1求反比例函数表达式的六种方法

合集下载

反比例函数知识点总结

反比例函数知识点总结

反比例函数的定义:
(1)判定一个函数为反比例函数的条件:
①所给等式是形如y=k
x或y=kx-1或xy=k的等式;
②比例系数k是常数,且k≠0.
(2)y是x的反比例函数⇔函数解析式为y=k
x或y=kx-1或xy=k (k为常数,k≠0).
求反比例函数的表达式,就是确定反比例函数表达式
y =k
x(k≠0)中常数k的值,它一般需经历:“设→代→求→还原”这四步.
即:(1)设:设出反比例函数表达式y=k
x(k≠0);
(2)代:将所给的数据代入函数表达式;
(3)求:求出k的值;
(4)还原:写出反比例函数的表达式.
要点分析:由于反比例函数的表达式中只有一个待定系数k,因此求反比例函数的表达式只需一组对应值或一个条件即可
反比例函数图象
图象的画法:
(1)反比例函数的图象是双曲线;
(2)画反比例函数的图象要经过“列表、描点、连线”这三个步骤.
对称性:
双曲线既是一个轴对称图形又是一个中心对称图形.
对称轴有两条,分别是直线y=x与直线y=-x;
对称中心是坐标原点,任何一条经过原点的直线只要与双曲线有两个交点,则这两个交点关于原点对称.
反比例函数的图象性质
反比例函数中k的几何性质:
过双曲线y=k
x(k≠0) 上任一点向两坐标轴作垂线所得的矩形面积等于|k|;
过双曲线y=k
x(k≠0) 上任一点向一坐标轴作垂线且与原点连线所得的三角形面积等于
2
1
|k|.。

反比例函数三种表达式

反比例函数三种表达式

反比例函数三种表达式
反比例函数的三种表达形式分别是①y=x/k;②xy=k、③x=k/x,其中x是自变量,y是因变量,y是x的函数,k为反比例系数,因为y=k/x是一个分式,所以自变量x的取值范围是x≠0。

反比例函数的图像属于以原点为对称中心的中心对称的双曲线,图象中每一象限的每一条曲线会无限接近X轴或Y轴,但不会与坐标轴相交,通常自变量的取值范围是不等于0的一切实数,且因变量也不能等于0。

反比例函数的图像属于以原点为对称中心的中心对称的两条曲线,反比例函数图象中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。

其中核心是对应法则f,它是函数关系的本质特征。

第11章 反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

第11章  反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)

2021年中考数学一轮复习(通用版)第11章反比例函数考点梳理考点一反比例函数的概念、图象和性质1.反比例函数的概念一般地,函数y=(k为常数,且k≠0)叫做反比例函数.【点拨】(1)函数y=kx-1或xy=k都是反比例函数;(2)反比例函数中自变量的取值范围是x≠0. 2.反比例函数的图象和性质(1)反比例函数y=kx(k为常数,且k≠0)的图象是.(2)反比例函数的图象无限接近,但永不与相交.(3)反比例函数的图象和性质第一、三象限第二、四象限一象限,再结合每个象限内反比例函数图象的增减性来比较,解决这种问题的一个有效办法是画出草图,标上各点,再比较大小.3.确定反比例函数的表达式(1)求反比例函数的表达式可用待定系数法.由于反比例函数的表达式中只有一个待定系数,因此只需已知一组对应值即可.(2)求反比例函数表达式的一般步骤:①设反比例函数的表达式;①把已知的一组对应值代入函数表达式,建立方程;①解方程求得待定系数的值.4.反比例函数的系数k的几何意义如图,设点P(x,y)是反比例函数y=kx图象上任一点,过点P作x轴的垂线,垂足为A,则①OP A的面积=12OA·P A=12|xy|=12|k|,这就是反比例函数的系数k的几何意义.【点拨】根据比例系数k的几何意义,求k值时,要根据双曲线所在的象限正确确定k的符号.考点二反比例函数的应用1.反比例函数与一次函数的综合应用(1)求函数解析式一般先通过一个已知点求出反比例函数解析式,再由反比例函数的解析式求出另一个交点的坐标,再将这两点的坐标代入一次函数的解析式中,解方程(组)即可.(2)求交点坐标将一次函数的解析式与反比例函数的解析式联立成方程组求解即可;对于正比例函数与反比例函数,其均关于原点对称,只要知道一个交点的坐标,就可以求出其关于原点对称的另一个交点的坐标.(3)求面积①当有一边在坐标轴上时,通常将坐标轴上的边作为底边,再利用点的坐标求得底边上的高,然后利用面积公式求解;①当两边均不在坐标轴上时,一般可采用割补法将其转化为一边在坐标轴上的两个三角形面积的和或差来求解.此外,求面积时要充分利用“数形结合”的思想,即用“坐标”求“线段”,用“线段”求“坐标”.(4)比较两个函数值的大小,求自变量的取值范围2.反比例函数的实际应用利用反比例函数解决实际问题,首先要建立反比例函数的数学模型,这也是关键一步,一般地,建立反比例函数模型有两种思路:(1)题目中明确指出变量间存在反比例函数关系,在这种情况下,可利用待定系数法求反比例函数的解析式.(2)题目中未指出变量间存在反比例函数关系,在这种情况下可利用基本数量关系求反比例函数的关系式,反比例函数模型建立后,进一步地可利用反比例函数的图像及性质解决问题.重难点讲解考点一正确理解反比例函数的概念,会求k值和反比例函数的解析式方法指导:因为反比例函数的解析式y=kx(k≠0)中只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式,因而只需给出一组x,y的值或图象上一点的坐标,代入y=kx(k≠0)中即可求出k的值,从而确定反比例函数的解析式.另外,反比例函数解析式y=kx(k≠0)也可以变形为k=xy(k≠0),所以要求的k值就等于双曲线上任意一点的横坐标与纵坐标之积.进一步理解得到反比例函数解析式y=kx(k≠0)中,比例系数k的几何意义是过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.经典例题1 (2020•安徽滁州模拟)如图,在平面直角坐标系中,反比例函数y=kx(x>0)经过矩形ABOC的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A.2B.4C.6D.8【解析】设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a﹒12b=14ab=14×16=4.【答案】B考点二一次函数与反比例函数的综合方法指导:这类问题常有以下四种主要题型:(1)利用k值与图象的位置关系,综合确定系数符号或图象位置.解题策略:分k>0和k<0两种情况考虑.(2)已知直线与双曲线的表达式求交点坐标.解题策略:联立直线与双曲线的方程组成方程组求解.(3)用待定系数法确定直线与双曲线的表达式.解题策略:待定系数法.(4)应用函数图象的性质比较一次函数值与反比例函数值的大小.解题策略:看图象,以两个图象的交点为界,图象在上方的函数值比图象在下方的要大.经典例题2 (2020•黑龙江大庆模拟)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【解析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=-x +5交y轴于E(0,5),根据S△AOB=S△OBE-S△AOE计算即可.解:(1)∵A(1,n)在直线y=-x+5上,∴n=-1+5=4,∴A(1,4),把A(1,4)代入y=kx得到k=4,∴反比例函数的解析式为y=4x.(2)由45y xy x ⎧=⎪⎨⎪=-+⎩,,解得14x y =⎧⎨=⎩,或41x y =⎧⎨=⎩,, ∴B (4,1),直线y =-x +5交y 轴于E (0,5), ∴S △AOB =S △OBE -S △AOE =12×5×4-12×5×1=7.5.考点三 反比例函数的应用 方法指导:利用反比例函数解决实际问题,我们应抽象概括出反比例函数关系,建立反比例函数模型.根据已知条件写出反比例函数的解析式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际问题.因此,利用反比例函数解决实际问题的关键是建立反比例函数模型,即求出反比例函数解析式.一般地,建立反比例函数模型有以下两种常用方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数解析式为y =kx(k ≠0),然后求出k 的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y )和自变量(x )的方程,进而解出函数,得到函数解析式.经典例题3 (2020·江西模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x (分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x (分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: (1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式; (2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为y=kx+b,依据题意,得2010100 bk b⎧⎨⎩=,+=,解得820kb⎧⎨⎩=,=,故此函数解析式为y=8x+20.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为y=mx,依据题意,得100=10m,即m=1000,故y=1000x,当y=20时,20=1000t,解得t=50.(3)∵57-50=7<10,∴当x=7时,y=8×7+20=76.答:小明散步57分钟回到家时,饮水机内的温度约为76℃.过关演练1.(2020·河南一模)已知点A(2,a),B(-3,b)都在双曲线y=-6x上,则()A.a<b<0B.a<0<b C.b<a<0 D.b<0<a2.(2020•山东德州中考)函数y=kx和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A B C D 3.(2020•贵州黔西南州中考)如图,在菱形ABOC中,AB=2,①A=60°,菱形的一个顶点C在反比例函数y═kx(k≠0)的图象上,则反比例函数的解析式为()A .y =-x B .y =-x C .y =-3xD .y =x4.(2020·湖南长沙模拟)若点A (3,4)是反比例函数y =kx图象上一点,则下列说法正确的是( ) A .图象分別位于二、四象限 B .当x <0时,y 随x 的增大而减小 C .点(2,-6)在函数图象上 D .当y ≤4时,x ≥3 5.(2020·安徽合肥模拟)在同一坐标系中,函数y =kx和y =-kx +3的大致图象可能是( )A B C D6.(2020·安徽合肥一模)如图,若反比例函数y =k x (x <0)的图象经过点(-12,4),点A 为图象上任意一点,点B 在x 轴负半轴上,连接AO ,AB ,当AB =OA 时,①AOB 的面积为( )A .1B .2C .4D .无法确定7. (2020•湖北孝感中考)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R8. (2020•湖南长沙中考)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=610tB.v=106t C.v=6110t2D.v=106t29.(2020·河北一模)已知反比例函数y=mx与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则①ACD的面积为()A.12B.9C.6D.510.(2020·广东广州一模)如图所示,已知A(13,y1),B(3,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(13,0) B.(43,0) C.(23,0) D.(103,0)11.(2020·湖北十堰一模)已知反比例函数y=24kx+(k是常数,且k≠-2)的图象有一支在第二象限,则k的取值范围是.12.(2020•江苏无锡模拟)如果反比例函数y=3ax-(a是常数)的图象在第一、三象限,那么a的取值范围是.13.(2020•山东滨州中考)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.14.(2020•四川甘孜州中考)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2 x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且①ABP的面积是①AOB的面积的2倍,则点P的横坐标为.15.(2020·安徽阜阳模拟)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD①x轴,双曲线y=5 x (x>0)经过A,B两点,则菱形ABCD的面积为.16.(2020•山东青岛)如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=.17.(2020•浙江台州中考)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2y2-y3.18.(2020•山东济宁中考)在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.19.(2020·安徽合肥三模)如图,一次函数y=-x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-3,m),与x轴交于点B(-2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长;(3)根据图象,直接写出不等式-x+b<kx<3的解集.20.(2020·浙江金华模拟)如图,一次函数y1=-x+4的图象与反比例函数y2=kx(k为常数,且k≠0)的图象交于A(1,a),B两点,与y轴和x轴分别交于C,D两点,AM①y轴,BN①x轴,垂足分别为M,N两点,且AM与BN交于点E.(1)求反比例函数的表达式及点B的坐标;(2)直接写出反比例函数图象位于第一象限且y1<y2时自变量x的取值范围;(3)求①OAB与①ABE的面积的比.21.(2020•四川成都中考)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若①AOB的面积为①BOC的面积的2倍,求此直线的函数表达式.22.(2020•山东聊城中考)如图,已知反比例函数y=kx的图象与直线y=ax+b相交于点A(-2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得①P AB的面积为18,求出点P的坐标.23.(2020·江西南昌模拟)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800①,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600①.煅烧时温度y(①)与时间x(min)成一次函数关系;锻造时,温度y(①)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是26①.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400①时,须停止操作,那么锻造的操作时间有多长?参考答案考点梳理考点一 1.kx2. (1)双曲线 (2)坐标轴 坐标轴 (3)减小 增大 中心 过关演练1. B 【解析】①双曲线y =6x,k =-6<0,①双曲线在第二、四象限,①2>0,-3<0,①点A (2,a )在第四象限,点B (-3,b )在第二象限,①a <0<b .2. D 【解析】在函数y =k x 和y =-kx +2(k ≠0)中,当k >0时,函数y =kx的图象在第一、三象限,函数y =-kx +2的图象在第一、二、四象限,故选项A 、B 错误,选项D 正确;当k <0时,函数y =kx的图象在第二、四象限,函数y =-kx +2的图象在第一、二、三象限,故选项C 错误.3. B 【解析】①在菱形ABOC 中,①A =60°,菱形边长为2,①OC =2,①COB =60°,①点C 的坐标为(-1,,①顶点C 在反比例函数y ═k x 的图象上,=1k,得k y =-x .4. B 【解析】①点A (3,4)是反比例函数y =kx图象上一点,①k =xy =3×4=12,①此反比例函数的解析式为y =12x.①k =12>0,①此函数的图象位于一、三象限,故选项A 错误;①k =12>0,①在每一象限内y 随x 的增大而减小,故选项B 正确;①2×(-6)=-12≠12,①点(2,-6)不在此函数的图象上,故选项C 错误;当y ≤4时,即y =12x≤4,解得x <0或x ≥3,故选项D 错误. 5. D 【解析】由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项A 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项B 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k <0,根据一次函数图象可得-k <0,则k >0,故选项C 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k <0,则k >0,故选项D 正确.6. B 【解析】①反比例函数y =k x (x <0)的图象经过点(-12,4),①k =-12×4=-2,过A 点作AC ①OB于点C,①①ACO的面积为12×2=1,①AO=AB,①OC=BC,①S①AOB=2S①AOC=2.7. C 【解析】设I=kR,把(8,6)代入得:k=8×6=48,故这个反比例函数的解析式为I=48R.8. A 【解析】①运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,①106=vt,①v=6 10t.9. D 【解析】①点A(4,1)在反比例函数y=mx上,①m=xy=4×1=4,①y=4x.把B(a,2)代入y=4x得2=4a,①a=2,①B(2,2).①把A(4,1),B(2,2)代入y=kx+b.①1422k bk b⎧⎨⎩=+,=+,解得123kb⎧⎪⎨⎪⎩=-,=,①一次函数的解析式为y=12x+3,①点C在直线y=12x+3上,①当x=0时,y=3,①C(0,3).过A作AE①x轴于点E.①S①ACD=S梯形AEOC-S①COD-S①DEA=(13)42+⨯-12×1×3-12×1×3=5.10. D 【解析】把A(13,y1),B(3,y2)代入反比例函数y=1x得y1=3,y2=13,①A(13,3),B(3,13).连接AB,在①ABP中,由三角形的三边关系定理得:|AP-BP|<AB,①延长AB交x轴于P′,当P在P′点时,P A-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0),把点A,B的坐标代入得133133a ba b⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1103ab⎧⎪⎨⎪⎩=-,=,①直线AB的解析式是y=-x+103,当y=0时,x=103,即P(103,0).11. k<-2 【解析】①反比例函数y=24kx+的图象有一支在第二象限,①2k+4<0,解得k<-2.12. a>3 【解析】∵反比例函数y=3ax-(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.13. y=2x【解析】当y=2时,即y=2x=2,解得x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx,解得k=2,故该反比例函数的解析式为y=2x.14. 2【解析】①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则①ABP的面积是①AOB的面积的2倍,直线AB与x轴交点的坐标为(-1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为y=x+b,将点C的坐标代入上式并解得:b=-1,故直线l的表达式为y=x-1①,而反比例函数的表达式为y=2x①,联立①①并解得x=2或-1(舍去);①当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3①,联立①①并解得x舍去负值).15. 452【解析】连接AC,与BD交于点M,①菱形对角线BD①x轴,①AC①BD,①点A,B横坐标分别为1和4,双曲线y=5x(x>0)经过A,B两点,①AM=5-54=154,BM=4-1=3,①AC=152,BD=6,①菱形ABCD的面积12AC·BD=452.16. -4 【解析】设反比例函数的解析式为y=kx.∵△AOB的面积=△ABP的面积=2,△AOB的面积=12|k|,∴12|k|=2,∴k=±4;又反比例函数的图象的一支位于第二象限,∴k<0.∴k=-4.17. 解:(1)设y与x之间的函数关系式为y=kx,把(3,400)代入y=kx得,400=3k,解得k=1200,①y与x之间的函数关系式为y=1200x;(2)>提示:把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,①y1-y2=200-150=50,y2-y3=150-120=30,①50>30,①y1-y2>y2-y3.18. 解:(1)y=4xx>0 提示:①在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2,①12xy=2,①xy=4,①y关于x的函数关系式是y=4x,x的取值范围为x>0.(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y =-x +3向上平移a (a >0)个单位长度后解析式为y =-x +3+a ,解34y x a y x =-++⎧⎪⎨=⎪⎩,, 整理得,x 2-(3+a )x +4=0,①平移后的直线与上述函数图象有且只有一个交点,①①=(3+a )2-16=0,解得a =1,a =-7(不合题意舍去),故此时a 的值为1.19. 解:(1)由点B (-2,0)在一次函数y =-x +b 上,得b =-2,①一次函数的表达式为y =-x -2;由点A (-3,m )在y =-x -2上,得m =1,①A (-3,1),把A (-3,1)代入数y =kx(x <0)得k =-3,①反比例函数的表达式为y =-3x. (2)y =3,即y C =y D =3,当y C =3时,-x C -2=3,解得x C =-5,当y D =3时,3=-3Dx ,解得x D =-1,①CD =x D -x C =-1-(-5)=4. (3)不等式-x +b <kx<3的解集为-3<x <-1. 20. 解:(1)当x =1时,a =-x +4=3,①点A 的坐标为(1,3).将点A (1,3)代入y =kx中,①k =1×3=3,①反比例函数的表达式为y =3x ,联立34y xy x ⎧⎪⎨⎪⎩=,=-+,解得13x y ⎧⎨⎩=,=,或31x y ⎧⎨⎩=,=, ①B (3,1). (2)反比例函数图象位于第一象限且y 1<y 2时自变量x 的取值范围为0<x <1或x >3. (3)①A (1,3),B (3,1),①E (3,3),AE =2,BE =2,①S ①ABE =12×2×2=2,①S ①OAB =S 四边形ONEM -S ①ABE -S ①AOM -S ①BON =3×3-2-12×3×1-12×3×1=4,①①OAB 与①ABE 的面积的比是4①2=2①1.21. 解:(1)①反比例函数y=mx(x>0)的图象经过点A(3,4),①k=3×4=12,①反比例函数的表达式为y=12x;(2)①直线y=kx+b过点A,①3k+b=4,①过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,①B(-b k ,0),C(0,b),①①AOB的面积为①BOC的面积的2倍,①12×4×|-bk|=2×12×|-bk|×|b|,①b=±2,当b=2时,k=23,当b=-2时,k=2,①直线的函数表达式为y=23x+2,y=2x-2.22. 解:(1)将点A(-2,3)的坐标代入反比例函数表达式y=kx,解得k=-2×3=-6,故反比例函数表达式为y=-6x,将点B的坐标代入上式,解得m=-6,故点B(1,-6),将点A,B的坐标代入一次函数表达式得326=a ba b=-+⎧⎨-+⎩,,解得3=3ab=-⎧⎨-⎩,,故直线的表达式为y=-3x-3;(2)设直线与x轴的交点为E,当y=0时,x=-1,故点E(-1,0),分别过点A,B作x轴的垂线AC,BD,垂足分别为C,D,则S①P AB=12PE•CA+12PE•BD=32PE+62PE=92PE=18,解得PE=4,故点P的坐标为(3,0)或(-5,0).23. 解:(1)材料锻造时,设y=kx(k≠0),由题意得600=8k,解得k=4800,当y=800时,4800x=800,解得x=6,①点B的坐标为(6,800).材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,①材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).4800÷26=184.6,①锻造操作时y与x的函数关系式为y=4800x(6<x<184.6).(2)把y=400代入y=4800x,得x=12,12-6=6(分).答:锻造的操作时间为6分钟.。

中考数学专题复习7反比例函数及其运用(解析版)

中考数学专题复习7反比例函数及其运用(解析版)

反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。

3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。

一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

反比例函数复习讲义

反比例函数复习讲义

反比例函数复习讲义知识点一:反比例函数的概念ﻫ 一般地,如果两个变量x 、y 之间的关系可以表示成k y x=(k为常数,)的形式,那么称y 是x 的反比例函数.注:(1)反比例函数k y x =中的k x 是一个分式,自变量x ≠0, k y x=也可写成1y kx -=或xy k =,其中k≠0;ﻫ (2)在反比例函数1y kx -=(k≠0)中,x 的指数是-1。

如,5y x=也写成:15y x -=;ﻫ (3)在反比例函数k y x=(k ≠0)中要注意分母x的指数为1,如21y x=就不是反比例函数。

ﻫ知识点二:反比例函数的图象反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.ﻫ 注: (1)观察反比例函数(0)ky k x=≠的图象可得:x和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.ﻫ (3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a ,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;正比例函数反比例函数解析式图 像直线 有两个分支组成的曲线(双曲线)位 置k>0,一、三象限; k<0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小k>0,在每个象限,y 随x的增大而减小ﻫk<0,在每个象限,y随x的增大而增大4.反比例函数y =kx 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k≠0)上任意一点引x轴、y 轴垂线,所得矩形面积为│k│.ﻫ知识点四:反比例函数解析式的确定ﻫ 反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x =≠中即可求出k 的值,从而确定反比例函数的解析式.ﻫ知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。

反比例函数

反比例函数

一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。

因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。

而y=k/x有时也被写成xy=k或y=k·x^(-1)。

形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数表达式x是自变量,y是x的函数y=k/x=k·1/xxy=ky=k·x^(-1)(即:y等于x的负一次方,此处x必须为一次方)y=k/x(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n编辑本段自变量的取值范围① 在一般的情况下 , 自变量 x 的取值范围可以是不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。

解析式y=k/x 其中x是自变量,y是x的函数,其定义域是不等于0的一切实数y=k/x=k·1/xxy=ky=k·x^(-1)y=k\x(k为常数(k≠0),x不等于0)编辑本段反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

编辑本段k的意义及应用过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积 S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。

6.2.6待定系数法求反比例函数解析式

6.2.6待定系数法求反比例函数解析式

待定系数法求反比例函数解析式1.(2015•杭州模拟)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式;坐标与图形变化-旋转.【分析】利用∠COD的正切值列式求出CD的长度,然后写出点D的坐标,再利用待定系数法求反比例函数解析式解答即可.【解答】解:∵B(8,4),∴OA=8,AB=OC=4,∴A′O=OA=8,A′B′=AB=4,tan∠COD==,即=,解得CD=2,∴点D的坐标为(2,4),设经过点D的反比例函数解析式为y=(k≠0),则=4,解得k=8,所以,经过点D的反比例函数解析式为y=.故选B.【点评】本题考查了待定系数法求反比例函数解析式,利用三角函数求出CD的长度,从而得到点D的坐标是解题的关键,还考查了坐标与图形﹣旋转.2.(2015•邯郸二模)如图,反比例函数y=的图象经过点M,则此反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=【考点】待定系数法求反比例函数解析式.【分析】根据图象得到图象过(﹣1,2)点,代入求出k=﹣2,即可得到答案.【解答】解:由图象可知:图象过(﹣1,2)点,代入得:k=﹣2,∴y=﹣.故选C.【点评】本题主要考查对用待定系数法求反比例函数的解析式的理解和掌握,能看出图象所反映的特点是解此题的关键.数形结合思想的巧妙运用.3.(2015•石峰区模拟)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】根据题意设点A坐标(x,),由D为斜边OA的中点,可得出D(x,),从而得出过点D的反比例函数的解析式.【解答】解:设点A坐标(x,),∵反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,∴D(x,),∴过点D的反比例函数的解析式为y=.故选:C.【点评】本题考查了待定系数法求反比例函数解析式,反比例函数系数k 的几何意义,本知识点是中考的重要考点,同学们应高度关注.4.(2015•拱墅区二模)若反比例函数图象经过二次函数y=x 2﹣4x+7的顶点,则这个反比例函数的解析式为()A .B .C .D .【考点】待定系数法求反比例函数解析式;二次函数的性质.【分析】先利用二次函数的性质求出抛物线的顶点坐标,再设反比例函数的解析式为y=,将顶点坐标代入反比例函数的解析式求解即可.【解答】解:∵y=x 2﹣4x+7=(x ﹣2)2+3,∴抛物线的顶点为(2,3),设反比例函数的解析式为y=,把(2,3),代入得k=2×3=6,∴反比例函数的解析式为y=.故选A .【点评】本题主要考查了二次函数的性质及待定系数法求反比例函数解析式,解题的关键是求出抛物线的顶点坐标.5.(2015•周村区一模)已知y 1=mx (m ≠0),y 2=(k ≠0),当x=1时,y 1=y 2,当x=2时,y 1=y 2+9,当x=3时,y 1﹣y 2值为()A .3B .12C .16D .21【考点】待定系数法求反比例函数解析式;待定系数法求正比例函数解析式.【分析】先利用当x=1时,y 1=y 2,当x=2时,y 1=y 2+9得到,再解关于k 、m 的方程组确定反比例函数和一次函数解析式,然后计算自变量为3时两个对应的函数值之差.【解答】解:根据题意得,解得,所以y 1=6x ,y 2=,所以x=3时,y 1﹣y 2=3×6﹣=16.故选C .【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=xk (k 为常数,k ≠0);把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了待定系数法求一次函数解析式.6.(2015•萝岗区一模)某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图所示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I的函数解析式为()A.B.C.D.【考点】待定系数法求反比例函数解析式;反比例函数的应用.【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(3,1)代入可得k的值,进而可得函数解析式.【解答】解:设用电阻R表示电流I的函数解析式为I=,∵过(3,1),∴k=3×1=3,∴,故选:B.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.7.(2015•西城区一模)在平面直角坐标系xOy中,第一象限内的点P在反比例函数的图象上,如果点P的纵坐标是3,OP=5,那么该函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】过P作PD⊥x轴于D,则PD=3,根据勾股定理求得OD,得出D的坐标,然后根据待定系数法即可求得反比例函数的解析式.【解答】解:在RT△OPD中,过P作PD⊥x轴于D,则PD=3,∴OD==4,∴P(4,3),∴代入反比例函数y=得,3=,解得k=12,∴反比例函数的解析式为y=,故选A.【点评】本题考查了待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.8.(2015•澧县模拟)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(),…都是“梦之点”,显然,这样的“梦之点”有无数个,应用:若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】先由“梦之点”的定义得出m=2,再将点P坐标代入y=,运用待定系数法即可求出反比例函数的解析式.【解答】解:(1)∵点P(2,m)是“梦之点”,∴m=2,∵点P(2,2)在反比例函数y=(n为常数,n≠0)的图象上,∴n=2×2=4,∴反比例函数的解析式为y=;故选D.【点评】本题考查了待定系数法求反比例函数的解析式,熟练掌握待定系数法是解题的关键.9.(2015秋•天桥区期末)下列函数中,图象经过点(2,﹣3)的反比例函数关系式是()A.y=﹣B.y=C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】首先设反比例函数解析式为y=,再把(2,﹣3)代入可得k的值,进而可得反比例函数解析式.【解答】解:设反比例函数解析式为y=,∵图象经过点(2,﹣3),∴﹣3=,解得:k=﹣6,∴反比例函数关系式是y=﹣,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.10.(2015秋•渝北区期末)已知反比例函数的图象经过点P(2,﹣1),则这个反比例函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】设反比例函数的解析式是y=,把P的坐标代入函数解析式即可求得k的值,从而求得解析式.【解答】解:设反比例函数的解析式是y=,根据题意得:﹣1=,则k=﹣2.则函数的解析式是y=﹣.故选D.【点评】本题考查了待定系数法求反比例函数的解析式,待定系数法是求函数解析式的基本方法.11.(2015秋•重庆校级期中)如图,在平面直角坐标系中.矩形OABC的对角线OB,AC 相交于点D,且BE∥AC,AE∥OB.如果OA=3,OC=2,则经过点E的反比例函数解析式为()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】连接DE,交AB于F,先证明四边形AEBD是平行四边形,再由矩形的性质得出DA=DB,证出四边形AEBD是菱形,由菱形的性质得出AB与DE互相垂直平分,求出EF、AF,得出点E的坐标;设经过点E的反比例函数解析式为:y=,把点E坐标代入求出k的值即可.【解答】解:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形,∵四边形OABC是矩形,∴DA=AC,DB=OB,AC=OB,AB=OC=2,∴DA=DB,∴四边形AEBD是菱形;连接DE,交AB于F,如图所示:∵四边形AEBD是菱形,∴AB与DE互相垂直平分,∵OA=3,OC=2,∴EF=DF=OA=,AF=AB=1,3+=,∴点E坐标为:(,1),设经过点E的反比例函数解析式为:y=,把点E代入得:k=,∴经过点E的反比例函数解析式为:y=.故选A.【点评】本题考查了平行四边形的判定、菱形的判定、矩形的性质、坐标与图形特征以及反比例函数解析式的求法;本题综合性强,有一定难度.12.(2015秋•荣成市校级期中)点A(a,b)是反比例函数y=上的一点,且a,b是方程x2﹣mx+4=0的根,则反比例函数的解析式是()A.y=B.y=C.y=D.y=【考点】待定系数法求反比例函数解析式;根与系数的关系.【分析】根据a,b是方程x2﹣mx+4=0的根,由根与系数的关系得到ab=4,由于A(a,b)是反比例函数y=上的一点,即可得到结论.【解答】解:∵a,b是方程x2﹣mx+4=0的根,∴ab=4,∵A(a,b)是反比例函数y=上的一点,∴k=ab=4,∴反比例函数的解析式是y=.故选C.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握反比例函数图象上的点的坐标特点:横纵坐标的积=k.13.(2015春•衡阳县期中)若反比例函数y=的图象经过点(3,﹣2),那么这个函数的表达式为()A.y=﹣6x B.y=﹣C.y=6x D.y=【考点】待定系数法求反比例函数解析式.【分析】直接把点(3,﹣2)代入y=计算出m的值即可.【解答】解:把点(3,﹣2)代入y=,得m=3×(﹣2)=﹣6,所以反比例函数解析式为y=﹣.故选B.【点评】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.14.(2014•嘉峪关校级模拟)如果反比例函数的图象经过点P(﹣2,﹣1),那么这个反比例函数的表达式为()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:设y=,将点(﹣2,﹣1)代入解析式可得,k=2,所以y=.故选:C.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.15.(2014•江干区一模)图象经过点(2,1)的反比例函数是()A.y=﹣B.y=C.y=D.y=2x【考点】待定系数法求反比例函数解析式.【分析】设反比例函数解析式y=,然后把点(2,1)代入后计算出k的值即可.【解答】解:设反比例函数解析式y=,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=.故选B.【点评】本题考查了待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;然后解方程,求出待定系数;最后写出解析式.16.(2014•泗县校级模拟)若y与﹣3x成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定【考点】待定系数法求反比例函数解析式.【分析】根据正比例函数的定义分析.【解答】解:由题意可列解析式y=,x=∴y=﹣z∴y是z的正比例函数.故选A.【点评】本题考查正比例函数的知识.关键是先求出函数的解析式,然后代值验证答案.17.(2014春•上街区校级期中)已知变量x、y满足下面的关系:则x,y之间用关系式表示为()x…﹣3﹣2﹣1123…y…1 1.53﹣3﹣1.5﹣1…A.y=B.y=﹣C.y=﹣D.y=【考点】待定系数法求反比例函数解析式.【分析】由x、y的关系可求得其满足反比例关系,再由待定系数法即可得出解析式.【解答】解:设此函数的解析式为y=(k≠0),把x=﹣3,y=1,代入得k=﹣3,故x,y之间用关系式表示为y=﹣.故选C.【点评】本题主要考查了用待定系数法求反比例函数的解析式,即图象上点的横纵坐标积为一定值.18.(2014秋•即墨市期末)如图,P是反比例函数图象上的一点,且点P到x轴的距离为3,到y轴的距离为2,则反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】根据题意,首先正确写出点P的坐标,再进一步运用待定系数法求解.【解答】解:根据题意,得点P(﹣2,3).设y=.把P(﹣2,3)代入,得k=﹣6.所以解析式为y=﹣.故选B.【点评】主要考查了用待定系数法求反比例函数的解析式.19.(2014春•任城区校级月考)已知点A(2,3)在双曲线y=上,那么此双曲线的解析式为()A.y=B.y=C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】直接把点A(2,3)代入反比例函数解析式中得到关于k的方程,然后解方程即可.【解答】解:把点A(2,3)代入y=得k=2×3=6,所以反比例函数解析式为y=.故选C.【点评】本题考查来了待定系数法求反比例函数的解析式:先设反比例函数解析式为y=(k≠0),再把反比例函数图象上一个点的坐标代入求出k的值,从而确定其解析式.20.(2014秋•房山区期末)已知点P(﹣3,2)是反比例函数的图象上一点,则此反比例函数的解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】首先把P(﹣3,2)代入反比例函数中,即可算出k的值,进而得到反比例函数解析式.【解答】解:把P(﹣3,2)代入反比例函数中,k=﹣3×2=﹣6,则反比例函数解析式为:y=﹣,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是就是把P(﹣3,2)代入反比例函数中算出k值.21.(2014秋•滨州期末)某反比例函数的图象过点(1,﹣4),则此反比例函数解析式为()A.y=B.y=C.y=﹣D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】设反比例函数的解析式为y=,将点(1,﹣4)代入求得k即可.【解答】解:设反比例函数的解析式为y=,∵图象过(1,﹣4)点,∴k=1×(﹣4)=﹣4,∴反比例函数的解析式为y=﹣.故选C.【点评】本题考查了待定系数法求函数解析式的知识,比较简单,待定系数法求函数的解析式,是中学阶段的重点,同学们要注意掌握.22.(2014春•慈溪市期末)已知反比例函数的图象经过点(2,6),则这个反比例函数的解析式为()A.y=3x B.y=C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】把(2,6)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=2×6=12.则反比例函数的解析式为:y=.故选D.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.23.(2014春•太仓市期中)某物质的密度p(kg/m3)关于其体积V(m3)的函数关系如图所示,那么函数关系式是()A.B.C.D.Vp=3【考点】待定系数法求反比例函数解析式.【分析】根据图象可得物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为反比例函数形式,设p=,再把(6,2)代入函数关系式可得k的值,进而得到反比函数关系式.【解答】解:设物质的密度p(kg/m3)关于其体积V(m3)的函数关系式为p=,∵函数图象经过(6,2),∴k=6×2=12,∴p=,故选:A.【点评】此题主要考查了用待定系数法求反比例函数的解析式,关键是掌握步骤:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.24.(2014秋•龙岗区校级期中)反比例函数图象经过点(﹣2,3),则该反比例函数解析式为()A.y=B.y=C.y=D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】首先设反比例函数解析式为y=,再根据反比例函数图象上点的坐标特点可得k=﹣2×3=﹣6,进而可得反比例函数解析式.【解答】解:设反比例函数解析式为y=,∵反比例函数图象经过点(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,故选:A.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.25.(2014秋•湘乡市校级月考)已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第()象限.A.一B.二C.三D.四【考点】待定系数法求反比例函数解析式;反比例函数的性质.【分析】根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx﹣k不经过的象限.【解答】解:∵反比例函数y=的图象在一、三象限,∴k>0,∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.故选B.【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.26.(2013•崇左)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限【考点】待定系数法求反比例函数解析式;反比例函数的性质.【分析】由反比例函数的图象经过点(m,3m),其中m≠0,将x=m,y=3m代入反比例解析式中表示出k,根据m不为0,得到k恒大于0,利用反比例函数图象的性质得到此反比例函数图象在第一、三象限.【解答】解:∵反比例函数的图象经过点(m,3m),m≠0,∴将x=m,y=3m代入反比例解析式得:3m=,∴k=3m2>0,则反比例y=图象过第一、三象限.故选A【点评】此题考查了利用待定系数法求反比例函数解析式,以及反比例函数的性质,熟练掌握待定系数法是解本题的关键.27.(2013•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.【解答】解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.28.(2013•本溪)如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x 轴的正半轴上,连接OB,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC 边交于点E,点E的横坐标是4,则k的值是()A.1B.2C.3D.4【考点】待定系数法求反比例函数解析式.【分析】首先根据E点横坐标得出D点横坐标,再利用AB=2BC,得出D点纵坐标,进而得出k的值.【解答】解:∵在矩形OABC中,AB=2BC,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,∴D点横坐标为:2,AB=OC=4,BC=AB=2,∴D 点纵坐标为:1,∴k=xy=1×2=2.故选:B .【点评】此题主要考查了点的坐标性质以及k 与点的坐标性质,得出D 点坐标是解题关键.29.(2013•抚顺)如图,等边△OAB 的边OB 在x 轴的负半轴上,双曲线过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为()A .B .C .D .【考点】待定系数法求反比例函数解析式;等边三角形的性质.【分析】如图,过点C 作CD ⊥OB 于点D .根据等边三角形的性质、中点的定义可以求得点C 的坐标,然后把点C 的坐标代入双曲线方程,列出关于系数k 的方程,通过解该方程即可求得k 的值.【解答】解:如图,过点C 作CD ⊥OB 于点D .∵△OAB 是等边三角形,该等边三角形的边长是4,∴OA=4,∠COD=60°,又∵点C 是边OA 的中点,∴OC=2,∴OD=OC •cos60°=2×=1,CD=OC •sin60°=2×=.∴C (﹣1,).则=,解得,k=﹣,∴该双曲线的表达式为.故选B .【点评】本题考查了待定系数法求反比例函数解析式,等边三角形的性质.解题的关键是求得点C的坐标.30.(2013•来宾)已知反比例函数的图象经过点(2,﹣1),则它的解析式是()A.y=﹣2x B.y=2x C.D.【考点】待定系数法求反比例函数解析式.【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵函数经过点P(2,﹣1),∴k=2×(﹣1)=﹣2,∴反比例函数解析式为y=﹣.故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,用待定系数法求反比例函数的解析式,是中学阶段的重点.1.(2013•长安区模拟)若反比例函数y=的图象过(﹣1,2),则一次函数y=﹣2x﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】待定系数法求反比例函数解析式;一次函数图象与系数的关系.【分析】利用待定系数法求得k值后,再根据一次函数y=﹣2x﹣k中的﹣2、﹣k的符号判定该直线所经过的象限.【解答】解:∵反比例函数y=的图象过(﹣1,2),∴k=xy=﹣1×2=﹣2;∴一次函数y=﹣2x﹣K的解析式为y=﹣2x+2;∵﹣2<0,2>0,∴直线y=﹣2x+2的图象经过第第一、二、四象限,∴该直线不经过第三象限;故选C.【点评】本题考查了待定系数法求反比例函数解析式、一次函数图象与系数的关系.直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.(2013•长海县模拟)如图,过原点O的直线与反比例函数的图象相交于点A、B,根据图中提供的信息可知,这个反比例函数的解析式为()A.y=3x B.y=﹣3x C.D.【考点】待定系数法求反比例函数解析式.【分析】根据中心对称的性质求出A点的坐标,再用待定系数法求函数解析式.【解答】解:因为A、B是反比例函数和正比例函数的交点,所以A、B关于原点对称,由图可知,A点坐标为(1,3),设反比例函数解析式为y=,将(1,3)代入解析式得:k=1×3=3,可得函数解析式为y=.故选C.【点评】从图中观察出A、B两点关于原点对称是解题的关键.另外对待定系数法因该有正确的认识:先设出某个未知的系数,然后根据已知条件求出未知系数的方法叫待定系数法.3.(2013•大丰市一模)一个反比例函数的图象经过点(2,3),则这个反比例函数的解析式为()A.y=6x B.C.y=x+1D.【考点】待定系数法求反比例函数解析式.【分析】根据题意设该反比例函数为y=(k≠0),然后把点(2,3)代入该函数式来求k的值.【解答】解:设该反比例函数为y=(k≠0),则k=xy.∵该反比例函数的图象经过点(2,3),∴k=2×3=6,∴该反比例函数的解析式为:y=.故选D.【点评】本题考查了待定系数法求反比例函数解析式.设反比例函数解析式y=时,不要漏掉限制性条件k ≠0,这是易错的地方.4.(2013秋•余姚市期末)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A .y=2xB .C .D .【考点】待定系数法求反比例函数解析式.【分析】把(1,﹣2)代入函数y=中可先求出k 的值,那么就可求出函数解析式.【解答】解:由题意知,k=1×(﹣2)=﹣2.则反比例函数的解析式为:y=﹣.故选:B .【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.5.(2013春•张家港市期末)如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (﹣,5),D 是AB 边上的点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是()A .y=B .y=C .y=﹣D .y=﹣【考点】待定系数法求反比例函数解析式;矩形的性质;相似三角形的判定与性质.【分析】先作EF ⊥CO ,垂足为点F ,连接OD ,构造全等三角形,再由勾股定理和相似三角形的性质,求出E 点坐标,利用待定系数法解答即可.【解答】解:作EF ⊥CO ,垂足为点F ,连接OD .因为点B 的坐标为(﹣,5),所以AB=,AO=5,根据折叠的性质,OE=OA=5,根据勾股定理,OB==,∵△OEF ∽△OBC ,∴=,即=,解得:EF=3,又∵点A的坐标为(0,5),∴OF===4,∴E点坐标为(﹣4,3),设解析式为y=,将(﹣4,3)代入解析式得k=﹣4×3=﹣12,∴解析式为y=﹣.故选D.【点评】此题是一道综合性较强的题目,将翻折变换和用待定系数法求函数解析式结合起来,有一定难度.6.(2013春•保亭县期末)已知反比例函数的图象经过点(﹣1,2),则它的解析式是()A.y=B.y=﹣C.y=D.y=【考点】待定系数法求反比例函数解析式.【分析】首先设出函数解析式y=,再利用待定系数法把(﹣1,2)代入解析式可得k的值,进而得到解析式.【解答】解:设函数解析式为y=,∵反比例函数的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,∴函数解析式为y=﹣.故选:B.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.7.(2013春•微山县期末)对于函数y=,若x=2时,y=﹣3,则这个函数的解析式是()A.y=B.y=C.y=﹣D.y=﹣【考点】待定系数法求反比例函数解析式.【分析】设反比例函数的解析式y=,再根据题意求得k,即可求得反比例函数的解析式.【解答】解:设反比例函数的解析式y=,把x=2时,y=﹣3,代入解析式y=,解得k=﹣6,则反比例函数的解析式是y=,故选:C.【点评】本题考查了待定系数法确定反比例函数的解析式,反比例函数中只有一个待定系数,因此只需知道经过的一个点的坐标或一对x、y的值.8.(2013春•高邮市期末)若反比例函数的图象经过点(﹣1,2),则它的解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】首先设出反比例函数解析式,再把(﹣1,2)代入解析式可得k的值,进而得到答案.【解答】解:设反比例函数解析式为y=,∵反比例函数的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,故选:B.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.9.(2013秋•江山市校级期中)已知反比例函数图象经过点(3,﹣2),则反比例函数解析式是()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】把(3,﹣2)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=﹣2×3=﹣6.则反比例函数的解析式为:y=﹣.故选A.【点评】本题考查了待定系数法求反比例函数的解析式,属于中招考试的热点题型,同学们要熟练掌握.。

01-第六章1反比例函数

01-第六章1反比例函数

解析 ∵24= 1 xy,∴xy=48,即y= 48 (x>0),
2
x
∴y是x的反比例函数.
当x=6时,y= 48 =8.
6
因此斜边长= 62 82 =10(m).
答:两条直角边长x与y之间的关系式是y= 48 (x>0),y是x的反比例函数,
x
当x=6时,另一条直角边长为8 m,斜边长为10 m.
型,最后解决实际问题. (2)一定要在列出的关系式后面注明自变量的取值范围.
1 反比例函数
栏目索引
例2 由欧姆定律可知,电压不变时,电流强度I与电阻R成反比例,已知电 压不变,电阻R=12.5欧姆时,电流强度I=0.2安培. (1)求I与R的函数表达式; (2)当R=5欧姆时,求电流强度.
分析 因为I与R成反比例,所以可设I=U R (U≠0),解析式中只有U一个待定 系数,所以只要将R=12.5,I=0.2这一组数据代入I=U (U≠0)即可.
每小时注水量h(单位:m3)的函数关系式为
,自变量的取值范围

.
答案 t= 60 ;h≥6
h
解析 依题意可得t= 60 .
h
∵要在10 h内注满水,∴ 60 ≤10,解得h≥6.
h
1 反比例函数
栏目索引
7.用反比例函数表达式表示下列问题中两个变量间的对应关系: (1)小明完成100 m赛跑时,所用时间t(s)随他跑步的平均速度v(m/s)的变 化而变化; (2)一个密闭容器内有0.5 kg气体,气体的密度ρ随容器体积V的变化而变化; (3)压力为600 N时,压强p随受力面积S的变化而变化; (4)三角形的面积为20,一边上的高h随这一边的长a的变化而变化.
x

反比例函数整章知识点复习

反比例函数整章知识点复习
在经济学中,反比例函数可用于描述商品的需求量 与价格之间的关系,即需求法则。
在生物学中,反比例函数可用于描述种群数量与资 源之间的关系,如食物与捕食者数量等。
03
反比例函数的图像与性质
反比例函数的图像绘制
通过选择适当的x值,计算对应的y值 ,在坐标系上标出对应的点,连接各 点绘制出反比例函数的图像。
100%
经济问题
在经济学中,反比例函数可以用 来描述成本与产量的关系、供需 关系等。
80%
生态问题
在生态学中,反比例函数可以用 来描述种群数量与环境容量的关 系等。
05
反比例函数习题解析
基础题目解析
01
02
03
题目
已知点$P(x, y)$在反比例 函数$y = frac{k}{x}$的图 象上,若$x$与$y$的乘积 为$2k$,则$k$的值为 ____.
竞赛题目解析
01
k、a、b 的值;
02
k、a、b 的值;
03
k、a、b 的值;
04
k、a、b 的值;
THANK YOU
感谢聆听
反比例函数的计算方法
01
对于反比例函数
$f(x)
=
frac{k}{x}$,求值时只需将 $x$ 值
代入函数中即可。
02
若需要求 $f(x)$ 的导数或积分, 则需使用相应的微积分法则进行 计算。
反比例函数在实际问题中的应用
在物理学中,反比例函数可用于描述两个物理量之 间的反比关系,如电荷与电场强度、电流与电阻等 。
反比例函数的图像
图像特点
双曲线,分布在两个象限内,随着k的正负变化而分别分布在第一 、三象限或第二、四象限。

九年级数学上册专训1求反比例函数表达式的六种方法

九年级数学上册专训1求反比例函数表达式的六种方法

2020-2021学年
专训1 求反比例函数表达式的六种方法
名师点金:求反比例函数的表达式,关键是确定比例系数k的值.求比例系数k的值,可以根据反比例函数的定义及性质列方程、不等式求解,可以根据图象中点的坐标求解,可以直接根据数量关系列表达式,也可以利用待定系数法求解,还可以利用比例系数k的几何意义求解.其中待定系数法是常用方法.
利用反比例函数的定义求表达式
1.若y=(m+3)xm2-10是反比例函数,试求其函数表达式.
利用反比例函数的性质求表达式
2.已知函数y=(n+3)xn2+2n-9是反比例函数,且其图象所在的每一个象限内,y随x的增大而减小,求此函数的表达式.
利用反比例函数的图象求表达式
3.【2020·广安】如图,一次函数的图象与x轴、y轴分别相交于A,B两点,且与反比例函数y =(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.求:
(1)点A的坐标及一次函数表达式;
(2)点C的坐标及反比例函数表达式.
(第3题)
利用待定系数法求表达式
4.已知y1与x成正比例,y2与x成反比例,若函数y=y1+y2的图象经过点(1,2),,求y与x的函数表达式.
利用图形的面积求表达式
5.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C,D两点在x轴上,若矩
形ABCD的面积为6,求B点所在双曲线对应的函数表达式.
(第5题)。

反比例函数的坐标与解析式问题(提优)

反比例函数的坐标与解析式问题(提优)

要点一、反比例函数的定义一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.要点诠释:(1)在y=kx 中,自变量是分式kx的分母,当x=0时,分式kx无意义,所以自变量x的取值范围是x≠0;函数y的取值范围是y≠0.故函数图象与x轴、y轴无交点.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中y=kx,只有一个待定系数k,因此只需要知道一对x,y的对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为:y=kx(k≠0);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数k的值;(4)把求得的k值代回所设的函数关系式y=kx中.要点三、反比例函数的图象和性质反比例函数的坐标与解析式问题1.反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x轴、y轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点(a,b)在反比例函数y=kx的图象上,则点(-a,-b)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数y=kx(k为常数,k≠0)中,由于x≠0且y≠0,所以两个分支都无限接近但永远不能达到x轴和y轴.2.反比例函数的性质(1)如图1,当k>0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y值随x值的增大而减小.(2)如图2,当k<0时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y值随x值的增大而增大.要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k的符号.例1.如图所示,已知A(12,y1),B(2,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x正半轴上运动,(1)当线段AP与线段BP之和达到最小时,点P的坐标是;(2)当线段AP与线段BP之差达到最大时,点P的坐标是;1.如图,点A(m,6),B(n,1)在反比例函数y=kx(x>0)的图象上,且AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)k的值为;(2)在y轴上找一点Q,使QB﹣QA最大,则点Q的坐标为.例2.如图所示,已知菱形OABC,点C在x轴上,直线y=x经过点A,菱形OABC的面积是2.若反比例函数的图象经过点B,则此反比例函数表达式为()A.y=1x B.y=2xC.y=21x+D.y=212x+1.如图,直线y=43x与双曲线y=kx(x>0)交于点A,将直线y=43x向下平移个6单位后,与双曲线y=kx(x>0)交于点B,与x轴交于点C,则C点的坐标为;若OABC=2,则k=.例3.如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.1.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为B.反比例函数y=kx上(x<0)的图象经过点C,交AB于点D已知AB=8.AC=5,B点的横坐标为m.(1)当m=﹣6时,求反比例函数的表达式;(2)若AD=AC,求m的值.1.如图,在平面直角坐标系中,直线y=2x与反比例函数y=2x(x>0)的图象交于点A.将直线y=2x沿y轴向上平移m个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则m 的值为()A.2B.32C.3D.832.如图,直线483y x=-+与x轴,y轴分别交于A,B两点,将线段AB沿x轴方向向右平移5个单位长度得到线段CD,与双曲线y=kx(k>0)交于点N,点M在线段AB上,连接MN,BC,若四边形BMNC是菱形,则k的值为()A.32B.24C.12D.83.如图,在平面直角坐标系中,AB5A在y轴正半轴上,点B的坐标为(﹣1,﹣1).把线段AB沿垂直于AB的方向平移,当点A的对应点A'在函数y=kx(k<0,x<0)的图象上时,点B的对应点B'恰好在x轴负半轴上,则k的值为.4.如图,在平行四边形OABC中,OC=22,∠AOC=45°,点A在x轴上,点D是AB的中点,反比例函数y=kx(k>0,x>0)的图象经过C、D两点.则k的值为_______;点D的坐标为________.5.如图,矩形ABCD的两边BC=4,CD=6,E是CD的中点,反比例函数y=kx的图象经过点E,与AB交于点F.(1)若点B的坐标为(﹣6,0),求k的值;(2)连接AE,若AF=AE,求反比例函数的表达式.6.如图,A(m,4)、B(n,2)在反比例函数y=kx的图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=3.(1)求反比例函数的解析式;(2)连接AB,在线段CD上求一点E,使得△ABE的面积为5;(3)在x轴上是否存在一点P,使得△ABP的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,四边形ABCD是菱形,点A(0,4),B(﹣3,0)反比例函数y=kx(k为常数,k≠0,x>0)的图象经过点D.(1)填空:k=.(2)已知在y=kx的图象上有一点N,y轴上有一点M,且四边形ABMN是平行四边形,求点M的坐标.8.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=kx的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.【经典例题1】(1)P(1.7,0);(2)P(5 2,0)【解析】解:将A(12,y1),B(2,y2)代入反比例函数y=1x中,得y1=2,y2=1 2,∴A (,2),B(2,1 2).作点B关于x轴的对称点B′(2,-1 2),连AB′交x轴于点P,点P即为所求.设直线AB′为y=kx+b(k≠0),可得5 =3176kb⎧⎪⎪⎨⎪=⎪⎩-.∴直线AB′解析式为51736y x+=-.令y=0,解得,x=1.7.则P(1.7,0);(2)延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大.设直线AB的解析式是y=ax+c(a≠0),解得=152ac⎧⎪⎨=⎪⎩-.∴直线AB的解析式是y=-x+5 2.当y=0时,x=52,即P(52,0).【举一反三1】【解析】解:(1)点A(m,6),B(n,1)在反比例函数y=kx(x>0)的图象上,∴6m=n,∵DC=5,∴n ﹣m =5,解得:m =1,n =6,∴A (1,6),B (6,1)把A (1,6)代入y =k x中,解得:k =6,故答案为6;(2)连接AB 交y 轴于Q ,此时BQ ﹣AQ =AB ,根据两边之差小于第三边,则AB 就是BQ ﹣AQ 最大值;设直线AB 的解析式为y =mx +n,∴=661m n m n +⎧⎨+=⎩,解得=17m n ⎧⎨=⎩-,∴直线AB 的解析式为y =﹣x +7,∴Q (0,7).故答案为(0,7).【经典例题2】【解析】解:∵直线y =x 过点A ,∴设A (a ,a ).∴OA 2=a 2+a 2=2a 2,即AOa .∵四边形OABC 是菱形,∴AO =OC =CB =ABa .∵菱形OABC 的面积是,a •a,得a =1.∴AB,A (1,1)∴B+1,1).设反比例函数解析式为y =k x (k ≠0),k +1.∴反比例函数解析式为y =21x.【举一反三1】(92,0);12【解析】解:据题意可知,直线BC 解析式为y =43x -6,令y =0,得43x -6=0,∴C 点坐标(92,0).∵直线y =43x 与双曲线y =k x (x >0)交于点A ,∴A (32,233).又∵y =43x -6与y =k x (x >0)交于点B ,且OA BC =2,∴B (9324+,33).将B 点坐标代入y =k x ,得(924+)3=k ,解得k =12.【经典例题3】【解析】解:(1)∵y =k x经过点D (6,1),∴6k =1,解得k =6.(2)设点C 到BD 的距离为h ,∵D (6,1),DB ⊥y 轴,∴BD =6.∴S △BCD =12×6•h =12,解得h =4.∵点C 是双曲线第三象限上的动点,∴点C 纵坐标为1-4=-3.∴6x=-3,解得x =-2.∴C (-2,-3).设直线CD的解析式为y=ax+b,解得1=22 ab⎧⎪⎨⎪=-⎩.∴直线CD的解析式为y=12x-2.(3)解:AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,∴点D的坐标为(6,1),设点C的坐标为(c,6c ).∴A(c,0),B(0,1).设直线AB的解析式为y=mx+n,解得1 =1mc n⎧⎪⎨⎪=⎩-.∴直线AB的解析式为y=1c-x+1.设直线CD的解析式为y=ex+f,解得1=6 eccfc⎧⎪⎪⎨+⎪=⎪⎩-.∴直线CD的解析式为y=1c-x+6cc+.∵AB,CD的斜率都为1 c-,∴AB∥CD.【举一反三1】【解析】解:(1)如图,作CE⊥AB,垂足为E,∵AC=BC=5,CE⊥AB,AB=8,∴AE=BE=4,在Rt△BCE中,BC=5,BE=4,∴CE==3,∵m=﹣6,∴C点的坐标为:(﹣3,4),∵点C在反比例函数y=kx的图象上,∴k=xy=﹣3×4=﹣12,∴反比例函数的表达式为y=y=12 x -;(2)∵点B的横坐标为m,AD=AC=5,∴BD=AB﹣AD=8﹣5=3,∴D(m,3),C(m+3,4),∵C,D两点都在反比例函数y=kx上,∴3m=4(m+3),∴m=﹣12.【自我检测1】C【解析】解:∵直线y=2x与反比例函数y=2x(x>0)的图象交于点A.∴解2x=2x求得x=±1,∴A的横坐标为1,∵OA=2BC,∴C的横坐标为1 2,把x=12代入y=2x得,y=4,∴C(12,4),∵将直线y=2x沿y轴向上平移m个单位长度,得到直线y=2x+m,∴把C的坐标代入得4=1+m,求得m=3,故选:C.【自我检测2】A【解析】解:对于483y x=-+,令x=0,则y=8,故点B的坐标为(0,8),由题意得:MN=5,∵四边形MNB′B是菱形,则MB=MN=5,设点M坐标为(m,48 3x-+),则MB2=m2+(483m-+﹣8)2=52,解得m=±3,(舍去﹣3),∴点M的坐标为(3,4)∴点N的坐标为(8,4),将点N的坐标代入y=kx得k=32,故选:A.【自我检测3】﹣4【解析】解:设点A坐标为(0,a),则AB=,解得a=1或a=﹣3(舍).∴点A坐标为(0,1),作BM⊥y轴于M,BN⊥x轴于N,∵B的坐标为(﹣1,﹣1).∴BM=BN=1,AM=1+1=2,∵∠ABN+∠B′BN=90°=∠ABN+∠ABM,∴∠B′BN=∠ABM,在△B′BN和△ABM中,,∴△B′BN≌△ABM(ASA),∴BN=AM=2,∴B'坐标为(﹣3,0),即点B(﹣1,﹣1)向左移动2个单位,向上移动1个单位得到B',∴将A(0,1)向左移动2个单位,向上移动1个单位得到A'(﹣2,2).∴k=﹣2×2=﹣4.故答案为:﹣4.【自我检测4】4;(4,1).【解析】解:(1)过C作CE⊥OA于E,∵OC=22,∠AOC=45°,∴OE=OC=2,∴C(2,2),∵反比例函数y=kx(k>0,x>0)的图象经过C,∴k=2×2=4,(2)作DF⊥OA于F,由平行四边形OABC可知:BC∥OA,∴B的纵坐标等于C的纵坐标2,∴DF=1,∵反比例函数y=kx(k>0,x>0)的图象经过D,∴1=4 x,∴x=4,∴D(4,1).【自我检测5】【解析】解:(1)点B 坐标为(﹣6,0),∴OB =6,∵BC =4,∴OC =2,∵CD =6,E 是CD 的中点,∴DE =CE =3,∴E (﹣2,3),∵反比例函数y =k x的图象经过点E ,∴k =﹣6;(2)如图,连接AE ,∵四边形ABCD 为矩形,∴AD =BC =4,∵DE =12CD =3,根据勾股定理,得AE 225AD DE +=,∵AF =AE =5,∴BF =AB ﹣AF =1,设点E点的坐标为(a,3)则点F的坐标为(a﹣4,1),∵E,F两点在函数y=kx的图象上,∴a﹣4=3a,解得a=﹣2,∴E(﹣2,3)∴k=﹣2×3=﹣6,∴反比例函数的表达式为y=6 x .【自我检测6】【解答】解:(1)∵A(m,4)、B(n,2)在反比例函数y=kx的图象上,∴k=4m=2n,即n=2m,∵DC=3,∴n﹣m=3,∴m=3,n=6,∴点A(3,4),点B(6,2),∴k=3×4=12,∴反比例函数的表达式为y=12 x;(2)设点E(x,0),∴DE=x﹣3,CE=6﹣x,AD=4,BC=2,∵S△ABE=S四边形ABCD﹣S△ADE﹣S△BCE=12×6×3﹣12×4(x﹣3)﹣12(6﹣x)×2=﹣x+9=5,∴x=4,∴点E(4,0);(3)∵△ABP的周长=AB+AP+BP,又∵AB是定值,∴当AP+BP的值最小时,△ABP的周长最小,如图,作点B关于x轴的对称点F(6,﹣2),连接AF交x轴于点P,此时PA+PB有最小值,设直线AF的解析式为y=kx+b,,解得,∴直线AF的解析式为y=﹣2x+10,当y=0时,x=5,∴点P(5,0).【自我检测7】【解析】解:(1)∵点A(0,4),B(﹣3,0),∴OA=4,OB=3,∴AB=5,∵四边形ABCD是菱形,∴AD=5,即点D的横坐标是5,∴点D的坐标为(5,4),∴4=,得k=20,故答案为:20;(2)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN可以看作是BM经过平移得到的,首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得点N的纵坐标为y=,∴M点的纵坐标为﹣4=,∴M点的坐标为(0,).【自我检测8】【解析】解:(1)如图,延长BC交y轴于点E,∵C(﹣4,3),∴CE=4,OE=3,∴OC==5,∴BC=5,∴B(﹣9,3),∵顶点B在反比例函数y=kx的图象上,∴k=﹣9×3=﹣27;(2)∵OA=AB,∴∠ABO=∠AOB,又∵∠DBO=90°,∴∠ADB=∠ABD,∴AD=AB=5,∴OD=10,∴D(﹣10,0),设直线解BD析式为y=kx+b,∵过D(﹣10,0),B(﹣9,3),∴,解得,直线BD解析式为:y=3x+30.。

反比例函数全章复习与巩固(基础)知识讲解

反比例函数全章复习与巩固(基础)知识讲解

反比例函数全章复习与巩固(基础)责编:常春芳【学习目标】1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式,能判断一个给定函数是否为反比例函数;()0ky k x=≠2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3.能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些性质()0ky k x=≠分析和解决一些简单的实际问题.【知识网络】【要点梳理】【高清课堂406878 反比例函数全章复习 知识要点】要点一、反比例函数的概念一般地,形如ky x =(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量的取值范围是不等于0的一切实数.x 要点诠释:在ky x =中,自变量x 的取值范围是,k y x =()可以写成()的形式,也可以写成的形式.要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定ky x=系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,k x y 、k 从而确定其解析式.要点三、反比例函数的图象和性质1.反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、()0ky k x=≠三象限或第二、四象限.它们关于原点对称,反比例函数的图象与轴、轴都没有交x y 点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点诠释:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①的图象是轴对称图形,对称轴为两条直线;)0(≠=k x ky x y x y -==和②的图象是中心对称图形,对称中心为原点(0,0);)0(≠=k x ky ③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称.xky x k y -==和x y 注:正比例函数与反比例函数,x k y 1=xk y 2=当时,两图象没有交点;当时,两图象必有两个交点,且这021<⋅k k 021>⋅kk 两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质 当时,同号,图象在第一、三象限,且在每个象限内,随的增大而0k >x y 、y x 减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而0k <x y 、y x 增大.(2)若点()在反比例函数ky x =的图象上,则点()也在此图象上,故反比a b ,a b --,例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较 正比例函数反比例函数解析式图 像直线有两个分支组成的曲线(双曲线)位 置,一、三象限;0k >,二、四象限0k <,一、三象限0k >,二、四象限0k <增减性,随的增大而增大0k >y x ,随的增大而减小0k <y x ,在每个象限,随的增大而减小0k >y x ,在每个象限,随的增大而增大0k <y x (4)反比例函数y =中的意义k ①过双曲线x k y =(k ≠0) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k.②过双曲线x k y =(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的k 面积为2k.要点四、应用反比例函数解决实际问题须注意以下几点 1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.【典型例题】类型一、确定反比例函数的解析式1、已知函数是反比例函数,则的值为 .()32k y k x -=+k 【答案】2k =【解析】根据反比例函数概念,=且,可确定的值.3k -1-20k +≠k 【总结升华】反比例函数要满足以下两点:一个是自变量的次数是-1,另一个是自变量的系数不等于0.举一反三:【变式】反比例函数图象经过点(2,3),则的值是( ).5n y x+=n A. B. C. 0D. 12-1-【答案】D ;反比例函数过点(2,3).. 5n y x +=53,12n n +==∴∴类型二、反比例函数的图象及性质2、已知,反比例函数的图象在每个分支中随的增大而减小,试求42my x-=y x 的取值范围.21m -【思路点拨】由反比例函数性质知,当>0时,在每个象限内随的增大而减小,由k y x 此可求出的取值范围,进一步可求出的取值范围.m 21m -【答案与解析】解:由题意得:,解得,420m ->2m <所以,则<3.24m <21m -【总结升华】熟记并能灵活运用反比例函数的性质是解答本题的关键.举一反三:【变式】已知反比例函数,其图象位于第一、第三象限内,则的值可为2k y x-=k ________(写出满足条件的一个的值即可).k 【答案】3(满足>2即可).k 3、在函数(,为常数)的图象上有三点(-3,)、(-2,)、||k y x-=0k ≠k 1y 2y (4,),则函数值的大小关系是( )3y A . B . C . D .123y y y <<321y y y <<231y y y <<312y y y <<【答案】D ;【解析】∵ ||>0,∴ -||<0,∴反比例函数的图象在第二、四象限,且在每一个象限k k 里,随增大而增大,(-3,)、(-2,)在第二象限,(4,)在第四象限,∴ y x 1y 2y 3y 它们的大小关系是:.312y y y <<【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论,本题的点(-3,1y )、(-2,2y )在双曲线的第二象限的分支上,因为-3<-2,所以12y y <,点(4,3y )在第四象限,其函数值小于其他两个函数值.举一反三:【变式1】(2014春•海口期中)在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( ).A. B.C. D.【答案】C ;提示:分两种情况讨论:①当k >0时,y=kx+3与y 轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k <0时,y=kx+3与y 轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C .【高清课堂406878 反比例函数全章复习 例7】【变式2】已知,且则函数与在同一坐标>b a ,0,0,0≠+≠≠b a b a b ax y +=xba y +=系中的图象不可能是( ) .【答案】B ;提示:因为从B 的图像上分析,对于直线来说是,则,对于反比例函<0,0a b <0a b +<数来说,,所以相互之间是矛盾的,不可能存在这样的图形.0a b +>4、如图所示,P 是反比例函数图象上一点,若图中阴影部分的面积是2,求此ky x=反比例函数的关系式.【思路点拨】要求函数关系式,必须先求出的值,P 点既在函数的图象上又是矩形的顶k 点,也就是说,P 点的横、纵坐标的绝对值是矩形的边长.【答案与解析】解:设P 点的坐标为(,),由图可知,P 点在第二象限,∴ <0,>0.x y x y ∴ 图中阴影部分矩形的长、宽分别为-、.x y ∵ 矩形的面积为2,∴ -=2,∴ =-2.xy xy ∵ =,∴ =-2.xy k k ∴ 此反比例函数的关系式是.2y x=-【总结升华】此类题目,要充分利用过双曲线上任意一点作轴、轴的垂线所得矩形面x y 积为||这一条件,进行坐标、线段、面积间的转换.k 举一反三:【变式】如图,过反比例函数的图象上任意两点A 、B ,分别作轴的垂线,)(0x x2y >=x 垂足为,连接OA ,OB ,与OB 的交点为P ,记△AOP 与梯形的面积分别''B A 、'AA B B PA ''为,试比较的大小.21S S 、21S S 、【答案】解:∵,AOP AOA A OP S S S ''∆∆∆=-OB A OPA PBB S B S S ''''∆∆=-梯形 且,AOA 112122A A S x y '∆==⨯=OB 112122B B B S x y '∆==⨯=∴.21S S =类型三、反比例函数与一次函数综合5、已知反比例函数和一次函数的图象的一个交点坐标是(-3,ky x=y mx n =+4),且一次函数的图象与轴的交点到原点的距离为5,分别确定反比例函数和一次函数x 的表达式.【思路点拨】因为点(-3,4)是反比例函数与一次函数的图象的一个交ky x=y mx n =+点,所以把(-3,4)代入中即可求出反比例函数的表达式.欲求一次函数ky x=的表达式,有两个待定未知数,已知一个点(-3,4),只需再求一个一y mx n =+m n ,次函数图象上的点即可.由已知一次函数图象与轴的交点到原点的距离是5,则这个交x 点坐标为(-5,0)或(5,0),分类讨论即可求得一次函数的解析式.【答案与解析】解:因为函数的图象经过点(-3,4),ky x= 所以,所以=-12.43k=-k 所以反比例函数的表达式是.12y x=-由题意可知,一次函数的图象与轴的交点坐标为(5,0)或(-5,0),则y mx n =+x 分两种情况讨论:当直线经过点(-3,4)和(5,0)时,y mx n =+有 解得43,05,m n m n =-+⎧⎨=+⎩1,25.2m n ⎧=-⎪⎪⎨⎪=⎪⎩所以.1522y x =-+当直线经过点(-3,4)和(-5,0)时,y mx n =+有 解得 所以.43,05,m n m n =-+⎧⎨=-+⎩2,10.m n =⎧⎨=⎩210y x =+所以所求反比例函数的表达式为,一次函数的表达式为或12y x =-1522y x =-+.210y x =+【总结升华】本题考查待定系数法求函数解析式,解答本题时要注意分两种情况讨论,不能漏解.举一反三:【变式】如图所示,A 、B 两点在函数的图象上.(0)my x x=>(1)求的值及直线AB 的解析式;m (2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.【答案】解:(1)由图象可知,函数的图象经过点A(1,6),可得=6.(0)my x x=>m 设直线AB 的解析式为.y kx b =+∵ A(1,6),B(6,1)两点在函数的图象上,y kx b =+∴ 解得6,61,k b k b +=⎧⎨+=⎩1,7.k b =-⎧⎨=⎩∴ 直线AB 的解析式为.7y x =-+(2)题图中阴影部分(不包括边界)所含格点的个数是3.类型四、反比例函数应用6、(2015•兴化市三模)一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v ≤120.(1)直接写出v 与t 的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A 、B ,它们相距200千米,当客车进入B 加油站时,货车恰好进入A 加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.【答案与解析】解:(1)设函数关系式为v=,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.【总结升华】解决反比例函数与实际问题相结合的问题,要理解问题的实际意义及与之相关的数学知识.反比例函数是解决现实世界反比例关系的有力工具.。

求反比例函数表达式的六种方法

求反比例函数表达式的六种方法

故yD′=6,∴D′(3,6). ③如图,当四边形ACD″B为平行四边形时,AC=BD″且 AC∥BD″.∵A(3,4),B(6,2),C(6,0). ∴xD″-xB=xC-xA即xD″-6=6-3,故xD″=9. yD″-yB=yC-yA即yD″-2=0-4,故yD″=-2. ∴D″(9,-2).综上所述,符合条件的点D的坐标是(3, 2)或(3,6)或(9,-2).
∴22+42+(x-2)2+42=x2,解得 x=10.∴E(5,4). ∵反比例函数 y=kx(k>0,x>0)的图象经过点 E, ∴k=5×4=20. 【答案】B
6.某运输队要运300 t物资到江边防洪. (1)运输时间t(单位:h)与运输速度v(单位:t/h)之间有怎 样的函数关系? 解:由已知得 vt=300. ∴t 与 v 之间的函数表达式为 t=30v0(v>0).
(2)运了一半时,接到防洪指挥部命令,剩下的物资要在 2 h之内运到江边,则运输速度至少为多少? 解:运了一半物资后还剩 300×1-12=150(t), 150÷2=75(t/h). ∵剩下的物资要在 2 h 之内运到江边,∴运输速度 至少为 75 t/h.
解:把点 A(3,4)的坐标代入 y=kx(x>0),得 k=xy= 3×4=12,故该反比例函数的表达式为 y=1x2(x>0). ∵点 C(6,0),BC⊥x 轴,∴把 x=6 代入 y=1x2, 得 y=162=2.则 B(6,2). 综上所述,k 的值是 12,B 点的坐标是(6,2)为平行四边形,试写出符合条件的所有 D 点的坐标.
人教版 七年级上
第26章 反比例函数
求反比例函数表达式的六种方法
习题链接
提示:点击 进入习题
1 见习题
2 见习题

数学反比例函数知识点

数学反比例函数知识点

数学反比例函数知识点反比例函数是初中数学中的一个重要知识点。

你知道学好反比例函数的诀窍吗?在学习反比例函数过程中,只要理清知识点,理解解题思路,数形结合理解透彻反比例函数,反比例函数的解题就会容易轻松很多,那么接下来给大家分享一些关于数学反比例函数知识,希望对大家有所帮助。

数学反比例函数知识反比例函数主要考察三个方面1)反比例函数图像的性质;2)求反比例函数解析式;3)K的几何性质的应用。

以上几点考察基本上都是和一次函数,相似,全等,方程,圆,三角函数,勾股定理等知识相结合考察,单一命题的机会比较少同时题目也比较简单。

本专题主要针对B卷类近几年考到的填空题做出总结,让同学们能够从多角度,多方位的训练。

反比例函数的定义如果两个变量x,y之间的对应关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

y是x的反比例函数?函数表达式为y=k/x或y=kxˉ1或xy=k(k为常数,k≠0)。

反比例专题我们总结出六类常考题型:1)由反比例函数k的几何意义转化出三角形或梯形之间面积的等量关系题型。

2)由反比例函数和一次函数相交形成的线段等量关系题型。

3)由反比例函数和一次函数相交求交点坐标的题型。

4)反比例函数与相似三角形综合考察求k或线段比题型。

5)反比例函数图像的分布与k之间的关系题型6)反比例函数与三角函数,方程(组)等有关的问题。

数学反比例函数知识2反比例性质1规律:反比函数与一次函数(与正比例函数相交,交点关于原点对称)相交,求线段数量关系时,切记“原点O到两交点的距离是相等的”若给出反比函数解析式,那么最终求得的结果的过程肯定要转化成关于“k”的几何意义。

2规律:一次函数与反比函数相交且两函数解析式都未知,此时一次函数所在直线与交点分别于x轴,y轴做垂线的交点所连接的线段是相互平行的,同时一次函数与反比函数的交点到一次函数与x轴,y轴的交点的距离是相等的。

3规律:题目中给出线段比例和四边形的面积求k 问题,利用同底等高三角形面积与高之间的关系,面积与k之间的关系。

专题20反比例函数(3个知识点4种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。

2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。

【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k=,或表示为kyx=,其中k是不等于零的常数.一般地,形如kyx=(k为常数,0k≠)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.注意:(1)在kyx=中,自变量x是分式kx的分母,当0x=时,分式kx无意义,所以自变量x的取值范围是,函数y的取值范围是0y≠.故函数图象与x轴、y轴无交点.(2)kyx=()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)kyx=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y是x的反比例函数的是()A.xy=1B.y=C.y=D.y=【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A.y=3x﹣1B.y=﹣C.xy=5D.y=知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y=y1-y2,y1与x成反比例,y=5;当x=1时,y=-1;求当x=-1时,y的值.知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.03.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0题型2.反比例关系的应用k15.(2023春·上海浦东新·九年级校考阶段练习)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,16.(2022秋·河北保定·九年级校联考阶段练习)写出下列函数关系式,指出其中的正比例函数和反比例函题型4.应用几何图形中的数量关系建立反比例函数关系19.(2022春·九年级课时练习)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.20.如图,在矩形ABCD 中,点P 是BC 边上一动点,连接AP ,过点D 作DE AP ⊥于点E.设AP x =,DE y =,若6AB =,8BC =,试求y 与x 之间的函数关系式.【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【方法四】成果评定法一、单选题A.①②B.9.(2022春·九年级课时练习)下列选项中,能写成反比例函数的是(A.人的体重和身高B.正三角形的边长和面积二、填空题18.(2021春·全国·九年级专题练习)已知反比例函数的解析式为三、解答题19.(2023秋·九年级课时练习)下列例系数.。

新人教版九年级下册第二十六章“反比例函数”教材分析简介

新人教版九年级下册第二十六章“反比例函数”教材分析简介

新人教版九年级下册第二十六章“反比例函数”教材分析简介预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档