版高中数学第一章算法初步111算法的概念学案新人教B版必修3

合集下载

人教课标版(B版)高中数学必修3第一章 算法初步算法与程序框图教案17

人教课标版(B版)高中数学必修3第一章 算法初步算法与程序框图教案17

(四)算法案例 案例 1 辗转相除法与更相减损术 案例 2 秦九韶算法 案例 3 进位制 三.典型例题 例 1 写一个算法程序,计算 1+2+3+„+n 的值(要求可以输入任意大于 1 的正自然数) 思考: 在上述程序语句中我们使用了 WHILE 格式的循环语句, 能不能使用 UNTIL 循环? 例 2 把十进制数 53 转化为二进制数. (C 层)练习:将十进制数 2008 转化成二进制数 (AB 层)练习:用“除 k 取余法”将十进制数 53 转化成八进制数 例 3 利用辗转相除法求 3869 与 6497 的最大公约数与最小公倍数。 思考:上述计算方法能否设计为程序框图? 练习:P40 A(3) (4) 课 后 学 习 教 学 反 思 (ABC 层)P50 复习参考题 A 组 1(1) ,4 (AB 层)P50 复习参考题 A 组 3
三 维 教 学 目 标
过程与 方法
情感、 态度、 价值观
教 学 内 容 分 析 教 学
教学 重点 教学 难点 流 程 与
与算法对应的程序框图的设计及算法程序的编写




一.本章的知识结构
程 序 框 图 算法 算 法 语 句 排序 进位制 辗转相除法与更相减损术
秦九韶算法
二.知识梳理 (一)四种基本的程序框 (二)三种基本逻辑结构 (三)基本算法语句 1、输入语句 单个变量
INPUT “提示内容” ;变量
多个变量 2、输出语句 3 赋值语句
INPUT “提示内容 1,提示内容 2,提示内容 3,„” ;变量 1,变量 2, 变量 3,„ PRINT “提示内容” ;表达式 变量=表达式
4、条件语句 IF-THEN-ELSE 格式

高中数学课本目录(新人教版)

高中数学课本目录(新人教版)

高中数学课本目录(新人教版)必修部分:必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修四第一章三角函数1 .1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos (ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修部分:选修1—1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例选修1—2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2—1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2—3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-4第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修3-1 数学史选修3-2 信息安全与密码选修3-3 球面上的几何选修3-4 对称与群选修3-5 欧拉公式与闭曲面分类选修3-6 三等分角与数域扩充选修4-1 几何证明选讲选修4-2 矩阵与变换选修4-3 数列与差分选修4-4 坐标系与参数方程选修4-5 不等式选讲选修4-6 初等数论初步选修4-7 优选法与试验设计初步选修4-8 统筹法与图论初步选修4-9 风险与决策选修4-10 开关电路与布尔代数课程大纲。

人教版高中数学B版目录

人教版高中数学B版目录

人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。

【2020最新】人教B版高中数学-必修3教学案-第一章-算法的概念(Word)(1)

【2020最新】人教B版高中数学-必修3教学案-第一章-算法的概念(Word)(1)
【2020最新】人教B版高中数学-必修3教学案-第一章-算法的概念(Word)(1)
编 辑:__________________
时 间:__________________
20xx最新人教B版高中数学-必修3教学案-第一章-算法的概念 (Word)
预习课本P3~6,思考并完成以下问题
(1)在数学中算法是如何定义的?
(1)写出求g(f(x))的值的一个算法;
(2)若输入x=-2,则g(f(x))输出的结果是什么?
解:(1)S1 输入x的值(x≠0).
S2 计算y=x2的值.
S3 计算z=2y-log2y的值.
S4 输出z的值.
(2)当x=-2时,由上面的算法可知y=4,
z=24-log24=14,故输出的结果为14.
S1 输入两个实数a,b.
S2 若a<b,则交换a,b的值,否则执行第三步.
S3 输出a.
这个算法输出的是( )
A.a,b中的较大数B.a,b中的较小数
C.原来的a的值D.原来的b的值
解析:选A 第二步中,若a<b,则交换a,b的值,那么a是a,b中的较大数;若a<b不成立,即a≥b,那么a也是a,b中的较大数.
[答案] A
有关算法概念的解题策略
(1)判断题应根据算法的特点进行求解;
(2)步骤要有限,前后有顺序,步步都明确.特别注意能在有限步内求解某一类问题,其中的每个步骤必须是明确可行的,不能模棱两可,对同一个问题可设计不同的算法.
[活学活用]
下列各式中S值不可以用算法求解的是( )
A.S=1+2+3+4
答案:D
2.算法的有限性是指( )
A.算法必须包含输出
B.算法中每个操作步骤都是可执行的

人教B版必修3高中数学第1章《算法初步》word教学案

人教B版必修3高中数学第1章《算法初步》word教学案

四川省古蔺县中学高中数学必修三:第1章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。

2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。

随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。

需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。

在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。

2、通过模仿、操作和探索,经历设计程序流程图表达解决问题的过程。

在具体问题的解决过程中理解程序流程图的三种基本逻辑结构:顺序结构、条件结构、循环结构。

3、通过实际问题的学习,了解构造算法的基本程序。

4、经历将具体问题的程序流程图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。

1.1.1算法的概念-新人教B版

1.1.1算法的概念-新人教B版

S1
S2
计算
D a11a22 a21a12 ;
如果D=0,则原方程组无解或者有无 穷多组解;否则(D≠0),
a22b1 a12b2 a11b2 a21b1 x1 , x2 ; D D
S 3 输出结果X1,X2或者无法求解信息.
10
问题
你对以下的“算法”如何理解?
问: 要把大象装冰箱,分几步?
试一试
写出对任意3个整数 a, b, c,
求出最大值的算法.
15
练一练
写出求一元二次方程 ax 2 bx c 0(a 0)
的算法.
S1 S2 计算△=b2-4ac; 如果△<0,则原方程无实数解; 否则( △≥0),
b b 2 4ac x1 , 2a
b b 2 4ac x2 ; 2a
16
S3
输出解x1,x2或无实数解信息.
4.算法的特点:
①有穷性:算法的有穷性是指算法必须能在有限的时间内 执行完,即算法必须能在执行有限个步骤之后终止.②确 定性:算法中的每一步应该是确定的并且能有效地执行且 得到确定的结果,而不应当是模棱两可的. ③顺序性:算法从初始步骤开始,分为若干个明确的步骤, 前一步是后一步的前提,只有执行完前一步才能进行下一 步,并且每一步都准确无误,才能完成问题. ④不唯一性:求解某一个问题的算法不一定只有唯一的一 个,可以有不同的算法. ⑤普遍性:很多具体的问题,都可以设计合理的算法去解 决,如心算、计算器计算都要经过有限的、事先设计好的 步骤加以解决.
(3) 算法要简洁,要清晰可读,不能繁杂.
入口 原料
机器
出口
产品
13
合作探究
写出一个求有限个整数序列中的最大值的算法.

2016-2017学年高一数学人教B版3讲义:第一章算法初步1.1.1算法的概念 含答案

2016-2017学年高一数学人教B版3讲义:第一章算法初步1.1.1算法的概念 含答案

1.1。

1算法的概念明目标、知重点1。

了解算法的含义,体会算法的思想;2。

能够用自然语言叙述算法;3.掌握正确的算法应满足的要求;4。

会写出解线性方程(组)的算法.1.算法的概念及描述(1)算法的定义算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.(2)算法的特征①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一问题的解法不一定是唯一的,对于同一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.(3)描述算法的方式描述算法可以有不同的方式:自然语言、数学语言(算法语言)、框图语言等.2.算法设计的目的设计算法的目的实际上是寻求一类问题的算法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的”语言”准确地描述出来,从而达到计算机执行的目的.3.算法设计的要求(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.[情境导学]赵本山和宋丹丹的小品《钟点工》中有这样一个问题:(宋丹丹)要把大象装冰箱,总共分几步?哈哈哈哈,三步.第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门关上.探究点一算法的概念思考1 算法随着时代的发展其含义在不断的变化,阅读教材第3页的上半页,你能说出现代对算法是怎样理解的吗?答算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.思考2 描述算法有怎样的方式?答可以用自然语言和数学语言、数学语言(算法语言)、框图语言等.例1 下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1 B.2C.3 D.4答案C解析②③④正确,而解决某类问题的算法不一定唯一,从而①错.反思与感悟算法实际上是解决问题的一种程序性方法,它能够解决某一个或一类问题.跟踪训练1 下列语句表达中是算法的是( )①从济南到巴黎可以先乘火车到北京,再坐飞机抵达;②利用公式S =错误!ah计算底为1,高为2的三角形的面积;③错误!x〉2x+4;④求M (1,2)与N(-3,-5)两点连线所在直线的方程,可先求直线MN 的斜率,再利用点斜式方程求得.A.①②③ B.①③④C.①②④ D.②③④答案C解析算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,①②④都表达了一种算法.探究点二算法的设计例2 “一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?"思考1 用代数方法如何求解?答设有x只小鸡,y只小兔,则有(Ⅰ) 错误!,将方程组(Ⅰ)中的第一个方程的两边同乘以-2加到第二个方程中去,得到(Ⅱ)错误!解方程组(Ⅱ)中的第二个方程,得y=7,将y代入第一个方程,得x =10。

最新人教版高中数学必修三电子课本名师优秀教案

最新人教版高中数学必修三电子课本名师优秀教案

人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。

算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。

在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。

人教版数学必修三答案

人教版数学必修三答案

人教版数学必修三答案【篇一:人教版高中数学必修3全套教案】=txt>【必修3教案|全套】目录第一章算法初步 ....................................................................................................... .. (1)1.1.2 程序框图与算法的基本逻辑结构 .......................................................................................................7 1.2.1 输入语句、输出语句和赋值语句 .....................................................................................................29 1.2.2 条件语句 ....................................................................................................... ...................................... 36 1.2.3循环语句 ....................................................................................................... ......................................... 44 1.3 算法案例 ....................................................................................................... ......................................... 51 第二章统计 ....................................................................................................... .. (75)2.1 随机抽样 ....................................................................................................... ......................................... 76 2.1.1 简单随机抽样 ....................................................................................................... .............................. 76 2.1.2 系统抽样 ....................................................................................................... ...................................... 81 2.1.3 分层抽样 ....................................................................................................... ...................................... 85 2.2 用样本估计总体 ....................................................................................................... ............................. 89 2.2.1 用样本的频率分布估计总体分布 .....................................................................................................89 2.2.2 用样本的数字特征估计总体的数字特征.......................................................................................... 97 2.3变量间的相关关系 ....................................................................................................... ....................... 107 2.3.1 变量之间的相关关系 ....................................................................................................... ................ 107 2.3.2 两个变量的线性相关 ....................................................................................................... ................ 107 第三章概率 ....................................................................................................... . (115)3.1 随机事件的概率 ....................................................................................................... ............................115 3.1.1 随机事件的概率 ....................................................................................................... .........................115 3.1.2 概率的意义 ....................................................................................................... .................................118 3.1.3 概率的基本性质 ....................................................................................................... ........................ 121 3.2.1 古典概型 ....................................................................................................... .................................... 124 3.2.2 (整数值)随机数(random numbers)的产生 ............................................................................. 128 3.3.1 几何概型 ....................................................................................................... .................................... 132 3.3.2 均匀随机数的产生 ....................................................................................................... .. (136)第一章算法初步本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助. 本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.1.1 算法与程序框图 1.1.1 算法的概念整体设计教学分析1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法. 课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课新知探究提出问题(1)解二元一次方程组有几种方法??x?2y??1,(1)(2)结合教材实例?总结用加减消元法解二元一次方程组的步骤.2x?y?1,(2)?(3)结合教材实例??x?2y??1,(1)总结用代入消元法解二元一次方程组的步骤.?2x?y?1,(2)(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组?x?2y??1,(1)的求解过程,我们可以归纳出以下步骤: ?2x?y?1,(2)?1. 53. 51?x?,??5第五步,得到方程组的解为??y?3.?5?(3)用代入消元法解二元一次方程组?x?2y??1,(1)我们可以归纳出以下步骤: ??2x?y?1,(2)第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y=3.⑤ 5351. 5第四步,把⑤代入③,得-1=1?x?,??5第五步,得到方程组的解为?3?y?.?5?(4)对于一般的二元一次方程组??a1x?b1y?c1,(1)ax?by?c,(2)22?2其中a1b2-a2b1≠0,可以写出类似的求解步骤:b2c1?b1c2.a1b2?a2b1a1c2?a2c1.a1b2?a2b1b2c1?b1c2?x?,?a1b2?a2b1?第五步,得到方程组的解为??y?a1c2?a2c1.?a1b2?a2b1?(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤. 变式训练请写出判断n(n2)是否为质数的算法.分析:对于任意的整数n(n2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示. 第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x2-2=0 (x0)的近似解的算法.a?b. 2第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.【篇二:高中人教版数学必修3课本练习_习题参考答案】参考答案高中数学必修③课本练习,习题参考答案新心希望教育:renyongsheng第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积s2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”i不是n的因数;第五步:使的值增加l,仍用第六步,判断“”1.1.21. 解;算法步骤:第一步,给定精确地i=1 第二步,取出i位的不足近似值,记为a;取出的到小数点后第ib,i的值增加1,返回第二步.程序框图如下图所示:第 1 页共 1 页人教版普通高中课程标准实验教科书数学必修③练习,习题参考答案第 2 页共 2 页人教版普通高中课程标准实验教科书数学必修③练习,习题参考答案2.解:算法如下:第一步,i=1,s=0. 第二步,判断第三步,,i=i+1第四步,输出s. 程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。

高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3

高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3

1.1 算法与程序框图1.1.1算法的概念内容标准学科素养1。

通过回顾解二元一次方程组的方法,了解算法的思想。

2。

了解算法的含义和特征。

3.会用自然语言表述简单的算法。

提升数学运算发展逻辑推理应用数学抽象授课提示:对应学生用书第1页[基础认识]知识点一算法的概念预习教材P2-3,思考并完成以下问题一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.(1)试问他们怎样渡过河去?提示:第一步,两个小孩同船过河去;第二步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.(2)设计的过河方法有什么特点?提示:由于船小,不能同时坐三个人,这样就需要遵循这一规则,然后按照一定的步骤一步一步的把三人运到河对岸.知识梳理在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.知识点二算法与计算机知识梳理计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.思考:与一般的解决问题的过程相比,算法最重要的特征是什么?提示:最重要的特征是步骤的有序性、明确性和有限性.[自我检测]下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:A、B两选项给出了解决问题的方法和步骤,是算法.C项,利用公式计算也属于算法.D项,只提出问题没有给出解决的方法,不是算法.答案:D授课提示:对应学生用书第2页探究一算法的概念[例1]下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4[解析]由于算法具有有限性、确定性、输出性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.[答案] C方法技巧1。

人教版高中必修3(B版)第一章算法初步教学设计

人教版高中必修3(B版)第一章算法初步教学设计

人教版高中必修3(B版)第一章算法初步教学设计教学背景本设计是为人教版高中必修3(B版)第一章——算法初步编写的,旨在让学生在学习计算机基本概念的同时,掌握算法的概念、基本算法及计算复杂度分析。

教学目标•了解算法的概念及其在计算机上的应用;•掌握算法的一些基本的思想方法和算法模板;•能够分析算法的时间、空间复杂度。

教学内容知识点1.算法基本概念2.时间、空间复杂度分析3.基本算法——贪心、分治和动态规划教学方式本课程主要采用授课法和案例演示法相结合的方式进行教学。

教学步骤第一步:算法基本概念1.讲解算法的定义、特性、应用等内容。

2.通过一些简单的例子,让学生理解什么是算法。

第二步:时间、空间复杂度分析1.介绍时间复杂度和空间复杂度的概念及分析方法。

2.通过一些实例演示,让学生能够对算法的复杂度进行分析。

第三步:基本算法——贪心1.介绍贪心算法的思想。

2.通过一些案例,让学生了解贪心算法的应用场景。

3.给学生一些练习题,巩固对贪心算法思路的掌握。

第四步:基本算法——分治1.介绍分治算法的思想。

2.通过一些案例,让学生了解分治算法的应用场景。

3.给学生一些练习题,巩固对分治算法思路的掌握。

第五步:基本算法——动态规划1.介绍动态规划算法的思想。

2.通过一些案例,让学生了解动态规划算法的应用场景。

3.给学生一些练习题,巩固对动态规划算法思路的掌握。

第六步:课堂小结1.小结本节课所学内容。

2.引导学生思考如何对不同场景下的问题选择合适的算法,扩展学生的算法思维。

教学评估1.每个章节结束后进行小测试,测试学生掌握的知识点。

2.每个章节最后留出时间给学生提问和互动交流。

3.在完成练习题后,对学生提交的答案进行点评和改进。

结束语本教学设计注重启发学生思考能力,通过案例演示和举例分析的方式,激发学生对算法和计算机的兴趣,提高对算法的理解和能力。

2020学年高中数学第1章算法初步1.1.1算法的概念学案新人教B版必修3(2021-2022学年)

2020学年高中数学第1章算法初步1.1.1算法的概念学案新人教B版必修3(2021-2022学年)

1。

1.1 算法的概念一、算法的概念开;第二步:把大象装进去;第三步:把冰箱门关上.这是一个算法吗?[提示]符合算法概念,是算法.二、算法的要求1.写出的算法,必须能解决一类问题并且能重复使用.2.算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.思考:根据算法的要求,你能简要地概括一下算法有哪些特征吗?[提示]有限性、确定性、逻辑性、普遍性、不唯一性.1.下列选项中能称为算法的是( )A.在家里一般是爸爸做饭B.做饭需要刷锅、淘米、加水、加热这些步骤C.在野外做饭野炊D.做饭必须有米B[B项描述的是解决一类问题的方法,能称为算法,故选B.]2.算法的有限性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确[答案]C3.下列说法中不能看成算法的是()A.某人乘车去公园,先遛弯,再买菜,最后带着菜回家B.烹制红烧肉的菜谱C.从山东济南乘火车到北京,再从北京乘飞机到伦敦D.小明会洗衣服D[只要按步骤完成某项任务就是一个算法,很明显A、B、C都是按步骤完成某项任务的,均是算法,而D中仅仅说明了一个事实,不是算法.]4.求过P(a1,b1),Q(a2,b2)(a1,b1,a2,b2∈R)两点的直线的斜率有以下算法,请在横线上填上适当的步骤:第一步,取x1=a1,y1=b1,x2=a2,y2=b2。

第二步,若x1=x2,则输出“斜率不存在”,结束算法;否则,执行第三步.第三步,______________。

第四步,输出k.计算斜率k=错误!未定义书签。

[分析第二步和第四步可知,第三步的功能是给出斜率的计算公式,并将值赋给k,参考第一步的写法,第三步的内容应是“计算斜率k=错误!未定义书签。

”.]ﻬ【例1】(1)下列描述不能看作算法的是( )A.解一元一次方程的步骤是去分母,去括号,移项,合并同类项,系数化为1B.洗衣机使用说明书的使用操作步骤C.解方程2x2+x-1=0D.利用公式S=πr2计算半径为4的圆的面积,就是计算π×42(2)下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法的每一步操作必须是明确的,不能有歧义或模糊不清;③算法执行后一定产生明确的结果.其中正确的个数有()A.1个B.2个C.3个ﻩD.0个(1)C(2)B [(1)A,B,D都描述了解决问题的过程,可以看作算法,而C只描述了一个事实,没说明怎么解决问题,不是算法.(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都必须是明确而有效的,必须在有限步内得到明确的结果,所以②③正确.而解决某一类问题的算法不一定是唯一的,故①错误.]1.算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,在用算法解决问题时,显然体现了特殊与一般的数学思想.2.算法的特点有:①有限性,②确定性,③顺序性和正确性,④不唯一性,⑤普遍性.解答有关算法的概念判断题,应根据算法的这五大特点进行判断.1.(1)下列可以看成算法的是()ﻬA.学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题B.今天餐厅的饭真好吃C.这道数学题很难做D.方程2x2-x+1=0无实数根A[A是学习数学的一个步骤,所以是算法.](2)下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从青岛乘动车到济南,再从济南乘飞机到南京;④3x〉x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的有________.(填序号)①②③ [根据算法的含义和特征:①②③都是算法;④⑤不是算法.其中④,3x>x+1不是一个明确的步骤,不符合确定性;⑤的步骤是无穷的,与算法的有限性矛盾.]【例2】第一步,输入x.第二步,若x≥4,则输出2x-1,算法结束;否则执行第三步.第三步,输出x2-3x+5。

人教b版数学必修三:1.1.1《算法的概念》导学案(含答案)

人教b版数学必修三:1.1.1《算法的概念》导学案(含答案)

第一章算法初步§1.1算法与程序框图1.1.1算法的概念自主学习学习目标通过分析解决具体问题的过程与步骤,体会算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法.自学导引1.算法可以理解为由基本运算及规定的____________所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.2.算法具有________、________、________、____________、________等特征.3.算法通常可以编成____________,让计算机执行并解决问题.对点讲练知识点一算法的概念例1下列关于算法的描述正确的是()A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果点评算法实际上是解决问题的一种程序性方法,它通常指向某一个或一类问题,而解决的过程是程序性和构造性的.算法也可以看成解决问题的特殊的、有效的方法.变式迁移1下列关于算法的说法,正确的有()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1个B.2个C.3个D.4个知识点二直接法设计算法例2写出求1+2+3+4+5+6值的一个算法.点评方法一是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如1+2+3+…+10 000,再用这种方法是不可取的;方法二与方法三都是比较简单的算法,但比较而言,方法二最为简单,且易于在计算机上执行操作.因此,当我们考虑算法设计时,要刻意去发展有条理的表达能力,提高逻辑思维能力,从而简单地解决问题.变式迁移2写出解方程x2-x-6=0的一个算法.知识点三 选择执行的算法例3 函数y =⎩⎪⎨⎪⎧ -x +1 (x >0)0 (x =0),x +1 (x <0)写出给定自变量x 求函数值的算法.点评 这是分段函数算法的一个模型,算法设计的关键是根据x 的范围选择相应的解析式,即相应的步骤,设计算法时,一定要考虑到x 的所有可能情况及各种情况下算法的执行情况.变式迁移3 设计一个算法,对任意三个整数a 、b 、c ,求出其中的最小数.1.算法有以下几个特征(1)概括性:写出的算法必须能解决一类问题,并能重复使用.(2)逻辑性:即顺序性和正确性.算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能执行下一步,并且每一步都准确无误,才能解决问题.(3)有穷性:算法的步骤序列是有限的,一个算法必须总是在执行有穷步之后结束,且每一步都可在有穷时间内完成.(4)不唯一性:求解某个问题的算法不是唯一的,对一个问题可以有不同的算法.2.算法设计要求(1)写出的算法必须能解决一类问题,并且能重复使用.(2)要使算法尽量简单,步骤尽量少.(3)算法过程要能一步一步执行,每一步都准确无误,且在有限步后能得出结果.课时作业一、选择题1.我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组的解,二分法求出函数的零点等,对算法的描述有:①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.以上算法的描述正确的个数为( )A .1个B .2个C .3个D .4个2.下列四种叙述中能称为算法的是( )A .解方程时需要验根B .在野外做饭叫野炊C .做米饭时需要刷锅、淘米、添水、加热这些步骤D .以上都不是算法3.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N ) A .①② B .①③ C .②③ D .①②③4.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法5.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是( )A .质数B .奇数C .偶数D .约数二、填空题6.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法_____________________________________________.(只写编号)7.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.以下是求他的总分和平均成绩的一个算法,在横线上填入算法中缺的两个步骤.第一步,取A =89,B =96,C =99.第二步,__________________________.第三步,__________________________.第四步,输出计算的结果.8.下面给出了一个问题的算法:第一步,输入a.第二步,若a≥4,则执行第三步,否则执行第四步.第三步,输出2a-1.第四步,输出a2-2a+3.问题:(1)这个算法解决的问题是___________________________________________________.(2)当输入的a值为________时,输出的数值最小.三、解答题9.求1×3×5×7×9×11的值,写出其算法.10.设计算法,求方程5x+2y=22的正整数解.第一章算法初步§1.1算法与程序框图1.1.1算法的概念自学导引1.运算顺序2.概括性逻辑性有穷性不唯一性普遍性3.计算机程序对点讲练例1C[算法与求解一个问题的方法既有区别又有联系,故A不对;算法能重复使用,故B不对;每个算法执行后必须有结果,故D不对;由算法的有序性和确定性可知C 正确.]变式迁移1C[解决某一类问题的算法不唯一,第①个说法错误,②③④正确,故选C.]例2解方法一S1计算1+2得到3.S2将S1中的运算结果3与3相加得到6.S3将S2中的运算结果6与4相加得到10.S 4 将S 3中的运算结果10与5相加得到15.S 5 将S 4中的运算结果15与6相加得到21.S 6 输出运算结果.方法二S 1 取n =6.S 2 计算n (n +1)2. S 3 输出运算结果.方法三S 1 将原式变形为(1+6)+(2+5)+(3+4)=3×7.S 2 计算3×7.S 3 输出运算结果.变式迁移2 解 第一步,计算方程的判别式并判断符号Δ=1+4×6=25>0;第二步,将a =1,b =-1,c =-6代入求根公式x =-b±b 2-4ac 2a,得x 1=-2,x 2=3; 第三步,输出方程的两个根.例3 解 算法如下:第一步,输入x ;第二步,若x >0,则令y =-x +1后执行第五步,否则执行第三步;第三步,若x =0,则令y =0后执行第五步,否则执行第四步;第四步,令y =x +1;第五步,输出y 的值.变式迁移3 解 算法步骤如下:第一步,假定数a 为三个数中的最小数.第二步,将b 与a 比较,如果b <a ,则令a =b ,否则a 值不变.第三步,将c 与a 比较,如果c <a ,则令a =c ,否则a 值不变.第四步,a 就是a 、b 、c 中的最小数.课时作业1.D [题中对算法的几种描述分别对应算法的概括性、有穷性、逻辑性和普遍性.]2.C3.B [由算法的步骤是有限的,所以②不能设计算法求解.]4.B [算法具有不唯一性,对于一个问题,我们可以设计不同的算法.]5.A [此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到n -1一一验证,看是否有其他约数,来判断其是否为质数.]6.③②①⑤④⑥7.计算总分D =A +B +C 计算平均成绩E =D 38.(1)求分段函数f(a)=⎩⎪⎨⎪⎧2a -1, a ≥4,a 2-2a +3, a<4的函数值问题 (2)1 9.解 方法一第一步,先求1×3,得到结果3;第二步,将第一步所得结果3再乘以5,得到结果15;第三步,再将15乘以7,得到结果105;第四步,再将105乘以9,得到结果945;第五步,再将945乘以11,得到10 395,即是最后结果.方法二第一步,S =1;第二步,I =3;第三步,S =S ×I ;第四步,I =I +2;第五步,如果I 不大于11,返回重新执行第三步、第四步及第五步,否则,输出S 的值就是所求的结果,结束.10.解 第一步,将x =1代入原方程,得y =172,这组解不是方程的正整数解; 第二步,将x =2代入原方程,得y =6,这组解是方程的正整数解;第三步,将x =3代入原方程,得y =72,这组解不是方程的正整数解; 第四步,将x =4代入原方程,得y =1,这组解是方程的正整数解;第五步,方程的正整数解有两组:⎩⎪⎨⎪⎧ x =2,y =6或⎩⎪⎨⎪⎧x =4,y =1.。

高中数学 第一章 算法初步 1.1.1 算法的概念预习导航 新人教B版必修3

高中数学 第一章 算法初步 1.1.1 算法的概念预习导航 新人教B版必修3

高中数学第一章算法初步 1.1.1 算法的概念预习导航新人教B版必修31.通过对解决具体问题的过程与步骤的分析,体会算法的思想和概念,体会算法概念从具体到抽象的思维过程.2.根据算法的要求和特征,能够判断算法的对与错,优与劣,并能写出解决简单问题的算法步骤.1.算法的概念算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.知识拓展(1)算法一般是机械的,有时要进行大量重复的计算,只要按部就班地去做,总能算出结果.通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以让计算机来完成.本章主要以计算机能够实现的算法作为讨论的内容.(2)实际上,处理任何问题都需要算法,中国象棋有中国象棋的棋谱,国际象棋有国际象棋的棋谱.再比如,邮寄物品有其相应的手续,购买飞机票也有一系列的手续等等.(3)求解某个问题的算法不唯一.【做一做1】下列说法正确的是( )A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结论C.解决某一个具体问题,算法不同所得的结果不同D.算法执行步骤的次数不可以很大,否则无法实施解析:B项,如判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;而A项,算法不能等同于解法;C项,解决某一个具体问题,算法不同所得的结果应该相同,否则算法不正确;D项,算法执行步骤的次数可以为很多次,但不可以为无限次.答案:B2.算法的表示形式描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以叙述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.名师点拨算法的自然语言描述是指用英语、汉语、数学语言描述算法,对于数值型问题要建立数学模型,或通过固有的公式或计算方法设计算法,对于非数值型问题要建立过程模型,通过它来描述算法,在描述过程中,体会算法的含义和思想.【做一做2】写出求方程2x+3=0的解的算法步骤.S1______________________;S2______________________;S3______________________.答案:移项,得2x =-3 两边同除以2,得x =-32输出x =-323.算法的要求(1)写出的算法,必须能解决一类问题,并且能重复使用.(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.【做一做3】 写出一个判断圆(x -a )2+(y -b )2=r 2和直线Ax +By +C =0的位置关系的算法.解:算法步骤如下:S1 输入圆心的横坐标a ,纵坐标b 与直线方程的系数A ,B ,C 和半径r 的值; S2 计算z 1=Aa +Bb +C ;S3 计算z 2=A 2+B 2;S4 计算d =|z 1|z 2; S5 如果d >r ,那么直线与圆相离;如果d =r ,那么直线与圆相切;如果d <r ,那么直线与圆相交.4.高斯消去法高斯消去法是求解二元一次方程组的一种算法,其实质就是用加减消元,通过对系数变换,达到求解的目的.设二元一次方程组⎩⎪⎨⎪⎧ a 11x 1+a 12x 2=b 1, ①a 21x 1+a 22x 2=b 2. ②用高斯消去法求解的算法步骤如下: 设a 11≠0(若a 11=0,将方程①与方程②互换),①×⎝ ⎛⎭⎪⎫-a 21a 11+②,得到⎝ ⎛⎭⎪⎫a 22-a 21a 12a 11x 2=b 2-a 21b 1a 11.设D =a 11a 22-a 21a 12,于是原方程组可化为{ a 11x 1+a 12x 2=b 1,Dx 2=a 11b 2-a 21b 1. ③④⎩⎪⎨⎪⎧ 2x +y =5,①4x +5y =11.②解:S1 ①×(-2)+②,得到3y =1;③S2 解方程③,得到y =13;S3 将y =13代入①,得到x =73;S4 输出x ,y 的值.。

人教版高中必修3(B版)1.1.1算法的概念教学设计

人教版高中必修3(B版)1.1.1算法的概念教学设计

人教版高中必修3(B版)1.1.1算法的概念教学设计一、背景学科:信息技术年级:高中版本:人教版(B版) 章节:1.1.1 算法的概念教学目标: 1. 了解算法的基本概念; 2. 能够用自己的话解释算法; 3. 能够根据图示说明算法的过程。

二、教学内容1. 算法的定义及概念算法是指完成特定任务的指令序列,在计算机中具有广泛的应用。

算法包含输入、输出以及实现目标的基本步骤。

2. 算法的特征算法有以下特征: 1. 输入:算法需要输入来完成指定任务; 2. 输出:算法需要输出来完成指定任务; 3. 有序性:算法是有序的指令序列,需要按照特定顺序执行; 4. 确定性:算法是确定的,给定相同的输入,将会得到相同的输出; 5. 可行性:算法可以在有限的时间内完成指定任务。

3. 算法的表示方法算法可以使用自然语言、流程图、伪代码等方式进行表示和描述。

三、教学方法1. 模拟演示法教学步骤: 1. 教师介绍算法的基本概念; 2. 教师演示一个包裹装箱的例子,用具体的流程图描述该过程; 3. 学生模拟演示算法过程。

2. 讨论法教学步骤: 1. 教师介绍算法的概念及特征; 2. 学生分组讨论,用自己的话来解释算法的概念; 3. 学生用自己的方式描述算法的过程,再进行相互的交流和讨论。

3. 循序渐进教学法教学步骤: 1. 教师介绍算法的概念及特征; 2. 学生根据教师提供的算法伪代码,完成简单实现; 3. 教师介绍算法的图示、流程图表示法; 4. 学生用自己的方式描述算法的过程; 5. 教师进一步介绍算法的时间复杂度和空间复杂度的概念。

四、教学评估1. 课堂测验在课堂结束前,教师可以进行一次小测验,以检查学生是否掌握了算法的概念及特征。

2. 课程设计教师为学生设计一个小规模的项目或问题,要求学生用刚刚所掌握的算法知识来解决问题。

3. 回顾总结教师可以要求学生进行回顾总结,以检查学生是否完全理解了算法的概念及流程。

五、课件和活动设计1. 课件设计本教学设计的课件应包含以下几个方面: 1. 算法的基本概念和相关定义; 2. 算法的特征; 3. 算法的描述方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 算法的概念学习目标 1.了解算法的含义.2.了解算法的思想.3.会用自然语言描述一些具体问题的算法.知识点一算法的概念思考1 有一碗酱油,一碗醋和一个空碗.现要把两碗盛的物品交换过来,试用自然语言表述你的操作办法.思考2 某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步.第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.这是一个算法吗?梳理算法概念知识点二算法的特征思考1 设想一下电脑程序需要计算无限多步,会怎么样?思考2 算法与一般意义上具体问题的解法的区别与联系是什么?梳理算法的五个特征(1)有限性:一个算法的步骤是________的,它应在有限步操作之后停止.(2)确定性:算法中的每一步应该是________的,并且能有效地执行且得到确定的结果,而不是模棱两可的.(3)逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有完成前一步,才能进行下一步,而且每一步都是正确无误的,从而组成具有很强逻辑性的____________.(4)普遍性:一个确定的算法,应该能够解决一类问题.(5)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同的算法.特别提醒:判断一个问题是不是算法,关键是明确算法的含义及算法的特征.知识点三算法的设计要求及描述思考1 求解某一个问题的算法是不是唯一的?思考2 任何问题都可以设计算法解决吗?梳理1.算法的设计要求(1)写出的算法,必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、通俗易懂.(3)要保证算法正确,且计算机能够执行.2.算法的描述描述算法可以有不同的方式,常用的有自然语言、框图(流程图)、程序设计语言等.(1)自然语言自然语言就是人们日常使用的语言,可以是汉语、英语或数学语言等,用自然语言描述算法的优点是________________,当算法中的操作步骤按顺序执行时比较容易理解,缺点是如果算法中包含判断和转向,并且操作步骤较多时,就不那么直观清晰了.(2)框图(流程图)所谓框图,就是指用规定的__________________来描述算法(这在下一节中将学习).用框图描述算法,具有直观、结构清晰、条理分明、通俗易懂、便于检查、修改及交流等优点.(3)程序设计语言算法可以通过程序语言编写出来,并在计算机上执行.程序设计语言可分为低级语言和高级语言,低级语言包括机器语言和汇编语言.类型一算法概念理解例1 下列描述不能看作算法的是( )A.做米饭需要刷锅,淘米,添水,加热这些步骤B.洗衣机的使用说明书C.解方程2x2+x-1=0D.利用公式S=πr2,计算半径为4的圆的面积,就是计算π×42反思与感悟算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或看成是设计好的、有限的、确切的计算序列,并且这样的步骤或序列能够解决某一类问题.跟踪训练1 下列关于算法的描述正确的是( )A.算法与求解一个问题的方法相同B.算法只能解决一个问题,不能重复使用C.算法过程要一步一步执行,每步执行的操作必须确切D.有的算法执行完后,可能无结果类型二算法的阅读理解例2 下面算法要解决的问题是______________________________________________.S1 输入三个数,并分别用a、b、c表示.S2 比较a与b的大小,如果a<b,则交换a与b的值.S3 比较a与c的大小,如果a<c,则交换a与c的值.S4 比较b与c的大小,如果b<c,则交换b与c的值.S5 输出a、b、c.反思与感悟一个算法的作用往往并不显而易见,这需要我们结合具体数值去执行一下才知道.跟踪训练2 下面给出了一个问题的算法:S1 输入a.S2 若a≥4,则执行第三步,否则执行第四步.S3 输出2a-1.S4 输出a2-2a+3.这个算法解决的问题是________________________________________________________.类型三算法的步骤设计命题角度1 直接应用数学公式设计算法例3 有一个两底面半径分别为2和4,高为4的圆台,写出求该圆台表面积的算法.反思与感悟 利用公式解决问题时,必须先求出公式中的各个量,在设计算法时,应优先考虑未知量的求法.跟踪训练3 已知一个等边三角形的周长为a ,求这个三角形的面积.设计一个算法解决这个问题.命题角度2 函数求值问题的算法设计例4 已知函数f (x )=⎩⎪⎨⎪⎧ x 2-x +x ,x +1 x <,设计一个算法求函数的任一函数值.反思与感悟 首先结合函数的表达式的特征,然后选择恰当的算法语言进行描述. 跟踪训练4 已知函数f (x )=|x -2|+1, 设计一个算法求函数的任一函数值.命题角度3 非数值性计算问题的算法例5 现有有限个正整数,试设计一个求这些正整数中的最大数的算法.反思与感悟 首先认真分析问题,找到解决此类问题的一般方法.然后,再将解决该类问题划分为若干个先后可执行的步骤,最后用简炼的语言表达出来.跟踪训练5 已知一个三角形的三边边长分别为2,3,4,设计一个算法,求出它的面积.1.下列关于算法的说法正确的是( )A .一个算法的步骤是可逆的B .描述算法可以有不同的方式C .算法可以看成是按照要求设计好的、有限的、确切的计算序列,并且这样的步骤或序列只能解决当前问题D .算法只能用一种方式显示2.计算下列各式中S 的值,能设计算法求解的是( )①S =12+14+18+…+12100; ②S =12+14+18+…+12100+…; ③S =12+14+18+…+12n (n ≥1,n ∈N +). A .①② B .①③C .②③D .①②③3.已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分.求他的总分和平均分的一个算法为S1 取A =89,B =96,C =99.S2 ________________________________________________________________________. S3 ________________________________________________________________________. S4 输出计算的结果.4.求过P (a 1,b 1),Q (a 2,b 2)两点的直线的斜率有如下的算法,请在横线上填上适当步骤. S1 令x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.S2 判断“x 1=x 2”是否成立.若是,则输出“斜率不存在”;否则,执行第三步. S3 ________________________________________________________________________. S4 输出k .5.写出解二元一次方程组⎩⎪⎨⎪⎧ 3x -2y =-1①,2x +y =1②的算法.1.算法的特点:有限性、确定性、逻辑性、不唯一性、普遍性.2.算法设计的要求:(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.(2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,每步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.答案精析问题导学知识点一思考1 先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换.思考2 是.梳理算术运算一定规则明确有限计算机程序知识点二思考1 若有无限步,必将陷入死循环,解决不了问题.故算法必须在有限步内解决问题.思考2 (1)它们之间是一般与特殊的关系,也是抽象与具体的关系.(2)要设计出解决一类问题的算法,可以借助于此类问题中的某一个问题的解决过程和思路进行设计,而此类问题中的任何一个具体问题都可以利用这类问题的一般算法来解决.梳理有限确定步骤序列知识点三思考1 解决一个问题的算法可以有多个,只是有优劣之分,结构简单,步骤少,速度快的算法就是好算法.思考2 不可以,只有能按照一定规则解决的、明确的、有限的操作步骤的问题才可以设计算法,其他的问题一般是不可以的.梳理2.(1)通俗易懂(2)图形符号题型探究类型一例1 C [A、B、D都描述了解决问题的过程,可以看作算法,而C只描述了一个事实,没说明怎么解决问题,不是算法.]跟踪训练1 C [算法与求解一个问题的方法既有区别又有联系,故A项不对;算法能重复使用,故B项不对;每个算法执行后必须有结果,故D项不对;由算法的有序性和确定性,可知C项正确.]类型二例2 输入三个数a,b,c,并按从大到小的顺序输出解析第一步是给a、b、c赋值.第二步运行后a>b.第三步运行后a>c.第四步运行后b>c,所以a>b>c.第五步运行后,显示a 、b 、c 的值,且从大到小排列.跟踪训练2 求函数f (x )=⎩⎪⎨⎪⎧ 2x -1, x ≥4,x 2-2x +3, x <4当x =a 时的函数值f (a )类型三命题角度1例3 解 如图,先给r 1,r 2,h 赋值,计算l ,再根据圆台表面积公式S 表=πr 21+πr 22+π(r 1+r 2)l 计算S 表,然后输出结果.S1 令r 1=2,r 2=4,h =4.S2 计算l =r 2-r 12+h 2. S3 计算S 表=πr 21+πr 22+π(r 1+r 2)l .S4 输出运算结果.跟踪训练3 解 S1 输入a 的值.S2 计算l =a 3的值. S3 计算S =34×l 2的值. S4 输出S 的值.命题角度2例4 解 S1 输入x =a .S2 若a ≥2,则执行第三步;若a <2,则执行第四步.S3 输出f (a )=a 2-a +1.S4 输出f (a )=a +1.跟踪训练4 解 S1 输入x =a .S2 若a <2,则执行第三步,否则执行第四步.S3 输出f (a )=3-a .S4 输出f (a )=a -1.命题角度3例5 解 S1 先假定这些正整数中的第一个数为“最大数”.S2 将这些正整数中的下一个数与“最大数”比较.如果它大于此“最大数”,那么就假定它是“最大数”.S3 如果还有其他正整数,那么重复第二步.S4 一直到没有可比较的数为止,这时假定的“最大数”就是这有限个正整数中的最大数. 跟踪训练5 解 S1 令a =2,b =3,c =4.S2 计算p =a +b +c 2.S3 利用公式S =p p -a p -b p -c ,求出面积S =3415.S4 输出S .当堂训练1.B [由算法的定义知A 、C 、D 错.]2.B [由算法的有限性知②不能设计算法求解,①③都能通过有限步输出确定结果.]3.计算总分D =A +B +C 计算平均分E =D34.计算斜率k =y 2-y 1x 2-x 1解析 由题意可知,“第三步”应根据直线斜率公式计算斜率k 的值.5.解 S1 ①+2×②得7x =1.③S2 解③得x =17.S3 ②×3-①×2得7y =5.④S4 解④得y =57.S5 得到方程组的解为⎩⎪⎨⎪⎧ x =17,y =57.。

相关文档
最新文档