传热学教学课件对流换热计算
合集下载
传热学第二章对流换热
在y=δt时,流体温度接近主流温度
tf.流体由tw变化到接近tf的这一薄层 即为热边界层,δt为热边界层的厚
δtt
度。对流换热主要发生在热边界层
tw
内。
传热学第二律
一、边界层概念
在层流边界层中,热量的传递只能依靠流体层与层间的 导热作用,此时对流换热较弱。在紊流边界层中,层流底 层的热量传递方式仍是导热,但在层流底层以外存在着对 流,因而对流换热较强。所以对流换热实际上是包括流体 层流的导热和层流以外的对流共同作用的综合传热过程。 若同一流体在相同的温度下流过同一壁面时,则层流底层 越薄,对流换热越强烈。
一、沸腾换热
图中B点之前的过程, Δt=1-5℃,热流通量较低, 即使壁面上产生气泡也不能脱离上浮,蒸发只能在液 体表面进行。这时的沸腾称为对流沸腾。其换热服从 单相对流换热规律。
图中B—C段,Δt=5-25℃,温差增大,有大量气 泡在壁面上不断生成、长大、跃离。由于气泡的迅速 生长和激烈运动,强烈扰动周围液体,使换热系数α 和热流通量都急剧增大,在一定的Δt下α达到峰值。 因为在B—C段的换热主要取决于气泡的生成和运动, 故称泡态沸腾或核态沸腾。一般工业设备中的沸腾都 维持在泡态沸腾范围内。
传热学第二章对流换热
第二章 对流换热
1 对流换热分析及牛顿冷却定律
2 相似理论及其在对流换热中的应用
3 对流换热计算 4 沸腾与凝结换热
传热学第二章对流换热
第二章 对流换热
对流是指在流体各部分之发生相对位移时, 热量由一处传递到另一处的现象,这种现象只能 发生在流体内部。但是,在工程中通常遇到的并 不是只在流体内部进行的纯粹的热对流,而是在 流体与固体壁之间发生的对流换热。所谓对流换 热(又称放热)是指流体与固体壁直接接触而又 有相对运动时的热量传递过程。在这一过程中, 不仅有对流作用,同时还伴随有导热作用。
第6章-对流换热1PPT课件
一、换热微分方程
由牛顿冷却定律:
q w ,xh x(tw-t ) W m 2
由傅里叶定律与牛顿冷却公式:
对流换热过程
hxtw t y tw ,x
微分方程式
W (m 2C ) (62)
-
22
五、流动边界层
层流
过渡流
湍流
u
y
x
xc
层流底层 缓冲层
五、流动边界层
2. 实验测定 若用仪器测出壁面法向
一、牛顿公式
qht QhAt
15 16
只是对流换热系数 h 的一个定义式,它并没 有揭示 h 与影响它的各物理量间的内在关系
本章的目的就是要揭示这种联系,即求解表面换 热系数h的表达式。
6.2 影响对流换热的主要因素
影响对流换热系数 h 的因素有以下 5 方面 流体有无相变 流体流动的起因 换热表面的几何因素 流体的流动状态 流体的物理性质
6.3 对流换热微分方程组
一、能量微分方程
作为一种能量输运过程,对流换热过程必然 遵循能量守恒原理,对流过程中的流体温度场 应是能量守恒原理与对流换热具体的热量输运 形式相结合的表现形式,其数学描述称为能量 守恒微分方程,简称能量方程。
在对流换热过程中: 能量守恒原理 — 热力学第一定律; 热量输运形式 — 导热+对流。
质量*加速度=体积力+压力+粘滞力
D D u uu u xv u yw u z
(u
uuvu) x y
Fx
px (x2u2
y2u2)
(v
uvvv) x y
Fy
py (x2v2
y2v2)
二、动量守恒微分方程(Navier-Stokes)
稳态下自然对流:
《传热学》第五章 对流换热分析PPT演示课件
4个方程,4个未知数(h,u,v,t), 理论上存在唯一解, 可通过数学方法进行求解
24
求解结果 局部表面传热系数:
或可写成:
其中:
——准则方程
——无量纲流速 ——无量纲物性 ——无量纲换热强度
准则方程的意义——
把微分方程所反映的众多因素间的规律用少数几个准则来概括, 从而减少变量个数,以便于进行对流换热问题的分析、实验研究 和数据处理。
将上式在x,y两个方向代入牛顿第二定律,得到Navier-Stokes方程: 对于不可压缩流体:
11
将其代入Navier-Stokes方程,并采用连续方程化简,得到:
对稳态流动:
惯性力
体积力 压强梯度 黏滞力
当只有重力场作用时:
12
四、能量微分方程式
推导依据—— 内能增量=导热热量+对流热量 1.导热热量:
外掠平板全板长平均换热准则方程:
29
第六节 相似理论基础
相似原理的意义——通过实验寻找现象的规律以及指导推广应用实验。
一、物理相似的基本概念
1.几何相似
LA、LB——几何相似准则
30
2.物理现象相似
以管内流动为例,当两管各r之比满足下列 关系时:
若: 则速度场相似。 以外掠平板为例,当x,y坐标满足下列关系时:
《传热学》
1
第五章 对流换热分析
研究对象——流体与固体壁面之间的传热过程
研究目的——确定牛顿冷却定律
中的h
对流表面 传热系数
局部对流表面传热系数hx 平均对流表面传热系数
Isaac Newton(1642-1727)
确定对流表面传热系数的四种方法
分析法
类比法 数值法 实验法
24
求解结果 局部表面传热系数:
或可写成:
其中:
——准则方程
——无量纲流速 ——无量纲物性 ——无量纲换热强度
准则方程的意义——
把微分方程所反映的众多因素间的规律用少数几个准则来概括, 从而减少变量个数,以便于进行对流换热问题的分析、实验研究 和数据处理。
将上式在x,y两个方向代入牛顿第二定律,得到Navier-Stokes方程: 对于不可压缩流体:
11
将其代入Navier-Stokes方程,并采用连续方程化简,得到:
对稳态流动:
惯性力
体积力 压强梯度 黏滞力
当只有重力场作用时:
12
四、能量微分方程式
推导依据—— 内能增量=导热热量+对流热量 1.导热热量:
外掠平板全板长平均换热准则方程:
29
第六节 相似理论基础
相似原理的意义——通过实验寻找现象的规律以及指导推广应用实验。
一、物理相似的基本概念
1.几何相似
LA、LB——几何相似准则
30
2.物理现象相似
以管内流动为例,当两管各r之比满足下列 关系时:
若: 则速度场相似。 以外掠平板为例,当x,y坐标满足下列关系时:
《传热学》
1
第五章 对流换热分析
研究对象——流体与固体壁面之间的传热过程
研究目的——确定牛顿冷却定律
中的h
对流表面 传热系数
局部对流表面传热系数hx 平均对流表面传热系数
Isaac Newton(1642-1727)
确定对流表面传热系数的四种方法
分析法
类比法 数值法 实验法
工程热力学与传热学 第四章对流换热
从公式可知,要计算热流量,温度及面积比较容易得到,
主要是如何求得对流换热系数α,这是研究对流换热的主要任
务之一。
确定α;
➢对流换热的任务 揭示α与其影响因素的内在关系;
增强换热的措施。
➢研究对流换热的方法 ➢ 分析法 ➢ 实验法
➢ 比拟法 ➢ 数值法
➢ 分析法:对描写某一类对流换热问题的偏微分方程及相应的定 解条件进行数学求解,从而获得速度场和温度场的分析解的方法。
➢关于速度边界层的几个要点
(1) 边界层厚度 与壁的定型尺寸L相比极小, << L
(2) 边界层内存在较大的速度梯度
(3) 边界层流态分层流与紊流;紊流边界层紧靠壁 面处仍有层流特征,粘性底层(层流底层)
(4) 流场可以划分为边界层区与主流区,主流区 的流体当作理想流体处理
热边界层
➢定义
当流体流过平板而平板的 温度tw与来流流体的温度t∞不相 等时,在壁面上方也能形成温 度发生显著变化的薄层,常称 0 为热边界层。
:流动边界层厚度 u 0.99u
t∞ u
δt δ
tw
x
l 如,空气外掠平
板u=10m/s:
x100mm 1.8mm; x200mm 2.5mm
➢速度边界层的形成及发展过程
紊流核心
临界距边离界xc层:从层流开始向紊流过渡的距离。其大小取决
于流体的物性、固体壁面的粗糙度等几何因素以及来流的稳定
相变换热:凝结、沸腾、升华、凝固、融化等
4、流体的物理性质
流体内部和流体与壁面间导热热阻小 c 单位体积流体能携带更多能量
有碍流体流动,不利于热对流
自然对流换热增强
体胀系数:
1
(
传热学第56章对流换热
1、概述
要求解对流换热需得到速度场和温度场
假设: a) 流体为连续性介质
b) 流体为不可压缩的牛顿流体 c) 所有物性参数(、c、、μ)为常量 d) 忽略粘性力作功(即忽略粘性耗散产生的耗散热)
对于牛顿流体: u
y
4个未知量:速度 u、v ;温度 t ;压力 p
需要4个方程:连续性方程(1)、动量方程(2)、能量方程(3)
在贴壁处流速滞止,处于无滑移状态 (即:y=0, u=0),形成一极薄的不 运动的贴壁流体层。
在这一极薄的贴壁流体层中,热量只 能以导热方式传递
根据傅里叶定律:
qw
t
y
y0
W m2
流体的热导率 W (mC)
t y y0 — 在坐标(x,0)处流体的温度梯度
2020/4/28 - 10 -
(V) 0
2020/4/28 - 15 -
第5章 对流换热——§5-2 对流换热问题的数学描述
Euler法(控制体微元):
(1) x、y、z方向流入的净流量:
udydz u u dxdydz u dxdydz
x
x
vdxdz
v
v y
dy
dxdz
v y
dxdydz
wdxdy w w dxdxdy w dxdydz
2020/4/28 - 5 -
第5章 对流换热——§5-1 对流换热概述
(3) 流体有无相变
单相换热 (Single phase heat transfer) :
显热的变化
相变换热(Phase change):凝结(Condensation)、 沸腾(Boiling)、
升华(sublimation)、 凝固(coagulation)、 融化(thaw)
传热学对流传热的理论基础课件
特征数方程中的 几位人物
传热学对流传热的理论基础课件
(4) 与 t 之间的关系及 Pr
对于外掠平板的层流流动: uco,n st
动量方u程 u x: v u y y 2u 2
d d
p 0 x
此时动量方程与能量方程的形式完全一致:
u
t x
v
t y
a
2t y2
表明:此情况下动量传递与热量传递规律相似
上述理论解与实验值吻合。
普朗特边界层理论在流体力学发展史上具有划时代的意义!
传热学对流传热的理论基础课件
5.3 流体外掠等温平板传热的理论分析
当壁面与流体间有温差时,会产生温度梯度很大的温度 边界层(热边界层, thermal boundary layer )
厚度t 范围 — 热边界层或温度边界层
预期解的形式
传热学对流传热的理论基础课件
4. 如何指导实验
• 同名的已定特征数相等 • 单值性条件相似:初始条件、边界条件、几何条件、
物理条件
实验中只需测量各特征数所包含的物理量,避免了测量的盲 目性——解决了实验中测量哪些物理量的问题 按特征数之间的函数关系整理实验数据,得到实用关联式 ——解决了实验中实验数据如何整理的问题 可以在相似原理的指导下采用模化试验 —— 解决了实物 试验很困难或太昂贵的情况下,如何进行试验的问题
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
传热学对流传热的理论基础课件
关联式中的待定参数需由实验数据确定,通常由图解法 和最小二乘法确定。如通过相似原理或理论分析,预期
传热学对流换热ppt课件
总结词
优化对流换热过程,提高传热效率是传热学的重要研究方向。
详细描述
对流换热是传热过程中的重要环节,优化对流换热过程、提高传热效率对于节能减排、提高能源利用 效率具有重要意义。未来研究将进一步探索对流换热的优化方法和技术,为实现高效传热提供理论支 持。
THANKS
感谢观看
02 通过求解这些方程,可以得到流体温度场和物体 温度场的分布,进而分析对流换热的规律和特性 。
02 对流换热的数学模型是研究对流换热问题的重要 工具,可以用于预测和分析各种实际工程中的传 热问题。
03
对流换热的影响因素
流体物性参数
01 密度
密度越大,流体质量越大,流动时受到的阻力也 越大,对流传热速率相对较快。
,提高能源利用效率。
工业炉的热能回收主要涉及对流 换热器的设计和优化,需要考虑 传热效率、热损失、设备成本等
因素。
通过对流换热技术回收工业炉的 热量,可以降低能源消耗和减少
环境污染。
建筑物的自然通风设计
建筑物的自然通风设计利用对流 换热原理,通过合理设计建筑布 局、窗户位置和大小等,实现自
然通风,降低室内温度。
传热学对流换热ppt 课件
目录
• 对流换热的基本概念 • 对流换热原理 • 对流换热的影响因素 • 对流换热的实际应用 • 对流换热的实验研究方法 • 对流换热研究的未来展望
01
对流换热的基本概念
对流换热定义
总结词
对流换热是指流体与固体表面之间的热量传递过程。
详细描述
对流换热是指流体与固体表面之间的热量传递过程,是传热学中的一种基本现象。当流体与固 体表面接触时,由于温度差异,会发生热量从固体表面传递到流体的过程。
在对流换热过程中,热传导与对流同时存在,共 02 同作用,两者相互关联,共同决定热量传递的速
优化对流换热过程,提高传热效率是传热学的重要研究方向。
详细描述
对流换热是传热过程中的重要环节,优化对流换热过程、提高传热效率对于节能减排、提高能源利用 效率具有重要意义。未来研究将进一步探索对流换热的优化方法和技术,为实现高效传热提供理论支 持。
THANKS
感谢观看
02 通过求解这些方程,可以得到流体温度场和物体 温度场的分布,进而分析对流换热的规律和特性 。
02 对流换热的数学模型是研究对流换热问题的重要 工具,可以用于预测和分析各种实际工程中的传 热问题。
03
对流换热的影响因素
流体物性参数
01 密度
密度越大,流体质量越大,流动时受到的阻力也 越大,对流传热速率相对较快。
,提高能源利用效率。
工业炉的热能回收主要涉及对流 换热器的设计和优化,需要考虑 传热效率、热损失、设备成本等
因素。
通过对流换热技术回收工业炉的 热量,可以降低能源消耗和减少
环境污染。
建筑物的自然通风设计
建筑物的自然通风设计利用对流 换热原理,通过合理设计建筑布 局、窗户位置和大小等,实现自
然通风,降低室内温度。
传热学对流换热ppt 课件
目录
• 对流换热的基本概念 • 对流换热原理 • 对流换热的影响因素 • 对流换热的实际应用 • 对流换热的实验研究方法 • 对流换热研究的未来展望
01
对流换热的基本概念
对流换热定义
总结词
对流换热是指流体与固体表面之间的热量传递过程。
详细描述
对流换热是指流体与固体表面之间的热量传递过程,是传热学中的一种基本现象。当流体与固 体表面接触时,由于温度差异,会发生热量从固体表面传递到流体的过程。
在对流换热过程中,热传导与对流同时存在,共 02 同作用,两者相互关联,共同决定热量传递的速
传热学-对流换热PPT课件
传热学-对流换热
对流换热:工程上流体流过一物体表面时的热量传递过程。 自然界中的种种对流现象 电子器件冷却 强制对流与自然对流
沸腾换热原理 空调蒸发器、冷凝器 动物的身体散热
➢ 热对流(Convection)
流体中(气体或液体)温度不同的各部分之间,由于 发生相对的宏观运动而把热量由一处传递到另一处的现象。
ρ↑、c ↑(单位体积流体能携带更多能量)→h↑ 4、动力粘度 µ [N.s/m2]、运动粘度 ν=µ/ ρ [m2/s]
µ ↑(有碍流体流动,不利于热对流)→h↓ 5、体膨胀系数 α [1/k]
α ↑(自然对流换热增强)→h↑
四、换热壁面的几何尺寸、形状及位置
影响到流体沿壁面的流动状态、速度分布和温度, 从而影响对流换热系数。
内部流动对流换热: 管内或槽内
外部流动对流换热: 外掠平板、圆管、 管束
五、 流体有无相变(流体相变):
单相换热 Single phase heat transfer: 相变换热 Phase change:
凝结、沸腾、升华、凝固、融化等
流体相变时吸收或放出汽化潜热比比热容大得多, 且破坏了层流底层强化了传热。
5、层流底层(贴壁流体层)
流体在做湍流运动时,在管壁附近形成一层 流速很低的极薄的层流,称为层流底层。
层流底层的厚度随着流速的增加(即Re增加) 而减薄。
湍流核心
层流底层
二、边界层
(一)速度(流动)边界层
1、速度边界层的形成原因 粘性流体流过固体壁面时,
由于流体与壁面之间摩擦阻力 的影响,壁面附近的流体速度 会减小,即从来流速度减小到 壁面的零速度。 2、速度边界层图,见右图。
W/(m2 C)
——当流体与壁面温度相差 1°C时、单位壁面面积 上、单位时间内所传递的热量。
对流换热:工程上流体流过一物体表面时的热量传递过程。 自然界中的种种对流现象 电子器件冷却 强制对流与自然对流
沸腾换热原理 空调蒸发器、冷凝器 动物的身体散热
➢ 热对流(Convection)
流体中(气体或液体)温度不同的各部分之间,由于 发生相对的宏观运动而把热量由一处传递到另一处的现象。
ρ↑、c ↑(单位体积流体能携带更多能量)→h↑ 4、动力粘度 µ [N.s/m2]、运动粘度 ν=µ/ ρ [m2/s]
µ ↑(有碍流体流动,不利于热对流)→h↓ 5、体膨胀系数 α [1/k]
α ↑(自然对流换热增强)→h↑
四、换热壁面的几何尺寸、形状及位置
影响到流体沿壁面的流动状态、速度分布和温度, 从而影响对流换热系数。
内部流动对流换热: 管内或槽内
外部流动对流换热: 外掠平板、圆管、 管束
五、 流体有无相变(流体相变):
单相换热 Single phase heat transfer: 相变换热 Phase change:
凝结、沸腾、升华、凝固、融化等
流体相变时吸收或放出汽化潜热比比热容大得多, 且破坏了层流底层强化了传热。
5、层流底层(贴壁流体层)
流体在做湍流运动时,在管壁附近形成一层 流速很低的极薄的层流,称为层流底层。
层流底层的厚度随着流速的增加(即Re增加) 而减薄。
湍流核心
层流底层
二、边界层
(一)速度(流动)边界层
1、速度边界层的形成原因 粘性流体流过固体壁面时,
由于流体与壁面之间摩擦阻力 的影响,壁面附近的流体速度 会减小,即从来流速度减小到 壁面的零速度。 2、速度边界层图,见右图。
W/(m2 C)
——当流体与壁面温度相差 1°C时、单位壁面面积 上、单位时间内所传递的热量。
传热学课件第六章--单相流体对流换热
第一节 管内受迫对流换热
一、定性分析(基本概念)
1.进口段与充分发展段 2>.对于换热状态 将上述无因次温度对r求导后且令r=R时有: t t t r r R w t t t t r w f w f
由于无因次温度不随x发生变化,仅是r的函数,故对无因次 温度求导后再令r=R,则上式显然应等于一常数。又据傅里叶 定律:q=-(t/r)r=R及牛顿冷却公式:q=h(tw-tf),上 t 式变为: t t r r R h Const w tw t f r tw t f
另外,不同断面具有不同的tf值,即tf随x变化,变化规律 与边界条件有关。
第一节 管内受迫对流换热
一、定性分析(基本概念)
2.定性参数 2>.管内流体平均温度 ①常热流通量边界条件: t tw// tw/
tf /
进口段 充分发展段
tf// x
如图,此时:tw>tf 经分析:充分发展段后: tf呈线性规律变化 tw也呈线性规律变化 此时,管内流体的平均温度为: t f t f tf 2
第三节
自 然 对 流 换 热
一、无限空间自由流动换热(大空间自然对流)
指热(冷)表面的四周没有其它阻得自由对流的物体存在。 一般准则方程式可整理成: Nu=f(Gr· Pr) 一般Gr· Pr>109时为紊流,否则为层流。 对于常壁温的自由流动换热,其准则方程式常可整理成: Num=C(Gr· Pr)mn C、n可参见表6=5,注意使用范围、定型尺寸、定性温度。 令:Ra=Gr· Pr Ra为瑞利准则数。 既适用常壁温也适用常热流边界的实验准则方程式,常见的 为邱吉尔(Churchill)和朱(Chu)总结的式6-19,20。
材料科学工程课件23对流换热
No Image
传热学
(1) 竖夹层 恒壁温条件下空气在竖夹层的准则关系式为:
2yu2y
能量守恒方程
共3个方程,包含了4个未知数(ux, uy,p,t)。虽然方程组是封闭的, 原则上可以求解,然而由于Navier - Stokes方程的复杂性和非线性的特 点,要针对实际问题在整个流场内数学上求解上述方程组却是非常困难 的,这种局面直到1904年德国科学家普朗特(L. Prandtl) 提出著名的 边界层概念,并用它对Navier一Stokes方程进行了实质性的简化后才有 所改观,使数学分析解得到发展。后来,波尔豪森(E. Pohlhausen )又 把边界层概念推广应用于对流传热问题,提出了热边界层的概念,使对 流传热问题的分析求解也得到了发展。
当Gr>109时,自然对流边界层就会失去稳定 而从层流状态转变为紊流状态。
No Image
传热学
工程中广泛使用的是下面的关联式:
NuC(GrPr)n
式中:定性温度采用 tm(twt)/2;
特征长度的选择:竖壁和竖圆
柱取高度,横圆柱取外径。
No Image
传热学
E-Mail: 202.114.88.54/new/clgcjc/web/
ddyuuyuxuxyuyuyyuzuzy fy1 p y2uy ddzuuz uxuxz uyuyz uzuzz fz1 p z2uz
No Image
传热学
热现象 (3)不可压缩、常物性、无内热源 时, 能量守恒定律:
1 竖板 2 水平管 3 水平板 4 竖直夹板
No Image
传热学
3.4.1 无限空间中的自然对流换热
1) 换热过程分析
No Image
对流换热计算——传热学课件PPT
l
2
散热量
1 hAtw t hdltw t
4.483.14 10102 250 10 112.5W
水平部分
Grm
计算已定准则
Grm
gtl 3 2
竖直管部分
Grm
gtl3 2
gtl3
Tm 2
9.81 50 10 23 30 273 16106
2
4.0471010
计算公式
Num
0.11Gr
Pr
1/ 3 m
0.11
4.0471010
0.701 1/3
335.5
计算表面传热系数 h Numm 335 .5 2.67 102 4.48W/ m2 K
选取公式 Num 0.0266Re0m.805 Prm1/3 0.02661.0607105 0.805 0.702 1/3 262.6
计算表面传热系数
h
Numm
do
262.6 2.164102 35102
19.6W/
m2 K
计算散热量 hAtw t hdHtw t 19.63.14 0.351.753115 603.55W 5.5106 J
•
计算表面传热系数 h Nu f f
di
250.8 58.65102 28103
5253.4W/
m2 K
• 根据热平衡计算内壁温度 ' hAl twi t f
twi
' hAl
tf
'
hdil
tf
5253
41.21103 3.14 28103
1.7
15
67.5℃
从管内壁到管外壁进行的热量传递过程为通过圆筒壁的导 热,所以可以根据圆筒壁导热量计算公式计算管外壁温度
传热学第五章对流传热理论基础课件
研究对流换热的方法:
(1)分析法 (2)实验法 (3)比拟法 (4)数值法
第五章 对流换热
3
5 对流换热的影响因素
其影响因素主要有以下五个方面:(1)流动起因; (2)流动状态; (3)流 体有无相变; (4)换热表面的几何条件; (5)流体的热物理性质
以流体外掠平板为例:
我们所要得到的是:
(1)当地热流密度和总的换热量
u v 0 x y
( u
u
u x
v
u y
)
Fx
p x
(
2u x 2
2u y2 )
( v
u
v x
v
v y
)
Fy
p y
(
2v x 2
2v y 2
)
c
p
t
u
t x
v
t y
2t x2
2t y 2
第五章 对流换热
29
4个方程,4个未知量 —— 可求得速度场(u,v)和 温度场(t)以及压力场(p), 既适用于层流,也适用 于紊流(瞬时值)
dy
c p
(vt) y
dydx
第五章 对流换热
32
Q导热
2t x2
dxdy+
2t y2
dxdy
Q对流
c p
(ut) x
dxdy
c p
(v t) y
dxdy
c
p
u
t x
v
t y
t
u x
t
v y
dxdy
c
p
u
t x
v
t y
dxdy
U
cpdxdy
工程传热学第五章对流换热计算
假设L0.825 m,则RePr d/L>10
d f Nu 1.86 Re Pr l w
3 1
0.14
得h=10.12L-1/3。
t f '' 60 C
t m
t f ' 20 C
由能量平衡有:
(tw t f '' ) (tw t f ' ) (tw t f '' ) ln (tw t f ' )
弯曲的管道中流动的流体,在弯曲处由 于离心力的作用会形成垂直于流动方向 的二次流动,从而加强流体的扰动,带 来换热的增强。
弯曲管道流动情况示意图
在平直管计算结果的基础上乘以一个大 于1的修正系数 CR。 流体为气体时 : CR=1+1.77(d/R) 流体为液体时 : CR=1+10.3(d/R)3 R为弯曲管的曲率半径
t m
t
" f
t w t 'f t w ln t tw
" f
t 'f t w
其中,tf ’, tf”分别为进口、出口截面上的 平均温度。 当出口与进口截面上的温差比(tw - tf'')/(tw - tf')在0.5 ~ 2之间时,可按如下算术平均 温差计算,结果的差别在4%以内。
如果边界层在管中心处 汇合时流体已经从层流 流动完全转变为紊流流 动,那么进入充分发展 区后就会维持紊流流动 状态,从而构成流体管 内紊流流动过程。
如果出现紊流,紊流的扰动与混合作用又会 使表面传热系数有所提高,再逐渐趋向一个 定值。
Re
um d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选取公式 Num 0.0266Re0m.805 Prm1/3 0.02661.0607105 0.805 0.702 1/3 262.6
计算表面传热系数
h
Numm
do
262.6 2.164102 35102
19.6W/
m2 K
计算散热量 hAtw t hdHtw t 19.63.14 0.351.753115 603.55W 5.5106 J
4 41.21103
10 999.7 1.63.14 28103 2 4.191103 20℃
要求管外壁温度,必须首先知道管内壁温度。而管内壁温 度的大小与管内流体与管内壁的换热有关,因此应先计算 流体与管内壁的对流换热表面传热系数,此时的换热属于 管内流体强制对流换热。
•
定性温度:t f
解:该问题属于外掠圆柱体的对流换热。
定性温度:tm
1 2
tw
t
1 2
3115
23℃
查取物性参数 m 2.164 10 2 W/m K, m 15.34 10 6 m2/s, Prm 0.702
计算已定准则
Rem
Hale Waihona Puke udom41842.8 35103 2.5 360015.34 106
1.0607104
' two twi 1 ln do
2 l di
two
'
1
2 l
ln
do di
twi
41.21103 ln
2 3.14 18 1.7
31 67.5 89.3℃ 28
例题
一个优秀的马拉松长跑运动员可以在2.5h内跑完全程 ( 41842.8 m)。为了估计他在跑步过程中消耗的热量, 可以作这样的简化:把人体看成是高1.75m、直径为 0.35m的圆柱体,皮肤温度作为柱体表面温度,取31℃; 空气是静止的,温度为15℃。不计柱体两端的散热,试据 此估计一个马拉松长跑运动员跑完全程的散热量(不计出 汗散热的部分)。
l
2
散热量
1 hAtw t hdltw t
4.483.14 10102 250 10 112.5W
水平部分
Grm
gtd 3 2
•
计算表面传热系数 h Nu f f
di
250.8 58.65102 28103
5253.4W/
m2 K
• 根据热平衡计算内壁温度 ' hAl twi t f
twi
' hAl
tf
'
hdil
tf
5253
41.21103 3.14 28103
1.7
15
67.5℃
从管内壁到管外壁进行的热量传递过程为通过圆筒壁的导 热,所以可以根据圆筒壁导热量计算公式计算管外壁温度
计算已定准则
Grm
gtl 3 2
竖直管部分
Grm
gtl3 2
gtl3
Tm 2
9.81 50 10 23 30 273 16106
2
4.0471010
计算公式
Num
0.11Gr
Pr
1/ 3 m
0.11
4.0471010
0.701 1/3
335.5
计算表面传热系数 h Numm 335 .5 2.67 102 4.48W/ m2 K
2 f
f
f
2
查取物性参数 0.618 Wm K f
f 0.805106 m2/s
Pr f 5.42
计算已定准则
Re f
ud
2 20 10 3 0.805 10 6
4.97 104
选取实验关联式 Nu f 0.023Re0f.8 Prf0.4 0.023 4.97104 0.8 5.42 0.4 258.5
1.6m/s 10℃ 水
28 31
解:热稳定时,加热器产生的热量等于通过绝热层散失的热 量加上水在管内吸收的热量,所以水在管内吸收的热量为
' 1 2% 42.05 1 2% 41.21kW
'
m cp
t"f
t
' f
t
" f
t
' f
' m cp
t
' f
'
uAcp
t
' f
4'
ud i2c p
计算表面传热系数
h Nu f f
d
258 .5 0.618 20 10 3
7988 W/ m2 K
计算管子内壁温度,根据热平衡原理有
u d 2
4
cp
t
" f
t
' f
hdl tw t f
tw
tf
hdl
39.7
℃
检查所用公式的适用条件与题目是否相符
例题
在一次对流换热实验中,10℃的水以1.6m/s的速度流入 内径为28mm、外径为31mm、长为1.7m的管子。管子 外表面均匀地缠绕着电阻带作为加热器,其外还包有绝热 层。设加热器总功率为42.05kW,通过绝热层的散热损失 为2%,管材的导热系数为18W/mK。试确定: (1)管子出口处的平均水温; (2)管子外表面的平均温度。
例题
• 室内有一散热管道,布置如图。试计算该管道的散热量。 假设管道表面温度为50℃,室内空气温度为10℃,管道 的直径为10cm。
4m 10cm
2m
解:该问题属于自然对流换热。
定性温度
tm
1 2
tw
t
1 2
50 10
30℃
查取物性参数 m 2.67 10 2 W/m K, m 16.00 106 m2/s, Prm 0.701
对流换热计算
对流换热计算的主要步骤
• 确定换热类型; • 计算定性温度; • 根据定性温度查取物性参数; • 计算已定准则; • 根据已定准则选取实验关联式; • 核实题目条件与关联式条件是否吻合; • 作相应的修正。
例题
1.水流过长 l
5m、壁温均匀的直管时,从
t' f
25.3℃ 被加热
到
t“ f
1 2
t
' f
t
" f
1 10 20 15℃
2
• 查取物性参数:f 58.65102 W/m K, f 1.156106 m2/s, Prf 8.27
•
计算已定准则
Re f
udi
f
1.6 28103 1.156106
3.875104
• 选取公式 Nu f 0.023Re0f.8 Prf0.4 0.023 3.875104 0.88.270.4 250.8
34.6 ℃
。管子的内径 d 20mm,水在管内的流速
为 u 2m/s ,求表面传热系数和管内壁温度。
u 2m/s
t ' 25.3℃ f
l 5m
d 20mm t“ 34.6 ℃
f
解:该换热属于管内强制对流换热。
定性温度 t 1 t' t" 1 25.3 34.6 30 ℃