数列基础练习题简单精修订
数列练习题
数列练习题一、等差数列1. 已知等差数列的前三项分别是2,5,8,求第10项的值。
2. 一个等差数列的前5项和为35,前10项和为110,求该数列的公差。
3. 已知等差数列的公差为3,第5项为12,求第8项的值。
4. 等差数列的前7项和为49,第8项为11,求第4项的值。
5. 已知等差数列的公差为2,第3项为8,求前6项的和。
二、等比数列1. 已知等比数列的前三项分别是2,6,18,求第6项的值。
2. 一个等比数列的前4项和为21,前8项和为189,求该数列的公比。
3. 已知等比数列的公比为3,第4项为81,求第7项的值。
4. 等比数列的前5项和为31,第6项为48,求第3项的值。
5. 已知等比数列的公比为1/2,第2项为4,求前5项的和。
三、数列的通项公式1. 已知数列的前三项分别是1,3,5,推测数列的通项公式。
2. 已知数列的前四项分别是2,6,12,20,推测数列的通项公式。
3. 已知数列的前三项分别是1,4,9,推测数列的通项公式。
4. 已知数列的前四项分别是1,4,9,16,推测数列的通项公式。
5. 已知数列的前三项分别是1,2,3,推测数列的通项公式。
四、数列的求和1. 求等差数列1,3,5,7,9,…的前10项和。
2. 求等比数列3,6,12,24,…的前6项和。
3. 求等差数列2,5,8,11,…的前8项和。
4. 求等比数列2,4,8,16,…的前5项和。
5. 求数列1,3,6,10,15,…的前7项和。
五、综合运用1. 已知数列的前三项分别是2,4,8,求该数列的前10项和。
2. 已知等差数列的公差为2,前5项和为35,求该数列的前7项和。
3. 已知等比数列的公比为3,第3项为27,求该数列的前5项和。
4. 已知数列的通项公式为an = n^2 + n,求前8项的和。
5. 已知数列的通项公式为an = 2^n 1,求前6项的和。
六、数列的递推关系1. 已知数列满足递推关系an = an1 + 3,且a1 = 2,求a5的值。
数列(一)(练习题)
数列的基础练习题一、数列的概念与简单表示法1、下列说法正确的是 ( )A. 数列1,3,5,7可表示为{1,3,5,7}B. 数列1,0,-1,-2与数列-2,-1, 0, 1是相同的数列C. 数列1n n +⎧⎫⎨⎬⎩⎭的第k 项是11k + D. 数列可以看做是一个定义域为正整数集N *的函数3、已知数列的通项公式为2815n a n n =−+,则3( ) A. 不是数列{}n a 中的项 B. 只是数列{}n a 中的第2项C. 只是数列{}n a 中的第6项D. 是数列{}n a 中的第2项或第6项 5、已知数列1,3,5,7,,21,,n −则35是它的 ( ) A. 第22项 B. 第23项 C. 第24项 D. 第28项 6、已知130n n a a +−−=,则数列{}n a 是 ( ) A. 递增数列 B. 递减数列 C. 常数列 D. 摆动数列二、等差数列题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1−n n a a 在直03=−−y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=−=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=−,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +−=−=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )A .1B .-1C .2D .218、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q −−+++=,则其前n 项和n S = .2、等差数列 ,4,1,2−的前n 项和为 ( )A. ()4321−n nB. ()7321−n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++−−n n n a a a a a a ,155=n S ,则=n 。
数列练习题基础
数列练习题基础一、等差数列1. 已知等差数列的首项是a,公差是d,前n项和是Sn,求公式。
解析:设等差数列的首项是a,公差是d,那么根据等差数列的性质,第n项可以表示为an = a + (n-1)d。
根据等差数列的性质,前n项和Sn可以表示为Sn = (n/2)(a + an)。
代入an的值,化简公式得到Sn = (n/2)(2a + (n-1)d)。
2. 已知等差数列的首项是3,公差是4,求该等差数列的第10项。
解析:根据等差数列的公式an = a + (n-1)d,带入已知条件得到a10 = 3 + (10-1)4 = 3 + 9*4 = 39。
3. 已知等差数列的首项是5,公差是2,前n项和大于100的最小正整数n是多少?解析:根据等差数列的公式Sn = (n/2)(2a + (n-1)d),带入已知条件得到(n/2)(10 + (n-1)2) > 100。
化简不等式得到(n/2)(n+9) > 100,进一步化简得到n^2 + 9n - 200 > 0。
解这个不等式,得到n > 10。
因此,前n 项和大于100的最小正整数n是11。
二、等比数列1. 已知等比数列的首项是a,公比是r,前n项和是Sn,求公式。
解析:设等比数列的首项是a,公比是r,那么根据等比数列的性质,第n项可以表示为an = a * r^(n-1)。
根据等比数列的性质,前n项和Sn可以表示为Sn = a * (1 - r^n) / (1 - r)。
2. 已知等比数列的首项是2,公比是3,求该等比数列的第5项。
解析:根据等比数列的公式an = a * r^(n-1),带入已知条件得到a5= 2 * 3^(5-1) = 2 * 3^4 = 162。
3. 已知等比数列的首项是1,公比是0.5,前n项和大于10的最小正整数n是多少?解析:根据等比数列的公式Sn = a * (1 - r^n) / (1 - r),带入已知条件得到1 * (1 - 0.5^n) / (1 - 0.5) > 10。
数列基础100题(超基础,适合学困生)
50.写出一个同时满足下列条件①②的等比数列{ }的通项公式 =___.
① ;②
51.数列 中,若 ,且 ,则 __________.
52.已知数列 的通项公式为 ,若 ,则 __________.
21.徐悲鸿的马独步画坛,无人能与之相颉颃.《八骏图》是徐悲鸿最著名的作品之一,画中刚劲矫健、剽悍的骏马,在人们心中是自由和力量的象征,鼓舞人们积极向上.现有8匹善于奔跑的马,它们奔跑的速度各有差异.已知第i(i等于1,2,…,6,7)匹马的最长日行路程是第i+1匹马最长日行路程的1.1倍,且第8匹马的最长日行路程为500里,则这8匹马的最长日行路程之和为_____________里.(取 )
① ,② 是递减数列,③ .
57.已知等差数列 满足 ,则公差 __________;
9.中国古代数学著作《增减算法统宗》中有这样一段记载:“三百七十八里关,初行健步不为难,次日脚痛减一半,如此六日过其关.”则此人在第六天行走的路程是__________里(用数字作答).
10. 是公差不为零的等差数列,前 项和为 ,若 , , , 成等比数列,则 ______.
11.在等差数列 中,已知 , ,则 的前_________项和最大.
31.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤:斩末一尺,重二斤.问次一尺各重几何?”意思是:“现在有一根金箠,长五尺,在粗的一端截下一尺,重4斤:在细的一端截下一尺,重2斤.问各尺依次重多少?”按这一问题的题设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是__________斤.
数列基础题(附答案)
数列综合题一、填空题1.各项都是正数的等比数列{an },公比q≠1,a5,a7,a8成等差数列,则公比q=2.已知等差数列{an },公差d≠0,a1,a5,a17成等比数列,则18621751aaaaaa++++=3.已知数列{an }满足Sn=1+na41,则an=4.已知二次函数f(x)=n(n+1)x2-(2n+1)x+1,当n=1,2,…,12时,这些函数的图像在x轴上截得的线段长度之和为5.已知数列{an }的通项公式为an=log(n+1)(n+2),则它的前n项之积为6.数列{(-1)n-1n2}的前n项之和为7.一种堆垛方式,最高一层2个物品,第二层6个物品,第三层12个物品,第四层20个物品,第五层30个物品,…,当堆到第n层时的物品的个数为8.已知数列1,1,2,…,它的各项由一个等比数列与一个首项为0的等差数列的对应项相加而得到,则该数列前10项之和为9.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为11.设等差数列{a n}的前n项和是S n,若a5=20-a16,则S20=___________.12.若{a n}是等比数列,a4·a7= -512,a3+ a8=124,且公比q为整数,则a10等于___________.13.在数列{a n}中,a1=1,当n≥2时,a1 a2…a n=n2恒成立,则a3+ a5=___________.14.设{a n}是首项为1的正项数列,且(n+1)21+na-na2n+a n+1 a n=0(n=1,2,3,…),则它的通项公式是a n=___________.二.解答题1.已知数列{an }的通项公式为an=3n+2n+(2n-1),求前n项和。
数列练习题经典例题及详细解答
数列练习题4.正项等比数列{a n }中a 1,a 49是2x 2-7x +6=0的两个根,则a 1·a 2·a 25·a 48·a 49的值为( )A .221B .93C .±93D .357、数列{}n a 满足首项*1114,323(),n n a a a n N +=+=∈那么使20n n a a +⋅<成立的n 值是( )A21 B20 C2和21 D21和225.已知数{}n a 的前n 项和142+-=n n S n ,则|||||||1021a a a ++++ 的值为( )A .67B .65C .61D .565.已知无穷等比数列}{n a 的前n 项和为n S ,所有项的和为S ,且1)2(lim =-∞→S S n n ,则其首项a 1的取值范围( )A .(-1,0)B .(-2,-1)C .(-2,-1)∪(-1,0)D .(-2,0) 9.若数列{}n a 成等差数列, a m =n ,a n =m(m ≠n),则a m +n = ( )A .0 B. 1 C. m +n D. -m -n10.若数列{}n a 成等差数列, ,()m n S n S m m n ==≠,则m n S += ( )A .0 B. 1 C. m +n D. -m -n(1) 解法一: 1m n a a d m n-==--,∴0m n m a a nd n n +=+=-= 解法二:设n a an b =+,则a n b m a m b n +=⎧⎨+=⎩解之1a b m n=-⎧⎨=+⎩,∴()0m n a m n m n +=-+++= 解法三:设首项和公差列方程组(略)(2) 解法一:1m n n s s a +-=+…+1111()()()()22m n m m n a m n a a m n a a n m ++=-+=-+=- ∴1112,()()2m n m n m n a a s m n a a m n ++++=-=++=-- 解法二: 设2n s an bn =+,则22an bn m am bm n⎧+=⎨+=⎩相减得()1a m n b ++=- ∴s m+n =a(m +n)2+b(m +n)=(m+n)[a(m +n)+b]=-m -n 解法三:由已知点(,),(,),(,)m n m n s s s m n m n m n m n+++共线, ∴m n m n s m n m m n n m n s m n m m n++--+=⇒=---4.若数列{}n a 的前n 项和12+=n n S ,则=+++22221n a a a ( )A .2)12(+nB .1(41)3n - C .)264(311+-n D .)234(31+n例10.设{a n }(n ∈N *)是公差为d 的等差数列,前n 项和为S n ,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是 ( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值14.已知等比数列}{n a 公比为q ,且q>1,其前n 项和为S n ,则nn n S a 1lim +∞→= q -1 . 9.以()f n 表示下图中第(n )个图形的相应点数,根拒其规律()f n = ()2n n + .……15.在数列}{n a 中)(22+∈++-=N n kn n a n ,已知此数列是递减数列且恰从第三项起开始小于3,则实数k 的取值范围是_15 .,25[3)_________.例19.已知数列{a n }的前n 项和S n =(n -1)2n +1,是否存在等差数列{b n },使 a n =b 1C n 1+b 2C n 2+…+b n C n n 对一切正整数n 均成立?解:n ≥2时,a n =S n -S n-1=n2n-1,n =1时也成立,假设存在等差数列b n =an +b 满足条件 解法一: 则n2n-1=(a +b)C n 1+(2a +b)C n 2+…+(na +b)C n n=a(C n 1+2C n 2+…+nC n n )+b(C n 1+C n 2+…+C n n )=an2n-1+b(2n -1)=(an +2b)2n-1-b比较两边对应项系数可得b =0,a =1,所以存在等差数列b n =n 满足条件 解法二:a n = (a +b)C n 1+(2a +b)C n 2+…+(na +b)C n n倒序 a n =(na +b)C n n +(na-a+b)C n n-1+…+(a +b)C n 1相加2a n =(na +b)( C n 0+C n 1+C n 2+…+C n n )即 n ×2n =b n ×2n 所以b n =n 故存在等差数列b n =n 满足条件。
数列基础练习精编版
数列基础练习1.在等差数列中,若 ,是数列的前项和,则( )A. 48B. 54C. 60D. 1082.设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n=( )A. 6B. 7C. 10D. 93.在等差数列{}n a 前n 项和为n S ,若481,4S S ==,则910112a a a a+++的值为( )A. 5B. 7C. 9D. 11 4.已知各项都为正的等差数列{}n a 中, 23415a a a ++=,若12a +, 34a +, 616a +成等比数列,则11a =( )A. 22B. 21C. 20D. 195.已知{}n a 是公差为1的等差数列, n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A. 172B. 192C. 10D. 12 6.在数列{a n }中,a 1=1,a n +1-a n =n(n ∈N *),则a 100的值为( )A. 5 050B. 5 051C. 4 950D. 4 9517.已知数列{a n }是等差数列,若a 3+a 11=24,a 4=3,则数列{a n }的公差等于( )A. 1B. 3C. 5D. 68.一个正项等比数列前n 项的和为3,前3n 项的和为21,则前2n 项的和为( )A. 18B. 12C. 9D. 69.设等差数列{}n a 满足27a =, 43a =, n S 是数列{}n a 的前n 项和,则使得{}n S 取得最大值的自然数n 是( )A. 4B. 5C. 6D. 710.是公差不为0的等差数列,满足,则该数列的前10项和=( )A. B. C. D.11.若数列{}n a 为等差数列, n S 为其前n 项和,且1323a a =-,则9S =( )A. 25B. 27C. 50D. 5412.若等差数列{}n a 的公差为2,且5a 是2a 与6a 的等比中项,则该数列的前n 项和n S 取最小值时, n 的值等于( )A. 7B. 6C. 5D. 413.已知数列的前项和满足:,且,,则( )14.等差数列的前项和为,且,则( )A.B.C. D. 415.已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( )A.64B.100C.110D.12016.等差数列{}{},n n a b 的前n 项和为分别是,n n A B ,且1n n A n B n =+,则44a b 等于( ) A .34 B .45 C .78 D .6717.已知等比数列{}n a 满足375a a +=,则2446682a a a a a a ++等于A. 5B. 10C. 20D. 2518.设等比数列的前项和为,若,且,则等于( )A.B.C.D. 19.已知公差不为0的等差数列{}n a 与等比数列{}12,2,n n n b a b a ==,则{}n b 的前5项的和为( )A. 142B. 124C. 128D. 14420.已知公差不为0的等差数列满足成等比数列,为的前项和,则的值为 A. 2 B. 3C. D. 421.已知数列{}n a 是递增的等比数列, 13521a a a ++=, 36a =,则579a a a ++=( ) A. 214 B. 212C. 42D. 84 22.已知数列中,前项和为,且,则的最大值为( )A.B. C. 3 D. 123.已知数列是递增的等比数列,,,则数列的前2016项之和24.已知{}n a 为等比数列且满足623130,3a a a a -=-=,则数列{}n a 的前5项和5S =()A. 15B. 31C. 40D. 12125.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且3314,8S a ==,则6a =A. 16B. 32C. 64D. 12826.已知等比数列{}n a 的前项和1n n S p q +=+(01p p >≠且),则q 等于( )A. 1B. 1-C. pD. p -27.各项均为正数的等比数列{}n a 的前n 项和为n S ,若410S =, 12130S =,则8S =( )A. 30-B. 40C. 40或30-D. 40或50-28.在等比数列{}n a 中, 14a =,公比为q ,前n 项和为n S ,若数列{}2n S +也是等比数列,则q 等于( )A. 2B. 2-C. 3D. 3-29.已知正项数列{}n a 的前n 项和为n S ,且12a =, 2144n n a S n -=+(2n ≥).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求25889a a a a +++⋯+的值.30.已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求和: 13521n b b b b -+++⋯+.参考答案1.B 【解析】等差数列中2.B 【解析】试题分析:由题意可得9567890S S a a a a -=+++=,∴()7820a a +=,∴780a a +=,又10a >,∴该等差数列的前7项为正数,从第8项开始为负数,∴当S n 最大时,n=7,故选:B.考点:等差数列的前n 项和.3.A【解析】843S S -=,由于484128,,S S S S S --成等差数列,公差为312-=,故原式128325S S =-=+=.4.B【解析】各项都为正的等差数列{a n }中,∵23415a a a ++=,12a +, 34a +, 616a +成等比数列,∴()1213{ 24a a d ++=,由d >0,解得1a =1,d =2,∴11a =1+10×2=21.故选:B.5.B【解析】试题分析:,因为,所以,而,故选B.考点:等差数列6.D【解析】由于a 2-a 1=1,a 3-a 2=2,a 4-a 3=3,…,a n -a n -1=n -1,以上各式相加得a n -a 1=1+2+3+…+(n -1)=()12n n -,即a n =()12n n -+1,所以a 100=100992⨯+1=4 951,故选D . 7.B 【解析】 设等差数列的公差为d ,由311424,3a a a +==,所以1121224{33a d a d +=+= ,解得3d =,故选B. 8.C【解析】{}n a 是等差数列, 232n n n n n S S S S S ∴--,, 也成等差数列,()()32323212n n n n n n n S S S S S S S ==∴-=+-,,, ,解得29n S =故选C【点睛】本题考查等查数列前n 项和性质的应用,利用232n n n n n S S S S S --,, 成等差数列进行求值是解决问题的关键9.B【解析】设等差数列{}n a 公差为24,7,3d a a ==, ∴117{ ,33a d a d +=+=解得12,9.d a =-= ∴()921211n a n n =--=-+,∴数列{}n a 是减数列,且56560,0a a a a >>+=, 于是5566910112290,100,110222a a a a S S S +=⋅>=⋅==⋅<, 故选:A.10.C【解析】设{}n a 的公差为()0d d ≠ ,由22224567a a a a +=+ 有222264750a a a a -+-= , ()()()()646475750a a a a a a a a +-++-= ,所以有()456720d a a a a +++= ,因为0d ≠ ,所以456750,0a a a a a a +++=+= ,故前10项和()()110105610=502a a S a a +=+= ,选C.点睛:本题主要考查了等差数列的有关计算,属于中档题. 关键是已知等式的化简,移项,利用平方差公式化简,求出560a a += ,本题考查了等差数列的性质,前n 项和公式等.11.B【解析】设数列的公差为d ,由题意有: ()11223a a d =+-,即5143a a d =+=,则: 1959529992722a a a S a +=⨯=⨯==. 本题选择B 选项.12.B【解析】以5a 为变量, ()()255526a a a =+-得, 53a =-,则6711a a =-=,,所以6S 最小,故6n =,故选B.13.C 【解析】∵数列的前 项和Sn 满足:,∴数列是等差数列. ∵,,则公差. 故选:C.14.A【解析】试题分析:因为等差数列的前项和为,所以成等差数列,所以(1),∵,∴,设,则,所以(1)式可化为,解得.故选A . 考点:1、等差数列的性质;2、等差数列的前项和. 【方法点睛】因为等差数列的前项和为,所以成等差数列,根据等差数列中也成等差数列,及,设,建立关系即可求出结论.本题主要考查等差数列的性质的应用,在等差数列中,也成等差数列是解决问题的关键.属于基础题.15.B【解析】试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002S a d ⨯∴=+= 考点:等差数列通项公式及求和16.C【解析】试题分析:17741747777271872a a A a b b b B +⨯====++⨯,故选C. 考点:等差数列的性质.17.D【解析】()2222446683377372225a a a a a a a a a a a a ++=++=+=,故选D. 18.A【解析】试题分析:由题意得,因为,所以,又因为,所以,则,故选A.考点:1.等比数列性质;2.等比数列的前项和.19.B【解析】设等差数列{}n a 的公差为()0d d ≠,等比数列{}n b 的公比为q .等比数列{}n b 中, ()()()2222134281111372b b b a a a a d a d a d d a =⇒=⇒+=++⇒==,()112n a a n d n =+-=,4122424,8,2a b a b a q a ====∴== {}n b 的前5项的和为()()5511412124112b q q --==--.故选B. 20.A 【解析】设等差数列的首项为a 1,公差为d (d ≠0), 因为成等比数列, 所以,即a 1=−4d , 所以, 故选:A.21.D【解析】由1353216a a a a ++==,得22122q q ==,(舍去),∴()457913584a a a a a a q ++=++=,故选D . 22.C【解析】当 时, 两式作差可得: , 据此可得,当时,的最大值为323.C 【解析】由等比数列的性质可得,又,且数列是递增的,可得,即,则.故本题答案选.24.B 【解析】因为{}n a 为等比数列且满足623130,3a a a a -=-=, 51121130{3a q a q a q a -=∴-= ,可得515112{,312,12a S q =-===- ,数列{}n a 的前5项和531S =,故选B. 25.C【解析】 由题意得,等比数列的公比为q ,由3314,8S a ==,则()21231114{8a q q a a q ++===,解得12,2a q ==,所以55612264a a q ==⨯=,故选C . 26.D【解析】等比数列前n 项和的特点为: n n S Aq A =- ,题中: n n S p p q =⨯+ ,据此可知: q p =- .本题选择D 选项.27.B【解析】解:由等比数列的性质可知: 484128,,S S S S S -- 成等比数列,故:()()2881010130S S -=⨯- ,整理可得: ()()8830400S S +-= ,又数列的各项为正数,故: 840S = .本题选择B 选项.28.C【解析】由题意,得212324,246,2446S S q S q q +=+=++=++,因为数列{}2n S +也是等比数列,所以()()22466446q q q +=++,即()230q q -=,解得3q =;故选C. 点睛:本题若直接套用等比数列的求和公式进行求解,一是计算量较大,二是往往忽视“1q =”的特殊情况,而采用数列的前三项进行求解,大大降低了计算量,也节省的时间,这是处理选择题或填空题常用的方法.29.(Ⅰ)2n a n =;(Ⅱ)2730.【解析】试题解析:(1)将已知等式中的n 用n-1代换,所得等式与原式作差,可得12n n a a --=(3n ≥),再验证21a a -的值,可得{}n a 是以2为首项,以2为公差的等差数列,进而写出通项公式;(2) 25889,,a a a a ⋯可构成一个新的等差数列,利用等差求和公式即可求得.试题分析:(Ⅰ)因为()21442n n a S n n -=+≥,① ()()2124413n n a S n n --=+-≥,②所以-①②得, 221144n n n a a a ---=+,即()2212n n a a -=+, 因为0n a >,所以12n n a a -=+,即12n n a a --=(3n ≥),又由12a =, 2144n n a S n -=+,得2214816a S =+=,所以24a =, 212a a -=,所以{}n a 是以2为首项,以2为公差的等差数列,所以()2122n a n n =+-⨯=. (Ⅱ)由(Ⅰ)知2n a n =,所以2588941016178a a a a +++⋯+=+++⋯+ ()41783027302+⨯==.30.(1)a n =2n −1.(2)312n - 【解析】试题分析:(Ⅰ)设等差数列的公差为d ,代入建立方程进行求解;(Ⅱ)由{}n b 是等比数列,知{}21n b -依然是等比数列,并且公比是2q ,再利用等比数列求和公式求解. 试题解析:(Ⅰ)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10.……………………………………………………………最新资料推荐………………………………………………… 7 解得d =2.所以a n =2n −1.(Ⅱ)设等比数列的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9.解得q 2=3.所以2212113n n n b b q---==. 从而21135213113332n n n b b b b ---++++=++++=. 【名师点睛】本题考查了数列求和,一般数列求和的方法:(1)分组转化法,一般适用于等差数列+等比数列的形式;(2)裂项相消法求和,一般适用于,,等的形式;(3)错位相减法求和,一般适用于等差数列⨯等比数列的形式;(4)倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.。
小学数学数列练习题
小学数学数列练习题1. 题目一:找规律已知数列 2, 4, 8, 16, 32, ...请计算数列的第十项与第十五项,并写出其规律。
解答:根据观察,数列中的每一项都是前一项乘以2得到的。
可以得出数列的通项公式为:an = 2^n,其中n为项数。
根据公式,数列的第十项为a10 = 2^10 = 1024。
数列的第十五项为a15 = 2^15 = 32768。
因此,数列的规律是每一项都是前一项乘以2。
2. 题目二:求和已知数列 3, 6, 9, 12, 15, ...请计算数列的前十项的和,并写出计算过程。
解答:根据观察,数列中的每一项都是前一项加上3得到的。
可以得出数列的通项公式为:an = 3n,其中n为项数。
我们需要计算数列的前十项的和,即S10 = a1 + a2 + a3 + ... + a10。
根据通项公式,数列的第一项为a1 = 3。
数列的第二项为a2 = 3 * 2 = 6。
数列的第三项为a3 = 3 * 3 = 9。
以此类推,数列的第十项为a10 = 3 * 10 = 30。
将各项相加得到数列的前十项的和:S10 = 3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30 = 165。
因此,数列的前十项的和为165。
3. 题目三:递推数列的前六项依次为1, 1, 2, 3, 5, 8。
请写出数列的通项公式,并计算数列的第十项。
解答:根据观察,数列中的每一项都是前两项之和得到的。
可以得出数列的通项公式为:an = an-1 + an-2,其中n≥3。
我们需要计算数列的第十项,即a10。
根据通项公式和已知条件,可以不断递推得到:a3 = a2 + a1 = 1 + 1 = 2a4 = a3 + a2 = 2 + 1 = 3a5 = a4 + a3 = 3 + 2 = 5a6 = a5 + a4 = 5 + 3 = 8a7 = a6 + a5 = 8 + 5 = 13a8 = a7 + a6 = 13 + 8 = 21a9 = a8 + a7 = 21 + 13 = 34a10 = a9 + a8 = 34 + 21 = 55因此,数列的第十项为55。
数列基础大题20道练习
所以 .
(2)当 时, ,
而 ,
所以数列 是等比数列,且首项为3,公比为3.
(3)由(1)(2)得 ,
,
所以
①
②
由①-②得
,
所以 .
因为 ,
所以 .
【点睛】
本题考查了利用 和 的关系求通项,构造法证明等比数列,以及错位相减法求和,是数列基本方法的考查,属于基础题.
5.(1) ;(2) .
(2)由(1)得 ,然后利用裂项相消法可求得
【详解】
解:(1)设 的公差为d,因为 , , 成等比数列,所以 .
即 ,即 又 ,且 ,解得
所以有 .
(2)由(1)知:
则 .即 .
【点睛】
此题考查等差数列基本量计算,考查裂项相消法求和,考查计算能力,属于基础题
13.(1) ;(2)
【分析】
(1)利用递推关系式,根据 ,逐项代入即可求解.
(2)由(1)可知 ,根据裂项相消法即可求出结果.
【详解】
设等差数列 的公差为 ,
由 ,可得
解得 ,
所以等差数列 的通项公式可得 ;
(2)由(1)可得 ,
所以 .
【点睛】
本题主要考查了等差数列通项公式的求法,以及裂项相消法在数列求和中的应用,属于基础题.
18.(1) , ,或 , ,(2) 或
【分析】
4.数列 的前 项和为 ,且 ,数列 满足 , .
(1)求数列 的通项公式;
(2)求证:数列 是等比数列;
(3)设数列 满足 ,其前 项和为 ,证明: .
5.已知等差数列 的前 项和 满足 , .
(1)求 的通项公式;
(2) 求数列 的前 项和 .
高中数学数列基础100题精编练习
1. 已知数列的前项和,则数列的通项公式为_____ 。
2. 已知数列中,且,则_____ 。
3. 已知两个等差数列和的前项和分别为,,若,则_____ 。
4. 数列的前项和(),则数列的通项公式是_____。
5. 计算:_____。
6. 设是等差数列的前项和,已知,,则数列的前项的和为_____。
7. 若等比数列的前项和为,已知,,成等差数列,则数列的公比为_____。
8. 设公比不为的等比数列满足,且,,成等差数列,则数列的前项和为_____。
9. 等比数列中,,,则_____。
10. 已知等比数列的前项和为,,,则的值为_____。
11. 在数列、、、、中,按此规律,是该数列的第_____项。
12. 在等差数列中,若,,则_____。
13. 若在等比数列中,,则_____。
14. 已知数列的前项和,那么数列的通项公式为_____。
15. 在等比数列中,已知,则_____ 。
16. 已知是等差数列,是其前项和,若,,则的值是_____。
17. 已知等比数列中,若其前项的和为,则_____。
18. 在数列中,,,是其前项和,则的值是_____。
19. 已知等比数列的前项和为,则常数_____。
20. 设等差数列的前项和为,,,,则_____。
21. 数列中,若,,则_____。
22. 等比数列的各项均为正数,且,则_____。
23. 设等比数列的各项均为正数,若,。
则_____。
24. 已知为等差数列,公差为,且是与的等比中项,则_____ 。
25. 等差数列中,_____。
26. 数列是公比为的等比数列,其前项和为。
若,则_____;_____。
27. 数列中,若,(),则通项公式_____。
28. 如果,,,,成等比数列,那么_____。
29. 若数列满足,(),则该数列的前项的乘积_____。
30. 已知等差数列的前项和为,若,则_____。
31. 已知数列满足,,则_____。
32. 若数列的前项和为,则的值为_____。
数列练习题及答案
数列练习题及答案一、选择题1. 已知数列{an}的前n项和为Sn,若a1=1,a2=3,且满足an+1 = an + 2n,求S5的值。
A. 25B. 28B. 30D. 312. 对于数列{bn},若b1=2,且bn+1 = 2bn + 1,求b4的值。
A. 17B. 15C. 13D. 113. 已知数列{cn}是等差数列,其公差为3,且c5=23,求c1的值。
A. 2B. 5C. 8D. 114. 数列{dn}的通项公式为dn = 2n - 1,求d10的值。
A. 19B. 17C. 15D. 135. 若数列{en}满足en = 3en-1 - 2,e1 = 1,求e3的值。
B. 5C. 3D. 1二、填空题6. 已知数列{fn}的前n项和为Sn,且满足Sn = n^2,求f3的值。
7. 对于数列{gn},若g1=4,且满足gn+1 = 3gn - 2,求g3的值。
8. 已知等比数列{hn}的首项为h1=8,公比为2,求h5的值。
9. 若数列{in}满足in = 2^n - 1,求i5的值。
10. 对于数列{jn},若j1=1,且满足jn+1 = jn^2,求j4的值。
三、解答题11. 某工厂生产的产品数量构成一个等差数列,第一年生产了100件,每年生产量比上一年多20件。
求第5年的产量,并求这5年的总产量。
12. 某公司的股票价格构成一个等比数列,第一年价格为10元,每年价格是上一年的2倍。
求第3年的股票价格,并求这3年的平均价格。
13. 已知数列{kn}的前n项和为Sn,且满足Sn = 2n^2 + n,求k5的值。
14. 对于数列{ln},若l1=1,且满足ln+1 = ln + ln-1,l2=3,求l4的值。
15. 某数列{mn}的通项公式为mn = 3^n - 2^n,求m5的值。
1. B2. A3. D4. A5. A6. 67. 108. 1289. 3110. 25511. 第5年产量为180件,5年总产量为700件。
数列练习题(含答案)基础知识点
数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =; 2n ≥时,1n n n a S S -=-. 3.求数列通项公式的常用方法 (1)求差(商)法如:数列{}n a ,12211125222n n a a a n +++=+……,求na解 1n =时,112152a =⨯+,∴114a = ①2n ≥时,12121111215222n n a a a n --+++=-+…… ②①—②得:122n n a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列{}n a 满足111543n n n S S a a +++==,,求n a注意到11n n n a S S ++=-,代入得14n nS S +=;又14S =,∴{}n S 是等比数列,4n n S = 2n ≥时,1134n n n n a S S --=-==……· (2)叠乘法如:数列{}n a 中,1131n n a na a n +==+,,求n a解 3212112123n n a a a n a a a n --=·……·……,∴11n a a n=又13a =,∴3n a n =. (3)等差型递推公式由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++……∴0(2)(3)()n a a f f f n =++++……[练习]数列{}n a 中,()111132n n n a a a n --==+≥,,求n a (()1312nn a =-)(4)等比型递推公式1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+- 令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列 ∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭ (5)倒数法 如:11212nn n a a a a +==+,,求n a 由已知得:1211122n n n na a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·, ∴21n a n =+( 附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·∴11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭[练习]求和:111112123123n+++++++++++ (121)n n a S n ===-+…………, (2)错位相减法若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111nnnx nxS x x -=---,1x =时,()11232n n n S n +=++++=…… (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++……[练习]已知22()1x f x x =+,则111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2222222111()111111x x x f x f x x x x x ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭∴原式11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( )(A )21(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n(D )212112+--+n n n 9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( ) (A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( ) (A )56 (B )58 (C )62 (D )60 11、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}na ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++= 15、已知数列{}n a 满足n n a S 411+=,则n a = 16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
数列解答题基础50题(适合学困生,超基础)
1.(1)
(2)
【来源】河南省新未来2023届高三5月联考文科数学试题
【分析】(1)利用递推式得出 是以1为首项,3为公比的等比数列,求出 ,进而求解 即可.
(2)利用错位相减法求解数列前 项和即可.
【详解】(1)由 ,得 ,
又 , 是以1为首项,3为公比的等比数列,
, ,
即数列 的通项公式为 .
(1)求 的通项公式;
(2)求数列 的前 项和 .
12.在数列 中, , , .
(1)设 ,求证:数列 是等比数列;
(2)求数列 的前 项和 .
13.已知数列 的首项为 ,且满足 ,数列 满足 ,且 .
(1)求 , 的通项公式;
(2)设数列 的前n项和为 ,求 .
14.已知数列 是公比为2的等比数列, , , 成等差数列.
38.写出一个分别满足下列条件的数列 的通项公式:
(1)从第2项起,每一项都比它的前一项大2;
(2)各项均不为0,且从第二项起,每一项都是它的前一项的3倍.
39.设等差数列 的前n项和为 .
(1)已知 , ,求 ;
(2)已知 ,公差 ,求 .
40.记 为数列 的前 项和,且 .
(1)求 的通项公式;
(2)设 ,求数列 的前 项和 .
41.已知等差数列 的前三项依次为 ,4, ,前 项和为 ,且 .
(1)求 的通项公式及 的值;
(2)设数列 的通项 ,求证 是等比数列,并求 的前 项和 .
42.已知等比数列 的首项 ,公比 ,在 中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列 .
(1)求 的通项公式及前 项和 ;
(2)设 ,求数列 的前 项和 .
(完整版)数列基础测试题及参考答案
数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2005,则序号n 等于().A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=().A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则().4m -n |6.0成立9.已知数列-1,1,2,-4成等差数列,-1,1,2,3,-4成等比数列,则212b a 的值是().A .21B .-21C .-21或21D .4110.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =().A .38B .20C .10D .9二、填空题11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为. 12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6=. (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=. (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20=.13.16(2)设S n 与b n20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.一、选择题1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2005,则序号n 等于().A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=().A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则(). A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则|m -n |等于().A .1B .43C .21D .835.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为().6.成立9的值二、填空题11.设f (x )=221+x,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为. 12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6=. (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=.(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20=.13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为. 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为.15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10=.16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n条直线交点的个数,则f (4)=;当n >4时,f (n )=.(2)设S n 与b n203a 4成等。
数列基础练习题(简单)
A.5B.10C.15D.20
4、.等差数列{an}的首项a1=1,公差d≠0,如果a1,a2,a5成等比数列,那么d等于??[???]
二、选择题
1.在等差数列 中 ,则 的值为()
A.84B.72C.60D.48
2.在等差数列 中,前15项的和 , 为()
A.6B.3C.12D.4
3.等差数列 中, ,则此数列前20项的和等于()
A.160B.180C.200D.220
4.在等差数列 中,若 ,则 的值等于()
A.45B.75C.180D.300
2.在等比数列{an}中,
(2)若S3=7a3,则q=______;
(3)若a1+a2+a3=-3,a1a2a3=8,则S4=____.
3.在等比数列{an}中,
(1)若a7·a12=5,则a8·a9·a10·a11=____;
(2)若a1+a2=324,a3+a4=36,则a5+a6=______;
等差数列
一、填空题
1.在等差数列中已知a1=12,a6=27,则d=___________
2.在等差数列中已知 ,a7=8,则a1=_______________
3. 与 的等差中项是_______________
4.正整数前n个数的和是___________
5.数列 的前n项和 ,则 =___________
三、计算题
1.根据下列各题中的条件,求相应的等差数列 的有关未知数:
(1) 求n及 ;(2)
2.设等差数列 的前n项和公式是 ,求它的前3项,并求它的通项公式
高中数学数列基础练习及参考答案
根底练习一、1.等比数列{a n}的公比正数,且a3·a9=2a5,a2=1,a1=A .1B.2C.2222.等差数列,,等于A.-1B.1C.33.公差不零的等差数列{a n}的前n和S n.假设a4是a3与a7的等比中,S832,S10等于A.18B.24C.60D.90. 4S n是等差数列a n的前n和,a23,a611,S7等于A.13B.35C.49D.63a n等差数列,且a7-2a4=-1,a3=0,公差d=〔A〕-2〔B〕-1〔C〕1〔D〕2226.等差数列{a n}的公差不零,首a1=1,a2是a1和a5的等比中,数列的前10之和是A.90B.100C.145D.1907.x R,不超x的最大整数[x],令{x}=x-[x],{51},[51],51222A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列8.古希腊人常用小石子在沙上成各种性状来研究数,例如:.他研究1中的1,3,6,10,⋯,由于些数能表示成三角形,将其称三角形数;似地,称2中的1,4,9,16⋯的数成正方形数。
以下数中及三角形数又是正方形数的是9.等差数列a n的前n和S n,a m1a m1a m20,S2m138,m〔A〕38〔B〕20〔C〕10〔D〕9.10.设a n 是公差不为0的等差数列,a 1 2且a 1,a 3,a 6成等比数列,那么 a n 的前n 项和S n =A .n 27n B .n 25n C .n 23n44332 4D .n 2n11.等差数列{a n }的公差不为零,首项a 1=1,a 2 是a 1和a 5的等比中项,那么数列的前 10项之和是A.90B.100C.145D.190.二、填空题1,前n 项和为S n ,那么 S 4.1设等比数列{a n }的公比q a 422.设等差数列{a n }的前n 项和为S n ,那么S 4,S 8 S 4,S 12 S 8,S 16 S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,那么T 4,,,T16成等比数列.T123.在等差数列{a n }中,a 3 7,a 5 a 26,那么a 6____________.4.等比数列{a n }的公比q0,a 2=1,a n2 a n1 6a n ,那么{a n }的前4项和S =.4三.解答题1.点〔1,1〕是函数f(x)a x (a0,且a1〕的图象上一点,等比数列{a n }的前n 项和3为f(n)c ,数列{b n }(b n0)的首项为c ,且前n 项和S n 满足S n -S n1=S n + S n1〔n2〕.〔1〕求数列{ a n }和 {b n }的通项公式;〔〕假设数列 {1前n 项和为 1000的最小2}T n ,问T n >b nbn12021正整数n 是多少?.2设S n为数列{a n}的前n项和,S n kn2n,nN*,其中k是常数.〔I〕求a1及a n;〔II〕假设对于任意的mN*,a m,a2m,a4m成等比数列,求k的值.3.设数列{a n}的通项公式为a n pn q(n N,P0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n m成立的所有n中的最小值.〔Ⅰ〕假设p1,q1,求b3;23〔Ⅱ〕假设p2,q1,求数列{b m}的前2m项和公式;〔Ⅲ〕是否存在p和q,使得b m3m2(m N)?如果存在,求p和q的取值范围;如果不存在,请说明理由.根底练习参考答案一、选择题1.【答案】B【解析】设公比为q,由得a1q 282a1q42,即q22,又因为等比数列{a n}的公比为a1q正数,所以q2a212,故a1,选Bq222.【解析】∵a1a3a5105即3a3105∴a335同理可得a433∴公差da4a32∴a20a4(204)d1.选B。
数列基础练习题
数列基础练习题
问题一
已知等差数列的首项为$a_1$,公差为$d$,若第$n$项为$a_n$,求$a_n$。
等差数列的通项公式为 a_n = a_1 + (n-1) * d。
问题二
某等差数列的前三项分别为2,5,8,求该等差数列的公差和
任意项的值。
已知前三项 a1=2, a2=5, a3=8,可以求得公差 d = a2 - a1 = 5 - 2
= 3。
那么,该等差数列的通项公式为 a_n = 2 + (n-1) * 3,其中 n 表
示项数。
根据公式,我们可以计算出该等差数列的任意项的值。
问题三
某等差数列的前两项分别为3,7,求该等差数列的公差和任意项的值。
已知前两项 a1=3, a2=7,可以求得公差 d = a2 - a1 = 7 - 3 = 4。
那么,该等差数列的通项公式为 a_n = 3 + (n-1) * 4,其中 n 表示项数。
根据公式,我们可以计算出该等差数列的任意项的值。
问题四
某等差数列的前两项分别为4,10,且公差为3,求该等差数列的第10项的值。
已知前两项 a1=4, a2=10,公差 d = a2 - a1 = 10 - 4 = 6。
那么,该等差数列的通项公式为 a_n = 4 + (n-1) * 6,其中 n 表示项数。
将 n=10 代入公式,可以求得该等差数列的第10项的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列基础练习题简单 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
等差数列
一、填空题
1. 等差数列8,5,2,…的第20项为___________.
2. 在等差数列中已知a 1=12, a 6=27,则d=___________
3. 在等差数列中已知13
d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________
5. 等差数列-10,-6,-2,2,…前___项的和是54
6. 正整数前n 个数的和是___________
7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________
8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。
二、选择题
1. 一架飞机起飞时,第一秒滑跑米,以后每秒比前一秒多滑跑米,离地的前一秒滑跑
米,则滑跑的时间一共是()
A. 15秒 秒 秒 秒
2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( )
3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为( )
4. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20项的和等于( )
5. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( )
6. 若lg 2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( )
B. 2log 5
C. 32 或32
7. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( )
A.等比数列,但不是等差数列
B.等差数列,但不是等比数列
C.等差数列,且是等比数列
D.既不是等差数列也不是等比数列
8. 数列3,7,13,21,31,…的通项公式是( )
A. 41n a n =-
B. 322n a n n n =-++
C. 21n a n n =++
D.不存在
三、计算题
1. 根据下列各题中的条件,求相应的等差数列{}n a 的有关未知数:
(1)151,,5,66
n a d S ==-=-求n 及n a ; (2)12,15,10,n n d n a a S ===-求及 2. 设等差数列{}n a 的前n 项和公式是253n S n n =+,求它的前3项,并求它的通项公式
3. 如果等差数列{}n a 的前4项的和是2,前9项的和是-6,求其前n 项和的公式。
等比数列
一、填空题
1. 若等比数列的首项为4,公比为2,则其第3项和第5项的等比中项是______.
2. 在等比数列{a n }中,
(2)若S 3=7a 3,则q =______;
(3)若a 1+a 2+a 3=-3,a 1a 2a 3=8,则
S 4=____. 3. 在等比数列{a n }中,
(1)若a 7·a 12=5,则a 8·a 9·a 10·a 11=____;
(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=______;
4. 一个数列的前n 项和S n =8n -3,则它的通项公式a n =____.
二、选择题
1.数列m ,m ,m ,…,一定 [ ]
A..是等差数列,但不是等比数列 B .是等比数列,但不是等差数列
C .是等差数列,但不一定是等比数列
D .既是等差数列,又是等比数列
④lg2,lg4,lg8,那么 [
]
A.①和②是等比数列 B.②和③是等比数列
C.③是等比数列,④是等差数列 D.②是等比数列,④是等差数列
3、已知{a n}是等比数列,且a n>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于 [ ]
A.5 B.10 C.15 D.20
4、.等差数列{a n}的首项a1=1,公差d≠0,如果a1,a2,a5成等比数列,那么d等于 [ ]
A.3 B.2 C.-2 D.2或-2
5、.等比数列{a n}中,a5+a6=a7-a5=48,那么这个数列的前10项和等于 [ ]
A.1511 B.512 C.1023 D.1024
6、.等比数列{a n}中,a2=6,且a5-2a4-a3=-12,则a n等于 [ ]
A.6 B.6·(-1)n-2 C.6·2n-2 D.6或6·(-1)n-2或6·2n-2
7、.某种产品自投放市场以来,经过三次降价,单价由原来的2000元降到1800元,这种产品平均每次降价的百分率是[ ]
8、.某工厂产值的月平均增长率为P,则该厂的年平均增长率为 [ ]
A.(1+P)12 B.(1+P)12-1 C.(1+P)11 D.(1+P)11-1。