三角函数图像的平移变换专项练习

合集下载

高中数学 三角函数图像变换训练-含答案

高中数学 三角函数图像变换训练-含答案

三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪⎝⎭D .πcos 24y x ⎛⎫ ⎪⎝+⎭=2.(2023·河南开封·统考二模)把函数πsin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =3.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)函数()sin f x x =的图象经过下列哪个变换可以得到()πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,这个变换是()A .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标扩大为原来的2倍B .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标缩小为原来的12C .先把函数()sin f x x =的图象上每个点的横坐标缩小为原来的12,再将图象向左平移π3个单位D .先把函数()sin f x x =的图象上每个点的横坐标扩大为原来的2倍,再将图象向左平移π6个单位4.(2023春·河北衡水·高一校考阶段练习)为了得到函数πsin 410y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数4πcos 5y x ⎛⎫=- ⎪⎝⎭图象上所有点的()A .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向右平移π20个单位长度B .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向左平移π5个单位长度C .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向右平移π5个单位长度D .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向左平移π20个单位长度5.(2023春·上海浦东新·高一华师大二附中校考阶段练习)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像()A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位6.(2023春·安徽·高一校联考阶段练习)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图象上的所有点的横坐标伸长到原来的4倍(纵坐标不变),再向右平移π3个单位长度,得到函数()g x 的图象,则π2g ⎛⎫= ⎪⎝⎭()A .12B .2C D .17.(2023春·河南焦作·高二温县第一高级中学校考阶段练习)将函数()sin 2y x ϕ=+的图象沿x 轴向右平移π8个单位长度后,得到一个偶函数的图象,则ϕ的一个可能取值为()A .π4-B .π4C .3π8D .3π88.(2023·河北·高三学业考试)为了得到函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭,x ∈R 的图象,只需将函数2sin y x =,x ∈R 的图象上所有的点()A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度二、多选题9.(2023春·重庆渝中·高一重庆巴蜀中学校考阶段练习)由曲线1π:sin 23C y x ⎛⎫=- ⎪⎝⎭得到2:cos C y x =,下面变换正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移5π6个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的12倍,纵坐标不变,再把得到的曲线向左平移5π12个单位长度,得到曲线2C C .把1C 向左平移5π6个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线2C D .把1C 向左平移5π12个单位长度,再把得到的曲线上各点的横坐标缩短到原来的2倍,纵坐标不变,得到曲线2C 10.(2023秋·山西运城·高一康杰中学校考期末)已知函数()tan πf x x =,将函数()y f x =的图象向左平移13个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数()g x 的图象,则下列描述中正确的是().A .函数()g x 的图象关于点2,03⎛⎫- ⎪⎝⎭成中心对称B .函数()g x 的最小正周期为2C .函数()g x 的单调增区间为51,33k k ⎛⎫-++ ⎪⎝⎭,k ∈ZD .函数()g x 的图象没有对称轴三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪D .πcos 24y x ⎛⎫ ⎪+=2.(2023·河南开封·统考二模)把函数sin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =。

三角函数图像平移与伸缩练习

三角函数图像平移与伸缩练习

三角函数图像平移与伸缩题组练习1.(2020·福建质检)将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称 答案 D解析 由题意知,f (x )=cos x ,所以它是偶函数,A 错;它的周期为2π,B 错;它的对称轴是直线x =k π,k ∈Z ,C 错;它的对称中心是点⎝⎛⎭⎫k π+π2,0,k ∈Z ,D 对. 2.要得到函数y =cos2x 的图像,只需把函数y =sin2x 的图像( ) A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π2个单位长度D .向右平移π2个单位长度答案 A解析 由于y =sin2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π4)],因此只需把函数y =sin2x 的图像向左平移π4个单位长度,就可以得到y =cos2x 的图像. 3.若把函数y =f (x )的图像沿x 轴向左平移π4个单位,沿y 轴向下平移1个单位,然后再把图像上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数y =sin x 的图像,则y =f (x )的解析式为( )A .y =sin(2x -π4)+1B .y =sin(2x -π2)+1C .y =sin(12x +π4)-1D .y =sin(12x +π2)-1答案 B解析 将y =sin x 的图像上每个点的横坐标变为原来的一半(纵坐标保持不变),得到y =sin2x 的图像,再将所得图像向上平移1个单位,得到y =sin2x +1的图像,再把函数y =sin2x +1的图像向右平移π4个单位,得到y =sin2(x -π4)+1的图像,即函数f (x )的图像,所以f (x )=sin2(x -π4)+1=sin(2x -π2)+1,故选B.4.函数y =cos(4x +π3)图像的两条相邻对称轴间的距离为( )A.π8B.π4C.π2 D .π答案 B解析 函数y =cos(4x +π3)图像的两条相邻对称轴间的距离为半个周期,即T 2=2π42=π4.5.将函数y =sin(2x +π4)的图像上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图像解析式是( )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin4xD .f (x )=cos4x答案 A解析 y =sin(2x +π4)→y =sin(x +π4)→y =sin(x -π4+π4)=sin x .6.(2019·山东理)将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为( )A.3π4B.π4 C .0 D .-π4答案 B解析 把函数y =sin(2x +φ)的图像向左平移π8个单位后,得到的图像的解析式是y =sin(2x +π4+φ),该函数是偶函数的充要条件是π4+φ=k π+π2,k ∈Z ,根据选项检验可知φ的一个可能取值为π4.7.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图像如右图所示,则当t=1100秒时,电流强度是( )A .-5 AB .5 AC .5 3 AD .10 A答案 A解析 由图像知A =10,T 2=4300-1300=1100.∴ω=2πT=100π.∴T =10sin(100πt +φ).(1300,10)为五点中的第二个点,∴100π×1300+φ=π2. ∴φ=π6.∴I =10sin(100πt +π6),当t =1100秒时,I =-5 A ,故选A.8.(2019·福建质检)将函数f (x )=sin(2x +θ)(-π2<θ<π2)的图像向右平移φ(φ>0)个单位长度后得到函数g (x )的图像,若f (x ),g (x )的图像都经过点P (0,32),则φ的值可以是( ) A.5π3 B.5π6 C.π2 D.π6 答案 B解析 因为函数f (x )的图像过点P ,所以θ=π3,所以f (x )=sin(2x +π3).又函数f (x )的图像向右平移φ个单位长度后,得到函数g (x )=sin[2(x -φ)+π3]的图像,所以sin(π3-2φ)=32,所以φ可以为5π6,故选B.9.已知函数y =sin ωx (ω>0)在一个周期内的图像如图所示,要得到函数y =sin(12x +π12)的图像,则需将函数y =sin ωx 的图像向________平移________个单位长度.答案 左,π6解析 由图像知函数y =sin ωx 的周期为T =3π-(-π)=4π, ∴ω=2πT =12,故y =sin 12x .又y =sin(x 2+π12)=sin 12(x +π6),∴将函数y =sin 12x 的图像向左平移π6个单位长度,即可得到函数y =sin(x 2+π12)的图像.10.(2019·重庆文)若将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一个点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________. 答案22解析 将y =sin x 的图像向左平移π6个单位长度可得y =sin ⎝⎛⎭⎫x +π6的图像,保持纵坐标不变,横坐标变为原来的2倍可得y =sin ⎝⎛⎭⎫12x +π6的图像,故f (x )=sin ⎝⎛⎭⎫12x +π6.所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12×π6+π6=sin π4=22. 11.若y =A sin(ωx +θ)(A >0,ω>0,|θ|<π2)的图像如图所示,则y =________.答案 2sin(2x +π6)解析 由题图知周期T =1112π-(-π12)=π,∴ω=2ππ=2,且A =2.∴y =2sin(2x +θ).把x =0,y =1代入上式得2sin θ=1, 即sin θ=12.又|θ|<π2,∴θ=π6.即y =2sin(2x +π6).12.(2018·新课标全国Ⅱ文)若函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =sin(2x +π3)的图像重合,则φ=________.答案5π6解析 将y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos[2(x -π2)+φ]的图像,化简得y =-cos(2x+φ),又可变形为y =sin(2x +φ-π2).由题意可知φ-π2=π3+2k π(k ∈Z ),所以φ=5π6+2k π(k ∈Z ),结合-π≤φ<π知φ=5π6.13.若函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图像如图所示,则ω=________.答案 3解析 由函数y =A sin(ωx +φ)的图像可知: T 2=(-π3)-(-23π)=π3,∴T =23π. ∵T =2πω=23π,∴ω=3.14.若函数y =sin2x 的图像向右平移φ(φ>0)个单位,得到的图像恰好关于直线x =π6对称,则φ的最小值是________.答案5π12解析 y =sin2x 的图像向右平移φ(φ>0)个单位,得y =sin2(x -φ)=sin(2x -2φ).因其中一条对称轴方程为x =π6,则2·π6-2φ=k π+π2(k ∈Z ).因为φ>0,所以φ的最小值为5π12.15.设函数y =sin(ωx +φ)(ω>0,φ∈(-π2,π2))的最小正周期为π,且其图像关于直线x =π12对称,则在下面四个结论中:①图像关于点(π4,0)对称;②图像关于点(π3,0)对称;③在[0,π6]上是增函数;④在[-π6,0]上是增函数,所有正确结论的编号为________.答案 ②④解析 ∵y =sin(ωx +φ)的最小正周期为π,∴ω=2ππ=2.又其图像关于直线x =π12对称,得π6+φ=π2+k π(k∈Z ).令k =0,得φ=π3.∴y =sin(2x +π3).当x =π3时,f (π3)=0,∴函数图像关于点(π3,0)对称.所以②正确.解不等式-π2+2k π≤2x +π3≤π2+2k π,得-5π12+k π≤x ≤π12+k π(k ∈Z ),所以④正确.16.(2019·江西景德镇测试)已知函数f (x )=4cos x sin(x +π6)+a 的最大值为2.(1)求实数a 的值及f (x )的最小正周期; (2)在坐标纸上作出f (x )在[0,π]上的图像.答案 (1)a =-1,T =π (2)略解析 (1)f (x )=4cos x (sin x cos π6+cos x sin π6)+a=3sin2x +cos2x +1+a =2sin(2x +π6)+a +1,最大值为3+a =2,∴a =-1.T =2π2=π.(2)列表如下:画图如下:17.(2019·湖北重点中学联考)已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<π2)的部分图像如图所示.(1)试确定函数f (x )的解析式; (2)若f (α2π)=13,求cos(2π3-α)的值.答案 (1)f (x )=2sin(πx +π6) (2)-1718解析 (1)由图像知,f (x )max =A =2,设函数f (x )的最小正周期为T ,则T 4=56-13=12,所以T =2,∴ω=2πT =2π2=π,故函数f (x )=2sin(πx +φ). 又∵f (13)=2sin(π3+φ)=2,∴sin(π3+φ)=1.∵|φ|<π2,即-π2<φ<π2,∴-π6<π3+φ<5π6.故π3+φ=π2,解得φ=π6,∴f (x )=2sin(πx +π6).(2)∵f (α2π)=13,即2sin(π·α2π+π6)=2sin(α2+π6)=13,∴sin(α2+π6)=16.∴cos(π3-α2)=cos[π2-(π6+α2)]=sin(π6+α2)=16.∴cos(2π3-α)=cos[2(π3-α2)]=2cos 2(π3-α2)-1=2×(16)2-1=-1718.。

三角函数的图像变换练习题

三角函数的图像变换练习题

三角函数的图像变换练习题一、正弦函数的图像变换正弦函数的标准方程为:y = sin(x)1. 平移问题a) 将正弦函数向右平移3个单位,请写出平移后的方程和对应的图像。

b) 将正弦函数向左平移π/4个单位,请写出平移后的方程和对应的图像。

2. 垂直缩放问题a) 将正弦函数垂直缩放为原来的一半,请写出缩放后的方程和对应的图像。

b) 将正弦函数垂直缩放为原来的2倍,请写出缩放后的方程和对应的图像。

3. 水平缩放问题a) 将正弦函数水平缩放为原来的1/3,请写出缩放后的方程和对应的图像。

b) 将正弦函数水平缩放为原来的3倍,请写出缩放后的方程和对应的图像。

4. 反射问题a) 将正弦函数关于x轴反射,请写出反射后的方程和对应的图像。

b) 将正弦函数关于y轴反射,请写出反射后的方程和对应的图像。

二、余弦函数的图像变换余弦函数的标准方程为:y = cos(x)1. 平移问题a) 将余弦函数向右平移4个单位,请写出平移后的方程和对应的图像。

b) 将余弦函数向左平移π/3个单位,请写出平移后的方程和对应的图像。

2. 垂直缩放问题a) 将余弦函数垂直缩放为原来的1/3,请写出缩放后的方程和对应的图像。

b) 将余弦函数垂直缩放为原来的3倍,请写出缩放后的方程和对应的图像。

3. 水平缩放问题a) 将余弦函数水平缩放为原来的2倍,请写出缩放后的方程和对应的图像。

b) 将余弦函数水平缩放为原来的1/2,请写出缩放后的方程和对应的图像。

4. 反射问题a) 将余弦函数关于x轴反射,请写出反射后的方程和对应的图像。

b) 将余弦函数关于y轴反射,请写出反射后的方程和对应的图像。

三、正切函数的图像变换正切函数的标准方程为:y = tan(x)1. 平移问题a) 将正切函数向右平移2个单位,请写出平移后的方程和对应的图像。

b) 将正切函数向左平移π/6个单位,请写出平移后的方程和对应的图像。

2. 垂直缩放问题a) 将正切函数垂直缩放为原来的1/2,请写出缩放后的方程和对应的图像。

三角函数的平移与伸缩变换-整理

三角函数的平移与伸缩变换-整理

三角函数的平移与伸缩变换-整理练习:将2)542sin(2++=πx y 做下列变换: (1)向右平移2π个单位长度; (2)横坐标缩短为原来的一半,纵坐标不变; (3)纵坐标伸长为原来的4倍,横坐标不变;(4)沿y 轴正方向平移1个单位,最后得到的函数._________)(==x f y 例3、把)(x f y =作如下变换:(1)横坐标伸长为原来的1.5倍,纵坐标不变; (2)向左平移3π个单位长度;(3)纵坐标变为原来的53,横坐标不变;(4)沿y 轴负方向平移2个单位,最后得到函数),423sin(43π+=x y 求).(x f y =练习1:将)48sin(4ππ+=x y 作何变换可以得到.sin x y =练习2:对于)536sin(3x y +=π作何变换可以得到.sin x y =例4、把函数)2||,0)(sin(πϑωϑω<>+=x y 的图象向左平移3π个单位长度,所得曲线的一部分图象如图所示,则( ) A. 6,1πϑω== B. 6,1πϑω-==C. 3,2πϑω== D. 3,2πϑω-==练习:7、右图是函数))(sin(R x x A y ∈+=ϑω在区间)65,6(ππ-上的图象,只要将(1)x y sin =的图象经过怎样的变换?(2)x y 2cos =的图象经过怎样的变换? 【课堂练习】1、为了得到函数)63sin(π+=x y 的图象,只需把函数x y 3sin =的图象1-15π6-π6y x o( ) A 、向左平移6π B 、向左平移18π C 、向右平移6π D 、向右平移18π 2、为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A 、向左平移5π12个长度单位 B 、向右平移5π12个长度单位 C 、向左平移5π6个长度单位D 、向右平移5π6个长度单位3、要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )A 、向右平移π6个单位B 、向右平移π3个单位C 、向左平移π3个单位 D 、向左平移π6个单位 4、为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A 、向右平移6π个单位长度B 、向右平移3π个单位长度C 、向左平移6π个单位长度D 、向左平移3π个单位长度5、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A 、sin(2)3y x π=-,x R ∈B 、sin()26x y π=+,x R ∈C 、sin(2)3y x π=+,x R ∈D 、sin(2)32y x π=+,x R ∈6、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( )A 、向左平移4π个长度单位B 、向右平移4π个长度单位C 、向左平移2π个长度单位D 、向右平移2π个长度单位7、已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()c o s g x x ϖ=的图象,只要将()y f x =的图象 ( )A 、向左平移8π个单位长度 B 、 向右平移8π个单位长度 C 、 向左平移4π个单位长度 D 、 向右平移4π个单位长度8.将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于( )A .6πB .56π C. 76π D.116π专练:1.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.12cos +=x yC.)42sin(1π++=x yD.22sin y x =2.(2009天津卷理)已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度3.(09山东)要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )A 、向右平移π6个单位 B 、向右平移π3个单位 C 、向左平移π3个单位D 、向左平移π6个单位4.(10江苏卷)为了得到函数R x xy ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点A 、向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) B 、向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) C 、向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D 、向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5、(2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像A 、向左平移4π个长度单位B 、向右平移4π个长度单位C 、向左平移2π个长度单位D 、向右平移2π个长度单位6、(2010辽宁)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A 、23B 、 43C 、 32D 、3。

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。

三角函数图像变换练习题(含答案解析)

三角函数图像变换练习题(含答案解析)

三角函数图像变换一、选择题1.(本题5分)函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则()4f π的值为()B.0C.12.(本题5分)[2014·郑州质检]要得到函数y=cos2x 的图象,只需将函数y=sin2x 的图象沿x 轴()A.向右平移4π个单位 B.向左平移4π个单位C.向右平移8π个单位D.向左平移8π个单位3.(本题5分)在函数①|2|cos x y =,②|cos |x y =,③62cos(π+=x y ,④42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B.①③④C.②④D.①③4.(本题5分)已知a 是第二象限角,5sin ,cos 13a a ==则()A.1213B.513-C.513D.-12135.(本题5分)已知函数()sin cos f x x x ωω+(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是()A、2,,63k k k Zππππ⎡⎤++∈⎣⎦B、,,36k k k Zππππ⎡⎤-+∈⎣⎦C、42,2,33k k k Z ππππ⎡⎤++∈⎣⎦D、52,2,1212k k k Z ππππ⎡⎤-+∈⎣⎦6.(本题5分)已知1cos sin 21cos sin x xx x -+=-++,则x tan 的值为()A、34B、34-C、43D、43-7.(本题5分)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,下列结论:①最小正周期为π;②将f(x)的图象向左平移6π个单位,所得到的函数是偶函数;③f(0)=1;④f(1211π)<f(1413π);⑤f(x)=-f(53π-x).其中正确的是()A.①②③B.②③④C.①④⑤D.②③⑤8.(本题5分)将函数()3cos 22x x f x =-的图象向右平移23π个单位长度得到函数()y g x =的图象,则函数()y g x =的一个单调递减区间是()A.(,42ππ-B.(,)2ππC.(,)24ππ--D.3(,2)2ππ9.(本题5分)函数cos sin y x x x =-在下面哪个区间内是增函数().A.3,22ππ⎛⎫⎪⎝⎭B.(),2ππC.35,22ππ⎛⎫⎪⎝⎭D.()2,3ππ10.(本题5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称二、填空题11.(本题5分)已知tan()2θπ-=,则22sin sin cos 2cos 3θθθθ+-+的值为12.(本题5分)已知函数()sin f x x ω=,()sin(2)2g x x π=+,有下列命题:①当2ω=时,函数y =()()f x g x 是最小正周期为2π的偶函数;②当1ω=时,()()f x g x +的最大值为98;③当2ω=时,将函数()f x 的图象向左平移2π可以得到函数()g x 的图象.其中正确命题的序号是(把你认为正确的命题的序号都填上).13.(本题5分)已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点,则a 的取值范围是.14.(本题5分)若函数()sin f x a x =+在区间[],2ππ上有且只有一个零点,则实数a =__________.15.(本题5分)给出下列四个命题:①若0x >,且1x ≠则1lg 2lg x x+≥;②2()lg(1),,22f x x ax R a =++-<<定义域为则;③函数)32cos(π-=x y 的一条对称轴是直线π125=x ;④若x R ∈则“复数()21(1)z x x i =-++为纯虚数”是“lg 0x =”必要不充分条件.其中,所有正确命题的序号是.三、解答题16.(本题12分)已知函数2()2sin cos 1f x x x x =-++⑴求()f x 的最小正周期及对称中心;⑵若[,63x ππ∈-,求()f x 的最大值和最小值.17.(本题12分)已知()()()3cos cos 2sin 223sin sin 2f αααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫--+ ⎪⎝⎭πππππ.(1)化简()fα;(2)若α是第三象限角,且31cos 25α⎛⎫-=⎪⎝⎭π,求()f α的值.18.(本题12分)设向量(1)若,求x 的值(2)设函数,求f(x)的最大值19.(本题12分)(本小题10的最大值为1.(1)求函数()f x 的单调递增区间;(2)将()f x 的图象向左平移个单位,得到函数()g x 的图象,若方程()g x =m 在x∈m 的取值范围.参考答案1.D【解析】试题分析:由已知,4112,(),2,3126A T πππω==⨯-==,所以()2sin 2()f x x ϕ=+,将(),26π代人得,()2,s 2si in(6)1n 23ππϕϕ==⨯+,所以,,326πππϕϕ==+,()2sin 2(2sin 2(),()2co64466s f x x f πππππ=⨯==+=+D .考点:正弦型函数,三角函数诱导公式.2.B【解析】∵y=cos2x=sin(2x+2π),∴只需将函数y=sin2x 的图象沿x 轴向4π个单位,即得y=sin2(x+4π)=cos2x 的图象,故选B.3.A【解析】试题分析:①中函数是一个偶函数,其周期与cos 2y x =相同,22T ππ==;②中函数|cos |x y =的周期是函数cos y x =周期的一半,即T π=;③22T ππ==;④2T π=,则选A.考点:三角函数的图象和性质4.D【解析】试题分析:∵a 是第二象限角,∴cos a ==1213-,故选D.考点:同角三角函数基本关系.5.A【解析】试题分析:因为()sin cos 2sin()6f x x x x πωωω+=+最小值为-2,可知y=-2与f(x)两个相邻公共点之间的距离就是一个周期,于是2T ππω==,即ω=2,即()2sin(2)6f x x π=+令322,2622x k k πππππ⎡⎤+∈++⎣⎦,k∈Z,解得x∈2,,63k k k Z ππππ⎡⎤++∈⎣⎦,选A 考点:三角函数恒等变形,三角函数的图象及周期、最值、单调性.6.A【解析】试题分析:由条件,得1cos sin 22cos 2sin x x x x -+=---,整理得:3sin cos 3x x +=-,即cos 3sin 3x x =--①,代入22sin cos 1x x +=中,得22sin 3sin 31x x +--=(),整理得:25sin 9sin 40x x ++=,即sin 15sin 40x x ++=()(),解得sin 1x =-(舍)或4sin 5x =-,把4sin 5x =-,代入①,得3cos 5x =-,所以4tan 3x =,故选A.考点:同角三角函数基本关系.7.C【解析】由图可知,A=2,4T =712π-3π=4π⇒T=π⇒ω=2,2×712π+φ=2kπ+32π,φ=2kπ+3π,k∈Z.f(x)=2sin(2x+3π)⇒6π)=2sin(2x+3π+3π)=2sin(2x+23π),对称轴为直线x=2k π+12π,k∈Z,一个对称中心为(56π,0),所以②、③不正确;因为f(x)的图象关于直线x=1312π对称,且f(x)的最大值为f(1312π),1211π-1312π=1211π⨯>1312π-1413π=1312π⨯,所以f(1211π)<f(1413π),即④正确;设(x,f(x))为函数f(x)=2sin(2x+3π)的图象上任意一点,其关于对称中心(56π,0)的对称点(53π-x,-f(x))还在函数f(x)=2sin(2x+3π)的图象上,即f(53π-x)=-f(x)⇒f(x)=-f(53π-x),故⑤正确.综上所述,①④⑤正确.选C.8.C【解析】试题分析:因为()2sin(26x f x π=-,所以2()()2sin()2cos 32632x x g x f x πππ=-=--=-,则()g x 在(,24ππ--上递减.考点:三角函数的性质.9.B【解析】试题分析:cos sin cos sin y x x x x x x '=--=,当2x ππ<<时,0y '>,所以函数在区间(,2)ππ上为增函数,故选B.考点:导数与函数的单调性.10.D 【解析】试题分析:()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 单调递减,图象关于直线2x π=对称。

三角函数图像的平移变换专项练习

三角函数图像的平移变换专项练习

三角函数图像的平移变换专项练习1.为了得到函数)63sin(π+=x y 的图象,只需把函数x y 3sin =的图象 ( )A 、向左平移6π B 、向左平移18π C 、向右平移6π D 、向右平移18π 6、将函数)(sin )(R x x x f y ∈⋅=的图象向右平移4π个单位后,再作关于x 轴的对称变换,得到函数x y 2sin 21-=的图象,则)(x f 可以是_______。

1、要得到函数)42sin(3π+=x y 的图象,只需将函数x y 2sin 3=的图象( )(A )向左平移4π个单位 (B )向右平移4π个单位 (C )向左平移8π个单位 (D )向右平移8π个单位2、将函数y=sin3x 的图象作下列平移可得y=sin(3x+6π)的图象 (A) 向右平移 6π 个单位 (B) 向左平移6π个单位(C )向右平移18π 个单位 (D )向左平移18π个单位3.将函数sin y x =的图象上每点的横坐标缩小为原来的12(纵坐标不变),再把所得图象向左平移6π个单位,得到的函数解析式为( )()sin 26A y x π⎛⎫=+⎪⎝⎭()sin 23B y x π⎛⎫=+⎪⎝⎭ ()sin 26x C y π⎛⎫=+ ⎪⎝⎭ ()s i n 212x D y π⎛⎫=+ ⎪⎝⎭4、把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4π个单位长度,得到新的函数图象,那么这个新函数的解析式为(A )⎪⎭⎫ ⎝⎛+=42cos πx y (B )⎪⎭⎫⎝⎛+=42cos πx y (C )x y 2sin = (D )x y 2sin -= 5.要得到函数x y cos 2=的图象,需将函数)42sin(2π+=x y 的图象( )(A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 (B)横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度(C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度4. 将函数()y f x =的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),再将整个图形沿x 轴正向平移3π,得到的新曲线与函数3sin y x =的图象重合,则()f x =( )A. 3sin(2)3x π+B. 3sin()23x π+C. 23sin(2)3x π-D. 23sin()23x π+5为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度(1)将函数1sin(2)24y x π=-的图象向______平移_______个单位得到函数1sin 22y x=的图象(只要求写出一个值)1.将函数sin (0)y x ωω=>的图象向左平移6π个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是 A .sin()6y x π=+B .sin()6y x π=-C .sin(2)3y x π=+ D .sin(2)3y x π=-7为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上的点(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)已知函数f (x )=sin (ωx +π4)(x ∈R ,ω>0)的最小正周期为π.将y =f (x )的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是 ( ) A.π2 B.3π8 C.π4 D.π83.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为 ( )A.16 B.14 C.13D.121.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位3.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )(A )23 (B ) 43 (C ) 32(D ) 34.将函数y=sin(x+π/6) (x 属于R)的图象上所有的点向左平行移动π/4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( ) (A) y=sin(2x+5π/12) (x 属于R) (B) y=sin(x/2+5π/12) (x 属于R) (C) y=sin(x/2+π/12) (x 属于R) (D) y=sin(x/2+5π/24) (x 属于R) 8.将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-9.5y Asinx x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点( )(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 10.将函数y=sin2x 的图象向左平移π/4个单位,再向上平移1个单位所得到函数解析式( )y=cos2x y=2(cosx)*(cosx) y=1+sin(2x+π/4) y=2(sinx)*(sinx)4. 函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( )A.向左平移6π B.向右平移6π C.向左平移12π D.向右平移12π5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( ) A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.若将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;若将()x f 的图象上所有的点的横坐标缩短到原来的21倍(纵坐标不变), 得到的图象经过点⎪⎭⎫⎝⎛1,61. 则( )A.6,πφπω==B.3,2πφπω==C. 8,43πφπω==D. φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,则f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x。

三角函数的图像性质与变换练习题

三角函数的图像性质与变换练习题

三角函数的图像性质与变换练习题1. 对于正弦函数 y = sin(x) 的图像性质:a) 周期性:正弦函数的图像在 x 轴上每隔2π个单位长度重复一次。

即sin(x) = sin(x + 2πk),其中 k 为任意整数。

b) 对称性:正弦函数的图像关于原点对称。

即 sin(-x) = -sin(x)。

c) 平移性:若将正弦函数的图像沿 x 轴正方向平移 h 个单位长度,则函数变为 y = sin(x - h),图像向右平移 h 个单位长度;若将正弦函数的图像沿 x 轴负方向平移 h 个单位长度,则函数变为 y = sin(x + h),图像向左平移 h 个单位长度。

2. 对于余弦函数 y = cos(x) 的图像性质:a) 周期性:余弦函数的图像在 x 轴上每隔2π个单位长度重复一次。

即cos(x) = cos(x + 2πk),其中 k 为任意整数。

b) 对称性:余弦函数的图像关于 y 轴对称。

即 cos(-x) = cos(x)。

c) 平移性:若将余弦函数的图像沿 x 轴正方向平移 h 个单位长度,则函数变为 y = cos(x - h),图像向右平移 h 个单位长度;若将余弦函数的图像沿 x 轴负方向平移 h 个单位长度,则函数变为 y = cos(x + h),图像向左平移 h 个单位长度。

3. 对于正切函数 y = tan(x) 的图像性质:a) 周期性:正切函数的图像在x 轴上每隔π个单位长度重复一次。

即tan(x) = tan(x + πk),其中 k 为任意整数。

b) 对称性:正切函数的图像关于原点对称。

即 tan(-x) = -tan(x)。

c) 平移性:若将正切函数的图像沿 x 轴正方向平移 h 个单位长度,则函数变为 y = tan(x - h),图像向右平移 h 个单位长度;若将正切函数的图像沿 x 轴负方向平移 h 个单位长度,则函数变为 y = tan(x + h),图像向左平移 h 个单位长度。

高中三角函数的平移变换 讲解+习题

高中三角函数的平移变换 讲解+习题

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

1.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( D ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度 (C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( C )A sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数的图像,只需把函数的图像( B )(A )向左平移个长度单位 (B )向右平移个长度单位 (C )向左平移个长度单位 (D )向右平移个长度单位 6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象( A )A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7.函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( B ) .(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π8.将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于( D ) A .6π B .56π C. 76π D.116π9.若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为( D )A .16B.14C.13D.1210.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于C (A )13(B )3 (C )6 (D )911.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C ) A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π12.将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是( A )A. π125B. π125-C. π1211D. 1112π-13.把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( C ) A .(1-y )sin x +2y -3=0 B .(y -1)sin x +2y -3=0 C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0解析:将原方程整理为:y =x cos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.点评:本题考查了曲线平移的基本方法及三角函数中的诱导公式。

三角函数平移专项练习

三角函数平移专项练习

三角函数平移专项练习引言本文档旨在提供一系列三角函数平移的专项练,以帮助学生巩固对三角函数平移概念的理解和应用能力。

通过完成这些练,学生将能够熟练地进行三角函数平移操作,并进一步掌握相关的数学技巧。

练题目1. 正弦函数的平移1. 将函数 $y = \sin(x)$ 向右平移 $\frac{\pi}{4}$ 个单位,写出平移后的函数表达式。

2. 将函数 $y = \sin(x)$ 向左平移 $\frac{3\pi}{4}$ 个单位,写出平移后的函数表达式。

2. 余弦函数的平移1. 将函数 $y = \cos(x)$ 向右平移 $\frac{\pi}{2}$ 个单位,写出平移后的函数表达式。

2. 将函数 $y = \cos(x)$ 向左平移 $\pi$ 个单位,写出平移后的函数表达式。

3. 正切函数的平移1. 将函数 $y = \tan(x)$ 向右平移 $\frac{\pi}{6}$ 个单位,写出平移后的函数表达式。

2. 将函数 $y = \tan(x)$ 向左平移 $\frac{\pi}{3}$ 个单位,写出平移后的函数表达式。

解答1. 正弦函数的平移1. 平移后的函数表达式为 $y = \sin(x - \frac{\pi}{4})$。

2. 平移后的函数表达式为 $y = \sin(x + \frac{3\pi}{4})$。

2. 余弦函数的平移1. 平移后的函数表达式为 $y = \cos(x - \frac{\pi}{2})$。

2. 平移后的函数表达式为 $y = \cos(x + \pi)$。

3. 正切函数的平移1. 平移后的函数表达式为 $y = \tan(x - \frac{\pi}{6})$。

2. 平移后的函数表达式为 $y = \tan(x + \frac{\pi}{3})$。

结论通过完成上述练习,学生可以更好地理解和应用三角函数的平移概念。

这些练习有助于巩固数学技巧,并加深对三角函数平移的理解。

三角函数的平移伸缩变换练习题

三角函数的平移伸缩变换练习题

三角函数的平移伸缩变换题型一:已知开始和结果,求平移量ϕω【2016高考四川文科】为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( )(A )向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C ) 向上平行移动3π个单位长度 (D ) 向下平行移动3π个单位长度【】为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度【】要得到函数cos y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )(A ).向右平移π6个单位 (B ).向右平移π3个单位 (C ).向左平移π3个单位 (D ).向左平移π6个单位【】要得到函数(21)y cos x =+的图象,只要将函数2y cos x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位【】要得到sin(2)3y x π=-的图象,只需将sin 2y x =的图象 ( )(A )向左平移3π个单位 (B )向右平移3π个单位 (C )向左平移6π个单位 (D )向右平移6π个单位【】.将函数sin 2y x =的图象作平移变换,得到函数sin(2)6y x π=-的图象,则这个平移变换可以是 ( )A. 向左平移6π个单位长度 B. 向左平移12π个单位长度 C. 向右平移6π个单位长度 D. 向右平移12π个单位长度【】为了得到函数4sin(3)()4y x x R π=+∈的图象,只需把函数4sin()()4y x x R π=+∈的图象上所有点( )A 、横坐标伸长到原来的3倍,纵坐标不变B 、横坐标缩短到原来的13倍,纵坐标不变C 、纵坐标伸长到原来的3倍,横坐标不变D 、纵坐标缩短到原来的13倍,横坐标不变.【2015山东】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【】为了得到函数πsin 23y x ⎛⎫=- ⎪⎝⎭的图像,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图像A .向左平移π4个长度单位B .向右平移π4个长度单位C .向左平移π2个长度单位D .向右平移π2个长度单位【】要得到cos(2)4y x π=-的图像,只需将sin 2y x =的图像( )A 向左平移8π个单位B 向右平移8π个单位C 向左平移4π个单位D 向右平移4π个单位【】已知函数()sin 4πf x x ω⎛⎫=+ ⎪⎝⎭()R 0x ω∈>,的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度题型二:已知开始,平移量,求结果【】. 将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-【】函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) (A )sin(2),3y x x R π=-∈ (B )sin(),26x y x R π=+∈(C )sin(2),3y x x R π=+∈ (D )2sin(2),3y x x R π=+∈【】函数3sin(2)3y x π=+的图象,可由y sinx =的图象经过下述哪种变换而得到 ( )(A )向右平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(B )向左平移3π个单位,横坐标缩小到原来的21倍,纵坐标扩大到原来的3倍(C )向右平移6π个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的31倍(D )向左平移6π个单位,横坐标缩小到原来的21倍,纵坐标缩小到原来的31倍【】.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是 . 【】. 将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是____________▲________________ .【】把函数sin(2)4y x π=+的图像向左平移8π个单位长度,再将横坐标压缩到原来的12,所得函数的解析式为( )。

三角函数平移题型学霸总结一(含答案)

三角函数平移题型学霸总结一(含答案)

三角函数平移题型学霸总结一(含答案)阳光老师:祝你学业有成一、选择题(本大题共11小题,共55.0分)1.要得到函数y=3sin(2x+π4)的图象,只需将y=3sin2x的图象()A. 向左平移π8个单位 B. 向右平移π8个单位C. 向左平移π4个单位 D. 向右平移π4个单位【答案】A【解析】【试题解析】【分析】本题考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.由y=3sin(2x+π4)=3sin[2(x+π8)],根据左加右减的平移原理,即可得到结果.【解答】解:y=3sin(2x+π4)=3sin[2(x+π8)],因此将函数y=3sin2x的图象向左平移π8个单位,即可得到函数y=3sin(2x+π4)的图象.故选A.2.将函数y=sin(2x+π4)(x∈R)的图象向右平移π8个单位长度,再把所得图象上各点的横坐标缩短到原来的12,纵坐标不变,则所得图象的函数解析式为()A. y=cosxB. y=cos4xC. y=sinxD. y=sin4x 【答案】D【解析】【分析】本题考查三角函数图象的变换,是基础题.根据图象的伸缩和平移变换规则求解即可.【解答】sin [2(x −π8)+π4]=sin2x ,再将y =sin2x 的图象上各点的横坐标缩短到原来的12,纵坐标不变,则所得图象的函数解析式为y =sin4x . 故选D .3. 为得到函数y =cos (x +π3)的图象,只需将函数y =sinx 的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移5π6个单位长度D. 向右平移5π6个单位长度【答案】C 【解析】【分析】本题考查了函数y =Asin(ωx +φ)的图象与性质、函数图象的变换的相关知识,试题难度较易 【解答】解:故选C .4. 为了得到函数y =sin (2x +π3)的图象,只需要把函数y =sinx 的图象上( )A. 各点的横坐标缩短到原来的12,再向左平移π3个单位长度 B. 各点的横坐标缩短到原来的12,再向左平移π6个单位长度 C. 各点的横坐标伸长到原来的2倍,再向左平移π3个单位长度 D. 各点的横坐标伸长到原来的2倍,再向左平移π6个单位长度【答案】B 【解析】【分析】本题考查了函数y =Asin(ωx +φ)的图象与性质的相关知识,试题难度较易 【解答】解:y =sinx 图象上各点的横坐标缩短到原来的12,得到y =sin2x 的图象, 再向左平移π6个单位长度得到y =sin [2(x +π6)]=sin (2x +π3)的图象,故选B.5.将正弦曲线向右平移π4个单位长度,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到的函数图象是()A. y=2sin(x+π4) B. y=2sin(x−π4)C. y=12sin(x+π4) D. y=12sin(x−π4)【答案】B【解析】【分析】本题考查了函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易【解答】解:y=sinx→y=sin(x−π4)→y=2sin(x−π4).故选B.6.已知f(x)=sin(x+π2),g(x)=cos(x−π2),则f(x)的图象()A. 与g(x)的图象相同B. 与g(x)的图象关于y轴对称C. 向左平移π2个单位长度,得g(x)的图象D. 向右平移π2个单位长度,得g(x)的图象【答案】D【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、诱导公式、函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易【解答】解:由诱导公式,得f(x)=sin(x+π2)=cosx,所以f(x)=sin(x+π2)=cosx的图象向右平移π2个单位长度,得到g(x)的图象.故选D.7.函数f(x)=2sin(ωx+φ)(ω>0,−π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是()A. 2,−π3B. 2,−π6C. 4,−π6D. 4,π3【答案】A【解析】【分析】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由特殊点的坐标求出φ的值,属于中等题.【解答】解:由题意可知T=2×(11π12−5π12)=π,∴ω=2,x=5π12时,函数取得最大值2,可得:2sin(2×5π12+φ)=2,,即,又∵−π2<φ<π2,所以当k=0时,φ=−π3.故选A.8.函数的部分图象如图所示,如果x1,x2∈(π6,2π3),且f(x1)=f(x2),则f(x1+x2)=()A. −√32B. −12C. 12D. √32【答案】A【解析】【分析】本题考查函数y=Asin(ωx+φ)的图象与性质,属于中档题.通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到解:由函数的部分图象,可得12⋅2πω=2π3−π6=π2,∴ω=2,再根据五点法作图可得:2×π6+φ=0,,因此f(x)=sin(2x−π3),在x1,x2∈(π6,2π3)上,f(x1)=f(x2),则12(x1+x2)=π6+2π32,∴x1+x2=5π6,∴f(x1+x2)=sin(2×5π6−π3)=sin4π3.故选A.9.用“五点法”作函数y=cos (4x− π 6)在一个周期内的图像时,第四个关键点的坐标是()A. (5 π 12,0) B. (−5π12,1) C. D. (−5 π 12,0)【答案】A 【解析】【分析】本题考查“五点法”作图,属于基础题.令4x− π 6=3π 2即可求解.【解答】解:令4x−π6=3π2,得x=5π12,∴该点坐标为(5π 12,0).故选A.10.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+⋯+f(2014)=()A. √2B. 2+2√2C. √2+2D. √2−2【答案】A【解析】【分析】本题考查了三角函数的图象与性质、由y=Asin(ωx+φ)的部分图象确定其解析式和特殊角的三角函数值等知识,属于中档题.根据函数的最值和周期公式,算出A=2且,再由函数取最大值时相应x的值列式算出φ=0,从而得到函数解析式为,由此利用函数的周期为8和特殊角的三角函数值加以计算,即可得到f(1)+f(2)+f(3)+⋯+f(2014)的值.【解答】解:根据题意,可得函数的周期T=8,最大值为2,∴A=2,,解得,可得函数解析式为,∵当x=2时,函数有最大值为2,.取k=1得φ=0,得函数解析式为,因此,f(1)+f(2)+f(3)+f(4)+f(5)+f(6)∵函数的周期T=8,可得f(1)+f(2)+⋯+f(8)=0,∴f(1)+f(2)+f(3)+⋯+f(2014)=251×[f(1)+f(2)+⋯+f(8)]+[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]=√2.故选A.A. (−π8,0) B. (π8,0) C. (0,0) D. (−π4,0)【答案】A【解析】【分析】本题主要考查三角函数对称中心的求解,根据正弦函数的图象和性质是解决本题的关键.根据正弦函数的性质即可得到结论.【解答】解:由,解得:.即函数的对称中心为,当k=0,得图象的一个对称中心为.故选A.二、不定项选择题(本大题共4小题,共16.0分)12.已知函数f(x)=sin(2x+π3),将其图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)为奇函数,则φ的值可以为()A. π12B. π6C. π3D. 2π3【答案】BD【解析】【分析】本题考查了函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易【解答】解:将函数f(x)图象向右平移φ(φ>0)个单位长度后,得到的图象对应的解析式为g(x)=sin[2(x−φ)+π3]=sin(2x−2φ+π3).由g(x)为奇函数可得−2φ+π3=kπ(k∈Z),故φ=π6−kπ2(k∈Z),又φ>0,结合选项,所以φ的值可以为π6,23π.故应选BD.13.有下列四种变换方式,其中能将正弦函数y=sinx的图象变为y=sin(2x+π4)的图A. 向左平移π4个单位长度,再将横坐标变为原来的12(纵坐标不变)B. 横坐标变为原来的12(纵坐标不变),再向左平移π8个单位长度C. 横坐标变为原来的12(纵坐标不变),再向左平移π4个单位长度D. 向左平移π8个单位长度,再将横坐标变为原来的12(纵坐标不变)【答案】AB【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易【解答】解:A.向左平移π4个单位长度,再将横坐标变为原来的12(纵坐标不变),则正弦函数y=sinx的图象变为y=sin (2x+π4)的图象;B.横坐标变为原来的12(纵坐标不变),再向左平移π8个单位长度,正弦函数y=sinx的图象变为y=sin 2(x+π8)=sin (2x+π4)的图象;C.横坐标变为原来的12(纵坐标不变),再向左平移π4个单位长度,正弦函数y=sinx的图象变为y=sin 2(x+π4)=sin (2x+π2)的图象;D.向左平移π8个单位长度,再将横坐标变为原来的12(纵坐标不变),正弦函数y=sinx的图象变为y=sin (2x+π8)的图象,因此A和B符合题意,故选AB.14.(多选)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M(3π4,0)对称,且在区间[0,π2]上是单调函数,则ω的值可以是()A. 23B. 43C. 2D. 83【答案】AC【解析】根据正弦函数的图象与性质,建立条件关系即可求出ω的值.本题给出函数f(x)=sin(ωx+ϕ)满足的条件,求参数的值,着重考查了三角函数的图象与性质、函数的奇偶性和图象的对称性等知识,属于中档题.由f(x)是偶函数,得f(−x)=f(x),即sin(−ωx+φ)=sin(ωx+φ),所以−cosφsinωx=cosφsinωx,对任意x都成立,且ω>0,所以得cosφ=0依题设0<φ<π,所以解得φ=π2,由f(x)的图象关于点M对称,得f(3π4−x)=−f(3π4+x),取x=0,得f(3π4)=sin(3ωπ4+π2)=cos3ωπ4,∴f(3π4)=sin(3ωπ4+π2)=cos3ωπ4,∴cos3ωπ4=0,又ω>0,得3ωπ4=π2+kπ,k=1,2,3,∴ω=23(2k+1),k=0,1,2,当k=0时,ω=23,f(x)=sin(x+π2)在[0,π2]上是减函数,满足题意;当k=1时,ω=2,f(x)=sin(2x+π2)在[0,π2]上是减函数;当k=2时,ω=103,f(x)=(103x+π2)在[0,π2]上不是单调函数;所以,综合得ω=23或2.故选:AC.15.将函数y=3sin(2x+π3)的图象向右平移π2个单位长度,所得图象的函数()A. 在区间[π12,7π12]上单调递减 B. 在区间[π12,7π12]上单调递增C. 在区间[−π6,π3]上单调递减 D. 在区间[−π6,π3]上单调递增【解析】【分析】本题主要考查函数y=Asin(ωx+φ)的图象与性质,根据左加右减上加下减的原则,即可直接求出将函数y=3sin(2x+π3)的图象向右平移π2个单位长度,所得图象对应的函数的解析式,进而利用正弦函数的单调性即可求解.【解答】解:将函数y=3sin(2x+π3)的图象向右平移π2个单位长度,所得函数的解析式:y=3sin[2(x−π2)+π3]=3sin(2x−2π3).令2kπ−π2⩽2x−2π3⩽2kπ+π2,k∈Z,可得:kπ+π12⩽x⩽kπ+7π12,k∈Z,可得:当k=0时,对应的函数y=3sin(2x−2π3)的单调递增区间为[π12,7π12].故选:B.三、填空题(本大题共11小题,共55.0分)16.函数y=12sin(2x−π4)的图象可以看作把函数y=12sin2x的图象向平移个单位长度得到的.【答案】右;π8【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易【解答】解:∵y=12sin(2x−π4)=12sin[2(x−π8)],∴由y=12sin2x的图象向右平移π8个单位长度便得到y=12sin(2x−π4)的图象.17.已知函数y=f(x)的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x轴向左平移π2个单位长度,这样得到的曲线和y=【答案】f(x)=−12cos2x 【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、函数y =Asin(ωx +φ)的图象与性质、诱导公式的相关知识,试题难度较易【解答】解:将y =2sinx 的图象向右平移π2个单位长度可得y =2sin (x −π2)的图象, 然后将所得图象上各点横坐标缩小为原来的12,纵坐标不变,可得y =2sin (2x −π2)的图象,再将所得图象上各点纵坐标缩小为原来的14,横坐标不变,可得y =12sin (2x −π2)的图象,即f(x)=−12cos2x 的图象.所以f(x)的解析式为f(x)=−12cos2x .18. 函数f(x)=Asin(ωx +φ)(A >0,ω>0)在闭区间[−π,0]上的图象如图所示,则ω=________.【答案】3 【解析】【分析】本题考查了函数y =Asin(ωx +φ)的图象与性质的相关知识,试题难度一般 【解答】解:根据图象可知T =23π. ∵y =Asin(ωx +φ)(ω>0),T =2πω,∴2πω=23π,∴ω=3.19. 如图所示是函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象,则ω=________,φ=________.【答案】2;π6 【解析】 【分析】本题考查函数y =Asin (ωx +φ)的图形和性质,把x =0,x =11π12代入函数解析式,然后结合条件进行求解即可. 【解答】解:当x =0时,sin(ωx +φ)=12,则φ=π6或φ=56π;当x =11π12时,sin(ωx +φ)=0,则11π12ω+φ=2π.当φ=π6时,1112πω+π6=kπ,得ω=−211+1211k ,k ∈Z .当φ=56π时,1112πω+5π6=kπ,得ω=−1011+1211k ,k ∈Z .因为34T <1112π<T ,所以34⋅2πω<1112π<2πω,所以1811<ω<2411.所以φ=π6,ω=220. 把函数y =2sin (x +2π3)的图象向左平移m 个单位,所得图象关于y 轴对称,则m的最小正值是________. 【答案】5π6 【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、函数y =Asin(ωx +φ)的图象与性质的相关知识,试题难度较易 【解答】解:把y =2sin (x +2π3)的图象向左平移m 个单位, 则y =2sin (x +m +2π3),其图象关于y 轴对称,∴m +2π3=kπ+π2,k ∈Z .∴m =kπ−π6,k ∈Z .∴当k =1时,m 取最小正值,为5π6.21.已知函数f(x)=2sin(2x+π6)+a+1(其中a为常数).若x∈[0,π2]时,f(x)的最大值为4,则a=________.【答案】1【解析】【分析】本题考查了函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易【解答】解:∵0⩽x⩽π2,∴0≤2x≤π,∴π6⩽2x+π6⩽7π6,∴−12⩽sin (2x+π6)⩽1,∴f(x)的最大值为2+a+1=4,∴a=1.22.将函数y=cos(2x+φ)(−π<φ<π)的图象向右平移π2个单位长度后,与函数y=sin(2x+π3)的图象重合,则φ=________.【答案】5π6【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度一般【解答】解:设y=f(x)=cos(2x+φ)(−π<φ<π),其图象向右平移π2个单位长度后解析式为因为和y=sin (2x+π3)的图象重合,所以,所以,又因为−π<φ<π,所以,故答案为.23. 要得到y =sin (x2+π3)的图象,需将函数y =cos x2的图象上所有的点至少向左平移________个单位长度. 【答案】11π3【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、诱导公式、函数y =Asin(ωx +φ)的图象与性质的相关知识,试题难度较易 【解答】解:y =sin(x2+π3)=cos[π2−(x2+π3)]=cos(x2−π6)=cos(x2+11π6)=cos 12(x +113π),∴将函数y =cos x2的图象上所有的点向左平移11π3个长度单位,即可得到y =sin(x2+π3)的图象, 故答案为:11π3.24. 把函数y =2cos (x3+π6)的图象向右平移π2个单位长度,再将图象上所有点的横坐标变为原来的12(纵坐标不变),所得到的图象的函数解析式为________. 【答案】y =2cos 2x 3 【解析】【分析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、函数y =Asin(ωx +φ)的图象与性质的相关知识,试题难度一般【解答】解:将函数y =2cos(x3+π6)的图象向右平移π2个单位,可得函数y =2cos[13(x −π2)+π6]=2cos x3的图象; 再将所得图象的所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的函数y =2cos 2x 3的图象,故答案为:y=2cos2x3.25.关于函数y=3sin(2x−π3)的图象,给出下列四个结论:①关于直线x=11π12对称;②关于点(2π3,0)对称;③在区间(−π12,5π12)上是增函数;④可由函数y=3sin2x的图象向右平移π3个单位长度得到.其中正确的是________.(填序号)【答案】①②③【解析】【分析】本题主要考查了函数y=Asin(ωx+φ)的性质,涉及函数图象的平移,属于中档题.根据函数的对称性可判断①②,根据函数单调性可判断③,根据函数的平移可判断④.【解答】解:当时,,所以函数关于直线对称,①正确;当时,,所以函数关于对称,②正确;由,得,所以当k=0时,③正确;把函数y=3sin2x向右平移后得到,④错误.故答案为:①②③.26.将函数f(x)=−sin(2x+φ)的图象向左平移π8个单位长度后,得到一个偶函数的图象,则φ的最小正值为________.【答案】π4【解析】【分析】本题考查三角函数的平移变换,属于基础题.由函数的平移变换得为偶函数,则,从而求得φ的最小正值.【解答】解:函数f(x)=−sin(2x+φ)的图象向左平移π8个单位长度后,得到,由题意为偶函数,,即,则φ的最小正值为π4.故答案为π4.四、解答题(本大题共4小题,共48.0分)27.已知函数y=12sin(2x+π6),x∈R.(1)用五点法作出它的简图;(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?【答案】解:(1)列表:2x+π60π2π3π22πx−π12π65π122π311π12y=12sin(2x+π6)0120−12描点画图,如下图所示:(2)函数y =sinx 的图象向左平移π6个单位,得到函数y =sin (x +π6)的图象, 再保持纵坐标不变,把横坐标缩短为原来的12得到函数y =sin (2x +π6)的图象, 再保持横坐标不变,把纵坐标缩短为原来的12得到函数y =12sin (2x +π6)的图象. 【解析】本题考查了函数图象的变换(平移、对称、伸缩、翻折变换)、三角函数的图象画法、函数y =Asin(ωx +φ)的图象与性质的相关知识,试题难度较易28. 已知振动曲线y =Asin(ωx +φ)(A >0,ω>0)上的一个最高点的坐标为(π8,√2),周期为π,且φ∈(−π2,π2). (1)试求振动曲线的函数解析式;(2)用“五点法”画出(1)中函数在一个周期上的图象(要求列表). 【答案】解:(1)由题意知A =√2,T =π,ω=2πT=2ππ=2,∴y =√2sin(2x +φ).又图象过点(π8,√2),即√2=√2sin (2×π8+φ),即sin (π4+φ)=1, 从而π4+φ=2kπ+π2,k ∈Z ,φ=2kπ+π4,k ∈Z . 又∵φ∈(−π2,π2),∴φ=π4, ∴y =√2sin (2x +π4). (2)按五个关键点列表:2x +π40 π2 π 3π2 2π x −π8 π8 3π8 5π8 7π8 y√2−√2描点作图,如图所示:【解析】本题考查了三角函数的图象画法、函数y =Asin(ωx +φ)的图象与性质的相关知识,试题难度较易29. 设函数f(x)=sin (kx 5+π3),其中k ≠0.(1)写出f(x)的最大值M ,最小值m 和最小正周期T .(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是M 或m . 【答案】解:(1)∵f(x)=sin(k 5x +π3)(k ≠0) ∴M =1,m =−1,T =2π|k5|=10π|k|;(2)由题意知,函数f(x)在任意两个整数间(包括整数本身)变化时,至少有一个值是M 或一个值是m , ∴T ≤2,即10π|k|≤2, ∴|k|≥5π>15.7,∵k ∈N ∗, ∴最小正整数k 为16.【解析】本题考查由y =Asin(ωx +φ)的部分图象确定其解析式,解题的关键是掌握周期公式以及对问题的正确转化如在第二问中对使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是M 和一个值是m 理解与转化.正确转化问题对解题很重要.(1)根据三角函数的解析式求出其最值,由公式求出最小正周期T;(2)函数f(x)至少有一个值是M 或一个值是m 说明函数此时的k 值满足函数的周期小于等于2,即T ≤12,由此建立关于参数的方30. 已知ω>0,函数f(x)=sin (ωx +π4)在区间(π2,π)上单调递减,求ω的取值范围.【答案】解:ω>0,x∈(π2,π),函数f(x)=sin (ωx+π4)在区间(π2,π)上单调递减,周期,则0<ω⩽2,解得12⩽ω⩽54.【解析】本题主要考查函数y=A(ωx+φ)的性质,关键是熟练掌握函数y=A(ωx+φ)的单调性.根据函数f(x)=sin (ωx+π4)在区间(π2,π)上单调递减,列不等式组,可得ω的取值范围.。

三角函数的平移、伸缩变换(人教A版)

三角函数的平移、伸缩变换(人教A版)

三角函数的平移、伸缩变换(人教A版)一、单选题(共14道,每道7分)1.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象的解析式为( )A. B.C. D.2.由的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,则为( )A. B.C. D.3.将函数的图象向右平移个单位长度,再将所得图象的所有点的横坐标缩短为原来的,纵坐标不变,得到的函数解析式为( )A. B.C. D.4.将函数的图象上每点的横坐标缩短为原来的,再将所得图象向左平移个单位长度,得到的函数解析式为( )A. B.C. D.5.将函数的图象上每点的横坐标伸长到原来的2倍,再将所得图象向右平移个单位长度,纵坐标不变,得到的函数解析式为( )A. B.C. D.6.将函数的图象向左平移个单位,再向上平移1个单位长度,所得图象的函数解析式是( )A. B.C. D.7.将函数的图象上每点的横坐标缩小为原来的,再向下平移2个单位,所得图象的函数解析式是( )A. B.C. D.8.将函数的图象上所有点的横坐标伸长到原来的3倍,纵坐标不变,再将其图象向右平移2个单位长度,所得函数图象对应的解析式为( )A. B.C. D.9.将函数的图象上每点的横坐标伸长到原来的倍,将所得图象向左平移2个单位,纵坐标不变,所得图象的函数解析式是( )A. B.C. D.10.由函数的图象得到函数的图象,下列变换错误的是( )A.将函数的图象向左平移个单位,再将图象上所有点的横坐标缩短为原来的B.将函数的图象上所有点的横坐标缩短为原来的,再将图象向左平移个单位C.将函数的图象上所有点的纵坐标缩短为原来的,再将图象向左平移个单位D.将函数的图象向右平移个单位,再将图象上所有点的横坐标缩短为原来的11.将函数的图象向右平移个单位长度,所得图象对应的函数( )A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增12.将函数的图象上各点的横坐标伸长到原来的3倍,纵坐标不变,再把所得函数图象向右平移个单位长度,得到的函数图象的一个对称中心是( )A. B.C. D.13.函数的最小正周期是,若其图象向右平移个单位长度后得到的函数为奇函数,则函数的图象为( )A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称14.函数(其中,,)的图象如图所示,为了得到的图象,则只要将的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度长。

三角函数图像变换专项练习题

三角函数图像变换专项练习题

三角函数图像变换专项练习题一、选择题(本大题共13小题,共65.0分)1. 为得到函数y =6sin (2x +π3)的图象,只需要将函数y =6cos2x 的图象( )A. 向右平行移动π6个单位 B. 向左平行移动π6个单位 C. 向右平行移动π12个单位D. 向左平行移动π12个单位2. 已知函数f(x)=sin(x +π3)sinx +cos 2x 的图象向右平移π6单位,再把横坐标缩小到原来的一半,得到函数g(x),则关于函数g(x)的结论正确的是 ( )A. 最小正周期为πB. 关于x =π6对称 C. 最大值为1D. 关于(π24,0)对称3. 函数的图象y =3cos2x 可以看作把函数y =3sin2x 的图象向( )而得到的A. 左平移π2个单位 B. 左平移π4个单位 C. 右平移π2个单位D. 右平移π4个单位4. 将函数y =sin(4x −π6)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移π6个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为( )A. f(x)=sin(2x +π6) B. f(x)=sin(2x −π3) C. f(x)=sin(8x +π6)D. f(x)=sin(8x −π3)5. 要得到函数f(x)=cos(2x −π6)的图象,只需将函数g(x)=sin2x 的图象A. 向左平移π6个单位 B. 向右平移π6个单位 C. 向左平移π3个单位D. 向右平移π3个单位6. 将函数f(x)=√3sin2x −cos2x 的图象向右平移π3个单位得到函数g(x)的图象,若有g(θ)=2cos π6,则θ的可能取值为A. 3π4B. 5π6C. π6D. π47. 将函数的图象上的所有点向右平移π12个单位得到函数g(x)的图象,则g(x)的函数解析式为( )A.B.C.D.8. 如果两个函数的图象经过平移后能够重合,那么这两个函数称为“和谐”函数.下列函数中与g(x)=√2sin(x +π4)能构成“和谐”函数的是( )A. f(x)=sin(x +π4) B. f(x)=2sin(x −π4) C. f(x)=√2sin(x2+π4)D. f(x)=√2sin(x +π4)+29. 若将函数f (x )=√2sin(2x +π4)的图像向右平移φ(φ>0)个单位,所得图像关于原点对称,则φ的最小值为( )A. π8B. π4C. 3π8D. 3π410. 函数y =sin (2x +π3)的图象可由函数y =cosx 的图象( )A. 先把各点的横坐标缩短到原来的12,再向左平移π6个单位 B. 先把各点的横坐标缩短到原来的12,再向右平移π12个单位 C. 先把各点的横坐标伸长到原来的2倍,再向左平移π6个单位 D. 先把各点的横坐标伸长到原来的2倍,再向右平移π12个单位11. 若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后的图象的对称轴为( )A. x =kπ2−π6(k ∈Z)B. x =kπ2+π6(k ∈Z)C. x =kπ2−π12(k ∈Z)D. x =kπ2+π12(k ∈Z)12. 将函数的图象向左平移π6个单位长度得到函数g(x)的图象,则下列说法正确的是( )A. 函数g(x)的周期是π2B. 函数g(x)的图象关于直线x =−π12对称 C. 函数g(x)在(π6,π2)上单调递减 D. 函数g(x)在(0,π6)上最大值是113. 已知将函数的图象向左平移φ个单位长度后,得到函数g (x )的图象,若g (x )的图象关于原点对称,则f (π3)=( )A. −√32B. √32C. −12D. 12二、填空题(本大题共1小题,共5.0分)14.将函数y=sin(−2x)的图象向左平移π4个单位,所得图象的解析式为_______________.三、解答题(本大题共4小题,共48.0分)15.若函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象经过点(0,√3),且相邻的两个零点差的绝对值为6.(1)求函数f(x)的解析式;(2)若将函数f(x)的图象向右平移3个单位后得到函数g(x)的图象,当x∈[−1,5]时,求g(x)的值域.16.设函数,其中0<ω<3.已知f(π6)=0.(1)求ω;(2)将函数f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数g(x)的图象,求g(x)在[−π4,3π4]上的最小值及相应x的值.17.已知函数f(x)=Asin(ωx+φ),其中A>0,ω>0,0<φ<π,函数f(x)图像上相邻的两个对称中心之间的距离为π4,且在x=π3处取到最小值−2.(1)求函数f(x)的解析式;(2)若将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移π6个单位,得到函数g(x)图象,求函数g(x)的单调递增区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图像的平移变换专项练习
1.为了得到函数)6
3sin(π
+=x y 的图象,只需把函数x y 3sin =的图象 ( )
A 、向左平移
6π B 、向左平移18π C 、向右平移6π D 、向右平移18
π 6、将函数)(sin )(R x x x f y ∈⋅=的图象向右平移4
π
个单位后,再作关于x 轴的对
称变换,得到函数x y 2sin 21-=的图象,则)(x f 可以是_______。

1、要得到函数)4
2sin(3π
+=x y 的图象,只需将函数x y 2sin 3=的图象( )
(A )向左平移
4π个单位 (B )向右平移4π
个单位 (C )向左平移8π个单位 (D )向右平移8
π
个单位
2、将函数y=sin3x 的图象作下列平移可得y=sin(3x+
6
π
)的图象 (A) 向右平移 6π 个单位 (B) 向左平移6π
个单位
(C )向右平移18π 个单位 (D )向左平移18
π
个单位
3.将函数sin y x =的图象上每点的横坐标缩小为原来的1
2
(纵坐标不变),再把
所得图象向左平移6π
个单位,得到的函数解析式为( )
()sin 26A y x π⎛⎫
=+
⎪⎝

()sin 23B y x π⎛
⎫=+
⎪⎝
⎭ ()sin 26x C y π⎛⎫=+ ⎪⎝⎭ ()sin 212x D y π⎛⎫=+ ⎪⎝⎭
4、把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4
π
个单位长度,得到新的函数图象,那么这个新函数的解析式为
(A )⎪⎭
⎫ ⎝⎛+=42cos πx y (B )⎪⎭⎫
⎝⎛+=42cos πx y (C )x y 2sin = (D )x y 2sin -=
5.要得到函数x y cos 2=的图象,需将函数)42sin(2π
+=x y 的图象( )
(A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π
个单位长度 (B)横坐标缩短到原来的
21倍(纵坐标不变),再向右平行移动4
π个单位长度
(C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4
π
个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8
π
个单位长度
4. 将函数()y f x =的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),再将整个图形沿x 轴正向平移
3
π
,得到的新曲线与函数3sin y x =的图象重合,则()f x =( )
A. 3sin(2)3x π+
B. 3sin()23x π+
C. 23sin(2)3x π-
D. 23sin()23
x π
+
5为了得到函数)6
2sin(π
-=x y 的图象,可以将函数x y 2cos =的图象( )
A .向右平移
6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π
个单位长度
(1)将函数1sin(2)24y x π=-的图象向______平移_______个单位得到函数1
sin 22
y x
=的图象(只要求写出一个值)
1.将函数sin (0)y x ωω=>的图象向左平移6
π
个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是 A .sin()6y x π
=+
B .sin()6y x π
=-C .sin(2)3y x π
=+ D .sin(2)3
y x π
=- 7为了得到函数R x x y ∈+=),6
3sin(2π
的图像,只需把函数R x x y ∈=,sin 2的图像上的点
(A )向左平移
6π个单位长度,再把所得各点的横坐标缩短到原来的31
倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31
倍(纵坐标不变)
(C )向左平移6π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
(D )向右平移6
π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
已知函数f (x )=sin (ωx +π
4
)(x ∈R ,ω>0)的最小正周期为π.将y =f (x )的图象向左平移|φ|
个单位长度,所得图象关于y 轴对称,则φ的一个值是 ( ) A.π2 B.3π8 C.π4 D.π8
3.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π
6
)的图
象重合,则ω的最小值为 ( )A.16 B.14 C.1
3
D.1
2
1.为了得到函数sin(2)3y x π=-
的图像,只需把函数sin(2)6
y x π
=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4π
个长度单位
(C )向左平移2π个长度单位 (D )向右平移2
π
个长度单位
3.设0ω>,函数sin()23
y x π
ω=++的图像向右平移43π个单位后与原图像重合,则ω的
最小值是( )(A )23 (B ) 43 (C ) 3
2
(D ) 3
4.将函数y=sin(x+π/6) (x 属于R)的图象上所有的点向左平行移动π/4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( ) (A) y=sin(2x+5π/12) (x 属于R) (B) y=sin(x/2+5π/12) (x 属于R) (C) y=sin(x/2+π/12) (x 属于R) (D) y=sin(x/2+5π/24) (x 属于R) 8.将函数sin y x =的图像上所有的点向右平行移动
10
π
个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) (A )sin(2)10y x π=-
(B )sin(2)5y x π
=-
(C )1sin()210y x π=- (D )1sin()220y x π
=-
9.5y Asin
x x R 66ππωϕ⎡⎤
=∈⎢⎥⎣⎦
右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点( )
(A)向左平移
3π个单位长度,再把所得各点的横坐标缩短到原来的1
2倍,纵坐标不变 (B) 向左平移
3
π
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移
6π个单位长度,再把所得各点的横坐标缩短到原来的1
2
倍,纵坐标不变
(D) 向左平移
6
π
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 10.将函数y=sin2x 的图象向左平移π/4个单位,再向上平移1个单位所得到函数解析式( )y=cos2x y=2(cosx)*(cosx) y=1+sin(2x+π/4) y=2(sinx)*(sinx)
4. 函数y =sin(2x +

)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( )A.向左平移6π B.向右平移6π C.向左平移12π D.向右平移12
π
5. 要得到函数y =sin (2x -)6
π
的图像,只需将函数y =cos 2x 的图像( )
A.向右平移
6π个单位 B.向右平移3π
个单位 C. 向左平移
6π个单位 D. 向左平移3
π
个单位 12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛

=- ⎪3⎝

的图象( ) A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π
6
个单位
13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝

<<>20,0πφω.若将()x f 的图象沿x 轴向右平移61个
单位长度,得到的图象经过坐标原点;若将()x f 的图象上所有的点的横坐标缩短到原来的
2
1
倍(纵坐标不变), 得到的图象经过点⎪⎭

⎝⎛1,61. 则( )
A.6,πφπω==
B.3,2πφπω==
C. 8
,43π
φπω==
D. φω,不存在 14. 设函数)()0(1)6
sin()(x f x x f '>-+=的导数ωπ
ω的最大值为3,则f (x )的图象的一条对称
轴的方程是( ) A.9
π
=x B.6
π
=
x C.3
π
=
x D.2
π
=
x。

相关文档
最新文档