离散数学形成性考核作业
离散数学形成性考核作业4题目与答案

离散数学形成性考核作业4作业与答案离散数学综合练习书面作业要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档.3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、公式翻译题1.请将语句“小王去上课,小李也去上课.”翻译成命题公式.设P:小王去上课Q:小李去上课则:命题公式P∧Q2.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.设P:他去旅游Q:他有时间则命题公式为P→Q3.请将语句“有人不去工作”翻译成谓词公式.设A(x):x是人B(x):去工作则谓词公式为∃x(A(x)∧-B(x))4.请将语句“所有人都努力学习.”翻译成谓词公式.设A(x): x是人B(x):努力学习则谓词公式为∀x(A(x)∧B(x))二、计算题1.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)(A-B)={{1},{2}}(2)(A∩B)={1,2}(3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1,{1,2}>,<2,1>,<2,2>,<2,{1,2}>}2.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}S=空集R•S=空集S•R =空集R-1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>}S-1=空集r(S) ={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R) ={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}3.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式;(2) 画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.4.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;(4) 画出其补图的图形.答:(1)(2)(3)deg(v1)=1, deg(v2)=2 ,deg(v3)=4 ,deg(v4)=3,deg(v5)=2(4)5.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.解:(1)(2)(3)其中权值是:76.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.解:权值:657.求P→Q∨R的析取范式,合取范式、主析取范式,主合取范式.解:8.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.9.设个体域为D ={a 1, a 2},求谓词公式(∀y )(∃x )P (x ,y )消去量词后的等值式;三、证明题1.对任意三个集合A , B 和C ,试证明:若A ⨯B = A ⨯C ,且A ≠∅,则B = C .证明:设x ∈A, y ∈B,则<x,y>∈A ⨯B因为A ⨯B =A ⨯C ,故<x, y>∈A ⨯C, 则有y ∈C所以 B ⊆C设x ∈A, z ∈C ,则<x, z>∈A ⨯C因为A ⨯B =A ⨯C ,故<x, z>∈A ⨯B, 则有z ∈B所以 C ⊆B故得A =B2.试证明:若R 与S 是集合A 上的自反关系,则R ∩S 也是集合A 上的自反关系.证明:R 和S 是自反的,∀x ∈A, <x,x>∈R, <x,x>∈S则<x, x>∈R ⋂S所以R ⋂S 是自反的3.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k 条边才能使其成为欧拉图.4.试证明 (P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝ (P ∨⌝Q )等价.5.试证明:⌝(A ∧⌝B )∧(⌝B ∨C )∧⌝C ⇒⌝A .以上为离散数学形成性考核作业4作业与答案,请教师指正。
离散数学集合论部分形成性考核书面作业离散数学作业

离散数学集合论部分形成性考核书面作业离散数学作业集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )=A B{{1,2},{2,3},{1,3},{1,2,3}} ,A B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈y<>=2,,x,{ByAx那么R-1= {<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b>,<d,c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g f )= {<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1)结论不成立.因为关系R 要成为自反的,其中缺少元素<3,3>.(2)结论不成立.因为关系R 中缺少元素<2,1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:(1)结论不成立.因为关系R 要成为自反的,其中缺少元素<3,3>.(2)结论不成立.因为关系R 中缺少元素<2,1>3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在. 答: 错误,按照定义,图中不存在最大元和最小元。
最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
离散数学集合论部分形成性考核书面作业

离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:将此作业用A4纸打印出来,并在03任务界面下方点击“保存”和“交卷”按钮,以便教师评分.作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿).一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A BA?B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3>4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx=<>∈x∈x,,,2Ay{B那么R-1= {<6,3>,<8,4>}5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a>, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x?A,y?A, x+y =10},则R的自反闭包为 {<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 <1, 1>, <2, 2>, <3, 3> 等元素.10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2, b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g? f二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系; (2) R是对称的关系.解:(1)错误,R不是自反关系,因为没有有序对<3,3>.(2)错误,R 不是对称关系,因为没有有序对<2,1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:错误, 即R 不是等价关系.因为等价关系要求有自反性x R x, 但<3, 3>不在R中.3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在.解:错误.集合A 的最大元不存在,a 是极大元.4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2) f ={<1, 6>, <3, 4>, <2, 2>}; (3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}. 解:(1) f 不能构成函数.因为A 中的元素3在f 中没有出现. (2) f 不能构成函数.因为A 中的元素4在f 中没有出现. (3) f 可以构成函数.因为f 的定义域就是A ,且A 中的每一个元素都有B 中的唯一一个元素与其对应,满足函数定义的条件. 三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:(1) (A ?B )?~C ; (2) (A ?B )- (B ?A ) (3) P (A )-P (C ); (4) A ?B . 解:(1)因为A ∩B={1,4}∩{1,2,5}={1}, ~C={1,2,3,4,5}-{2,4}={1,3,5} 所以 (A ∩B ) ?~C={1}?{1,3,5}={1,3,5} (2)(A ?B )- (B ?A )= {1,2,4,5}-{1}={2,4,5}(3)因为P(A)={?,{1}, {4}, {1,4}} P(C)={?,{2},{4},{2,4}}所以 P(A)-P(C)={ ?,{ 1},{ 4},{ 1,4}}-{?,{ 2},{ 4},{2,4 }} (4) 因为 A ?B={ 1,2,4,5}, A ?B={ 1}所以 A ?B=A ?B-A ?B={1,2,4,5}-{1}={2,4,5} 2.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(A ?B ); (2)(A ∩B ); (3)A ×B . 解:(1)A ?B ={{1},{2}}(2)A ∩B ={1,2}?? ? ?a b c d 图一? ? ? g efh?(3)A ×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>, <2, {1,2}>}3.设A ={1,2,3,4,5},R ={<x ,y >|x ?A ,y ?A 且x +y ?4},S ={<x ,y >|x ?A ,y ?A 且x +y <0},试求R ,S ,R ?S ,S ?R ,R -1,S -1,r (S ),s (R ). 解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \ R -1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>} S=φ, S -1 =φr (S )={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s (R )= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>} R ?S=φ S ?R=φ4.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.(1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图; (3) 求出集合B 的最大元、最小元.解:R={<1,1>,<1,2>,<1,3>,<1,4,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>} (2)关系R 的哈斯图如图四(3)集合B 没有最大元,最小元是:2 四、证明题1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ). 证明:设,若x ∈A ? (B ?C ),则x ∈A 或x ∈B ?C , 即 x ∈A 或x ∈B 且 x ∈A 或x ∈C . 即x ∈A ?B 且 x ∈A ?C , 即 x ∈T =(A ?B ) ? (A ?C ),所以A ? (B ?C )? (A ?B ) ? (A ?C ).反之,若x ∈(A ?B ) ? (A ?C ),则x ∈A ?B 且 x ∈A ?C ,即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈B ?C , 即x ∈A ? (B ?C ),所以(A ?B ) ? (A ?C )? A ? (B ?C ). 因此.A ? (B ?C )=(A ?B ) ? (A ?C ).2.试证明集合等式A ? (B ?C )=(A ?B ) ? (A ?C ).证明:设S =A ∩(B ∪C ),T =(A ∩B )∪(A ∩C ), 若x ∈S ,则x ∈A 且x ∈B ∪C ,即 x ∈A 且x ∈B 或 x ∈A 且x ∈C ,也即x ∈A ∩B 或 x ∈A ∩C ,即 x ∈T ,所以S ?T . 反之,若x ∈T ,则x ∈A ∩B 或 x ∈A ∩C , 即x ∈A 且x ∈B 或 x ∈A 且x ∈C7也即x∈A且x∈B∪C,即x∈S,所以T?S.因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.证明:设x?A,y?B,则<x,y>?A?B,因为A?B = A?C,故<x,y>? A?C,则有y?C,所以B? C.设x?A,z?C,则<x,z>? A?C,因为A?B = A?C,故<x,z>?A?B,则有z?B,所以C?B.故得B=C.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:R1和R2是自反的,?x?A,<x, x> ?R1,<x, x> ?R2,则<x, x> ?R1∩R2,所以R1∩R2是自反的.。
国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案

国开形成性考核《离散数学(本)》形考任务(1-3)试题及答案(课程ID:50501,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1 集合论部分概念及性质一、单项选择题题目:1、设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是()。
【A】:f°g ={<5,a >, <4,b >}【B】:g°f ={<a,5>, <b,4>}【C】:f°g ={<a,5>, <b,4>}【D】:g°f ={<5,a >, <4,b >}答案:g°f ={<a,5>, <b,4>}题目:2、设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()。
【A】:8、1、6、1【B】:无、2、无、2【C】:8、2、8、2【D】:6、2、6、2答案:无、2、无、2题目:3、设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ()。
【A】:{<2, 1>, <4, 3>, <6, 5>}【B】:{<2, 1>, <3, 2>, <4, 3>}【C】:{<2, 3>, <4, 5>, <6, 7>}【D】:{<2, 2>, <3, 3>, <4, 6>}答案:{<2, 3>, <4, 5>, <6, 7>}题目:4、设集合A ={1 , 2, 3}上的函数分别为:()。
离散数学形成性考核作业9参考答案

离散数学形成性考核作业9参考答案离散数学作业9姓名:学号:得分:教师签名:离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成并上交任课教师(不收电子稿)。
并在09任务界面下方点击“保存”和“交卷”按钮,以便教师评分。
一、单项选择题1.设P:我将去市里,Q:我有时间.命题“我将去市里,仅当我有时间时”符号化为( B ).A.Q?P B.P?Q C.P?Q D.?P??Q2.设命题公式G:?P?(Q?R),则使公式G取真值为1的P,Q,R赋值分别是 (D ).A.0, 0, 0 B.0, 0, 1 C.0, 1, 0 D.1, 0, 03.下列命题公式成立的为( C ).A.?P??Q?P?Q B.?B?A ? A?B C.P ? Q ?Q D.?A? (A?B) ?B4.下列公式 ( C )为重言式.A.P?Q ??P?Q B.(B?(A?B)) ?(?A?(A?B))C.?(P?Q)??P??Q D.A??B?A?B 5.命题公式?(P?Q)的析取范式是( A ).A.P??Q B?P?Q C.?P?Q D.P??Q 6.设C(x):x是国家级运动员,G(x):x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为(D ).A.??x(C(x)??G(x)) B.??x(C(x)??G(x))C.??x(C(x)??G(x)) D.??x(C(x)??G(x))7.表达式?x(P(x,y)?Q(z))??y(R(x,y)??zQ(z))中?x的辖域是( B ). A.P(x, y) B.P(x, y)?Q(z) C.R(x, y) D.P(x, y)?R(x, y)8.谓词公式?xP(x)?(?x?Q(x)???xQ(x))的类型是( A ).1 / 6A.永真式 B.永假式 C.非永真的可满足式 D.蕴含式二、填空题1.命题公式P?(Q?P)的真值是 1 .2.设P:他生病了,Q:他出差了.R:我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→R .3.设A,B为任意命题公式,C为重言式,若A?C?B?C,那么A?B是言重式式(重言式、矛盾式或可满足式) .4.含有三个命题变项P,Q,R的命题公式P?Q的主析取范式是(P∧ Q∧R)∧(P∧ Q ∧?R).5.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”为(?χ)(PCχ)→Q(χ)) .6.设个体域D={a, b},那么谓词公式?xA(x)??yB(y)消去量词后的等值式为(A(a)∨A(b))∨(B(a)∧B(b)) .7.设个体域D={1, 2, 3, 4},A(x)为“x小于3”,则谓词公式(?x)A(x) 的真值为.8.谓词命题公式(?x)(P(x)→Q(x)∨R(x,y))中的约束变元为χ.三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解: 设P: 今天晴天则命题公式为P2.请将语句“如果明天天下雪,我就去市里”翻译成命题公式.解: 设P:天下雨. Q我明天去市里.则命题公式为P→Q3.请将语句“除非你去,否则我不去”翻译成命题公式.解: 设P:你去.Q我去.则命题公式为��P→��Q或Q→P2 / 64.请将语句“我去书店,仅当天不下雨”翻译成命题公式.解: 设P:我去书店. Q天不下雨则命题公式为P→Q5.请将语句“有人不去工作”翻译成谓词公式.解: 设P(χ): χ是人. Q(χ): χ去工作 .则谓词公式为(?χ)(P (χ)∧?Q(χ))6.请将语句“所有人都努力工作.”翻译成谓词公式.解: 设P(χ): χ是人. Q(χ): χ努力工作 . 则谓词公式为(?χ)(P (χ)→Q(χ))四、判断说明题(判断下列各题,并说明理由.)1.命题公式┐P∧P的真值是1.2.命题公式┐P∧(P→┐Q)∨P为永真式.答:正确┐P∧(P→┐Q)∨P是由┐P∧(P→┐Q)与P组成的析取式如果P的值为真,则┐P∧(P→┐Q)∨P为真如果P的值为假,则┐P与P→┐Q为真,即┐P∧(P→┐Q)为真也即┐P∧(P→┐Q)∨P为真。
离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。
2023年电大离散数学形成性考核作业

离散数学形成性考核作业(一)集合论部分分校_________ 学号____________ 姓名___________ 分数___________本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第一次作业,大家要认真及时地完毕集合论部分旳形考作业,字迹工整,抄写题目,解答题有解答过程。
第1章 集合及其运算1.用列举法体现 “不不大于2而不不不大于等于9旳整数” 集合.2.用描述法体现 “不不不大于5旳非负整数集合” 集合.3.写出集合B={1, {2, 3 }}旳所有子集.4.求集合A={∅∅,{}}旳幂集.5.设集合A={{a }, a },命题:{a }⊆P (A ) 与否对旳,阐明理由.6.设A B C ==={,,},{,,},{,,},123135246求(1)A B ⋂ (2)A B C ⋃⋃⊕(3)C-A(4)A B7.化简集合体现式:((A⋃B )⋂B)- A⋃B.8.设A, B,C是三个任意集合,试证: A- (B⋃C)= (A-B)-C.9.填写集合{4, 9} {9,10,4}之间旳关系.10.设集合A= {2,a, {3},4},那么下列命题中错误旳是().A.{a}∈A B.{a,4, {3}}⊆AC.{a}⊆A D.∅⊆A11.设B={{a},3, 4, 2},那么下列命题中错误旳是( ).A.{a}∈B B.{2, {a}, 3, 4}⊆BC.{a}⊆BD.{∅}⊆B第2章关系与函数1.设集合A = {a, b},B= {1,2,3},C={3, 4},求A⨯(B⋂C),(A⨯B)⋂(A⨯C),并验证A⨯(B⋂C) =(A⨯B)⋂(A⨯C ).2.对任意三个集合A, B和C,若A⨯B⊆A⨯C,与否一定有B⊆C?为何?3.对任意三个集合A,B和C,试证若A⨯B = A⨯C,且A≠∅,则B =C.4.写出从集合A={a,b,c }到集合B = {1}旳所有二元关系.5.设集合A = {1,2,3,4,5,6 },R是A上旳二元关系,R ={<a , b>⎢a,b∈A,且a+b= 6}写出R旳集合体现式.6.设R从集合A= {a,b,c,d}到B={1,2,3}旳二元关系,写出关系R={<a, 1>,<a , 3>,<b,2>,<c,2>,<c, 3>}旳关系矩阵,并画出关系图.7.设集合A={a,b,c , d},A上旳二元关系R ={<a,b>,<b ,d>,<c, c>,<c , d>},S={<a ,c>,<b, d>,<d,b>,<d,d>}.求R⋃S,R⋂S,R-S,~(R⋃S),R⊕S.8.设集合A={1, 2 },B = { a , b , c},C={α , β},R是从A到B旳二元关系,S是从B到C旳二元关系,且R = {<1 , a>,<1 , b>,<2 , c>}, S= {<a ,β>,<b,β>},用关系矩阵求出复合关系R·S.9.设集合A={1, 2 , 3,4}上旳二元关系R = {<1, 1>,<1 , 3>,<2,2>,<3,1>,<3,3>,<3,4>,<4 ,3>,<4, 4>},判断R具有哪几种性质?10.设集合A={a , b,c,d }上旳二元关系R={<a,a>,<a ,b>,<b , b>,<c , d>},求r(R),s (R),t(R).11.设集合A= {a, b,c,d},R,S是A上旳二元关系,且R={<a ,a>,<a , b>, <b ,a> , <b , b>,<c , c> ,<c , d>, <d ,c>, <d , d>}S = {<a, b> ,<b , a> ,<a , c>,<c, a> ,<b ,c>, <c,b>,<a,a>, <b, b> ,<c, c>}试画出R和S旳关系图,并判断它们与否为等价关系,若是等价关系,则求出A中各元素旳等价类及商集.12.图1.1所示两个偏序集<A ,R >旳哈斯图,试分别写出集合A和偏序关系R 旳集合体现式.13.画出各偏序集<A ,≤1>旳哈斯图,并指出集合A 旳最大元、最小元、极大元和极小元.其中:A ={a , b , c , d , e },≤1 = {<a , b >,<a , c >,<a , d >,<a , e >,<b , e >,<c , e >,<d , e >}⋃I A ;14.下列函数中,哪些是满射旳?那些是单射旳?那些是双射旳?a g(1)a (2)图1.1 题12哈斯图(1) f 1 :R →R ,f (a ) = a3 + 1;(2) f 4 :N →{0 , 1},f (a) = ⎩⎨⎧为偶数为奇数a a ,1,0 .15.设集合A = {1, 2 },B = {a , b , c},则B ⨯A = .16.设集合A = {1,2,3,4},A上旳二元关系R ={<1 , 2>,<1 , 4>,<2 , 4>,<3 , 3>}, S ={<1 , 4>,<2 , 3>,<2 , 4>,<3 , 2>},则关系( )= {<1 , 4>,<2 , 4>}.A.R ⋃SB.R⋂S C.R - S D .S - R17.设集合A ={1 , 2 , 3 , 4}上旳二元关系R = {<1 , 1>,<2 , 3>,<2 ,4>,<3 , 4>},则R 具有( ).A .自反性 B.传递性C .对称性 D.反自反性18.设集合A ={ a , b , c , d , e }上旳偏序关系旳哈斯 图如图1.2所示.则A 旳极大元为 , 极小元为 .图1.2 题18哈斯图19.设R为实数集,函数f:R R,f(a)= -a2+2a -1,则f是( ).A.单射而非满射 B.满射而非单射C.双射D.既不是单射也不是满射。
离散数学集合论部分形成性考核书面作业(离散数学作业2)

离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )={{1,2},{2,3},{1,3},{1,2,3}} ,A⨯B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,R⋂y∈x=且且<>∈∈{B,,xAyAyBx}则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈A2,x,,xy{B那么R-1={<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b>,<d,c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立. 因为关系R 中缺少元素<2, 1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在. 答: 错误,按照定义,图中不存在最大元和最小元。
离散数学形成性考核作业(三)

离散数学形成性考核作业(三)集合论与图论综合练习本课程形成性考核作业共4次,内容由中央电大确定、统一布置。
本次形考作业是第三次作业,大家要认真及时地完成图论部分的形考作业,字迹工整,抄写题目,解答题有解答过程。
一、单项选择题1.若集合A ={2,a ,{ a },4},则下列表述正确的是( ).A .{a ,{ a }}∈AB .{ a }⊆AC .{2}∈AD .∅∈A2.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ).A .{2}∈B B .{2, {2}, 3, 4}⊂BC .{2}⊂BD .{2, {2}}⊂B3.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ).A .B ⊂ A ,且B ∈A B .B ∈ A ,但B ⊄AC .B ⊂ A ,但B ∉AD .B ⊄ A ,且B ∉A4.设集合A = {1, a },则P (A ) = ( ).A .{{1}, {a }}B .{∅,{1}, {a }}C .{∅,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }}5.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b >⎢a , b ∈A , 且a +b = 8},则R 具有的性质为( ).A .自反的B .对称的C .对称和传递的D .反自反和传递的6.设集合A = {1,2,3,4,5 },B = {1,2,3},R 从A 到B 的二元关系,R ={<a , b >⎢a ∈A ,b ∈B 且1=-b a }则R 具有的性质为( ).A .自反的B .对称的C .传递的D .反自反的7.设集合A ={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S 是R 的( )闭包.A .自反B .传递C .对称D .以上都不对8.非空集合A 上的二元关系R ,满足( ),则称R 是等价关系.A .自反性,对称性和传递性B .反自反性,对称性和传递性C .反自反性,反对称性和传递性D .自反性,反对称性和传递性9.设集合A ={a , b },则A 上的二元关系R={<a , a >,<b , b >}是A 上的( )关系.A .是等价关系但不是偏序关系B .是偏序关系但不是等价关系C .既是等价关系又是偏序关系D .不是等价关系也不是偏序关系10.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A 的子集B = {3 , 4 , 5}, 则元素3为B 的( ). A .下界 B .最大下界 C .最小上界 D .以上答案都不对11.设函数f :R →R ,f (a ) = 2a + 1;g :R →R ,g (a ) = a 2.则( )有反函数.A .g ∙fB .f ∙gC .fD .g12.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010*******000011100000100 则G 的边数为( ).A .5B .6C .3D .413.下列数组中,能构成无向图的度数列的数组是( ) .A .(1, 1, 2, 3)B .(1, 2, 3, 4, 5)C .(2, 2, 2, 2)D .(1, 3, 3)14.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v V v 2)deg(=∑∈D .E v V v =∑∈)deg(15.有向完全图D =<V ,E >, 则图D 的边数是( ).A .∣E ∣(∣E ∣-1)/2B .∣V ∣(∣V ∣-1)/2C .∣E ∣(∣E ∣-1)D .∣V ∣(∣V ∣-1)16.给定无向图G 如右图所示,下面给出的结点集子集中,不是点割集的为( )A .{b , d }B .{d }C .{a , c }D .{g , e }17.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +218.无向图G 存在欧拉通路,当且仅当( ).A .G 中所有结点的度数全为偶数 25fB .G 中至多有两个奇数度结点C .G 连通且所有结点的度数全为偶数D .G 连通且至多有两个奇数度结点19.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+20.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .A .8B .5C .4D . 3二、填空题1.设集合A B =={,,},{,}12312,则A ⋃B = ,A ⋂B = ,A – B = ,P (A )-P (B )= .2.设A , B 为任意集合,命题A -B =∅的条件是 .3.设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为 .4.设集合A = {1,2,3,4,5,6 },A 上的二元关系A b a b a R ∈><=,,{且1=-b a },则R 的集合表示式为 .5.设集合A = {1,2,3,4,5 },B = {1,2,3},R 从A 到B 的二元关系, R ={<a , b >⎢a ∈A ,b ∈B 且2≤a + b ≤4}则R 的集合表示式为 .6.设集合A ={0,1,2},B ={0,2,4},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的关系矩阵M R =.7.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><那么R -1=8.设集合A ={a ,b ,c },A 上的二元关系R ={<a ,b >,<c .a >},S ={<a ,a >,<a ,b >,<c ,c >}则(R ∙S )-1= .9.设集合A ={a ,b ,c },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则二元关系R 具有的性质是 .10.设集合A = {1 , 2 , 3 , 4 }上的等价关系R = {<1 , 2>,<2 , 1>,<3 , 4>,<4 , 3>}⋃I A .那么A 中各元素的等价类为 .11.设A ,B 为有限集,且|A |=m ,|B |=n ,那末A 与B 间存在双射,当且仅当 .12.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是 .13.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .14.设给定图G (如由图所示),则图G 的点割集是 .15.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 ,则在G 中存在一条汉密尔顿路.16.设无向图G =<V ,E >是哈密顿图,则V 的任意非空子集V 1,都有 ≤∣V 1∣.17.设有向图D 为欧拉图,则图D 中每个结点的入度 .18.设完全图K n 有n 个结点(n ≥2),m 条边,当 时,K n 中存在欧拉回路.19.图G (如右图所示)带权图中最小生 成树的权是 20.连通无向图G 有6个顶点9条边,从 G 中删去 条边才有可能得到G 的一棵生成树T .三、判断说明题1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1⋂R 2是自反的” 是否成立?并说明理由.3.设R ,S 是集合A 上传递的关系,判断R ⋃S 是否具有传递性,并说明理由.4.若偏序集<A ,R >的哈斯图如右图所示,则集合A 的最小元为1,最大元不存在.5.若偏序集<A ,R >的哈斯图如右图所示,则集合A 的极大元为a ,f ;最大元不存在.cd6.图G (如右图)能否一笔画出?说明理由. 若能画出,请写出一条通路或回路. 7.判断下图的树是否同构?说明理由.8.给定两个图G 1,G 2(如下图所示),试判断它们是否为欧拉图、哈密顿图?并说明理由.9.判别图G (如下图所示)是不是平面图,并说明理由.10.在有6个结点,12条边的简单平面连通图中,每个面有几条边围成?为什么?四、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:(1)(A ⋂B )⋃~C ; (2)P (A )-P (C ); (3)A ⊕B .2.设集合A ={a , b , c },B ={b , d , e },求(1)B ⋂A ; (2)A ⋃B ; (3)A -B ; (4)B ⊕A .3.设A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R 是A 上的整除关系,B ={2, 4, 6}.(1)写出关系R 的表示式;(2)画出关系R 的哈斯图;(3)求出集合B 的最大元、最小元.4.设集合A ={a , b , c , d }上的二元关系R 的v 123 图G图G 2 图G 1(c )3关系图如右图所示.(1)写出R 的表达式;(2)写出R 的关系矩阵;(3)求出R 2.5.设A ={0,1,2,3,4},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y <=3},试求R ,S ,R ︒S ,R -1,S -1,r (R ),s (R ),t (R ),r (S ),s(S ),t (S ).6.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示;(2)求G 的邻接矩阵;(3)判断图D 是强连通图、单侧连通图还是弱连通图?7.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 2),(v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) }.(1)试给出G 的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数(4)画出图G 的补图的图形.8.图G =<V , E >,其中V ={a , b , c , d , e , f },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (d , e ), (d , f ), (e , f ) },对应边的权值依次为5,2,1,2,6,1,9,3及8.(1)画出G 的图形;(2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.9.已知带权图G 如右图所示.试(1)求图G 的最小生成树;(2)计算该生成树的权值.10.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试(1)画出相应的最优二叉树;(2)计算它们的权值.五、证明题1.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ). 2.证明对任意集合A ,B ,C ,有C A B A C B A ⨯⋂⨯=⋂⨯)(.3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ∈A ,存在b ∈A ,使得<a , b >∈R ,则R 是等价关系.4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ⋂也是A 上的偏序关系.5.若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的.6.设G 是连通简单平面图,则它一定有一个度数不超过5的结点.(提示:用反证法)7.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.8.证明任何非平凡树至少有2片树叶.。
离散数学形成性考核作业(三)

离散数学形成性考核作业(三)本次活动是本学期的第二次活动(2020.11.18),主要是针对第二单元图论的重点学习内容停止辅导,方式是经过解说一些典型的综合练习标题,协助大家进一步了解和掌握图论的基本概念和方法。
图论作为团圆数学的一局部,主要引见图论的基本概念、实际与方法。
教学内容主要有图的基本概念与结论、图的连通性与连通度、图的矩阵表示、最短路效果、欧拉图与汉密尔顿图、平面图、对偶图与着色、树与生成树、根树及其运用等。
本次综合练习主要是温习这一局部的主要概念与计算方法,与集合论一样,也布置了五种类型,有单项选择题、填空题,判别说明题、计算题、证明题。
这样的布置也是为了让同窗们熟习期末考试的题型,可以较好地完成这一局部主要内容的学习。
下面区分解说。
一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010*******000011100000100 那么G 的边数为( ).A .5B .6C .3D .4正确答案:D上学期的作业中,有的同窗选择答案B 。
主要是对邻接矩阵的概念了解不到位。
我们温习定义:定义3.3.1 设G =<V ,E >是一个复杂图,其中V ={v 1,v 2,…, v n },那么 n 阶方阵A 〔G 〕=〔a ij 〕称为G 的邻接矩阵.其中各元素⎪⎩⎪⎨⎧==ji v v v v a j i j i ij 不相邻或与相邻与01 而当给定的复杂图是无向图时,邻接矩阵为对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以衔接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有8个1,故有8÷2=4条边。
2.设图G =<V , E >,那么以下结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v V v 2)deg(=∑∈D .E v Vv =∑∈)deg(正确答案:C该题主要是反省大家对握手定理掌握的状况。
离散数学集合论部分形成性考核书面作业

姓名:学号: 离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次, 内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习, 基本上是按照考试的题型安排练习题目, 目的是经过综合性书面作业, 使同学自己检验学习成果, 找出掌握的薄弱知识点, 重点复习, 争取尽快掌握。
本次形考书面作业是第一次作业, 大家要认真及时地完成集合论部分的综合练习作业。
要求: 将此作业用A4纸打印出来, 手工书写答题, 字迹工整,解答题要有解答过程, 完成并上交任课教师( 不收电子稿) 。
并在03任务界面下方点击”保存”和”交卷”按钮, 以便教师评分。
一、单项选择题1.若集合A={2, a, {a}, 4}, 则下列表述正确的是( ).A.{a, {a }}A B.{ a }A C.{2}AD. A答 B2.设B = { {2}, 3, 4, 2}, 那么下列命题中错误的是( ) .A.{2}∈B B.{2, {2}, 3, 4}B C.{2}B D.{2, {2}}B答 B3.若集合A={a, b, {1, 2 }}, B={1, 2}, 则( ) .A.B A B.A B C.B A D.BA答 D4.设集合A = {1, a }, 则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a}} D.{{1}, {a}, {1, a }}答 C5.设集合A = {1, 2, 3}, R是A上的二元关系,R ={<a , b>a∈A, b∈ A且1=a}-b则R具有的性质为( ) .A.自反的 B.对称的 C.传递的 D.反对称的答 B6.设集合A = {1, 2, 3, 4, 5, 6 }上的二元关系R ={<a , b>a , b∈A, 且a =b }, 则R具有的性质为( ) .A.不是自反的 B.不是对称的 C.反自反的D.传递的答 D7.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>, <2 , 2>, <2 , 3>, <4 , 4>},S = {<1 , 1>, <2 , 2>, <2 , 3>, <3 , 2>, <4 , 4>}, 则S是R的( ) 闭包.A.自反 B.传递 C.对称 D.以上都不对答 C8.设集合A={a, b}, 则A上的二元关系R={<a, a>, <b, b>}是A上的( )关系.A.是等价关系但不是偏序关系 B.是偏序关系但不是等价关系C.既是等价关系又是偏序关系 D.不是等价关系也不是偏序关系答 C9.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如右图所示,若A的子集B5元素3为B的( ) .A.下界 B.最大下界C.最小上界 D.以上答案都不对答 C10.设集合A ={1 , 2, 3}上的函数分别为:f = {<1 , 2>, <2 , 1>, <3 , 3>},g = {<1 , 3>, <2 , 2>, <3 , 2>},h = {<1 , 3>, <2 , 1>, <3 , 1>},则h =( ) .A.f◦g B.g◦f C.f◦f D.g◦g 答 A二、填空题1.设集合{1,2,3},{1,2}==, 则A BA⋃B= , A⋂B= .答{1,2,3}, {1,2}2.设集合{1,2,3},{1,2}==, 则A BP(A)-P(B )= , AB= .解(){,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}P A=∅P B=∅(){,{1},{2},{1,2}}答{{3},{1,3},{2,3},{1,2,3}}{<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}3.设集合A有10个元素, 那么A的幂集合P(A)的元素个数为.答2104.设集合A = {1, 2, 3, 4, 5 }, B = {1, 2, 3}, R从A到B的二元关系,R ={<a , b>a∈A, b∈B且2≤a + b≤4}则R的集合表示式为.答{1,1,1,2,1,3,2,1,2,2,3,1}R=<><><><><><>5.设集合A={1, 2, 3, 4 }, B={6, 8, 12}, A到B的二元关系R=}yyx∈=<>x∈A,,2,y{Bx那么1R-=解{3,6,4,8}R=<><>答{6,3,8,4}<><>6.设集合A={a, b, c, d}, A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}, 则R具有的性质是.答反自反7.设集合A={a, b, c, d}, A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}, 若在R中再增加两个元素 , 则新得到的关系就具有对称性.答<c, b>, <d, c>8.设A={1, 2}上的二元关系为R={<x, y>|x A, y A, x+y =10}, 则R的自反闭包为.答 {<1,1>,<2,2>}9.设R是集合A上的等价关系, 且1 , 2 , 3是A中的元素, 则R中至少包含等元素.答<1,1>, <2,2>, <3,3>。
国开离散数学形考任务6-数理逻辑部分形成性考核书面作业

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.命题公式()→∨的真值是1或T .P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧R) ∨(P∧Q∧﹁R) .4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为∃∧Q(x)) .5.设个体域D={a, b},那么谓词公式)x∨∃消去量词后的等值式为xA∀yB()(y(A(a) ∨A(b)) ∨((B(a) ∧B(b)) .6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(∃x)A(x) 的真值为0(F) .7.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(∀x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.设P:今天是晴天。
则﹁P。
2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游。
Q:小李去旅游。
则P∧Q3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.设P:他去旅游。
电大离散数学(本)形考任务4

离散数学作业4离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word 文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .2.设给定图G (如右由图所示),则图G 的点割集是{ f },{ e,c} .3.设G 是一个图,结点集合为V ,边集合为E ,则G 的结点 度数之和 等于边数的两倍.4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 .5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 ︱v ︱ ,则在G 中存在一条汉密尔顿路.6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W ≤ S .7.设完全图K n 有n 个结点(n 2),m 条边,当 n 为奇数时 时,K n 中存在欧拉回路.8.结点数v 与边数e 满足 e=v - 1 关系的无向连通图就是树.姓 名: 王稼骏 学 号:1815001209149 得 分: 教师签名:9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = 4 .二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.答:错误。
离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。
离散数学形成性考核作业答案

1. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}}AB. {1,2}AC. {a}AD. A2. 设A、B是两个任意集合,侧A-B = Ø⇔( ).A. A=BB. A⊆BC. A⊇BD. B=Ø3. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x<y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反的4. 设集合A={1,2,3,4},R是A上的二元关系,其关系矩阵为则R的关系表达式是( ).A. {<1, 1>,<1, 4>,<2, 1>,<3, 4>,<4,1>}B. {<1, 1>,<1, 2>,<1, 4>,<4, 1>,<4, 3>}C. {<1, 1>,<2, 1>,<4, 1>,<4, 3>,<1, 4>}D. {<1, 1>,<1, 2>,<2, 4>,<4, 1>,<4, 3>}5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 设A ={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B ={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、27. 若集合A={ a,{a}},则下列表述正确的是( ).A. {a}AB. {{{a}}}AC. {a,{a}}AD. A8. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 19. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y<10且x, y A},则R的性质为().A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的10. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}11. 设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>, <b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则()不是从A到B的函数.A. R1B. R2C. R3D. R1和R312. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 313. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B14. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}15. 设A ={a,b,c},B ={1,2},作f:A→B,则不同的函数个数为.A. 2B. 3C. 6D. 816. 若集合A={2,a,{ a },4},则下列表述正确的是( ).A. {a,{ a }}∈AB. Ø∈AC. {2}∈AD. { a }⊆A17. 设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B = {3, 4, 5},则元素3为B的().A. 下界B. 最小上界C. 最大下界D. 最小元18. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}}AB. {1,2}AC. {a}AD. A19. 设函数f:N→N,f(n)=n+1,下列表述正确的是().A. f存在反函数B. f是双射的C. f是满射的D. f是单射函数20. 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h=().A. f◦gB. g◦fC. f◦fD. g◦g21. 设集合A ={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集<A,≤>上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元。
开放大学离散数学集合论部分形成性考核书面作业答案

离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )={{1,2},{2,3},{1,3},{1,2,3}} ,A⨯B={{1,2},{2,3},{1,3},{1,2,3}} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈xyR⋂<且=且>∈∈{B,,xAyAyBx}则R的有序对集合为{{1,2},{2,3},{1,3},{1,2,3}} .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<>∈A2,x,,xy{B那么R-1={{1,2},{2,3},{1,3},{1,2,3}} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b>,<d,c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {4,3} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1) 结论不成立.因为关系R 要成为自反的,其中缺少元素<3, 3>. (2) 结论不成立.因为关系R 中缺少元素<2, 1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:不是等价关系因为3是A 的一个元素,由于<3,3>不在R 中,R 不具有自反性,等价关系R 必须有(对A 中任意元素a, R 含<a,a>),所以R 不是A 上的等价关系!3.若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在.解:错误,按照定义,图中不存在最大元和最小元οο ο ο a b c d 图一ο ο ο ge f hο4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2) f ={<1, 6>, <3, 4>, <2, 2>}; (3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) 不构成函数,因为它的定义域Dom(f)≠A(2) 也不构成函数,因为它的定义域Dom(f)≠A(3) 构成函数,首先它的定义域Dom(f) ={1, 2, 3, 4}= A ,其次对于A 中的每一个元素a ,在B 中都有一个唯一的元素b ,使<a,b>∈f三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:(1) (A ⋂B )⋃~C ; (2) (A ⋃B )- (B ⋂A ) (3) P (A )-P (C ); (4) A ⊕B . 解:(1)(A ⋂B )⋃~C={1}⋃{1,3,5}={1,3,5}(2)(A ⋃B )- (B ⋂A ) = {1,2,4,5}-{1}={2,4,5} (3)P (A ) = {,{1},{4},{1,4}}P (C ) = {,{2},{4},{2,4}}P (A )-P (C )={{1},{1,4}}(4) A ⊕B = (A ⋃B )- (B ⋂A )={2,4,5}2.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B . 解:(1)(A -B )={{1},{2}}φφ(2)(A ∩B )={1,2} (3)A ×B ={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1,{1,2}>,<2,1>,<2,2>,<2,{1,2}>}3.设A ={1,2,3,4,5},R ={<x ,y >|x ∈A ,y ∈A 且x +y ≤4},S ={<x ,y >|x ∈A ,y ∈A 且x +y <0},试求R ,S ,R ∙S ,S ∙R ,R -1,S -1,r (S ),s (R ).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}S=R ∙S= S ∙R=R -1={<1,1>,<2,1>,<3,1>,<1,2>,<2,2>,<1,3>} S -1 =r (S )={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s (R )={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}4.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}. (1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图; (3) 求出集合B 的最大元、最小元.解:(1) R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2) (3) 集合B 没有最大元,最小元是2.φφφφ四、证明题1.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).解:设,若x ∈A ⋃ (B ⋂C ),则x ∈A 或x ∈B ⋂C 即x ∈A 或x ∈B 且x ∈A 或x ∈C 即x ∈A ⋃B 且x ∈A ⋃C 即x ∈T=(A ⋃B ) ⋂ (A ⋃C )所以A ⋃ (B ⋂C )(A ⋃B ) ⋂ (A ⋃C )反之 若x ∈(A ⋃B ) ⋂ (A ⋃C ),则x ∈A ⋃B 且x ∈A ⋃C即x ∈A 或x ∈B 且x ∈A 或x ∈C 即x ∈A 或x ∈B ⋂C 即x ∈A ⋃ (B ⋂C )所以(A ⋃B ) ⋂ (A ⋃C )A ⋃ (B ⋂C ) 因此A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C )2.试证明集合等式A ⋂ (B ⋃C )=(A ⋂B ) ⋃ (A ⋂C ).解:设S=A ⋂ (B ⋃C ),T = (A ⋂B ) ⋃ (A ⋂C ) 若x ∈S ,则x ∈A 且x ∈B ⋃C 即x ∈A 且x ∈B 或x ∈A 且x ∈C ,也即x ∈A ⋂B 或x ∈A ⋂C 即x ∈T 所以S T 反之,若x ∈T ,则x ∈A ⋂B 或x ∈A ⋂C 即x ∈A 且x ∈B 或x ∈A 且x ∈C也即x ∈A 且x ∈B ⋃C 即x ∈S 所以T S 因此T=S.3.对任意三个集合A , B 和C ,试证明:若A B = A C ,且A ,则B = C .解:设x ∈A ,y ∈B,则<x,y>∈AxB,因为AxB = AxC ,故<x,y>∈AxC,则y ∈C , 所以B C ,⊆⊆⊆⊆⊆设x ∈A ,z ∈C ,则<x,z>∈ZxB,因为AxB = AxC ,故<x,z>∈AxB,则z ∈B 所以C B 故得 A=B4.试证明:若R 与S 是集合A 上的自反关系,则R ∩S 也是集合A 上的自反关系.解:R 1和R 2 是自反的,x ∈A ,<x ,x>∈R 2, 则<x ,x>∈R 1∩R 2 , 所以是R 1∩R 2自反的。
离散数学形成性考核作业三_百度文库

★形成性考核作业★离散数学作业5离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第15周末前完成并上交任课教师(不收电子稿)。
并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。
一、填空题1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是 15 .2.设给定图G(如右由图所示),则图G的点割集是.3.设G是一个图,结点集合为V,边集合为E,则G的结点等于边数的两倍.4.无向图G存在欧拉回路,当且仅当G连通且.5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于 n-1 ,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W 7.设完全图Kn有n个结点(n≥3),m条边,当 n为奇数时,Kn中存在欧拉回路. 8.结点数v与边数e满足9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 10.设正则5叉树的树叶数为17,则分支数为i二、判断说明题(判断下列各题,并说明理由.)1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路..★形成性考核作业★解错误.只有当G是连通图且其结点度数均为偶数时,图G才存在一条欧拉回路.2.如下图所示的图G存在一条欧拉回路.解错误.因为图G是有两个结点b、c的度数均为奇数3,不是偶数,所以不存在欧拉回路.3.如下图所示的图G不是欧拉图而是汉密尔顿图.解正确. G图G有4个3度结点a,b,d,f,所以图G不是欧拉图.图G有汉密尔顿回路abefgdca,所以图G是汉密尔顿图.4.设G是一个有7个结点16条边的连通图,则G为平面图.解错误.因为图G中 v=7, 3v-6=15, e=16>15,不满足“设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.”这个定理,所以不是平面图.5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.解正确.因为连通平面图G有v=6个结点,e=11条边,那么由欧拉公式:v-e+r=2计算得:r =2+ 11- 6 = 7个面.三、计算题 2★形成性考核作业★1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示; (2) 写出其邻接矩阵;(3) 求出每个结点的度数; (4) 画出其补图的图形.解(1)G的图形为:(2)图G的邻接矩阵为:⎛0 0A= 1 00⎝0100⎫⎪0110⎪1011⎪⎪1101⎪0110⎪⎭(3)图G的每个结点的度数为:deg(v1)=1,deg(v2)=2,deg(v3)=4,deg(v4)=3,deg(v5)=2.(4)图G的补图为:2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.解:(1)G的图形表示如图3:★形成性考核作业★图3(2)邻接矩阵:⎡0⎢1⎢A(G)=⎢1⎢⎢0⎢⎣11101⎤0011⎥⎥0011⎥⎥1101⎥1110⎥⎦(3)粗线表示最小的生成树,如图4图4最小的生成树的权为:1+1+2+3=7.3.已知带权图G如右图所示.(1) 求图G的最小生成树; (2)计算该生成树的权值.解(1)图G有6个结点,其生成树有5条边,用Kruskal 算法求其权最小的生成树T,做法如下:①选边1;②选边2;③选边3;④选边5;⑤选边7最小生成树为{1,2,3,5,7}.所求最小生成树T如右图.(2)该最小生成树的权为W(T)=1+2+3+5+7=18.4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优 4★形成性考核作业★二叉树的权.解方法(Huffman算法):(1){2,3,5,7,17,31}(2){5,5,7,17,31}(3){7,10,17,31}(4){17,17,31}(5){}得最优二叉树,如图6所示.该最优二叉树的权为:(2+3)×5+5×4+7×3+17×2+31×1=131.四、证明题1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等.证明设G=<V,E>,G=<V,E'>.则E'是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结点u∈V,u在G和G中的度数之和等于u在Kn中的度数.由于n是大于等于3的奇数,从而Kn的每个结点都是偶数度的(n-1 (≥2)度),于是若u∈V在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.2.设连通图G有k个奇数度的结点,证明在图G中至少要添加使其成为欧拉图.证明由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶数.又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图. k故最少要加条边到图G才能使其成为欧拉图. 2k条边才能2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学作业1离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2009年4月26日前完成并上交任课教师(不收电子稿)。
一、单项选择题1.若集合A ={2,a ,{ a },4},则下列表述正确的是( B ).A .{a ,{a }}∈AB .{ a }⊆AC .{2}∈AD .∅∈A2.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( B ).A .{2}∈B B .{2, {2}, 3, 4}⊂BC .{2}⊂BD .{2, {2}}⊂B3.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( D ).A .B ⊂ A B .A ⊂ BC .B ∉ AD .B ∈ A4.设集合A = {1, a },则P (A ) = ( C ).A .{{1}, {a }}B .{∅,{1}, {a }}C .{∅,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }}5.设集合A = {1,2,3},R 是A 上的二元关系,R ={<a , b >⎢a ∈A ,b ∈ A 且1=-b a }则R 具有的性质为(B ).A .自反的B .对称的C .传递的D .反对称的6.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b >⎢a , b ∈A ,且a =b },则R 具有的性质为(D ).A .不是自反的B .不是对称的C .反自反的D .传递的7.设集合A ={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3> ,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S 是R 的(D )闭包.A .自反B .传递C .对称D .以上都不对8.设集合A ={a , b },则A 上的二元关系R={<a , a >,<b , b >}是A 上的(C )关系.A .是等价关系但不是偏序关系B .是偏序关系但不是等价关系C .既是等价关系又是偏序关系D .不是等价关系也不是偏序关系9.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系 的哈斯图如右图所示,若A 的子集B = {3 , 4 , 5},则元素3为B 的(C ).A .下界B .最大下界C .最小上界D .以上答案都不对10.设集合A ={1 , 2, 3}上的函数分别为:f = {<1 , 2>,<2 , 1>,<3 , 3>},g = {<1 , 3>,<2 , 2>,<3 , 2>},h = {<1 , 3>,<2 , 1>,<3 , 1>},则 h =(B ).(A )f ◦g (B )g ◦f (C )f ◦f (D )g ◦g二、填空题1.设集合{1,2,3},{1,2}A B ==,则A ⋃B = {1,2,3} ,A ⋂B = {1,2} .2.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )={3,{1,3},{2,3}{1,2,3}} ,A ⨯ B = {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .3.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为 210.4.设集合A = {1,2,3,4,5 },B = {1,2,3},R 从A 到B 的二元关系,R ={<a , b >⎢a ∈A ,b ∈B 且2≤a + b ≤4}则R 的集合表示式为{<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<1,3>}.5.设集合A ={1, 2, 3, 4 },B ={6, 8, 12}, A 到B 的二元关系R =},,2,{B y A x x y y x ∈∈=><那么R -1={<8,4>,<6,3>}6.设集合A ={a , b , c , d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 具有的性质是 反自反性 .7.设集合A ={a , b , c , d },A 上的二元关系R ={<a , a >, <b , b >, <b , c >, <c , d >},若在R 中再增加两个元素 { < d , c >, <c , b >} ,则新得到的关系就具有对称性.8.设A ={1, 2}上的二元关系为R ={<x , y >|x ∈A ,y ∈A , x +y =10},则R 的自反闭包为 {<1,1>, <2,2>} .9.设R 是集合A 上的等价关系,且1 , 2 , 3是A 中的元素,则R 中至少包含<1,1>, <2,2>, <3,3> 等元素.10.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是 f={<1,a>,<2.b>}或g={<1,b>,<2.a>} .三、判断说明题(判断下列各题,并说明理由.)51.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.参考测试2类似题答案~2.如果R1和R2是A上的自反关系,判断结论:“R1-1、R1∪R2、R1∩R2是自反的”是否成立?并说明理由.参考测试2类似题答案~3.设R,S是集合A上的对称关系,判断R∩S是否具有对称性,并说明理由.参考测试2类似题答案~4.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},,判断下列关系f是否构成函数f:A→,并说明理由.B(1) f={<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2)f={<1, 6>, <3, 4>, <2, 2>};(3) f={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.答:(1)因为<1, 4>f,<1, 8>f,不满足函数的单值性,所以f不是函数。
(2)因为4不属于Dom(f),不满足函数的单值性,所以f不是函数。
(3)因为f满足函数定义,所以f是函数。
四、计算题1.设}4,2{=C=AE,求:B=5,4,3,2,1{=},},5,2,1{},4,1{(1) (A⋂B)⋃~C;(2) (A⋃B)-(B⋂A) (3) P(A)-P(C);(4) A⊕B.答:~C={1,3,5}(1) (A⋂B)⋃~C={1,4}⋃{1,3,5}={1,3,4,5}(2) (A⋃B)-(B⋂A)= {1,2,4,5} - {1,4}={3,5}(3)P(A)= {φ,1,4,{1},{4},{1,4}}P(C)= {φ,2,4,{2},{4},{2,4}}P(A)-P(C)= {φ,2,1,{2},{1},{1,4},{2,4}}(4) A⊕B=(A⋃B)-(B⋂A) ={3,5}2.设集合A={{a, b}, c, d },B={a, b, {c, d }},求(1) B⋂A;(2) A⋃B;(3) A-B;(4)B⨯A.答:前三题可参考上题做法(4)B⨯A={<{a,b}, a>, <{a,b}, b>, <{a,b}, {c,d}>, <c, a>, <c, b>,<c, {c,d}>,<d,a>, <d, b>,<d, {c,d}>}3.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R∙S,S∙R,R-1,S-1,r(S),s(R).答:由题意知:R={<1,1 >, <2, 2>, <1, 2>, <1, 3>,<3, 1>,<2, 1>} S=φR∙S={<1,1 >, <2, 2>, <1, 2>, <1, 3>,<3, 1>,<2, 1>}∙φ=φS ∙R =φ∙{<1,1 >, <2, 2>, <1, 2>, <1, 3>,<3, 1>,<2, 1>}=φR-1={<1,1 >, <2, 2>, <1, 2>, <3,1>,<1, 3>,<2, 1>}S-1=φr(S)= {<1,1 >, <2, 2>, <3,3 >,<4, 4>,<5, 5>}s(R) = {<1,1 >, <2, 2>,<1, 2>, <3,1>,<1, 3>,<2, 1>,}4.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6}.(1) 写出关系R的表示式;(2 )画出关系R的哈斯图;(3) 求出集合B的最大元、最小元.答:R={<1,1 >, <2, 2>, <1, 2>, <1, 3>,<1,4>,<1,5 >, <1, 6>, <1, 7>,<1,8>,<2, 4>,<2, 6>,<2, 8>, <3, 3>,<3,6>,<4, 4>,<4, 8>, <5, 5>,<6,6>,<7, 7>,<8, 8>}(2 )关系R的哈斯图:1(3) 由图知道,B没有最大元、其最小元是1.五、证明题1.试证明集合等式:A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).证明:设任意x A⋃ (B⋂C),那么x A或x B⋂C,也就是x A或(x B且x C)由此得x A 或x B且x A 或x C,即x(A⋃B)⋂ (A⋃C)所以,A⋃ (B⋂C)(A⋃B) ⋂ (A⋃C)又因为对任意x(A⋃B) ⋂ (A⋃C),由(x A 或x B)且(x A或x C),也就是x A或(x B且x C);得x A或x B⋂ C,即x A(B⋂C).所以,(A⋃B) ⋂ (A⋃C) A⋃ (B⋂C)所以A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C)2.对任意三个集合A, B和C,试证:若A⨯B = A⨯C,且A≠∅,则B = C.3.设R是集合A上的对称关系和传递关系,试证明:若对任意a∈A,存在b∈A,使得<a, b>∈R,则R是等价关系.证明:因为任意a∈A,存在b∈A,使得<a, b>∈R;又因为R的对称性,所以< b, a >∈R;又因为R有传递性,所以< a, a >∈R则R是集合A上的自反关系所以R是等价关系。