气象资料的分析与预测问题建模
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气象资料的分析与预测建模
摘要:本文建立了用于气象资料的分析与预测的数学模型。经对比该城市与北京的海拔、气候等极为相似,因此,我们以北京的标准气象指数为参照建立模型。
首先针对问题一:对该城市两年来的总体气象进行整体评价,并对该城市气候走势进行中长期预测。我们仿照科学家对环境空气质量综合指数评价的数学模型,以第一年每个月的平均气压、平均气温、平均相对湿度、平均风速、最高气压、最高气温、最高相对湿度、最高风速和北京的标准气候指数为参数,通过matlab建立与之相关的方程来确定该城市当月的气象质量指数,按照指数数值的大小分为优、良、差三大类,从而评价每个月的气候质量。运用第二年的数据进行检验模型的正确性:随机选取几个月的气象因素数据,并各自与对应的北京标准气象数据做差,数值越小则气象质量越好,将分析结果与通过权重综合指数法计算得出的结论做比较。跟据建立的气象质量评价数学模型和第一、第二两年数据对比趋势图,对该城市气候进行整体评价和中长期的分析预测。
然后针对问题二:对影响极端天气发生的主要指标,比如:降水、温度等建立监控预报体系的数学模型,并用两年内的累积气象资料进行验证。我们运用多元线性回归分析的数学方法,建立了监控预报最高温度的数学模型。该模型中我们先假设了最高温度的主要影响因素是平均气压、平均气温、平均湿度、日照时数、地面平均温度、降水量等,通过matlab编写程序验证取舍得出平均气压、平均气温、平均湿度、日照时数、地面平均温度是影响降水和温度的主要影响因素;然后,检验多元线性回归方程的拟合优度、相关性;最后,带入两年内的累积气象资料进行验证。
最后我们评价了模型的优缺点,并对模型的不足之处进行了改进。
关键词:权重综合气象质量指数;多元线性回归;正态分布。
1.问题重述
近年来,我国极端天气呈现出发生频率加大、致灾性加重等新特点,极端天气趋于常态化。虽然部分地方加大防灾减灾建设并取得一些成效,但相比现实需求,对极端天气监测预警手段仍然不足,防御应对体系建设仍存在明显短板。
附件中是某城市两年内连续的日气象资料,包括气压、温湿度、降水量、风力风向等多项气象资料指标。请你完成以下任务:
(1)对该城市两年来的总体气象进行整体评价,并对该城市气候走势进行中长期预测;请详细给出评价的指标体系以及评级和预测的数学模型;
(2)对影响极端天气发生的主要指标,比如:降水、温度等建立监控预报体系的数学模型,并用两年内的累积气象资料进行验证。注意:这里的主要指标并不限于降水和温度等指标,你们也可根据实际需求自行选择。
注:该城市的海拔约为30-50米。
2. 问题的背景与分析
虽然我国幅员辽阔,地形复杂,但各地的气象在空间分布上仍有一定规律。我国分布着世界上最大的温带季风区,秦岭淮河以北是温带季风气候,这里夏季高温多雨,冬季寒冷干燥。冬冷夏热,雨热同期;秦岭淮河以南是亚热带季风气候,这里夏季高温多雨,冬季温和少雨,热量充足,气温年较差较小,降水丰富,但季节变化较大;西部的新疆、宁夏、内蒙古、青海、甘肃等多是温带大陆性气候,这里冬冷夏热,年温差大,降水集中,四季分明,年雨量较少,大陆性强;面积广大的青藏高原等地是高原山地气候,这里海拔高,气温低,但辐射强,日照丰富,降水少,冬半年风力强劲,气温的年较差小,日较差大。
近年来,我国极端天气呈现出发生频率加大、致灾性加重等新特点,极端天气趋于常态化。虽然部分地方加大防灾减灾建设并取得一些成效,但相比现实需求,对极端天气监测预警手段仍然不足,防御应对体系建设仍存在明显短板。向社会提供准确及时的天气监控预测是我们的宗旨;满足人民对气象信息的多种需求是我们的目标。因此,准确的对极端天气监测预警,有着十分重要的意义。
我们建立的这个数学模型就是本着对极端天气监测预警的角度出发,以城市多年的历史数据为参照,建立气象评价体系数学模型和对极端温度、风速的监控预报体系数学模型。
模型的假设与符号说明
模型的假设:
1.假设气象部门提供的实测数据是准确的,能较真实地反映该城市的气象情况。
2.假设北京气象与该城市气象相似。
3.假定网上所给的北京标准气候指标可靠。
4. 假定最高气温与与平均气压、平均气温、平均湿度、日照时数、地面平均温度成线性函数。
5. 假定最高气温时随机变量,服从均值为零的正态分布。
符号说明:
Ii——第i项气象因素指数;
N ——参数项数;
C imax ——第i 项气象因素(月) 均最大值; C i —— 第i 项气象因素( 月)平均值; Si —— 第i 顶气象因素标准值; Qi ——第i 项气象因素指数的权数; P i ——第i 项气象因素指数的修正; I ——综合气象质量指数; K ——权重综合气象质量指数。 Y ——最高气温; x1——平均气压; x2——平均气温; x3——平均湿度; x4——日照时数; x5——地面平均气温; bi ——Xi 的回归系数;
3.气象评价体系模型的建立与修正
为了能够更客观地评价和预测某地的气象,我们仿照科学家对环境空气质量综合指数评价的数学模型,以每个月的平均气压C1、平均气温C2、平均相对湿度C3、平均风速C4、最高气压C1极、最高气温C2极、最高相对湿度C3极、最高风速C4极和北京的标准气候指数Si 为参数,通过matlab 建立与之相关的函数方程来确定该城市当月的综合气象质量指数I ,然后在评级列表中查出气象质量等级。 3.1综合气象质量指数法计算公式:
Si Ci Ci I i
*max =
(1)
∑==n
i i
i I P I 1
* (2)
其中第i 顶气象因素评价标准Si 从表1—1北京气象标准指数表中获取。
表3—1 北京市标准气象值
平均气压 平均气温 极端最高气温 极端最低气温 降水量
平均相对湿度 平均风
速 (%) 1月 1024.2 -3.7 12.9 -18.3 2.7 44 2.6 2月
1022
-0.7
19.8
-16
4.9
44
2.8