(continued)FIG.1(c)Type O,DO,and OO Indentor(continued)FIG.1(d)Type M Indentor(continued)the operator.Electronic maximum indicators are digital dis-plays electronically indicating and maintaining the maximum value hardness valued achieved until reset by the operator.5.1.1.11Analog maximum indicating pointers have been shown to have a nominal effect on the values attained,however,this effect is greater on durometers of lesser total mainspring loads;for example,the effect of a maximum indicating pointer on Type D durometer determinations will be less than those determinations achieved using a Type A durometer.Analog style durometers may be equipped with maximum indicating pointers.The effect of a maximum indicating pointer shall be noted at the time of calibration in the calibration report (see 10.1.5),and when reporting hardness determinations (see 10.2.4).Analog Type M,OO,OOO,and Type OOO-S durometers shall not be equipped with maximum indicating pointers.5.1.1.12Digital electronic durometers may be equipped with electronic maximum indicators that shall not affect the indicated reading or determinations attained by more than one half of the spring calibration tolerance stated in Table 1.5.1.1.13Calibrated Spring ,for applying force to the inden-tor,in accordance with Fig.1(a through g)and capable of applying the forces as specified in Table 1.5.1.2Operating Stand (Fig.2):5.1.2.1Type 1,Type 2,and Type 3shall be capable of supporting the durometer presser foot surface parallel to the specimen support table (Fig.3)throughout the travel of each.The durometer presser foot to specimen support table parallel-ism shall be verified each time the test specimen support table is adjusted to accommodate specimens of varying dimensions.This may be accomplished by applying the durometer presser foot to the point of contact with the specimen support table and making adjustments by way of the durometer mounting assem-bly or as specified by the manufacturer.5.1.2.2Operating Stand,Type 1(specimen to indentor type),shall be capable of applying the specimen to the indentor in a manner that minimizes shock.5.1.2.3Operating Stand,Type 2(indentor to specimen type),shall be capable of controlling the rate of descent of the indentor to the specimen at a maximum of 3.20mm/s(0.125FIG.1(e)Type OOO Indentor(continued)FIG.1(f)Type OOO-S Indentor(continued)in./s)and applying a force sufficient to overcome the calibrated spring force as shown in Table 1.5.1.2.4Operating Stand,Type 3(indentor to specimen type),hydraulic dampening,pneumatic dampening,or electro-mechanical (required for the operation of Type M durometers)shall be capable of controlling the rate of descent of the indentor to the specimen at a maximum of 3.2mm/s (0.125in./s)and applying a force sufficient to overcome the calibrated spring force as shown in Table 1.Manual application,Type 1or Type 2operating stands are not acceptable for Type M durometer operation.5.1.2.5The entire instrument should be plumb and level,and resting on a surface that will minimize vibration.Operating the instrument under adverse conditions will negatively affect the determinations attained.5.1.2.6Specimen Support Table ,(Fig.3)integral to the operating stand,and having a solid flat surface.The specimen support platform may have orifices designed to accept various inserts or support fixtures (Fig.3)to provide for the support of irregularly configured specimens.When inserts are used to support test specimens,care must be taken to align the indentor to the center of the insert,or the point at which the indentor is to contact the specimen.Care should be exercised to assure thatthe indentor does not abruptly contact the specimen support table as damage to the indentor may result.6.Test Specimen6.1The test specimen,herein referred to as “specimen”or “test specimen”interchangeably,shall be at least 6.0mm (0.24in.)in thickness unless it is known that results equivalent to the 6.0-mm (0.24-in.)values are obtained with a thinner specimen.6.1.1A specimen may be composed of plied pieces to obtain the necessary thickness,but determinations made on such specimens may not agree with those made on solid specimens,as the surfaces of the plied specimens may not be in complete contact.The lateral dimensions of the specimen shall be sufficient to permit measurements at least 12.0mm (0.48in.)from any edge,unless it is known that identical results are obtained when measurements are made at a lesser distance from an edge.6.1.2The surfaces of the specimen shall be flat and parallel over an area to permit the presser foot to contact the specimen over an area having a radius of at least 6.0mm (0.24in.)from the indentor point.The specimen shall be suitably supported to provide for positioning and stability.A suitablehardnessFIG.1(g)Type E Indentor (continued)TABLE 1Durometer Spring Force Calibration AAll Values are in NIndicated Value Type A,B,E,O Type C,D,DO Type M Type OO,OOO Type OOO-S 00.5500.3240.2030.16710 1.3 4.4450.3680.2940.34320 2.058.890.4120.3850.52030 2.813.3350.4560.4760.69640 3.5517.780.50.5660.87350 4.322.2250.5440.657 1.04960 5.0526.670.5890.748 1.22670 5.831.1150.6330.839 1.40280 6.5535.560.6770.93 1.579907.340.0050.721 1.02 1.7551008.0544.450.765 1.111 1.932N/durometer unit 0.0750.44450.00440.009080.01765Spring Calibration Tolerance60.075N60.4445N60.0176N60.0182N60.0353NARefer to 5.1.1.3for the Type xRdesignation.determination cannot be made on an uneven or rough point of contact with the indentor.6.2Type OOO,OOO-S,and M test specimens should be at least 1.25mm (0.05in.)in thickness,unless it is known thatresults equivalent to the 1.25-mm (0.05-in.)values are obtained with a thinner specimen.6.2.1A Type M specimen that is not of a configuration described in 6.2.2may be composed of plied pieces toobtainFIG.2Durometer OperatingStandFIG.3Small Specimen SupportTablethe necessary thickness,but determinations made on such specimens may not agree with those made on solid specimens because the surfaces of the plied specimens may not be in complete contact.The lateral dimensions of the specimen should be sufficient to permit measurements at least 2.50mm (0.10in.)from any edge unless it is known that identical results are obtained when measurements are made at lesser distance from an edge.A suitable hardness determination cannot be made on an uneven or rough point of contact with the indentor.6.2.2The Type M specimen,when configured as an o-ring,circular band,or other irregular shape shall be at least 1.25mm (0.05in.)in cross-sectional diameter,unless it is known that results equivalent to the 1.25-mm (0.05-in.)values are obtained with a thinner specimen.The specimen shall be suitably supported in a fixture (Fig.3)to provide for positioning and stability.6.3The minimum requirement for the thickness of the specimen is dependent on the extent of penetration of the indentor into the specimen;for example,thinner specimens may be used for materials having higher hardness values.The minimum distance from the edge at which measurements may be made likewise decreases as the hardness increases.7.Calibration7.1Indentor Extension Adjustment Procedure :7.1.1Place precision ground dimensional blocks (Grade B or better)on the support table and beneath the durometer presser foot and indentor.Arrange the blocks so that the durometer presser foot contacts the larger block(s)and the indentor tip just contacts the smaller block (Fig.4).It is necessary to observe the arrangement of the blocks and the presser foot/indentor under a minimum of 203magnification to assure proper alignment.7.1.2Indentor extension and shape shall be in accordance with 5.1.1.5,5.1.1.6,or 5.1.1.7,respective to durometer type.See Fig.1(a through g).Examination of the indentor under 203magnification,503for Type M indentors,is required to examine the indentor condition.Misshapen or damaged inden-tors shall be replaced.7.1.3A combination of dimensional gage blocks shall be used to achieve a difference of 2.54+0.00/–0.0254mm (0.100+0.00/–0.001in.)between them.For Type OOO-S durometers,the gage block dimensions are 5.08+0.00/–0.0508mm (0.200+0.00/–0.002in.).For Type M durometers,the gage blockdimensions are 1.27+0.0/–0.0127mm (0.050+0.00/–0.0005in.)between them (Fig.4).7.1.4Carefully lower the durometer presser foot until it contacts the largest dimensional block(s),the indentor tip should just contact the smaller block,verifying full indentor extension.7.1.5Adjust the indentor extension to 2.5060.04mm (0.09860.002in.).For Type OOO-S durometers,adjust the indentor extension to 5.060.04mm (0.19860.002in.).For Type M durometers,adjust the indentor extension to 1.2560.02mm (0.04960.001in.),following the manufacturer’s recommended procedure.7.1.5.1When performing the procedures in 7.1,care should be used so as not to cause damage to the indentor tip.Fig.4depicts a suitable arrangement for gaging indentor extension.7.1.6Parallelism of the durometer presser foot to the support surface,and hence the dimensional gage blocks,at the time of instrument calibration,may be in accordance with Test Methods D 374,Machinist’s Micrometers,or otherwise ac-complished in accordance with the procedures specified by the manufacturer.7.2Indentor Display Adjustment :7.2.1After adjusting the indentor extension as indicated in 7.1,use a similar arrangement of dimensional gage blocks to verify the linear relationship between indentor travel and indicated display at two points:0and 100.Following the manufacturer’s recommendations,make adjustments so that:7.2.2The indicator displays a value equal to the indentor travel measured to within:–0.0+1.0durometer units measured at 0;60.50durometer units measured at 100;61durometer units at all other points delineated in 7.4.7.2.3Each durometer point indicated is equal to 0.025mm (0.001in.)of indentor travel,except for:7.2.3.1Type M Durometers,each indicated point is equal to 0.0125mm (0.0005in.)of indentor travel;7.2.3.2Type OOO-S Durometers,each indicated point is equal to 0.050mm (0.002in.)of indentor travel.7.2.4The indicator shall not display a value greater than 100or less than 0at the time of calibration.7.2.5Other means of determining indentor extension or indentor travel,such as optical or laser measurement methods,are acceptable.The instrumentation used shall have traceability as described in 1.4.7.2.6The durometer shall be supported in a suitable fashion when performing the procedures described in 7.1and 7.2.7.3Calibration Device :7.3.1The durometer spring shall be calibrated by support-ing the durometer in a calibrating device,see Fig.5,in a vertical position and applying a measurable force to the indentor tip.The force may be measured by means of a balance as depicted in Fig.5,or an electronic force cell.The calibrating device shall be capable of measuring applied force to within 0.5%of the maximum spring force necessary to achieve 100durometer units.7.3.2Care should be taken to ensure that the force is applied vertically to the indentor tip,as lateral force will cause errors in calibration.See 7.1.5.1and 7.1.6.FIG.4Detail of Indentor Extension and DisplayAdjustment7.4Spring Calibration —The durometer spring shall be calibrated at displayed readings of 10,20,30,40,50,60,70,80,and 90.The measured force (9.83mass in kilograms)shall be within the spring calibration tolerance specified in Table 1.Table 1identifies the measured force applied to the indentor for the entire range of the instrument,although it is necessary only to verify the spring calibration at points listed herein.7.5Spring Calibration Procedure :7.5.1Ensure that the indentor extension has been adjusted in accordance with 7.1,and the linear relationship between indentor travel and display is as specified in 7.2.7.5.2Place the durometer in the calibration device as depicted in Fig.5.Apply the forces indicated in Table 1so that forces applied are aligned with the centerline of the indentor in a fashion that eliminates shock or vibration and adjust the durometer according to manufacturers’recommendations so that:7.5.3At the points enumerated in 7.4,the display shall indicate a value equal to 0.025mm (0.001in.)of indentor travel.For Type OOO-S durometers,the display shall indicate a value equal to 0.05mm (0.002in.)of indentor travel.For Type M durometers,the display shall indicate a value equal to 0.0125mm (0.0005in.)of indentor travel within the spring calibration tolerances specified in 7.6.7.6Spring calibration tolerances are 61.0durometer units for Types A,B,C,D,E,O,and DO,62.0durometer units for Types OO,OOO,and OOO-S,and 64.0durometer units for Type M,while not indicating below 0or above 100at the time of calibration (see Table 1).7.7Spring Force Combinations :7.7.1For Type A,B,E,and O durometers:Force,N =0.55+0.075HAWhere HA =hardness reading on Type A,B,E,and O durometers.7.7.2For Type C,D,and DO durometers:Force,N =0.4445HDWhere HD =hardness reading on Type C,D,and DO durometers.7.7.3For Type M durometers:Force,N =0.324+0.0044HMWhere HM =hardness reading on Type M durometers.7.7.4For Type OO and OOO durometers:Force,N =0.203+0.00908HOOWhere HOO =hardness reading on Type OO durometers.7.7.5For Type OOO-S durometers:Force,N =0.167+0.01765HOOO-SWhere HOOO-S =hardness reading on Type OOO-S durometers.7.8The rubber reference block(s)provided for verifying durometer operation and state of calibration are not to be relied upon as calibration standards.The calibration procedures outlined in Section 7are the only valid calibration procedures.7.8.1The use of metal reference blocks is no longer recommended (see Note 2).7.9Verifying the state of durometer calibration,during routine use ,may be accomplished by:7.9.1Verifying that the zero reading is no more than 1indicated point above zero,and not below zero (on durometers so equipped),when the durometer is positioned so that no external force is placed upon the indentor.7.9.2Verifying that the 100reading is no more than 100and no less than 99when the durometer is positioned on a flat surface of a non-metallic material so that the presser foot is in complete contact,causing the indentor to be fully retracted.7.9.2.1It is important that when performing the verification of 100,as described in 7.9.2,that extreme care be taken so as to not cause damage to the indentor.Verification of the 100value is not recommended for durometers having a spring force greater than 10N (Types C,D,and DO).7.9.2.2When performing the verification of 100,as de-scribed in 7.9.2,the non-metallic material shall be of a hardness value greater than 100of the type (scale)of the durometer being employed.Tempered glass of a thickness greater than 6.35mm (0.25in.)has been found satisfactory for this application.7.9.3Verifying the displayed reading at any other point using commercially available rubber reference blocks which are certified to a stated value of the type (scale)of the durometer being employed.The displayed value of the durom-eter should be within 62durometer points of the reference block’s stated value.7.9.4Verification of the zero and 100readings of a durom-eter provide reasonable assurance that the linear relationship between the indicated display and the durometer mechanism remain valid.7.9.5Verification of points between zero and 100provide reasonable assurance that the curvilinear relationship between the indicated display and the durometer mechanism remain valid.7.9.6This is not a calibration procedure,it is a means by which a user may routinely verify that the durometer may be functioning correctly.(See Note 2.)boratory Atmosphere and Test Specimen Conditioning8.1Tests shall be conducted in the standard laboratory atmosphere,as defined in Practice D 618,Section 4.2.8.2The instrument shall be maintained in the standard laboratory atmosphere,as defined in Practice D 618,Section 4.1,for 12h prior to performing atest.FIG.5Example of Durometer CalibrationApparatus8.3The specimen shall be conditioned in accordance with condition40/23exclusive of humidity control,as described in Practice D618,Section8.1,Procedure A and tested under the same conditions,exclusive of humidity control.8.4These procedures may be modified if agreed upon between laboratories or between supplier and user and are in accordance with alternative procedures identified in Practice D618.8.5No conclusive evaluation has been made on durometers at temperatures other than23.06 2.0°C(73.46 3.6°F). Conditioning at temperatures other than the above may show changes in calibration.Durometer use at temperatures other than the above should be decided locally(see Practice D1349).9.Procedure9.1Operating Stand Operation(Type3Operating Stand Required for Type M):9.1.1Care shall be exercised to minimize the exposure of the instrument to environmental conditions that are adverse to the performance of the instrument,or adversely affect test results.9.1.2Adjust the presser foot to support table parallelism as described in5.1.2.1.It is necessary to make this adjustment each time the support table is moved to accommodate speci-mens of varying dimensions.9.1.3Prior to conducting a test,adjust the vertical distance from the presser foot to the contact surface of the test specimen to25.462.5mm(1.0060.100in.),unless it is known that identical results are obtained with presser foot at a greater or lesser vertical distance from the test specimen contact surface, or if otherwise stipulated by the manufacturer.9.1.4Place the specimen on the specimen support table,ina manner that the contact point of the indentor is in accordance with Section6,unless it is known that identical results are obtained when measurements are made with the indentor at a lesser distance from the edge of the test specimen.9.1.5Actuate the release lever(Fig.2)of the operating stand or activate the electromechanical device,allowing the durometer to descend at a controlled rate and apply the presser foot to the specimen in accordance with5.1.2.In the case of “specimen to indentor”type operating stands,operate the lever or other mechanism to apply the specimen to the indentor in a manner that assures parallel contact of the specimen to the durometer presser foot without shock and with just sufficient force to overcome the calibrated spring force as shown in Table 1.9.1.6An operating stand that applies the mass at a con-trolled rate of descent,without shock is mandatory for Type M durometers.Hand-held application or the use of a Type1or Type2operating stand for the Type M durometer is not an acceptable practice,see5.1.2.4.9.1.7For any material covered in1.1,once the presser foot is in contact with the specimen,for example,when the initial indentor travel has ceased,the maximum indicated reading shall be recorded.The time interval of1s,between initial indentor travel cessation and the recording of the indicated reading,shall be considered standard.Other time intervals, when agreed upon among laboratories or between supplier and user,may be used and reported accordingly.The indicated hardness reading may change with time.9.1.7.1If the durometer is equipped with an electronic maximum indicator or timing device(refer to5.1.1.9)the indicated reading shall be recorded within160.3s of the cessation of indentor travel and reported(refer to10.2.9for reporting protocols),unless otherwise noted.9.1.7.2If the durometer is equipped with an analog type maximum indicator(refer to5.1.1.10),the maximum indicated reading may be recorded and shall be reported(refer to10.2.9), unless otherwise noted.9.1.7.3If the durometer is not equipped with the devices described in5.1.1.9or5.1.1.10,the indicated reading shall be recorded within1s as is possible and reported(refer to10.2.9), unless otherwise noted.9.1.8Makefive determinations of hardness at different positions on the specimen at least6.0mm(0.24in.)apart,0.80 mm(0.030in.)apart for Type M;and calculate the arithmetic mean,or alternatively calculate the median.The means of calculating the determinations shall be reported according to 10.2.89.2Manual(Hand Held)Operation of Durometer:9.2.1Care shall be exercised to minimize the exposure of the instrument to environmental conditions that are adverse to the performance of the instrument,or adversely affect test results.9.2.2Place the specimen on aflat,hard,horizontal surface. Hold the durometer in a vertical position with the indentor tip at a distance from any edge of the specimen as described in Section6,unless it is known that identical results are obtained when measurements are made with the indentor at a lesser distance.9.2.3Apply the presser foot to the specimen,maintaining it in a vertical position keeping the presser foot parallel to the specimen,with afirm smooth downward action that will avoid shock,rolling of the presser foot over the specimen,or the application of lateral force.Apply sufficient pressure to assure firm contact between the presser foot and the specimen.9.2.4For any material covered in1.1,after the presser foot is in contact with the specimen,the indicated reading shall be recorded within160.1s,or after any period of time agreed upon among laboratories or between supplier and user.If the durometer is equipped with a maximum indicator,the maxi-mum indicated reading shall be recorded within160.1s of the cessation of initial indentor travel.The indicated hardness reading may change with time.9.2.5Makefive determinations of hardness at different positions on the specimen at least6.0mm(0.24in.)apart and calculate the arithmetic mean,or alternatively calculate the median.The means of calculating the determinations shall be reported according to10.2.8.9.3It is acknowledged that durometer readings below20or above90are not considered reliable.It is suggested that readings in these ranges not be recorded.9.4Manual operation(handheld)of a durometer will cause variations in the results attained.Improved repeatability may be obtained by using a mass,securely affixed to the durometer and centered on the axis of the indentor.Recommendedmasses。
橡胶硬度计的使用方法和步骤
橡胶硬度计的使用方法和步骤1、试样:使用邵氏A型、D型和AO型硬度计测定硬度时,试样的厚度至少6mm。
使用AM型硬度计测定硬度时,试样厚度至少1.5mm。
对于厚度小于以上要求的试样,可以由不多于3层叠加而成。
但由叠成试样测定的结果和单层试样测定的结果不一定一致。
2、表面:试样的表面在一定的范围内应平整、上下平行,以使压足能和试样在足够面积内进行接触。
邵氏A型D型硬度计接触半径至少6mm;AO型至少9mm;AM 型至少2.5mm。
3、调节:在进行试验前试样应接照GB/T2941的规定在标准实验室温度下调至少1h,用于比较目的的单一或系列试验应始终采用相同的温度。
4、测量程序:(1).将试样放于平整、坚硬的表面上,平稳地把压足压在试样上,应没有震动,保持压足和试样表面平行,以使压针垂直于橡胶表面,最大压入速度3.2mm/S(将硬度装置在配套生产的同型号测定架上测定,会提高测定精确度)。
(2).当压足和试样紧密接触后,在规定的时刻读数。
对于硫化橡胶标准试验力保持时间为3S,热塑性橡胶则为15S,未知类型橡胶当作硫化橡胶处理。
(3).在试样表面不同位置进行5次测量取中值。
对于邵氏A型、D型、AO型硬度计,不同测量位置相距至少6mm;对于AM型,至少相距0.8mm。
(4)、使用前应检查橡胶硬度计的指针在自由状态下应指零位。
(如指针微量偏离零位时,可以松动右上角压紧螺丝,转动表面,对准零位)。
将硬度计压在玻璃板上时,指针应指100度。
(压针端面与压脚底面严密接触于玻璃板上)。
如不指零位和100度时,可以轻微按动压针几次,如仍不指零位和100度时,则不能使用,如在定荷架上使用时,可以揿动手柄,使工作台上升,将定位销插入工作台下部小孔,调整使用,如仍不指100度时同样不可使用。
D型硬度计装置在定荷架上使用时,调整工作台平行度时压针顶端不能直接压在工作台玻璃台上,否则会压伤工作台玻璃台面,必须在工作台上放置专用量块或平整的玻璃板后再行操作。
astm标准加速寿命测试
astm标准加速寿命测试
ASTM标准加速寿命测试是一种用于评估材料或产品在短时间内遭受环境腐蚀、老化等因素的能力的测试方法。
ASTM国际标准组织制定了一系列的加速寿命测试标准,其中常用的包括ASTM D1149、ASTM D2240、ASTM G155等。
ASTM D1149标准是用于评估橡胶和橡胶制品耐氧化、耐温度变化、耐光照等因素的能力。
该标准将样品置于恶劣的环境条件下,如高温、湿度、氧气浓度等,并进行一段时间的测试,以模拟实际使用条件下的老化情况。
ASTM D2240标准是用于评估弹性材料(如橡胶、塑料等)硬度的测试方法。
该标准确定材料硬度的方法是通过将一个硬度计压入材料表面,并测量硬度计的深度,以确定材料的硬度值。
ASTM G155标准是用于评估材料在紫外辐射下的耐候性能的
测试方法。
该标准模拟了日光灯光谱,并将样品于高温、湿度、光照条件下进行测试,以评估材料的耐候性能。
这些ASTM标准加速寿命测试方法提供了一种快速、准确评
估材料或产品的寿命预测方法,帮助制造商确定产品在实际使用中可能面临的问题,并采取相应的改进措施。
ASTM-D2240-硬度计硬度的标准试验方法(中文版)
ASTM-D2240-硬度计硬度的标准试验方法(中文版)ASTM D2240 硬度计硬度的标准试验方法(中文版)ASTM 标准代号:D 2240-97ε美国国家标准1橡胶特性-(丢洛氏)硬度计测硬度-的标准试验方法本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变ε1注:脚注从1999年2月的注5中消去。
1. 适用范围1.1 本试验方法涉及A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种(丢洛氏)硬度计和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的压痕硬度的程序。
1.2 本试验方法不适用于对纤维织物的试验。
1.3 以SI单位标注的值应视为标准值,括号中的值仅供参考。
1.4 本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D618 对被测塑料做空气调节处理的程序2D785 对塑料和电气绝缘材料的洛氏硬度的试验方法2D1349 橡胶的操作规程—试验时的标准温度3D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程33 试验方法的小结3.1 本试验方法允许在初始压痕时测定硬度,或者在印压一特定时间后进行硬度测定,可两者兼而有之。
注1:当使用最大指针读数时,被用作确定初始硬度值的具有最大读数的指针难以测准稍低的读数。
1本试验方法直接由ASTM“橡胶标准委员会”属下的《D11.10的物理试验委员会》负责最新版本于1997年2月10日通过批准,于1997年3月颁布。
最初是以D2240-64T的形式颁布,上一期的版本为 D2240-952 摘自《ASTM标准年签》,第08.01卷。
3 摘自《ASTM标准年签》,第09.01卷4. 意义与用途4.1 本试验方法是立足于特定条件下、(硬度试验)压头对材料施力而形成穿透深度的形式。
橡胶硬度测试标准
橡胶硬度测试标准橡胶硬度是指橡胶材料在一定条件下受力后的表面硬度,通常用来评估橡胶材料的弹性和耐磨性。
橡胶硬度测试标准是对橡胶硬度测试方法和要求的规范,对于保证橡胶制品质量、提高产品竞争力具有重要意义。
本文将介绍橡胶硬度测试标准的相关内容,以便于读者对橡胶硬度测试有更深入的了解。
橡胶硬度测试标准主要包括两个方面的内容,测试方法和测试要求。
首先,我们来看一下橡胶硬度测试的常用方法。
目前,国际上常用的橡胶硬度测试方法包括 shore硬度测试和IRHD硬度测试。
shore硬度测试是通过在一定条件下,用一定形状的金属锥体或球形头对试样表面施加一定压力,然后测量压痕的深度或者直接读取示值来表示橡胶硬度的方法。
而IRHD硬度测试是通过在一定条件下,用一定形状的压头对试样表面施加一定压力,然后测量压头的弹性变形来表示橡胶硬度的方法。
这两种方法各有优缺点,具体选择应根据实际情况进行。
除了测试方法外,橡胶硬度测试标准还对测试要求进行了规定。
主要包括硬度测试的环境条件、试样的制备、试样的存放和试验前的处理等。
其中,环境条件是指硬度测试应该在一定的温度和湿度条件下进行,以保证测试结果的准确性和可比性。
试样的制备是指在进行硬度测试前,需要对试样进行一定的加工和处理,以保证试样的表面光洁度和几何尺寸的准确性。
试样的存放和试验前的处理是指在进行硬度测试前,需要对试样进行一定的存放和处理,以保证试验结果的准确性和可重复性。
总的来说,橡胶硬度测试标准对于橡胶制品的质量控制和产品研发具有重要意义。
通过遵循橡胶硬度测试标准,可以保证硬度测试的准确性和可靠性,为橡胶制品的质量提供可靠的保障。
同时,也可以为产品的设计和研发提供科学的依据,提高产品的竞争力和市场占有率。
综上所述,橡胶硬度测试标准是橡胶行业中的重要标准之一,对于保证产品质量、提高产品竞争力具有重要意义。
希望本文的介绍能够帮助读者更好地了解橡胶硬度测试标准的相关内容,为实际工作提供参考和指导。
ASTM-D2240-橡胶邵尔硬度测试方法
ASTM 标准代号:D 2240-97ε美国国家标准橡胶特性-(丢洛氏)硬度计测硬度1-的标准试验方法本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变ε1注:脚注从1999年2月的注5中消去。
1. 适用范围1.1 本试验方法涉及A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种(丢洛氏)硬度计和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的压痕硬度的程序。
1.2本试验方法不适用于对纤维织物的试验。
1.3以SI单位标注的值应视为标准值,括号中的值仅供参考。
1.4本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D618 对被测塑料做空气调节处理的程序2D785 对塑料和电气绝缘材料的洛氏硬度的试验方法2D1349 橡胶的操作规程—试验时的标准温度3D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程33 试验方法的小结3.1 本试验方法允许在初始压痕时测定硬度,或者在印压一特定时间后进行硬度测定,可两者兼而有之。
注1:当使用最大指针读数时,被用作确定初始硬度值的具有最大读数的指针难以测准稍低的读数。
1 本试验方法直接由ASTM“D-11橡胶标准委员会”属下的《D11.10的物理试验委员会》负责最新版本于1997年2月10日通过批准,于1997年3月颁布。
最初是以D2240-64T的形式颁布,上一期的版本为D2240-952摘自《ASTM标准年签》,第08.01卷。
3摘自《ASTM标准年签》,第09.01卷4. 意义与用途4.1 本试验方法是立足于特定条件下、(硬度试验)压头对材料施力而形成穿透深度的形式。
邵尔A及邵尔D橡胶硬度试验
德国标准2000年8月邵尔A及邵尔D橡胶硬度试验ICS 83.060 本标准,连同DIN EN ISO 868 1998年1月版本,取代了1987年6月版本。
与国际标准化组织(ISO)所发布的标准中的习惯用法一样,自始至终采用逗号作为十进制标记。
前言本标准由材料试验标准委员会制定。
它在很大程度上与DIN EN ISO 868及ISO 7619:1997相一致。
此处所给出的数据精度是在由14个实验室参与的实验室之间的试验中取得的。
中心实验室制备三种橡胶的试样,然后每个实验室在连续四天内对每种橡胶进行五个试样的试验。
每次试验得出三个测量值,将邵尔单位给予其中间值。
结果在表3中显示。
它显示出比一秒钟更短的读取间隔以及使用手持仪器并没有影响到数据精度。
然而,测量程序本身会影响试验的水平(参见表3),特别是在低硬度范围内(邵尔A在40左右)。
在此,一秒钟的读取时间里观察到了0.8单位的增量,而且在使用手持仪器时出现了1.2单位的增量。
因此,只有在保持了本标准所规定的试验参数(三秒钟的读取间隔并且使用工作台)时,才能够确保可重复性及可再现性。
修改本标准与1987年6月版本的不同之处在于:它不再涉及到塑料,由于其包括在DIN EN ISO 868标准中,并且引用标准已经更新。
以前的版本DIN 53503-2:1943-03;DIN 53503:1948-08;;DIN 53505:1953-09、1957-06、1960-05、1967-04、1973-03、1973-08、1987-06。
1 范围本标准规定了橡胶试样及产品的硬度试验。
橡胶的硬度是由其粘弹性特性,特别是如DIN 53504标准中所定义的弹性模量所决定的。
A类型硬度适合于邵尔A为10到90的硬度范围内的试验,而D类型硬度则应该用在高硬度的范围内。
球印方法可以用于中等硬度范围,无论是采用如DIN 53519-1中所规定的2.5mm直径的球还是——用于更软的试样——采用如DIN EN ISO 2039-1中所规定的5mm直径的球。
橡胶性能的标准测试-------硬度
橡胶性能的标准测试-------硬度编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(橡胶性能的标准测试-------硬度)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为橡胶性能的标准测试-------硬度的全部内容。
D1415-88 橡胶性能的标准测试—-—--——硬度 JACK LIAO这个标准是在原有的D618老版本的基础上出版的,名称后的数字是指采用这一标准的最初年份,或者,要是修订本,则表示最新版本的发布年份。
括号里的数字代表最新改动的年份。
标号∈后面的内容表示和上个版本有过改动。
这个标准已经通过美国国防部的批准.1.范围1.1 这个测试方法描述了测量橡胶硬度的一种方法.可以通过两种条件来获得橡胶球式样的硬度:(1)用一个很小的力(2)用一个大很多的力。
不同的渗透深度就会用不同的时间,然后转化为相对的硬度值。
1.2 这个测试方法基本上和ISO48是一致的.1.3 这个标准并不含有对所有的安全问题的解决方法,即使有,也只是与实验使用相关的部分。
这个标准的使用者,应该有责任去选择合适的安全的操作方法。
2.相关文件2.1ASTM StandardsD1349 Practice for Rubber-Standard Temperatures for TestingD2240 Test Method for Rubber Prooperty—Durometer HardnessD4483 Practice for Determining Precision for Test Method StandardsIn the Rubber and Carbon Black Industries2.2ISO StandardISO/48 Vulcanized Rubber—Determination of Hardness(Hardness between 30 and 85IRHD)3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ASTM 标准代号:D 2240-97ε美国国家标准橡胶特性-(丢洛氏)硬度计测硬度1-的标准试验方法本标准是以固定的标志编号D 2240;紧接在编号后面的数字表示最初采用的年份,或者若有修订版本的情况下数字表示最近修订的年份,括号内的数字表示最近批准的年份上标的ε表示最近修或批准而作了编辑上的改变ε1注:脚注从1999年2月的注5中消去。
1. 适用范围1.1 本试验方法涉及A、B、C、D、DO、E、M、O、OO、OOO、OOO-S和R等12种(丢洛氏)硬度计和按橡胶、网状材料、弹性材料、热塑材料和某些硬塑料的分类来确定物质的压痕硬度的程序。
1.2本试验方法不适用于对纤维织物的试验。
1.3以SI单位标注的值应视为标准值,括号中的值仅供参考。
1.4本标准并不意味以表述了所有可能与使用有关的安全事宜。
本标准的使用者有责任建立相应的安全与健康操作规程,并在使用前确定规则对适用性的限制。
2 参考文献2.1 ASTM 标准D618 对被测塑料做空气调节处理的程序2D785 对塑料和电气绝缘材料的洛氏硬度的试验方法2D1349 橡胶的操作规程—试验时的标准温度3D4483 在橡胶与炭黑行业确定试验法标准精确度的操作规程33 试验方法的小结3.1 本试验方法允许在初始压痕时测定硬度,或者在印压一特定时间后进行硬度测定,可两者兼而有之。
注1:当使用最大指针读数时,被用作确定初始硬度值的具有最大读数的指针难以测准稍低的读数。
1 本试验方法直接由ASTM“D-11橡胶标准委员会”属下的《D11.10的物理试验委员会》负责最新版本于1997年2月10日通过批准,于1997年3月颁布。
最初是以D2240-64T的形式颁布,上一期的版本为D2240-952摘自《ASTM标准年签》,第08.01卷。
3摘自《ASTM标准年签》,第09.01卷4. 意义与用途4.1 本试验方法是立足于特定条件下、(硬度试验)压头对材料施力而形成穿透深度的形式。
压痕硬度与穿透度成反比并取决于材料的弹性模量与粘弹性。
(硬度试验)压头与所施力会影响所获得的结果,因此在用一种形式的(丢洛氏—下面省略)硬度计所获得的结果与用另一种形式的硬度计与测定硬度的其他仪器所得到的结果之间并无一种简的关系。
本试验方法是一种以经验为根据、最初是为了控制而作的试验。
我们已知在由本试验方法确定的压痕硬度与背侧材料的所有基本特性之间并不存在着一种简单的关系。
故为了(制定)规范的目的,建议硬的材料使用《试验方法D785》。
注2:仅有“(丢洛氏)压痕硬度的刻度比较表”。
它不可亦不能作为一个转换参考(基准)。
形式A 10 20 30 40 50 60 70 80 90 100形式B 10 20 30 40 50 60 70 80 90 100形式C 10 20 30 40 50 60 70 80 90 100形式D 10 20 30 40 50 60 60 70 80 90 100形式DO 10 20 30 40 50 60 90 80 90 100形式O 10 20 30 40 50 60 70 80 90 100形式OO 10 20 30 40 50 60 70 80 90 1005. 装置5.1 硬度测定装置与硬度计应由以下零部件构成:5.1.1 压机支座,其上有一孔,直径按图1(a)、(b)或(c)的规定,其中心离支座的任一边至少为6mm(0.25in)。
5.1.2 硬度试验压头,由硬化钢棒材制成,形状按图1(a)、(b)或(c)的规定,可以在2.46至2.54mm(0.097至0.100in)之间作完全的调节。
5.1.3 压头伸长显示装置(模拟式与电子式),在整个范围内刻度盘读数从0到100等分。
刻度盘读数是压头伸长量的反函数。
装置应有一个指针,它是以一个硬度测点的速率,即反映压头各0.025mm(0.001in.)的移动,在刻度盘上移动。
注3:系列数字从1至16 300和16351到16 900的肖氏A级硬度计和从1至8077的肖氏A-2级硬度计,并不能满足在零位读数时压头从2.46至2.54mm(0.097至0.100in)伸长的要求。
这些硬度计会给出以每30硬度为一单位至每90硬度为一单位计数的低度数。
5.1.4 计时装置(任选),能够被理想地调节到所经过的时间,并能在达到所设定的时间时向操作者发出信号或保持硬度读数。
当压机支座与被测试样牢固接触时,定时器应能自动启动。
5.1.5 已标定的弹簧,按图1对压头施加力。
6.被测试样6.1 除非已经知道用薄的试样能够得到厚6mm试样等效的值,被测试样的厚度至少应为6mm(0.25in)(详见注4)。
试样可以由叠层件构成以具有必需的厚度,但是在此类试样上所得的测定值可能与整体试样不一样,这是因为叠层间的表面不可能完全接触的缘故。
除非确知在离侧边更近的距离上进行测量可以获得相同的结果,试样侧面应有足够的尺寸以使能在任意边至少12mm(0.5in.)处进行测量。
试样的表面应有足够的面积保持平直与水平以使压机支座在从压头点算起的至少6mm(0.25in)半径划定的区域内与试样接触。
在一个修圆、不平或粗糙的面上不能测定正确的硬度。
注4 对试样厚度的最低要求取决于压头压入试样的程度;也即是说,具有在刻度盘较高的硬度值材料可能适用于更薄的试样。
同样可作测定的离边侧的最小距离随着硬度的增加而减少。
对于硬度值超过D型硬度计50(单位)的材料,试样厚度至少应为3mm(0.12in),且不应在离任意侧边的距离小于6mm(0.25in.)处进行测定。
7.标定7.1 应通过垂直支承硬度计并对压头尖端施加可测得力来对硬度计的弹簧进行标定(请见图2)。
用作施力的装置可以是一个静重或电子加载压力盒,它能以标定裕度的50%的精度测出施力的大小。
因为侧向加载会造成标定错误,所以应仔细操作,确保垂直地对压头端施力。
应在所有硬度计上对弹簧的标定进行验证,所需的刻度读数为20、30、40、50、60、70、80和90。
经测定的值(9.8×质量,单位为公斤)应等于按图1所示的公式计算所得的力。
A、B与O型硬度计的测量值的容差应在±0.08牛顿(N)之内,C、D与DO型硬度计的测量值的容差应在±0.44牛顿(N)之内,OO型硬度计的在±0.025牛顿(N)之内。
注5可以使用为硬度计标定而特地设计的仪器。
7.2 压头的伸长与形状必须符合5.1.2节的规定。
将硬度计牢固地置于一个平面上后,显示器应能读出与压头被伸长等量的数字,单位为英寸×1000,容差为硬度计示点的±0.5。
注6 在B与D型硬度计上、按第7.2节程序进行测定时,应小心操作,切勿损伤压头尖端。
7.3 用作检查硬度计操作而提供的测试块(橡胶或弹簧式)不可作为可信的标定标准。
在第7.1与7.2节规定的标定程序是仅有的有效的标定方法。
8.空气调节处理8.1 应在23±2℃(73.4±3.6℉)的温度时进行试验。
对于其硬度取决于相对湿度的材料,应按操作规程D 618的程序A的要求对试样做空气调气处理,并在相同的状况下进行试验。
注7 正是在23±2℃(73.4±3.6℉)温度时在硬度计上作结论性的评估。
除以上温度外的其他温度时进行空气调节处理可能会显示标定值有所变化。
在除以上温度外的其他温度时使用硬度计应根据当地情况而定(请见操作规程D 1349)。
9.程序9.1 将试样置于一个硬质且水平的表面上。
垂直地保持硬度计,使其压头之点至少离试样的各侧边12mm(0.5in.),除非确知在离侧边更近的距离上进行测量可以获得相同的果,应尽快可能地、无振动地使压机支座抵住试样,保持支座与试样表面的平行。
应施正好足够的压力以使压机支座与试样之间保持紧密的接触。
注8 使用一个与压头轴线对中的质量块可以获得更好的复测正确度。
建议对A、B与O型硬度计使用1公斤的质量块,对C、D与DO型的用5公斤的质量块,对OO型的用400克的质量块。
使用上述质量块作为一种恒定的载荷并采用手控且无振动的下降速度的硬度计台架可以产生最大重复性。
9.2 对于在第1.1节所涉及的任何材料,在压机支座与试样紧密接触后,刻度读数必须一秒钟内或者在供货双方认可的一段时间内读出,除非硬度计有一个最大的显示器需读出最大的读数。
硬度读数可能会随时间的推移而降低。
9.3 在试样上成每隔至少6mm(0.25in.)分布的3个或5个不同的点处,各作一次测定,取这些测量值的平均值作为硬度值。
注9 应凭以下意识选择硬度计的类型,即读数低于10或高于90的硬度计的制造商是不可信的。
建议别将这种范围的读数记录下来。
10.报告10.1 应报告以下信息:10.1.1 所获得的硬度值,10.1.2 被测材料的全部符号标志,10.1.3 硫化处理的日期,10.1.4 对试样的说明,包括厚度与叠层数,如果小于6mm(0.25in.)的话,10.1.5 试验时的温度,如果温度不是23℃的话,10.1.6 相对湿度,如果材料的硬度取决于湿度时,10.1.7 硬度计型式及其系列编号,10.1.8 读出压痕硬度读数的时间间隔,10.1.9 试验日期。
注10:应以A/45/15的形式报告读数。
此处A是硬度计的型式,45是读数,15是以秒计的时间,此时压力支座紧密地与试样接触。
简单地说,D/60/1即表示D型硬度计在1秒内或者从一个最大显示器上获得了读数为60的硬度。
11.精度与偏差411.1 精度与偏差的制定已按照操作规程D 4483进行。
对于名词术语与其他试验及统计可参照该操作规程11.2 对于A与B型的方法的类型1的精度是用三种不用硬度的材料、利用实验室内程序、从6个实验室中确定。
对于A与B试验程序,应在各个实验室内。
于分开的两天进行试验。
所有的材料应来自一个产地。
11.3 (对于A与B型的)硬度试验的结果应是每个实验室在同一天得到的5个单独的硬度读数的平均值。
11.4表1表示了A型方法的精度结果。
表2给出了D型方法的精度结果。
11.5在本《精度与偏差》节的精度结果给出了对本实验方法精度的估测值,如上所述在特定的实验室内试验程序中使用了橡胶材料。
在无文件可证明(它们)适用于那些特殊的材料和包括本实验方法的特定的试验协议时,该精度参数不应被用作对任意组别的材料接受或/和拒收的试验表1 类型1的精度—A型硬度计的方法材料平均值等级在实验室内在实验室之间S r A r B(r)C S R D R E(R)F1 51.4 0.646 1.83 3.56 1.56 4.41 8.592 65.3 0.878 2.48 3.81 2.14 6.06 9.273 68.0 0.433 1.23 1.80 2.28 6.45 9.49 汇总处理61.6 0.677 1.92 3.11 2.018 5.72 9.28 此处:A S r = 复测正确度标准偏差,用测量单位B r = 复测正确度= 2.83×S r,用测量单位C(r) = 相对复测正确度(单位为%)D S R = 可再现率标准偏差,用测量单位E R = 可再现率= 2.83×S R,用测量单位F(R) = 相对可再现率(单位为%)4支持文件可以从ASTM总部取得,询问RR;D11-1029表2 类型1的精度—D型硬度计的方法材料平均值等级在实验室内在实验室之间S r A r B(r)C S R D R E(R)F1 42.6 0.316 0.894 2.10 2.82 7.98 18.72 54.5 0.791 2.24 4.11 3.54 10.0 18.43 82.3 1.01 2.86 3.47 3.54 10.0 12.2汇总处理59.8 0.762 2.16 3.61 3.32 9.40 15.7此处:A S r = 复测正确度标准偏差,用测量单位B r = 复测正确度= 2.83×S r,用测量单位C(r) = 相对复测正确度(单位为%)D S R = 可再现率标准偏差,用测量单位E R = 可再现率= 2.83×S R,用测量单位F(R) = 相对可再现率(单位为%)。