高考数学专题练习:不等式与线性规划

合集下载

(全国通用)高考数学大一轮复习 第六篇 不等式 第3节 二元一次不等式(组)与简单的线性规划问题习题

(全国通用)高考数学大一轮复习 第六篇 不等式 第3节 二元一次不等式(组)与简单的线性规划问题习题

第3节二元一次不等式(组)与简单的线性规划问题选题明细表知识点、方法题号二元一次不等式(组)表示的平面区域1,4,9含参数的线性规划3,5,6,7,10,12目标函数的最值2,8,13,14,15线性规划的实际应用11基础对点练(时间:30分钟)1.不等式组所表示的平面区域是( D )解析:画出直线x=2,在平面上取直线的右侧部分(包含直线本身);再画出直线x-y=0,取直线的右侧部分(包含直线本身),两部分重叠的区域就是不等式组表示的平面区域.故选D.2.(2016·某某卷)若变量x,y满足则x2+y2的最大值是( C )(A)4 (B)9(C)10 (D)12解析: 作出不等式组表示的可行域如图所示,由x2+y2表示可行域内的点(x,y)到原点的距离平方可知,点A(3,-1)满足条件,即x2+y2的最大值为32+(-1)2=10.故选C.3.(2016·某某模拟)已知函数f(x)=log a x(a>1)的图象经过区域则a的取值X 围是( C )(A)(1,] (B)(,+∞)(C)[,+∞) (D)(2,+∞)解析: 作出不等式组表示的可行域,如图中阴影部分所示.联系函数f(x)=log a x(a>1)的图象,能够看出,当图象经过区域的边界点A(3,3)时,a可以取到最小值,而显然只要a大于,函数f(x)=log a x(a>1)的图象必然经过区域内的点.则a的取值X围是[,+∞).故选C.4.(2015·某某校级三模)若A为不等式组表示的平面区域,则a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( D )(A)9(B)3(C)(D)解析: 如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ACD是斜边为3的等腰直角三角形,△OEC是直角边为1的等腰直角三角形,所以区域的面积S=S△ACD-S△OEC=×3×-×1×1=.5.(2014·某某卷)x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为( D )(A)或-1 (B)2或(C)2或1 (D)2或-1解析:线性约束条件对应的可行域如图所示:目标函数z=y-ax化为y=ax+z,当a>0时,要使其取得最大值的最优解不唯一,需动直线y=ax+z与2x-y+2=0平行或重合,此时a=2;同理当a<0时,需动直线y=ax+z与x+y-2=0平行或重合,此时a=-1,故选D.6.(2016·某某章丘期末)若实数x,y满足不等式组且x+y的最大值为9,则实数m等于( C )(A)-2 (B)-1(C)1 (D)2解析: x-my+1=0恒过点(-1,0),旋转直线x-my+1=0可知可行域只可能是△ABC,且x+y的最大值只在点C处取得,联立方程组得C(,)(若m=,则与2x-y-3=0平行,不可能),(x+y)max=+=9,解得m=1.故选C.7.(2016·某某某某名校联考)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于( A )(A)(B)(C)1 (D)2解析: 根据约束条件画出可行域,如图,由图可知当直线z=2x+y经过点B时,z最小,由解得所以z min=2×1-2a=1,解得a=.故选A.8.导学号 18702285已知x,y满足则的取值X围是( C )(A)[0,] (B)[2,] (C)[1,] (D)[0,]解析:不等式组表示的平面区域如图中阴影部分所示.因为==1+,表示区域内的点与(4,2)连线的斜率.斜率最小值为0,点(-3,-4)与M(4,2)连线斜率最大为=.所以的取值X围为[1,].故选C.9.若点P(m,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y<3表示的平面区域内,则m=.解析:由题意可得解得m=-3.答案:-310.(2016·某某模拟)若直线y=2x上存在点(x,y)满足约束条件则实数m的取值X围是.解析: 由题意,由可求得交点坐标为(1,2),要使直线y=2x上存在点(x,y)满足约束条件则点(1,2)在可行域内,如图所示,可得m≤1.答案:(-∞,1]11.导学号 18702284某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电、劳力、获得利润及每天资源限额(最大供应量)如下表所示:产品限额资源甲产品(每吨)乙产品(每吨)资源限额(每天)煤(t) 9 4 360电(kW·h) 4 5 200劳力(个) 3 10 300利润(万元) 6 12问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元.依题意可得约束条件利润目标函数z=6x+12y.如图,作出可行域,作直线l:6x+12y=0,把直线l向右上方平移至l1位置,直线经过可行域上的点M时z=6x+12y取最大值.解方程组得M(20,24).所以生产甲种产品20 t,乙种产品24 t,才能使此工厂获得最大利润.能力提升练(时间:15分钟)12.(2016·某某八校联考)已知变量x,y满足约束条件若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)上有两个不同实数解,则实数k的取值X围是( C )(A)(-6,-2) (B)(-3,2)(C)(-,-2)(D)(-,-3)解析: 作出可行域,如图所示,则目标函数z=x-2y在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,所以a=1,b=-3,从而可知方程x2-kx+1=0在区间(-3,1)上有两个不同实数解.令f(x)=x2-kx+1,则⇒-<k<-2,故选C.13.导学号 18702286如果实数a,b满足条件:则的最大值是.解析: 根据约束条件画出可行域,如图,表示可行域内的点与原点(0,0)连线的斜率,设z的几何意义表示可行域内点P与原点O(0,0)连线的斜率,易知当直线OP过点B(,)时,取最大值,最大值为3,直线OP过点A(1,1)时,取最小值,最小值为1,所以∈[1,3].所以===2-因为∈[1,3].所以的最大值为.答案:14.(2014·某某卷)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值X 围是.解析:可行域如图所示,则A(1,0),B(2,1),C(1,),设z=ax+y,即得1≤a≤.答案:[1,]15.导学号 18702287变量x,y满足(1)假设z1=4x-3y,求z1的最大值;(2)设z2=,求z2的最小值;(3)设z3=x2+y2,求z3的取值X围.解: 作出可行域如图中阴影部分,联立易得A(1,),B(1,1),C(5,2).(1)z1=4x-3y⇔y=x-,易知平移y=x至过点C时,z1最大,且最大值为4×5-3×2=14.(2)z2=表示可行域内的点与原点连线的斜率大小,显然直线OC斜率最小.故z2的最小值为.(3)z3=x2+y2表示可行域内的点到原点距离的平方,而2=OB2<OA2<OC2=29.故z3∈[2,29].好题天天练1.(2015·某某卷)设实数x,y满足则xy的最大值为( A )(A)(B)(C)12 (D)16解题关键:判断xy取得最大值的点,并分类讨论确定最大值.解析: 先画出可行域,再将xy转化为矩形面积S,求S的最大值.表示的可行域如图中阴影部分所示.令S=xy,不妨设在点M(x0,y0)处S取得最大值,且由图象知点M(x0,y0)只可能在线段AD,AB,BC上.①当M(x0,y0)在线段AD上时,x0∈[-2,0],此时S=xy≤0;②当M(x0,y0)在线段AB上时,x0∈[0,2],S=xy=x·=x(7-)=-+7x=-(x-7)2+,当x0=2时,wordS max=-(2-7)2+=-+=12;③当M(x0,y 0)在线段BC上时,x 0∈[2,4],S=xy=x·(10-2x)=-2x2+10x=-2(x-)2+,当x0=时,S max =.综上所述,xy的最大值为.2.导学号 18702288设实数x,y满足则z=-的取值X围是.解析: 由于表示可行域内的点(x,y)与原点(0,0)的连线的斜率,如图,求出可行域的顶点坐标A(3,1),B(1,2),C(4,2),则k OA=,k OB=2,k OC=,可见∈[,2],令=t,则z=t-在[,2]上单调递增,所以z∈[-,].答案:[-,]11 / 11。

不等式与线性规划问题试题

不等式与线性规划问题试题

基本不等式1. 若x >0,y >0,且x +y =18,则xy 的最大值是________. 2. 已知t >0,则函数y =t 2-4t +1t的最小值为________.3. 已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_____________.4. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .65. 圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎦⎤0,14C.⎝⎛⎭⎫-14,0D.⎝⎛⎭⎫-∞,14题型一 利用基本不等式证明简单不等式例1已知x >0,y >0,z >0.求证:⎝⎛⎭⎫y x +z x ⎝⎛⎭⎫x y +z y ⎝⎛⎭⎫x z +y z ≥8.已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c ≥9.题型二 利用基本不等式求最值例2(1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________. (1)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4C.92D.112题型三 基本不等式的实际应用1.(2010·惠州模拟)某商场中秋前30天月饼销售总量f (t )与时间t (0<t ≤30)的关系大致满足f (t )=t 2+10t +16,则该商场前t 天平均售出(如前10天的平均售出为f (10)10)的月饼最少为( )A.18 B.27 C.20 D.162.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.(2011·北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2011·陕西)设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<bC .a <ab <b <a +b2D.ab <a <a +b2<b2. (2012·福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R )3. 设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y 的最大值为( ) 4. 已知0<x <1,则x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23二、填空题(每小题5分,共15分)5. 已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.6. (2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2·⎝⎛⎭⎫1x 2+4y 2的最小值为________. .7. 某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是_______. .三、解答题(共22分)8. (10分)已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 不等式a 2+b 2≥2|ab |成立时,实数a ,b 一定是( )A .正数B .非负数C .实数D .不存在2. 如果0<a <b <1,P =log 12a +b 2,Q =12(log 12a +log 12b ),M =12log 12(a +b ),那么P ,Q ,M 的大小顺序是( )A .P >Q >MB .Q >P >MC .Q >M >PD .M >Q >P3. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为( )A .2B .4C .8D .16二、填空题(每小题5分,共15分)4. 若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.5. 已知m 、n 、s 、t ∈R +,m +n =2,m s +n t =9,其中m 、n 是常数,且s +t 的最小值是49,满足条件的点(m ,n )是圆(x -2)2+(y -2)2=4中一弦的中点,则此弦所在的直线方程为__________.6.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.线性规划【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. .1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义. 角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .23.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( ) A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.角度三:求线性规划中的参数 9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73B .37C .43D .3410.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k的值为( )A .2B .-2C .12D .-1211.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1B .2或12C .2或1D .2或-1。

高考专题练习: 二元一次不等式(组)及简单的线性规划问题

高考专题练习: 二元一次不等式(组)及简单的线性规划问题

1.二元一次不等式(组)表示的平面区域满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念1.画二元一次不等式表示的平面区域的直线定界,特殊点定域(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于Ax+By+C>0或Ax+By+C<0,则有(1)当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;(2)当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.3.平移规律当b >0时,直线z =ax +by 向上平移z 变大,向下平移z 变小;当b <0时,直线z =ax +by 向上平移z 变小,向下平移z 变大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( ) (4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案:(1)× (2)√ (3)√ (4)× 二、易错纠偏常见误区| (1)不会用代点法判断平面区域; (2)不明确目标函数的最值与等值线截距的关系; (3)不理解目标函数的几何意义; (4)对“最优解有无数个”理解有误.1.若点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是__________. 解析:因为直线2x -3y +6=0的上方区域可以用不等式2x -3y +6<0表示,所以由点(-2,t )在直线2x -3y +6=0的上方得-4-3t +6<0,解得t >23.答案:⎝ ⎛⎭⎪⎫23,+∞2.设x ,y 满足约束条件⎩⎨⎧y +2≥0,x -2≤0,2x -y +1≥0.则z =x +y 的最大值与最小值的比值为________.解析:不等式组所表示的平面区域如图中阴影部分所示,z =x +y 可化为y =-x +z ,当直线y =-x +z 经过A 点时,z 最大,联立⎩⎪⎨⎪⎧x -2=0,2x -y +1=0.得⎩⎪⎨⎪⎧x =2,y =5,故A (2,5),此时z =7;当直线y =-x +z 经过B 点时,z 最小,联立⎩⎪⎨⎪⎧y +2=0,2x -y +1=0,得⎩⎨⎧x =-32,y =-2,故B ⎝ ⎛⎭⎪⎫-32,-2,此时z =-72,故最大值与最小值的比值为-2.答案:-23.已知x ,y 满足条件⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,则z =y -1x +3的最大值为________.解析:作出可行域如图中阴影部分所示,问题转化为区域上哪一点与点M (-3,1)连线斜率最大,观察知点A ⎝ ⎛⎭⎪⎫-52,52,使k MA 最大,z max =k MA =52-1-52+3=3.答案:34.已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取得最大值的点(x ,y )有无数个,则a 的值为________.解析:先根据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,所以-a =k AB =1,所以a =-1.答案:-1二元一次不等式(组)表示的平面区域(多维探究) 角度一 平面区域的面积不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于()A .32B .23C .43D .34【解析】 由题意得不等式组表示的平面区域如图阴影部分所示,A ⎝ ⎛⎭⎪⎫0,43,B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C .【答案】 C角度二 平面区域的形状若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是________.【解析】不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).解⎩⎪⎨⎪⎧y =x ,2x +y =2得A ⎝ ⎛⎭⎪⎫23,23;解⎩⎪⎨⎪⎧y =0,2x +y =2得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.【答案】 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞(1)求平面区域面积的方法①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.(2)根据平面区域确定参数的方法在含有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案.1.已知约束条件⎩⎨⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k的值为( )A .1B .-1C .0D .-2解析:选A .作出约束条件表示的可行域如图中阴影部分所示,要使阴影部分为直角三角形,当k =0时,此三角形的面积为12×3×3=92≠1,所以不成立,所以k >0,则必有BC ⊥AB ,因为x +y -4=0的斜率为-1,所以直线kx -y =0的斜率为1,即k =1,满足题意,故选A .2.设不等式组⎩⎨⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域为M ,若直线y =kx -2上存在M内的点,则实数k 的取值范围是( )A .[1,3]B .(-∞,1]∪[3,+∞)C .[2,5]D .(-∞,2]∪[5,+∞)解析:选C .作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y ≤0,x +y ≤4表示的平面区域,如图中阴影部分所示,因为直线l :y =kx -2的图象过定点A (0,-2),且斜率为k ,由图知,当直线l 过点B (1,3)时,k 取最大值3+21-0=5,当直线l 过点C (2,2)时,k 取最小值2+22-0=2,故实数k 的取值范围是[2,5].求目标函数的最值(多维探究) 角度一 求线性目标函数的最值(2021·郑州第一次质量预测)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则y -2x 的最小值是( ) A .-1 B .-6 C .-10D .-15【解析】不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,3x +y -4≤0表示的平面区域如图中阴影部分所示.令z =y -2x ,作出直线y =2x ,并平移,当直线z =y -2x 过点B (2,-2)时,z 的值最小,最小值为-6,故选B .【答案】 B(1)求目标函数的最值形如z =ax +by (b ≠0)的目标函数,可变形为斜截式y =-a b x +zb (b ≠0). ①若b >0,当直线过可行域且在y 轴上的截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;②若b <0,当直线过可行域且在y 轴上的截距最大时,z 值最小,在y 轴上的截距最小时,z 值最大.(2)求目标函数最优解的常用方法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最优解,到底哪个顶点为最优解,可有两种方法判断:①将可行域各顶点的坐标代入目标函数,通过比较各顶点函数值大小即可求得最优解;②将目标函数的直线平移,最先通过或最后通过的顶点便是最优解. 角度二 求非线性目标函数的最值(范围)实数x ,y 满足⎩⎨⎧x -y +1≤0,x ≥0,y ≤2.(1)若z =yx ,则z 的取值范围为________;(2)若z =x 2+y 2,则z 的最大值为________,最小值为________.【解析】由⎩⎪⎨⎪⎧x -y +1≤0,x ≥0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx 表示可行域内任一点与坐标原点连线的斜率,因此yx 的取值范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), 所以k OB =21=2,即z min =2, 所以z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的最小值为OA 2,最大值为OB 2. 由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), 所以OA 2=(02+12)2=1,OB 2=(12+22)2=5.【答案】 (1)[2,+∞) (2)5 1【迁移探究1】 (变问法)本例条件不变,求目标函数z =y -1x -1的取值范围.解:z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.所以z 的取值范围是(-∞,0].【迁移探究2】 (变问法)本例条件不变,求目标函数z =x 2+y 2-2x -2y +3的最值.解:z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方PQ 2,PQ 2max =(0-1)2+(2-1)2=2,PQ 2min =⎝⎛⎭⎪⎪⎫|1-1+1|12+(-1)22=12,所以z max =2+1=3,z min =12+1=32.常见两类非线性目标函数的几何意义(1)x 2+y 2表示点(x ,y )与原点(0,0)间的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.角度三 求参数值或取值范围(2021·贵阳市第一学期监测考试)已知实数x ,y 满足⎩⎨⎧x +2≥y ,x ≤2,y -1≥0,若z=x +ay (a >0)的最大值为10,则a = ( )A .1B .2C .3D .4【解析】 不等式组表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧x =2,x -y +2=0, 解得⎩⎪⎨⎪⎧x =2,y =4,所以A (2,4),由⎩⎪⎨⎪⎧x =2,y -1=0,解得⎩⎪⎨⎪⎧x =2,y =1,所以B (2,1),由⎩⎪⎨⎪⎧y -1=0,x -y +2=0,解得⎩⎪⎨⎪⎧x =-1,y =1,所以C (-1,1).若(2,4)是最优解,则2+4a =10,a =2,经检验符合题意;若(2,1)是最优解,则2+a =10,a =8,经检验不符合题意;若(-1,1)是最优解,则-1+a =10,a =11,经检验不符合题意.综上所述,a =2,故选B .【答案】 B求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.1.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x +2y ≤2,x ≤a ,目标函数z =2x +3y 的最小值为2,则a =________.解析:作出不等式组⎩⎪⎨⎪⎧x +y ≥1,x +2y ≤2,x ≤a 表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,平移直线2x +3y =0,显然过A (a ,1-a )时,z =2x +3y 取得最小值,则2a +3(1-a )=2,解得a =1.答案:12.(2021·开封市第一次模拟考试)已知点A (0,2),动点P (x ,y )的坐标满足条件⎩⎨⎧x ≥0,y ≤x ,则|P A |的最小值是________.解析:依题意,画出不等式组⎩⎨⎧x ≥0,y ≤x 表示的平面区域,如图中阴影部分所示,结合图形可知,|P A |的最小值等于点A (0,2)到直线x -y =0的距离,即|0-2|2= 2.答案: 23.(2021·湖北八校第一次联考)已知实数x ,y 满足⎩⎨⎧2x -y +3≥0,2x +y -5≤0,y ≥1,则z =|x-y |的取值范围为________.解析:画出可行域如图中阴影部分所示,z =|x -y |=|x -y |2·2表示可行域内的点(x ,y )到直线x -y =0的距离的2倍.作出直线x -y =0,由图可得可行域内的点(x ,y )到直线x -y =0的距离的最小值为0,最大值为直线2x -y +3=0与2x +y -5=0的交点C ⎝ ⎛⎭⎪⎫12,4到直线x -y =0的距离,即724,所以z 的取值范围为⎣⎢⎡⎦⎥⎤0,72.答案:⎣⎢⎡⎦⎥⎤0,72线性规划的实际应用(师生共研)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元 C .18万元D .19万元【解析】 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满足不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点(2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .【答案】 C利用线性规划解决实际问题的五步曲某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:36 800[A 级 基础练]1.不等式组⎩⎨⎧x -3y +6≤0,x -y +2>0表示的平面区域是( )解析:选C .用特殊点代入,比如(0,0),容易判断为C . 2.设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析:选D .若(2,1)∈A ,则⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,解得a >32,所以当且仅当a ≤32时,(2,1)∉A ,故选D .3.(2020·高考浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0,则z =x +2y的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)解析:选B .画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).故选B .4.若M 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2 连续变化到1时,动直线x +y =a 扫过M 中的那部分区域的面积为( )A .1B .32C .34D .74解析:选D .在平面直角坐标系中作出区域M 如图中阴影部分所示,当a 从-2连续变化到1时,动直线x +y =a 扫过M 中的那部分区域为图中的四边形AODE ,所以其面积S =S △AOC -S △DEC =12×2×2-12×1×12=74,故选D .5.若x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -m ≥0,x -3≤0,若z =2x -3y 的最大值为9,则正实数m 的值为( )A .2B .3C .4D .8解析:选A .作出x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -m ≥0,x -3≤0表示的可行域如图中阴影部分所示,由图可知z =2x -3y 在点A 处取得最大值, 由⎩⎪⎨⎪⎧x +y -m =0,x =3解得A (3,m -3), 由z max =2×3-3(m -3)=9,解得m =2. 故选A .6.(2021·广州市阶段训练)设x ,y 满足约束条件⎩⎨⎧1≤x ≤3,0≤x +y ≤2,则z =x -2y的最小值为________.解析:依题意,在平面直角坐标系内作出不等式组表示的平面区域如图中阴影部分所示,作出直线x -2y =0,并平移,当平移到经过该平面区域内的点(1,1)时,相应直线在x 轴上的截距最小,此时z =x -2y 取得最小值,最小值为-1.答案:-17.(2021·合肥第一次教学检测)已知实数x ,y 满足⎩⎨⎧x ≥y ,x ≤2y ,x +y -6≤0,则z =2x+y 取得最大值时的最优解为________.解析:方法一:作不等式组⎩⎪⎨⎪⎧x ≥y ,x ≤2y ,x +y -6≤0表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,并平移,根据z 的几何意义,很容易看出当直线平移到点B 处时z 取得最大值,联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,得B (4,2).方法二:易知目标函数z =2x +y 的最大值在交点处取得,只需求出两两相交的三个交点的坐标,代入z =2x +y ,即可求得最大值.联立⎩⎪⎨⎪⎧x =y ,x -2y =0,解得⎩⎪⎨⎪⎧x =0,y =0为原点,代入可得z =0;联立得⎩⎪⎨⎪⎧x =y ,x +y -6=0,解得⎩⎪⎨⎪⎧x =3,y =3,将(3,3)代入可得z =9;联立⎩⎪⎨⎪⎧x -2y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =4,y =2,将(4,2)代入可得z =10.通过比较可知,z 的最大值为10,故最优解为(4,2).答案:(4,2)8.(2021·四省八校第二次质量检测)已知变量x ,y 满足约束条件⎩⎨⎧x -2≤0,x -2y +2≥0,x +y +1≥0,若-x +y ≥-m 2+4m 恒成立,则实数m 的取值范围为________. 解析:设z =-x +y ,作出可行域如图中阴影部分所示,作出直线-x +y =0,并平移可知当直线过点B (2,-3)时z 取得最小值,所以z min =-5,所以-m 2+4m ≤-5,m 2-4m -5≥0⇒m ≤-1或m ≥5,所以m 的取值范围为(-∞,-1]∪[5,+∞).答案:(-∞,-1]∪[5,+∞)9.如图所示,已知D 是以点A (4,1),B (-1,-6),C (-3,2)为顶点的三角形区域(包括边界与内部).(1)写出表示区域D 的不等式组;(2)设点B (-1,-6),C (-3,2)在直线4x -3y -a =0的异侧,求a 的取值范围.解:(1)直线AB ,AC ,BC 的方程分别为7x -5y -23=0,x +7y -11=0,4x +y +10=0.原点(0,0)在区域D 内,故表示区域D 的不等式组为⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(2)根据题意有[4×(-1)-3×(-6)-a ]·[4×(-3)-3×2-a ]<0,即(14-a )(-18-a )<0,解得-18<a <14.故a 的取值范围是(-18,14).10.已知x ,y 满足⎩⎨⎧y >0,x +y +1<0,3x +y +9>0,记点(x ,y )对应的平面区域为P .(1)设z =y +1x +3,求z 的取值范围; (2)过点(-5,1)的一束光线,射到x 轴被反射后经过区域P ,当反射光线所在直线l 经过区域P 内的整点(即横纵坐标均是整数的点)时,求直线l 的方程.解:平面区域如图所示(阴影部分),易得A ,B ,C 三点坐标分别为A (-4,3),B (-3,0),C (-1,0).(1)由z =y +1x +3知z 的值即是定点M (-3,-1)与区域内的点Q (x ,y )连接的直线的斜率,当直线过A (-4,3)时,z =-4; 当直线过C (-1,0)时,z =12.故z 的取值范围是(-∞,-4)∪⎝ ⎛⎭⎪⎫12,+∞.(2)过点(-5,1)的光线被x 轴反射后的光线所在直线必经过点(-5,-1),由题设可得区域内坐标为整数点仅有点(-3,1),故直线l 的方程是y -1(-1)-1=x +3(-5)+3,即x -y +4=0.[B 级 综合练]11.已知点(x ,y )满足⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +y 仅在点(1,0)处取得最小值,则a 的取值范围为( )A .(-1,2)B .(-2,1)C .⎝ ⎛⎭⎪⎫12,+∞D .⎝ ⎛⎭⎪⎫-∞,-12解析:选B .作出不等式组对应的平面区域,如图中阴影部分所示,由z =ax +y 可得y =-ax +z ,直线的斜率k =-a , 因为k AC =2,k AB =-1,目标函数z =ax +y 仅在点A (1,0)处取得最小值,则有k AB <k <k AC , 即-1<-a <2,所以-2<a <1,即实数a 的取值范围是(-2,1).故选B .12.若点M (x ,y )满足⎩⎨⎧x 2+y 2-2x -2y +1=0,1≤x ≤2,0≤y ≤2,则x +y 的取值集合是( )A .[1,2+2]B .[1,3]C .[2+2,4]D .[1,4]解析:选A .x 2+y 2-2x -2y +1=(x -1)2+(y -1)2=1,根据约束条件画出可行域,如图中阴影部分所示,令z =x +y ,则y =-x +z ,根据图象得到当直线过点(1,0)时目标函数取得最小值,为1,当直线和半圆相切时,取得最大值,根据点到直线的距离等于半径得到|2-z |2=1⇒z =2±2,易知2-2不符合题意,故z =2+2,所以x +y 的取值范围为[1,2+2].故选A .13.已知点A (2,1),O 是坐标原点,P (x ,y )的坐标满足⎩⎨⎧2x -y ≤0x -2y +3≥0y ≥0,设z =OP →·OA→,则z 的最大值是________. 解析:方法一:由题意,作出可行域,如图中阴影部分所示.z =OP →·OA →=2x +y ,作出直线2x +y =0并平移,可知当直线过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x -2y +3=0,得⎩⎪⎨⎪⎧x =1,y =2,即C (1,2),则z 的最大值是4.方法二:由题意,作出可行域,如图中阴影部分所示,可知可行域是三角形封闭区域.z =OP →·OA →=2x +y ,易知目标函数z =2x +y 的最大值在顶点处取得,求出三个顶点的坐标分别为(0,0),(1,2),(-3,0),分别将(0,0),(1,2),(-3,0)代入z =2x +y ,对应z 的值为0,4,-6,故z 的最大值是4.答案:414.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料 肥料ABC甲 4 8 3 乙5510现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域; (2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.解:(1)由已知得,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3, 这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24). 所以z max =2×20+3×24=112.即生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.[C 级 提升练]15.已知实数x ,y 满足⎩⎨⎧6x +y -1≥0,x -y -3≤0,y ≤0,则z =y -ln x 的取值范围为________.解析:作出可行域如图(阴影部分),其中A (16,0),B (3,0),C (47,-177).由图可知,当y =ln x +z 过点A (16,0)时z 取得最大值,z max =0-ln 16=ln 6.设y =ln x +z 的图象与直线y =x -3相切于点M (x 0,y 0),由y =ln x +z 得y ′=1x ,令1x 0=1得x 0=1∈⎝ ⎛⎭⎪⎫47,3,故y =ln x +z 与y =x -3切于点M (1,-2)时,z 取得最小值,z min =-2-ln 1=-2.所以z =y -ln x 的取值范围为[-2,ln 6]. 答案:[-2,ln 6]16.已知点A (53,5),直线l :x =my +n (n >0)过点A .若可行域⎩⎨⎧x ≤my +n ,x -3y ≥0,y ≥0的外接圆的直径为20,则n =________.解析:注意到直线l ′:x -3y =0也经过点A ,所以点A 为直线l 与l ′的交点. 画出不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0表示的可行域,如图中阴影部分所示.设直线l 的倾斜角为α,则∠ABO =π-α. 在△OAB 中,OA =(53)2+52=10.根据正弦定理,得10sin (π-α)=20,解得α=5π6或π6.当α=5π6时,1m =tan 5π6,得m =- 3. 又直线l 过点A (53,5), 所以53=-3×5+n , 解得n =10 3.当α=π6时,同理可得m =3,n =0(舍去). 综上,n =10 3. 答案:10 3。

【高中数学】不等式与 线性规划

【高中数学】不等式与       线性规划

回扣5 不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题 (1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R )当且仅当a =b 时取等号. ②a +b 2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)几个重要的不等式:①ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );②a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立). ③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f (x )g (x )≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x (x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >b c ;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b .A.4B.3C.2D.12.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( )A.(-3,0)B.(-∞,-3)C.(-3,0]D.(-∞,-3)∪(0,+∞)4.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件D.既不充分也不必要条件5.不等式1x -1≥-1的解集为( )A.(-∞,0]∪[1,+∞)B.[0,+∞)C.(-∞,0]∪(1,+∞)D.[0,1)∪(1,+∞)6.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b 的最小值为( )A.256B.94C.1D.47.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.6B.5C.4D.38.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( ) A.(-∞,-1) B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)9.已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A.34B.14C.18D.3810.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.11.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.12.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m =______.13.(2016·上海)若x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,y ≥x +1,则x -2y 的最大值为________.14.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则y -6x -5的取值范围是________. 回扣5 不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0. 3.分式不等式f xg x >0(<0)⇔f (x )g (x )>0(<0);f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f xg x ≥0≤0,g x ≠0.4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R )当且仅当a =b 时取等号. ②a +b2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)几个重要的不等式:①ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); ②a 2+b 22≥a +b2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立).③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f xg x≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x(x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >bc;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b.A.4B.3C.2D.1 答案 C解析 ①a >b ,c >d ⇔a +c >b +d 正确,不等式的同向可加性;②a >b ,c >d ⇒a d >bc错误,反例:若a =3,b =2,c =1,d =-1,则a d >bc不成立;③a 2>b 2⇔|a |>|b |正确;④a >b ⇔1a <1b 错误,反例:若a =2,b =-2,则1a <1b不成立.故选C.2.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定 答案 A解析 M -N =2a (a -2)+4-(a -1)(a -3)=a 2+1>0.故选A. 3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( ) A.(-3,0) B.(-∞,-3) C.(-3,0] D.(-∞,-3)∪(0,+∞) 答案 C解析 由题意可知2kx 2+kx -38<0恒成立,当k =0时成立,当k ≠0时需满足⎩⎪⎨⎪⎧k <0,Δ<0,代入求得-3<k <0,所以实数k 的取值范围是(-3,0].4.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案 A解析 如图,(x -1)2+(y -1)2≤2,①表示圆心为(1,1),半径为2的圆内区域的所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,②表示△ABC 内部区域的所有点(包括边界).实数x ,y 满足②则必然满足①,反之不成立.则p 是q 的必要不充分条件.故选A.5.不等式1x -1≥-1的解集为( )A.(-∞,0]∪[1,+∞)B.[0,+∞)C.(-∞,0]∪(1,+∞)D.[0,1)∪(1,+∞)答案 C解析 由题意得,1x -1≥-1⇒1x -1+1=xx -1≥0,解得x ≤0或x >1,所以不等式的解集为(-∞,0]∪(1,+∞),故选C.6.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b的最小值为( )A.256B.94 C.1 D.4 答案 B解析 不等式表示的平面区域如图中阴影部分,直线z =ax +by 过点(8,10)时取最大值,即8a +10b =40,4a +5b =20,从而5a +1b =(5a +1b )4a +5b 20=120(25+4a b +25b a )≥120(25+24a b ×25b a )=94,当且仅当2a =5b 时取等号,因此5a +1b 的最小值为94,故选B.7.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.6B.5C.4D.3 答案 B解析 作出不等式组对应的平面区域,如图所示,由目标函数z =x -y 的最小值为-1,得y =x -z ,及当z =-1时,函数y =x +1,此时对应的平面区域在直线y =x +1的下方,由⎩⎪⎨⎪⎧ y =x +1y =2x -1⇒⎩⎪⎨⎪⎧x =2,y =3,即A (2,3),同时A 也在直线x +y =m 上,所以m = 5.8.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x -1-1表示一个三角形区域,则实数k的取值范围是( ) A.(-∞,-1) B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)答案 A解析 易知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示.当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域,所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).9.已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A.34B.14C.18D.38 答案 D解析 不等式组表示的区域如图所示,阴影部分的面积为12×(2-12)×(1+1)=32,则所求的概率为38,故选D.10.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.答案 8解析 由已知可得定点A (-2,-1),代入直线方程可得2m +n =1,从而1m +2n =(1m+2n)(2m +n )=n m+4mn+4≥2n m ·4m n+4=8.当且仅当n =2m 时取等号.11.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.答案 4+423解析 因为ab =14,所以b =14a , 则11-a +21-b =11-a +21-14a=11-a +8a 4a -1=11-a +24a -1+24a -1 =11-a +24a -1+2 =2(14a -1+24-4a)+2 =23(14a -1+24-4a)[(4a -1)+(4-4a )]+2 =23[3+4-4a 4a -1+24a -14-4a]+2 ≥23(3+22)+2=4+423(当且仅当4-4a 4a -1=24a -14-4a ,即a =32-24时,取等号). 12.变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m =______.答案 1 解析 由可行域知,直线2x -y =2必过直线x -2y +2=0与mx -y =0的交点,即直线mx -y =0必过直线x -2y +2=0与2x -y =2的交点(2,2),所以m =1.13.(2016·上海)若x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,y ≥x +1,则x -2y 的最大值为________.答案 -2 解析 令z =x -2y ,则y =12x -z 2.当在y 轴上截距最小时,z 最大.即过点(0,1)时,z 取最大值,z =0-2×1=-2.14.已知实数x ,y 满足⎩⎪⎨⎪⎧ x -y +5≥0,x ≤3,x +y ≥0,则y -6x -5的取值范围是________.答案 [-1,92] 解析 作出可行域,如图△ABC 内部(含边界),y -6x -5表示可行域内点(x ,y )与P (5,6)连线斜率,k PA =8-63-5=-1,k PC =-3-63-5=92,所以-1≤y -6x -5≤92.。

高考数学考点训练题:五、不等式与线性规划

高考数学考点训练题:五、不等式与线性规划

五、不等式与线性规划【题组一】1、已知实数,x y 满足约束条件102022x y x y x y -+≤⎧⎪-≤⎨⎪+≤⎩,则目标函数2z x y =-的最大值为( )A .3-B .1-C .1D .322、已知实数,x y 满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .3、已知实数,x y 满足约束条件40240240x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z ax y =-取得最大值的最优解不唯一,则实数a 的值为( )A .1-B .2C .12D .21-或 【题组二】 1、已知实数,x y 满足约束条件20302x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则22z x y =+的最小值为( )A .5B .92 C.2 D .1322、已知实数,x y 满足约束条件30200x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若当1,2x y =-=时,z ax y =+取得最小值,则实数a 的取值范围是 .3、已知实数,x y 满足约束条件1x y a x y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5- B .3 C .53-或 D .53-或【题组三】1、已知实数,x y 满足约束条件12314y x y x y ≥-⎧⎪-≥⎨⎪+≤⎩,则1y z x =+的最小值为( ) A .12- B .16- C .0 D .252、已知实数,x y 满足约束条件211y x x y x y ≤⎧⎪+≤⎨⎪-≤⎩,则3z x y =+-的最大值为( )A .2B .2C .32D .63、某旅行社租用,A B 两种型号的客车安排900名客人旅行,,A B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31200元B .36000元C .36800元D .38400元五、不等式与线性规划(答案解析)【题组一】1、已知实数,x y 满足约束条件102022x y x y x y -+≤⎧⎪-≤⎨⎪+≤⎩,则目标函数2z x y =-的最大值为( )A .3-B .1-C .1D .32【答案】B【解析】作出可行域如右图阴影部分所示,22z x y y x z =-⇒=-∴要使z 取得最大值,则直线2y x z =-在y 轴上的截距z -须达到最小.由图可知,当直线2y x =平移经过点A 时,直线2y x z =-的纵截距达到最小.由1022x y x y -+=⎧⎨+=⎩得(0,1)A ,则min 2011z =⨯-=-.故选B .2、已知实数,x y 满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,且y a x a z )1(3)1(22+-+=的最小值是20-,则实数=a .【答案】2±【解析】作出可行域如右图阴影部分所示:2221(1)3(1)33(1)z z a x a y y x a =+-+⇒=-+.∴要使z 取得最小值,则直线2133(1)z y x a =-+在y 轴上的截距23(1)z a -+须达到最大. 由图可知,当直线13y x =平移经过点A 时,直线2133(1)z y x a =-+的纵截距达到最大. 由220220x y x y --=⎧⎨-+=⎩得(2,2)A ,则22min 2(1)6(1)202z a a a =+-+=-⇒=±.3、已知实数,x y 满足约束条件40240240x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若z ax y =-取得最大值的最优解不唯一,则实数a 的值为( )A .1-B .2C .12D .21-或 【答案】C【解析】作出可行域如右图阴影部分所示,z ax y y ax z =-⇒=-.∴要使z 取得最大值,则直线y ax z =-在y 轴上的截距z -须达到最小.① 当0a =时,此时目标函数z y =-只在点A 处取得最大值,不符合题意;② 当0a >时,直线y ax z =-的斜率为0k a =>.要使z ax y =-取得最大值的最优解不唯一,则直线y ax z =-与直线240x y --=平行,此时12a =; ③ 当0a <时,显然不符合题意.综上所述,12a =.故选C . 【题组二】 1、已知实数,x y 满足约束条件20302x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则22z x y =+的最小值为( )A .5B .92 C .32 D .132 【答案】B【解析】作出可行域如右图阴影部分所示,22z x y =+所表示的几何意义为原点(0,0)O 到可行域内的点(,)x y 的距离的平方.由图可知,原点(0,0)O 到图中阴影部分中的直线30x y +-=的距离的平方时,此时22z x y =+取得最小值,最小值为2min 220039()211z +-==+,故选B . 2、已知实数,x y 满足约束条件30200x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若当1,2x y =-=时,z ax y =+取得最小值,则实数a 的取值范围是 .【答案】[2,)+∞【解析】作出可行域如右图阴影部分所示,z ax y y ax z =+⇒=-+∴要使z 取得最小值,则直线y ax z =-+在y 轴上的截距z 须达到最小易知(1,2)A -,直线y ax z =-+的斜率为k a =-,1AB k =,2OA k =-① 当0a =时,此时目标函数z y =只在原点(0,0)O 处取得最小值,不符合题意;② 当0a >时,0k a =-<,要使z ax y =+在点(1,2)A -处取得最小值,则须满足2a -≤-,则2a ≥; ③ 当0a <时,0k a =->,显然z ax y =+只能在原点(0,0)O 处取得最小值,不符合题意. 综上所述,2a ≥.3、已知实数,x y 满足约束条件1x y a x y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5- B .3 C .53-或 D .53-或【答案】B【解析】作出可行域如右图阴影部分所示,① 当0a =时,此时目标函数z x =无最小值,不符合题意;② 当0a >时,1z z x ay y x a a=+⇒=-+. 则直线1z y x a a =-+的斜率为10k a=-<,直线x y a +=的斜率为1k =-.∴要使z 取得最小值,则直线1z y x a a =-+在y 轴上的截距z a须达到最小. 由图可知,当11a -≥-,即1a ≥时,目标函数z x ay =+在点11(,)22a a A -+处取得最小值 则min 11735()22a a z a a a -+=+⋅=⇒==-或舍去; ③ 当0a <时,1z z x ay y x a a=+⇒=-+. 则直线1z y x a a =-+的斜率为10k a=->. ∴要使z 取得最小值,则直线1z y x a a =-+在y 轴上的截距z a须达到最大. 由图可知,直线1z y x a a=-+的纵截距没有最大值,不符合题意. 综上所述,3a =.故选B .【题组三】1、已知实数,x y 满足约束条件12314y x y x y ≥-⎧⎪-≥⎨⎪+≤⎩,则1y z x =+的最小值为( ) A .12- B .16- C .0 D .25【答案】A 【解析】作出可行域如右图阴影部分所示,1y z x =+所表示的几何意义为(-1,0)D 与可行域内的点(,)x y 连线的斜率,由图可知,(-1,0)D 与可行域中的点A 的连线斜率达到最小.由21x y y -=⎧⎨=-⎩得(1,1)A -,则min 11112z -==-+.故选A .2、已知实数,x y 满足约束条件211y x x y x y ≤⎧⎪+≤⎨⎪-≤⎩,则3z x y =+-的最大值为( )A .2B .2C .32D .6【答案】D【解析】作出可行域如右图阴影部分所示,3z x y =+-所表示的几何意义为可行域内的点(,)x y 到直线30x y +-=的距离的2倍.由图可知,可行域内的点A 到直线30x y +-=的距离达到最大由21y x x y =⎧⎨-=⎩得(1,2)A --,则max 1(2)36z =-+--=.故选D .3、某旅行社租用,A B 两种型号的客车安排900名客人旅行,,A B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31200元B .36000元C .36800元D .38400元【答案】C【解析】设租用A 型车x 辆,B 型车y 辆,租金为z 元.由已知条件可得3660900217,x y x y y x x y N+≥⎧⎪+≤⎪⎨-≤⎪⎪∈⎩,目标函数为16002400z x y =+.作出可行域如右图阴影部分所示,21600240032400z z x y y x =+⇒=-+. ∴要使z 取得最小值,则直线232400z y x =-+在y 轴上的截距2400z 须达到最小.由图可知,当直线23y x =-平移经过点B 时,直线232400z y x =-+的纵截距达到最小. 由36609007x y y x +=⎧⎨-=⎩得(5,12)B ,则min 1600524001236800()z =⨯+⨯=元,故选C .。

高考数学 热点专题专练 513一元二次不等式、线性规划

高考数学 热点专题专练 513一元二次不等式、线性规划

高考专题训练(十三) 一元二次不等式、线性规划、基本不等式及其应用时间:45分钟 分值:75分一、选择题:本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,选出符合题目要求的一项填在括号里.1.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<bC .a <ab <b <a +b 2D.ab <a <a +b2<b解析 ∵b >a >0,∴a +b2>ab ,2b >b +a . ∴b >a +b2,∴a <ab <a +b2<b .答案 B2.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析 f ′(x )=12x 2-2ax -2b .因在x =1处有极值,则f ′(1)=12-2a -2b =0, ∴a +b =6,ab ≤⎝ ⎛⎭⎪⎫a +b 22=9.答案 D3.(2012·辽宁)若x ∈[0,+∞),则下列不等式恒成立的是( ) A .e x≤1+x +x 2B.11+x ≤1-12x +14x 2C .cos x ≥1-12x 2D .ln(1+x )≥x -18x 2解析 设f (x )=cos x -1+12x 2,f ′(x )=-sin x +x >0,在(0,+∞)上恒成立,所以f (x )≥f (0)=0,故cos x ≥1-12x 2恒成立.答案 C4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y +1的最大值为( )A .11B .10C .9D .8.5解析 可行域如图当目标函数过点A 时,取最大值,由⎩⎪⎨⎪⎧x -y -2=0x +2y -5=0得A (3,1),故最大值为10. 答案 B5.(2012·福建)若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C.32 D .2解析不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m 所表示的可行域如图所示,当点B (m,2m)在点A (m,3-m )与C ⎝⎛⎭⎪⎫m ,-3-m 2之间时,函数y =2x 图象上存在点满足约束条件,即可得-3-m 2≤2m≤3-m (m ≤3),即得2m +m ≤3,∵函数f (x )=2x+x 在R 上是增函数,且f (1)=3,∴不等式f (m )≤3的解为m ≤1,即得实数m 的最大值为1.答案 B6.(2011·商丘市高三一模)定义在R 上的函数f (x )满足f (3)=1,f ′(x )为f (x )的导函数,已知y =f ′(x )的图象如图所示,若两个正数a 、b 满足f (3a +b )<1,则b +2a +1的取值范围是( )A .(1,2)B .(2,5)C .(1,5)D .(-∞,1)∪(5,+∞)解析 由f (x )的导函数y =f ′(x )的图象可得y =f (x )(如下图)的大致图象,由图象可知,当a >0,b >0即3a +b >0时,y =f (x )为增函数, 又∵f (3)=1,∴f (3a +b )<f (3)∴⎩⎪⎨⎪⎧3a +b <3a >0b >0,作出可行域如右图∴b +2a +1的最小值为直线AB 的斜率k AB =1 b +2a +1的最大值为直线AC 的斜率k AC =5 ∴b +2a +1∈(1,5),故选C. 答案 C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.7.(2012·陕西省高考全真模拟一)若a 、b 是正常数,a ≠b ,x 、y ∈(0,+∞),则a 2x +b 2y ≥a +b 2x +y,当且仅当a x =b y 时上式取等号.利用以上结论,可以得到函数f (x )=4x +91-2x⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫0,12的最小值为________.解析 由题意知,f (x )=22x +321-2x ,x ∈⎝ ⎛⎭⎪⎫0,12, ∵2≠3且均为正常数,x ∈⎝ ⎛⎭⎪⎫0,12, ∴1-2x ∈(0,1), ∴22x +321-2x ≥2+321-x,当且仅当2x =31-2x 时,即x =27时等号成立,即f (x )≥35.答案 358.(2012·江苏)已知实数a ,b ,c 满足:5c -3a ≤b ≤4c -a ,c ln b ≥a +c ln c ,则ba的取值范围是________.解析 题中条件可转化为⎩⎪⎨⎪⎧3ac +bc≥5,a c +bc ≤4,b c ≥e a c令a c =x ,bc=y ,则题目可转化为:已知x ,y 满足⎩⎪⎨⎪⎧3x +y ≥5,x +y ≤4,y ≥e x ,且在x >0、y >0的条件下求yx的取值范围,作出(x ,y )所在的平面区域,如图所示,求出y =e x过原点的切线为y =ex ,且易判断切点P (1,e)在区域顶点A 、B 之间,故易求出y x的取值范围为[e,7].答案 [e,7]9.(2012·安徽)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析如图画出可行域是如图所示的△ABC 的边界及内部,令z =x -y .易知当直线y =x -z 经过点C (0,3)时,直线在y 轴上截距最大,目标函数z 取得最小值,即z min =-3;当直线y =x -z 经过点B (1,1)时,直线在y 轴上截距最小,目标函数z 取得最大值,即z max =0,所以(x -y )∈[-3,0].答案 [-3,0]10.(2012·湖北省黄冈中学模拟考试)若实数x ,y 满足⎩⎪⎨⎪⎧4x +3y =0,x -y ≥-14,x -y ≤7,则x 2+y 2的取值范围是________.解析 如图所示,不等式组⎩⎪⎨⎪⎧4x +3y =0x -y ≥-14x -y ≤7所表示的可行域为线段AB ,x 2+y 2可看作是可行域内的点P (x ,y )到原点O 的距离,由图易知|PO |min =0,|PO |max =|AO |,由⎩⎪⎨⎪⎧4x +3y =0,x -y =-14,得A (-6,8),故|PO |max =-62+82=10,即x 2+y 2的取值范围为[0,10].答案 [0,10]三、解答题:本大题共2小题,共25分.解答应写出文字说明、证明过程或演算步骤. 11.(12分)(2012·江西师大附中、临川一中高三联考)已知定义在R 上的函数f (x )满足f (x )=f (4-x ),又函数f (x +2)在[0,+∞)上单调递减.(1)求不等式f (3x )>f (2x -1)的解集;(2)设(1)中不等式的解集为A ,对于任意的t ∈A ,不等式x 2+(t -2)x +1-t >0恒成立,求实数x 的取值范围.解 (1)∵f (x )=f (4-x ),∴函数f (x )的图象关于直线x =2对称, 又∵函数f (x +2)在[0,+∞)上单调递减, ∴函数f (x )在[2,+∞)上单调递减.∴不等式f (3x )>f (2x -1)⇔|3x -2|<|2x -1-2|⇔(3x -2)2<(2x -3)2⇔(5x -5)(x +1)<0⇔-1<x <1,∴原不等式的解集为(-1,1). (2)令g (t )=(x -1)t +(x 2-2x +1).t ∈(-1,1)时,不等式x 2+(t -2)x +(1-t )>0恒成立,即g (t )>0在t ∈(-1,1)上恒成立.当x ≠1时,⎩⎪⎨⎪⎧g-1≥0g 1≥0,⇒⎩⎪⎨⎪⎧x 2-3x +2≥0x 2-x ≥0⇒⎩⎪⎨⎪⎧x ≤1或x ≥2x ≤0或x ≥1⇒x ≤0或x =1或x ≥2,当x =1时,0>0,显然不成立,∴x ≠1, ∴x ≤0或x ≥2.综上,x ∈(-∞,0]∪[2,+∞).12.(13分)设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+n -1(n ≥2).(1)求数列{a n }的通项公式; (2)证明:对于一切正整数n,2a n ≤bn +1+1.解 (1)(ⅰ)若b =1,则a 1=1,a n =na n -1a n -1+n -1(n ≥2)则n a n =a n -1+n -1a n -1=1+n -1a n -1.∴⎩⎨⎧⎭⎬⎫n a n 是首项为1,公差为1的等差数列, ∴n a n=n ,∴a n =1. (ⅱ)若b ≠1,则a n n =ba n -1a n -1+n -1,∴n a n =1b +1b·n -1a n -1, ∴n a n -1b -1=1b ⎝ ⎛⎭⎪⎫n -1a n -1-1b -1,∴数列⎩⎨⎧⎭⎬⎫n a n -1b -1是首项为-1b b -1,公比为1b的等比数列, ∴n a n -1b -1=-1b b -1·⎝ ⎛⎭⎪⎫1b n -1,∵n a n =1b -1-1b b -1·⎝ ⎛⎭⎪⎫1b n -1,∴a n =n b -1b n b n -1.(2)证明:当b =1时,2a n =2≤2成立当b ≠1时,a n =n b -1b nb n -1=nb1-⎝ ⎛⎭⎪⎫1bn 1-1b=nb1+1b +1b 2+ (1)n -1,要证2a n ≤b n +1+1, 只要证a n ≤b n +1+12,只要证nb1+1b +1b 2+ (1)n -1≤b n +1+12即证2nb ≤(b n +1+1)⎝⎛⎭⎪⎫1+1b +1b2+…+1b n -1.∵(b n +1+1)⎝⎛⎭⎪⎫1+1b +1b2+…+1b n -1=bn +1+b n +…+b 2+1+1b +1b 2+1bn -1=⎝⎛⎭⎪⎫bn +1+1b n -1+⎝⎛⎭⎪⎫b n +1b n -2+…+(b 2+1)≥2b +2b +…+2b n=2nb . ∴2nb ≤(bn +1+1)⎝⎛⎭⎪⎫1+1b +1b2+…+1b n -1.从而2a n ≤b n +1+1成立.。

2020年高考数学(理)总复习:不等式、线性规划(解析版)

2020年高考数学(理)总复习:不等式、线性规划(解析版)

2020 年高考数学(理)总复习:不等式、线性规划题型一不等式的解法【题型重点】 解不等式的常有策略(1) 解一元二次不等式,一是图象法:利用“三个二次 ”之间的关系,借助相应二次函数图象,确立一元二次不等式的解集;二是因式分解法:利用“同号得正,异号得负 ”这一符号法例,转变为一元一次不等式组求解.(2)解简单的分式、指数、对数不等式的基本思想是把他们等价转变为整式不等式(一般为一元二次不等式 )求解.(3)解含 “f ”的函数不等式,第一要确立 f(x)的单一性,而后依据函数的单一性去掉“f ”转化为往常的不等式求解.(4) 解决含参数不等式的难点在于对参数的合适分类,重点是找到对参数进行议论的原由,确立好分类标准,有理有据、层次清楚地求解.x -12e , x<1【例 1】已知函数 f(x)=,则 f(f(x))<2 的解集为 ()x 3 +x , x ≥1A . (1- ln 2,+ ∞)B . (- ∞, 1- ln 2)C .(1- ln 2,1)D . (1,1+ ln 2)【分析】由于当3x-1等x ≥1时, f(x)= x + x ≥2,当 x<1 时, f(x)= 2e <2,所以 f(f(x))<2x -1<1 ,解得 x<1- ln 2,所以 f(f(x))<2 的解集为 (-∞,1- ln 2) ,应选 B.价于 f( x)<1 ,即 2e【答案】B- x 2+ 2x , x ≤0,【例 2】.已知函数 f(x)=若|f(x)| ≥ax ,则 a 的取值范围是 ()ln x + 1 , x > 0.A .(-∞,0]B . (- ∞, 1]C .[ -2,1]D . [- 2,0]【分析】 当 x ≤0时,f(x) =- x 2+ 2x =- (x - 1) 2+ 1≤0,所以 |f(x)| ≥ax 化简为 x 2-2x ≥ax ,即 x2≥(a+ 2)x,由于所以 |f( x)| ≥ax 化简为式|f(x)| ≥ax 恒成立.x≤0,所以 a+ 2≥x 恒成立,所以 a≥- 2;当 x> 0 时,f(x)= ln(x+ 1)>0, ln( x+ 1) ≥ax 恒成立,由函数图象可知 a≤0,综上,当- 2≤a≤0时,不等【答案】 D题组训练一不等式的解法1.若不等式ax2- bx+ c>0 的解集是1 ,2 ,则以下结论中:①a>0;②b<0;③c>0;2④a+ b+ c>0;⑤ a- b+c>0,正确的选项是 ()A .①②⑤B.①③⑤C.②③⑤D.③④⑤【分析】ax2- bx+ c>0 的解集是1,2 ,故 a<0,且 ax2- bx+c= 0 的两根为-1,2 22.由根与系数的关系得2-1=b>0,2 × 1 =c<0,故 b<0,c>0. 所以,②③正确,①错误.设2 a 2 af(x)= ax2- bx+ c,依据 f(- 1)<0,f(1)>0 ,可知 a+ b+ c<0 ,a- b+ c>0 ,故④错误,⑤正确.【答案】 C2.已知 f(x)是定义在R上的奇函数,且 f(x- 2)= f(x+ 2),当 0< x< 2 时,f(x)=1- log2(x +1),则当 0 <x< 4 时,不等式 (x- 2)f(x) >0 的解集是 ( )A . (0,1) ∪ (2,3) B. (0,1)∪ (3,4)C.(1,2) ∪(3,4) D. (1,2)∪ (2,3)【分析】当 0< x< 2 时,x- 2< 0,不等式可化为x- 2< 0,x- 2< 0,即1- log2 x+1 <0 ,f x < 0,解得 1< x<2,x- 2>0,当 2<x< 4 时, x- 2> 0,不等式可化为f x > 0,由函数 f(x)是奇函数,得f(- x)=- f(x) ,又 f(x- 2)= f(x+2) ,则 f(x) =f(x- 2+2) =f(x- 2- 2)=- f(4- x),由于 0< 4- x< 2,不等式可化为x- 2> 0,,解得 2< x< 3,-1+ log2 5- x >0则原不等式的解集为(1,2)∪ (2,3),应选 D.【答案】 D题型二简单的线性规划问题【题型重点】线性规划问题一般有三种题型:一是求最值;二是求地区面积;三是知最优解状况或可行域状况确立参数的值或取值范围.解决线性规划问题应特别关注以下三点:(1)第一要找到可行域,再注意目标函数所表示的几何意义,找到目标函数达到最值时可行域的极点 (或界限上的点 ),但要注意作图必定要正确,整点问题要考证解决.(2)画可行域时应注意地区能否包括界限.(3)对目标函数z= Ax+ By 中 B 的符号,必定要注意 B 的正负与z 的最值的对应,要结合图形剖析.x+y≤4【例 3】已知 P(x, y)为不等式组x-y≤0表示的平面地区M 内随意一点,若目标函x-a≥0数 z= 5x+ 3y 的最大值等于平面地区M 的面积,则a= ________.【分析】作出不等式组对应的平面地区如图:由 z = 5x +3y 得 y =- 5x + z,3 35z平移直线 y =- 3x + 3,由图象知当直线 y =-5 z z 最大,x + ,经过点 A 时,直线的截距最大,此时33x +y = 4 由,解得 x = y =2,即 A(2,2),x -y = 0此时 z =5×2+ 3×2= 16,x +y = 4 由.解得 x = a ,y = 4- a ,即 B(a,4-a),x =ax -y = 0由,解得 x = y =a ,即 C(a , a),x =a∴ BC = 4-a - a = 4-2a , △ ABC 的高为 2- a ,1 2∴ S △ABC = 2×(2- a)(4- 2a)= (2- a) = 16,解得 a =- 2, a = 6(舍去 ),【答案】- 2x ≥0,则x +2y + 3的取值范围是 ()【例 4】.设 x , y 知足拘束条件 y ≥x ,4x + 3y ≤ 12, x + 1A . [1,5]B . [2,6]C .[3,10]D . [3,11]【分析】依据拘束条件画出可行域如图暗影部分所示.∵x +2y + 3= 1+2 y +1,令 k =y +1,即为可行域中的随意点(x ,x + 1 x + 1 x +1y)与点 ( -1,- 1)连线的斜率.由图象可知,当点 (x ,y)为 A(0,4)时, k最大,此时 x + 2y + 3的最大值为 11,当点 (x ,y)在线段 OB 上时, k 最x + 1小,此时x + 2y + 3的最小值为 3.应选 D.x + 1【答案】D题组训练二 简单的线性规划问题y ≤x - 1,则 x 21.已知实数 x 、y 知足 x ≤3的最小值是 () x +5y ≥4yA . 1B . 2C .3D . 4【分析】作出不等式组所对应的平面地区:2由图象可知 x > 0,y > 0,设 z = x,则 x 2= zy ,对应y的曲线为抛物线,由图象可知当直线y = x - 1 与抛物线相切时,此时 z 获得最小值,将 y = x - 1 代入抛物线 x2= z y ,得 x 2- zx + z = 0,由 = 0? z = 4, z = 0(舍 )所以选择 D.【答案】 Dx ≥0,2.已知点 P(x , y)知足条件 y ≤x ,若 z = x +3y 的最大值为 8,则实数 k =2x + y + k ≤0,________.【分析】依题意 k<0 且不等式组表示的平面地区如下图.易得,Bkk113 , 3 .目标函数 z =x + 3y 可看作直线 y =- 3x + 3z 在 y 轴上的截距的 3倍,明显当直线过点B 时截距最大,此时 z 获得最大值.所以 z max =- k3+ 3×k=-4k3= 8,解得 k =- 6.3【答案】- 6题型三基本不等式的应用【题型重点】利用基本不等式求函数或代数式的最值应关注的三个方面(1)形式:一般地,分子、分母有一个一次、一个二次的分式构造的函数以及含有两个变量的函数,特别适适用基本不等式求最值.(2)条件:利用基本不等式求最值需知足“正”(即条件要求中字母为正数 )、“定”(不等式的另一边一定为定值 )、“等”(等号获得的条件 )的条件才能应用,不然会出现错误.(3) 方法:使用基本不等式时,一般经过“拆、拼、凑”的技巧把求最值的函数或代数式b化为ax+x(ab>0) 的形式,常用的方法是变量分别法和配凑法.【例 5】已知二次函数f(x)= ax2+ bx+c 的导数为 f′(x), f′(0)> 0,对于随意的实数x 都有 f(x) ≥0,则f 1的取值范围是 ()f′0A. 3 , B. [2,+∞)2C. 5 , D. [3,+∞)2【分析】∵ f′(x)= 2ax+ b,∴ f′(0)=b> 0.又∵对于随意的实数x 都有 f(x) ≥0,∴ a>0 且 b2- 4ac≤0,∴ b2≤4ac,∴ c> 0,∴f 1 =f′0a+ b+ c a+ c 2 acb = b + 1≥b+ 1≥2.【答案】 B1+2= 1,则 2 +1的最小值为 ()2.若正数 a, b 知足:a b a- 1 b- 23 2A . 2 B. 253 2C.2D .1+ 4【分析】 由 a ,b 为正数,且 1+ 2= 1,得 b =2a2 + 1a ba - 1>0,所以 a - 1>0,所以 a - 1b - 2= 2 + 1 = 2 + a -1 2a - 1=2,当且仅当 2 = a - 1和1+ 2= 1 同时成 a - 1 2a - 2 a - 1 2 ≥2 a - 1 · 2 a - 1 2a b a - 1立,即 a =b = 3 时等号成立,所以2 + 1的最小值为 2,应选 A.a - 1b - 2【答案】 A题组训练三 基本不等式的应用1.若直线 l : ax + by + 1=0(a > 0,b > 0)把圆 C : (x + 4)2+ (y + 1)2= 16 分红面积相等的两部分,则当 ab 获得最大值时,坐标原点到直线l 的距离是 ( )A . 4B .8 178 17 C .2D. 17【分析】由题意,圆心 (-4,- 1)代入直线 l : ax +by + 1= 0,可得 4a + b = 1,4a + b=1≥4ab ,∴ ab ≤1 ,当且仅当 a = 1,b =1时, ab 获得最大值,坐标原点到直线 l 的距离16 82是1=8 17,应选 D.641+1417【答案】D2.设正实数1,不等式 4x 2y 2≥m 恒成立,则 m 的最大值为 ()x ,y 知足 x> ,y>1+2y - 1 2x - 1A .2 2B . 4 2C .8D . 162222【分析】依题意得, 2x - 1>0 , y - 1>0,4x+ y = [ 2x - 1 + 1] + [ y -1 +1]y - 1 2x - 1 y - 12x - 14 2x- 1 4 y- 1 2x- 1 y- 1 2 2=8,即4x +y ≥8,当且仅当≥+≥ 4×2×y-1 2x- 1 y- 1 2x- 1 y- 1 2x-12x- 1= 1y- 1=1 x= 1 2 2时,取等号,所以4x +y 的最小值是8, m≤8,m 的最,即2x- 1 y- 1 y= 2 y- 1 2x-1y- 1 =2x- 1大值是8,选 C.【答案】 C题型四“点”定乾坤求解与线性规划相关的问题【题型重点】线性规划求目标函数的最值时,常用方法是数形联合判断所过的定点,也能够把界限端点的坐标代入目标函数,找寻最值,研究可行域与其余函数的关系时,可用界限端点确立出答案.x≥0,【例 7】记不等式组x+ 3y≥4,所表示的平面地区为D,若直线 y= a(x+ 1)与 D 有3x+ y≤4公共点,则 a 的取值范围是________.3x+ y= 4,【分析】法一:作出可行域,利用可行域的上下界,成立的不等式,由x= 0得(0,4) ,x+3y= 4,由得 (1,1).3x+ y= 4地区 D 的上界为 (0,4),下界为 (1,1),∴ y= a(x+ 1)与 D 有公共点,则有2a≥1,a≤41∴2≤a≤ 4.法二:直线y= a(x+ 1)为经过定点P(- 1,0)且斜率为a,作出可行域后数形联合可知.不等式组所表示的平面地区 D 为如下图暗影部分(含界限 ),且 A(1,1),B(0,4) ,C4,0,31直线 y=a(x+ 1)恒过定点 P(- 1,0)且斜率为a,由斜率公式可知k BP= 4, k AP=2,若直线 y =a(x+1)知地区 D 有公共点,数形联合可得12≤a≤ 4.【答案】1 ,4 2题组训练四“点”定乾坤求解与线性规划相关的问题3x+ 4y- 10≥0,已知不等式组x≤4,表示地区D,过地区 D 中随意一点P 作圆 x2+y2=1 的两y≤3条切线且切点分别为A, B,当∠ PAB 最小时, cos∠ PAB= ()3 B.1A. 2 23D.-1C.-2 23x+ 4y- 10≥0,【分析】作出不等式组x≤4,表示的平面地区D,如下图:y≤3要使∠ APB 最大,则∠ OPB 最大.∵sin∠ OPB=|OB|=1,|OP| |OP |∴只需 OP 最小即可,即点 P 到圆心 O 的距离最小即可.由图象可知当|OP|垂直于直线3x- 4y- 10=0,|- 10|此时 |OP|==2,|OA|=1.2 23 + 4αα OA 1,设∠ APB=α,则∠ APO=,即 sin ==2 2 OP 22 α此时 cos α= 1- 2sin2=1-2×122=1-12=12,即 cos∠ APB=1,∴∠ APB=60°, 21∴△ PAB 为等边三角形,此时对应的∠PAB= 60°为最小,且cos∠PAB=2.应选 B.【答案】 B【专题训练】一、选择题1.已知一元二次不等式f(x) < 0 的解集为x x1 1或 x3A . { x|x<- 1 或 x>- ln 3} B.{ x|- 1< x<- ln 3} C.{ x|x>- ln 3}D. { x|x<- ln 3}x的解集为 (),则 f(e )> 01【分析】f(x)>0 的解集为x1x3xx1则由 f(e )> 0 得- 1< e < ,解得 x <- ln 3 ,即 f(e x )> 0 的解集为 { x|x <- ln 3} .【答案】 D2+ 1= 1, x + 2y >m 2- 2m 恒成立,则 m 的取值范围是 ()2.已知 x > 0, y >0, x y 3A . [- 6,4]B . [- 4,6]C .( -4,6)D . (- 6,4)2 12 1 2 【分析】∵ x + y ≥2 xy ,即3≥2xy, 解得 xy ≥72,∵ 2+ 1= 1,∴ 6+ 3= 1,xy 3x y1即 3x +6y = xy ,∴ x +2y = 3xy ≥ 24,∴ m 2- 2m <24 恒成立,解不等式 m 2-2m -24< 0得- 4< m < 6.应选 C.【答案】 C3.设 x , y 知足拘束条件x + y ≥a 7,则 a = (),且 z = x + ay 的最小值为x - y ≤-1A .- 5B . 3C .-5或 3D .5 或- 3【分析】依据拘束条件画出可行域如图中暗影部分所示:可知可行域为张口向上的V 字型.在极点处 z 有最小值,极点为 a 1 , a 1 ,则 a- 12 2 2+a a 1=7,解得 a= 3 或 a=- 5.当 a=- 5 时,如图 2,2图 2虚线向上挪动时 z 减小,故 z→-∞,没有最小值,故只有a= 3 知足题意.选 B. 【答案】 B4.已知 g(x)是R上的奇函数,当 x< 0x3, x≤0,时,g(x) =- ln(1 - x),函数 f(x)=g x ,x>0,若 f(2- x2)> f(x),则实数 x 的取值范围是 ( )A.(-∞,1)∪(2,+∞ ) B. (-∞,- 2)∪ (1,+∞)C.(1,2) D. (- 2,1)【分析】设 x>0,则- x< 0,所以 g(- x)=- ln(1 + x),由于 g(x)是R上的奇函数,x3, x≤0,易知 f(x)是R上的单一递所以 g(x)=- g(-x)=ln(1 + x),所以 f(x)=ln 1+ x , x> 0,增函数,所以原不等式等价于2- x2> x,解得- 2< x< 1.应选 D.【答案】 D2x- y≤0,5.已知实数x, y 知足x+ y- 5≥0,若不等式a(x2+ y2) ≥(x+ y)2恒成立,则实数a 的y- 4≤0,最小值是 ________.【分析】可行域为一个三角形ABC 及其内部 (图略 ),此中 A(2,4),B(1,4),C5 ,10,3 3所以 y∈ [k OA , k OB ] = [2,4] ,由于 y + x在 [2,4] 上单一递加,所以y + x ∈5 ,17,不等式 a(x 2xxyx y2 422x y 299+y ) ≥(x + y) 恒成立等价于 a ≥ x2y 2 5? a min = 5.max【答案】9 52x -y - 2≥06.已知实数 x ,y 知足 x +y - 1≤0 ,z = mx + y 的最大值为 3,则实数m 的值是 ( )y + 1≥0A .- 2B . 3C .8D . 22x - y - 2≥0【分析】由实数 x , y 知足 x + y - 1≤0 作出可行域如图,y + 1≥02x - y - 2=0 ,解得A1, 1,联立y + 1= 0 22x - y - 2=0,解得 B(1,0),同理 C(2,- 1)联立x + y - 2=0化目标函数 z = mx + y 为 y =- mx + z ,当直线 z = mx + y 经过 C 点时,获得最大值3;∴ 3= 2m - 1,解得 m = 2.应选 D.【答案】 D1+ 4的最小值为 ()7.已知函数 f(x) =cos πx(0<x<2),若 a ≠b ,且 f(a)= f(b),则 a b 9A. 2 B . 9【分析】函数 f( x)= cosπx(0< x<2) ,轴为 x= 1,若 a≠b,且 f(a)= f( b),所以 a+ b= 2131 4=1 4 1 1 b 4a所以+a b (a+ b) ×=25ba b 2 a 1 9 2 4 1 ≥ (5+ 4)=,当 a=,b=时取等号,故a 2 2 3 3+4b的最小值为92,应选 A.【答案】 A2x- y+ 6≥08.已知实数 x,y 知足 x+ y≥0,若目标函数 z=- mx+ y 的最大值为- 2m+ 10,x≤2最小值为- 2m- 2,则实数 m 的取值不行能是 ( )A . 3 B. 2C.0 D.- 12x- y+ 6≥0【分析】由拘束条件x+ y≥0作出可行域如图,x≤2联立方程组求得A(- 2,2), B(2,- 2), C(2,10) ,化目标函数z=- mx+ y 为 y= mx+ z,若 m≥0,则目标函数的最大值为 2m+ 2,最小值为- 2m-2,-2m+ 10=2m+2由,可知 m= 2;-2m- 2=- 2m- 2若 m= 0,则目标函数的最大值为 10,最小值为- 2,切合题意;若 m=- 1,则目标函数的最大值为- 2m+ 10,最小值为- 2m- 2,切合题意.∴实数 m 的取值不行能是 3.应选 A.【答案】 A- ln x-x, x> 0,1 < ln 1- 2 的解集为9.已知函数f(x)=则对于 m 的不等式 f- ln -x + x, x< 0. m 2()A. 0,1B . (0,2)2C.1,0 ∪ 0,1D . (- 2,0)∪ (0,2)22【分析】函数 f(x)的定义域 ( -∞, 0)∪ (0,+ ∞)对于原点对称,∵ x > 0 时,- x < 0,f(- x)=- ln x - x = f(x),同理: x<0 时, f(- x)= f(x) ,∴ f(x)为偶函数.∵ f(x)在(0 ,+ ∞)上为减函数,且 f(2) =- ln 2 - 2= ln 1 -2.2∴当 m > 0 时,由 f1< ln 1- 2,得 f 1 < f(2),m2m∴ 11m <0 时,得-1 > 2,解得 0< m < .依据偶函数的性质知当< m < 0.m 22【答案】Cx ≥2,时,z = x + y10.已知 x ,y 知足 y ≥2, (a ≥b > 0)的最大值为 2,则 a + b 的最小值为 ()x + y ≤8 a bA .4+2 3B .4-2 3C .9D . 8x ≥2,【分析】由拘束条件y ≥2,作出可行域如图,x + y ≤8x = 2, 联立,x + y = 8解得 A(2,6),化目标函数 x y bz = + 为 y =- x + bz ,a b ab由图可知,当直线y=-a x+ bz 过点 A 时,2 6直线在 y 轴上的截距最大,z 有最大值为+=2,即1+3=1. a b所以 a+ b= (a+ b) 1 3a bb +3a b 3a= 4+b ≥4+ 2 ·=4+2 3.a a b1+3= 1,当且仅当 a b 即 a= 3+ 1, b= 3+3时取等号.b=3a,【答案】 A11.若函数 f(x)= x4+ 4x3+ ax2- 4x+ 1 的图象恒在 x 轴上方,则实数 a 的取值范围是 () A.(2,+∞ ) B. (1,+∞)C.( 3-1,+∞) D. (2- 1,+∞)2 2【分析】x4+ 4x3+ ax2- 4x+ 1>0 恒成立,当x= 0 时, a∈R,当 x≠0时, a> -x4+ 4x3- 4x+ 1 2 4 1 2 2 1 x2 =- (x +4x-x+x2)=- (t + 4t+ 2) =- (t+ 2) + 2,此中t= x-x∈R,由于-( t+ 2)2+ 2≤2,进而 a>2,所以实数 a 的取值范围是 (2,+∞),选 A.【答案】 A二、填空题2x+ y- 4≥012.已知点 M 的坐标 (x,y)知足不等式x- y- 2≤0,N为直线y=-2x+2上任一点,y- 3≤0则|MN|的最小值是 ()5 2 5A. 5B. 5C. 5D. 5 102x + y - 4≥0【分析】点 M 的坐标 ( x , y)知足不等式组 x - y - 2≤0 的可行y -3≤0域如图: N 为直线 y =- 2x +2 上任一点,则 |MN |的最小值,就是两条|- 2+4|25 平行线 y =- 2x + 2 与 2x + y - 4=0 之间的距离: d ==,故选 B.【答案】Ba ba13.设 a>b>c>0 ,若不等式 log2018+ log 2018 ≥dlog2018 对全部知足题设的 a ,b , cbcc均成立,则实数 d 的最大值为 ____________.a b a lg2018 lg2018 lg2018【分析】log b 2018+ log c 2018 ≥dlog c 2018?a +b ≥d a ,由于 a>b>c>0 ,lg b lg clg ca ba ab a 1 1)(x + y)的最小值,所以 lg >0 ,lg>0,lg >0 ,设 x = lg ,y = lg ,则 lg= x + y ,所以 d ≤(+bccbccx y1 1 y x y xd ≤4,即实数 d 的而( + )( x + y)= 2++ ≥2+2·= 4,当且仅当 x = y 时取等号,进而x y x yx y最大值为 4.【答案】 4x +y ≥2,14.已知点 O 是坐标原点,点A(- 1,- 2),若点 M(x , y)是平面地区 x ≤1,上y ≤2,→ → →1的一个动点, OA ·(OA -MA )+ m ≤0恒成立,则实数 m 的取值范围是 ________.【分析】→ →由于 OA = ( -1,- 2),OM = (x , y),→ → → → →所以 OA ·(OA - MA )= OA ·OM =- x - 2y.→ → → 1 1 1恒成立.所以不等式 OA ·(OA - MA )+ ≤0恒成立等价于- x - 2y +m≤0,即 ≤x + 2ym m设 z = x + 2y ,作出不等式组表示的可行域如下图,当目标函数 z = x + 2y 表示的直线经过点 D(1,1)时获得最小值, 最小值为 1+ 2×1=3;当目标函数 z = x + 2y 表示的直线经过点B(1,2)时获得最大值,最大值1+ 2×2= 5.1所以 x +2y ∈ [3,5] ,于是要使 m ≤x + 2y 恒成立,只需 11m 的取值范围是 (- ∞, 0)∪ 1≤3,解得m ≥ 或 m <0,即实数 ,m33【答案】 (-∞,0)∪1,3。

高三数学线性规划试题

高三数学线性规划试题

高三数学线性规划试题1.若点满足线性约束条件,则的取值范围是.【答案】【解析】作出不等式组所表示的平面区域,如图:作出直线x-y=0,对该直线进行平移,可以发现当直线经过点(0,0)时,Z取得最大值0,当直线经过点(-2,0)时,Z取得最小值-2,所以Z的取值范围为[-2,0).故答案为:[-2,0).【考点】简单线性规划.2.已知点、的坐标满足不等式组,若,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的可行域如下图所示,假设点为上的一点,过点作直线的垂线,需使得垂线与与可行域有公共点,结合图象知,当点,时,在方向上的投影最大,此时,且取最大值,此时;同理当点,,此时,此时取最小值,,故的取值范围是,故选D.【考点】线性规划3.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.【答案】【解析】由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,【考点】线性规划、最值问题.4.已知实数满足:,,则的取值范围是( )A.B.C.D.【答案】C【解析】画出约束条件限定的可行域为如图阴影区域,令,则,先画出直线,再平移直线,当经过点,时,代入,可知,∴,故选.【考点】线性规划.5.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.6.已知实数满足,则的取值范围是【答案】【解析】由不等式,得,在平面直角坐标系中用虚线画出圆,再作出虚线,则的可行域是由虚线与此虚线的右半圆围成的区域(不包括边界),又目标函数可化为,则当直线过可行域的上顶点时,有,当直线与半圆相切于点时,目标函数有最大值,将目标函数化为,则此时有,解得,如图所示,所以正确答案为.【考点】直线与圆、线性规划.7.已知点满足约束条件,为坐标原点,则的最大值为_______________.【答案】5【解析】作出可行域,得到当位于时,最大,其值为5.【考点】线性规划.8.设实数x、y满足,则的取值范围是( ) A.B.C.D.【答案】B【解析】作出可行域如图,当平行直线系在直线BC与点A间运动时,,此时,平行直线线在点O与BC之间运动时,,此时,. .选B【考点】线性规划9.不等式组所表示的平面区域的面积是________.【答案】25【解析】直线x-y+4=0与直线x+y=0的交点为A(-2,2),直线x-y+4=0与直线x=3的交点为B(3,7),直线x+y=0与直线x=3的交点为C(3,-3),则不等式组表示的平面区域是=×5×10=25.一个以点A(-2,2)、B(3,7)、C(3,-3)为顶点的三角形,所以其面积为S△ABC10.已知点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,给出下列说法:①3a-4b+10>0;②当a>0时,a+b有最小值,无最大值;③>2;④当a>0且a≠1,b>0时,的取值范围为∪.其中正确的个数是( )A.1B.2C.3D.4【答案】B【解析】因为点A(a,b),B(1,0)在直线3x-4y+10=0的两侧,所以(3a-4b+10)(3-0+10)<0,即3a-4b+10<0,故①错误;因为a>0时,点(a,b)对应的平面区域如图(不含边界),所以a+b既没有最小值,也没有最大值,故②错误;因为原点到直线3x-4y+10=0的距离为=2,而点(a,b)在直线3x-4y+10=0的左上方,所以>2,故③正确;的几何意义是点(a,b)与(1,0)的连线的斜率,由图可知,取值范围是∪,故④正确.11.若x,y满足条件当且仅当x=y=3时,z=ax-y取最小值,则实数a的取值范围是________.【答案】【解析】画出可行域,如图所示,得到最优解(3,3).把z=ax-y变为y=ax-z,即研究-z的最大值.当a∈时,y=ax -z均过(3,3)时截距-z最大.12.若满足,则的最小值为 .【答案】3【解析】由已知不等式得出区域如图所示,目标函数在点处取得最小值,且最小值为3.【考点】线性规划.13.设实数满足约束条件,若目标函数的最大值为9,则的最小值为__ ___.【答案】【解析】有可行域与目标函数形式可知,只能在点取得最大值,即,整理得:,所以,故.【考点】1、线性规划, 2、基本不等式.14.若,满足约束条件,则的最大值是.【答案】1【解析】根据题意,作出,满足约束条件的平面区域,那么结合三角形区域可知当过点(1,1)点时,则目标函数平移过程中截距最小,此时函数值最大,故答案为1.【考点】线性规划知识点评:本题主要考查了利用线性规划知识的简单应用,属于基础试题,解题的关键是明确目标函数的几何意义15.已知变量x、y,满足的最大值为【答案】3【解析】由复合对数函数的性质,欲使函数最大,即最大。

【高考领航】高三数学(文)二轮复习练习:1-1-4不等式及线性规划

【高考领航】高三数学(文)二轮复习练习:1-1-4不等式及线性规划

限时速解训练四不等式及线性规划(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.设0<a<b<1,则下列不等式成立的是()A.a3>b3 B.1a<1bC.a b>1 D.lg(b-a)<a解析:选 D.∵0<a<b<1,∴0<b-a<1-a,∴lg(b-a)<0<a,故选 D.2.已知a,b是正数,且a+b=1,则1a+4b()A.有最小值8 B.有最小值9 C.有最大值8 D.有最大值9解析:选 B.因为1a+4b=1a+4b(a+b)=5+ba+4ab≥5+2ba·4ab=9,当且仅当ba=4ab且a+b=1,即a=13,b=23时取“=”,所以1a+4b的最小值为9,故选 B.3.若变量x,y满足约束条件x+y≥-1,2x-y≤1,y≤1,则z=3x-y的最小值为()A.-7 B.-1C.1 D.2解析:选A.画出可行域如图中阴影部分所示,平移直线3x-y=0,可知直线z=3x-y在点A(-2,1)处取得最小值,故z min=3×(-2)-1=-7,选A.4.不等式组5x+3y≤15,y≤x+1,x-5y≤3表示的平面区域的面积为()A.7 B.5 C.3 D.14 解析:选 A.作出可行域如图所示.。

高三数学 考试清单 考点六 不等式、线性规划 试题

高三数学 考试清单 考点六 不等式、线性规划 试题

考点六:不等式、线性规划创作人:历恰面日期:2020年1月1日6.1 不等关系与不等式考纲要求1.通过详细情境,理解在现实世界和日常生活中的不等关系,理解不等式(组)的背景.2.掌握不等式的性质,会用不等式的性质进展不等式的运算、证明和比拟数或者式的大小.6.2 一元二次不等式及其解法考纲要求1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联络.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.6.3 二元一次不等式(组)与简单的线性规划问题考纲要求1.会从实际情境中抽象出二元一次不等式组.2.理解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.高考真题例如1.〔2021•〕假设不等式组,表示的平面区域为三角形,且其面积等于,那么m的值是〔〕A.﹣3 B.1C.D.3答案:B〔2021•〕设变量x,y满足约束条件那么目的函数z=3x+y的最大值为〔〕2.A.7B.8C.9D.14解:作出不等式组对应的平面区域如图:〔阴影局部〕.由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A〔2,3〕,代入目的函数z=3x+y得z=3×2+3=9.即目的函数z=3x+y的最大值为9.应选:C.3.〔2021•〕假设变量x,y满足约束条件,那么z=3x+2y的最小值为〔〕A.4B.C.6D.解:不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+,平移直线y=﹣x+,那么由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,此时z最小,由,解得,即A〔1,〕,此时z=3×1+2×=,应选:B.4.〔2021•〕x,y满足约束条件,假设z=ax+y的最大值为4,那么a=〔〕A.3B.2C.﹣2 D.﹣3解:作出不等式组对应的平面区域如图:〔阴影局部〕.那么A〔2,0〕,B〔1,1〕,假设z=ax+y过A时获得最大值为4,那么2a=4,解得a=2,此时,目的函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A〔2,0〕时,截距最大,此时z最大为4,满足条件,假设z=ax+y过B时获得最大值为4,那么a+1=4,解得a=3,此时,目的函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A〔2,0〕时,截距最大,此时z最大为﹣6,不满足条件,故a=2,应选:B5.〔2021•〕假设a>b>0,c<d<0,那么一定有〔〕A.>B.<C.>D.<答案:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.应选:B.6.〔2021•〕x、y满足约束条件,假设z=y﹣ax获得最大值的最优解不唯一,那么实数a的值是〔〕A.或者﹣1 B.2或者C.2或者1 D.2或者﹣1解:作出不等式组对应的平面区域如图:〔阴影局部ABC〕.由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.假设a=0,此时y=z,此时,目的函数只在A处获得最大值,不满足条件,假设a>0,目的函数y=ax+z的斜率k=a>0,要使z=y﹣ax获得最大值的最优解不唯一,那么直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,假设a<0,目的函数y=ax+z的斜率k=a<0,要使z=y﹣ax获得最大值的最优解不唯一,那么直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或者a=2,应选:D7.〔2021•〕x,y满足约束条件,当目的函数z=ax+by〔a>0,b>0〕在该约束条件下取到最小值2时,a2+b2的最小值为〔〕A.5B.4C.D.2解:由约束条件作可行域如图,联立,解得:A〔2,1〕.化目的函数为直线方程得:〔b>0〕.由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.那么a2+b2的最小值为.应选:B.8.〔2021•〕假设x,y满足且z=y﹣x的最小值为﹣4,那么k的值是〔〕A.2B.﹣2 C.D.﹣解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,由kx﹣y+2=0,得x=,∴B〔﹣〕.由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B〔﹣〕时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.应选:D.9.〔2021•〕圆C:〔x﹣a〕2+〔y﹣b〕2=1,设平面区域Ω=,假设圆心C∈Ω,且圆C与x轴相切,那么a2+b2的最大值为〔〕A.5B.29 C.37 D.49解:作出不等式组对应的平面区域如图:圆心为〔a,b〕,半径为1∵圆心C∈Ω,且圆C与x轴相切,∴b=1,那么a2+b2=a2+1,∴要使a2+b2的获得最大值,那么只需a最大即可,由图象可知当圆心C位于B点时,a取值最大,由,解得,即B〔6,1〕,∴当a=6,b=1时,a2+b2=36+1=37,即最大值为37,应选:C10.〔2021•〕在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,那么直线OM斜率的最小值为〔〕A.2B.1C.D.解:不等式组表示的区域如图,当M获得点A〔3,﹣1〕时,z直线OM斜率获得最小,最小值为k==﹣.应选C.11.〔2021•〕某公司消费甲、乙两种桶装产品.消费甲产品1桶需耗A原料1千克、B原料2千克;消费乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在消费这两种产品的方案中,要求每天消耗A、B原料都不超过12千克.通过合理安排消费方案,从每天消费的甲、乙两种产品中,公司一共可获得的最大利润是〔〕A.1800元B.2400元C.2800元D.3100元解:设分别消费甲乙两种产品为x桶,y桶,利润为z元那么根据题意可得,z=300x+400y作出不等式组表示的平面区域,如下图作直线L:3x+4y=0,然后把直线向可行域平移,由可得x=y=4,此时z最大z=280012.〔2021•〕不等式≤0的解集为解:由不等式可得,解得﹣<x≤1,故不等式的解集为13.〔2021•〕设函数f〔x〕=x2﹣4x+3,g〔x〕=3x﹣2,集合M={x∈R|f〔g〔x〕〕>0},N={x∈R|g 〔x〕<2},那么M∩N为〔〕A.〔1,﹢∞〕B.〔0,1〕C.〔﹣1,1〕D.〔﹣∞,1〕解:因为集合M={x∈R|f〔g〔x〕〕>0},所以〔g〔x〕〕2﹣4g〔x〕+3>0,解得g〔x〕>3,或者g〔x〕<1.因为N={x∈R|g〔x〕<2},M∩N={x|g〔x〕<1}.即3x﹣2<1,解得x<1.所以M∩N={x|x<1}.应选:D.14.〔2021•〕不等式2x2﹣x﹣1>0的解集是〔〕D.〔﹣∞,﹣〕∪〔1,+∞〕A.〔﹣,1〕B.〔1,+∞〕C.〔﹣∞,1〕∪〔2,+∞〕解:原不等式同解于〔2x+1〕〔x﹣1〕>0∴x>1或者x <应选:D15.〔2021•〕平面直角坐标系xOy上的区域D 由不等式组给定.假设M〔x,y〕为D上的动点,点A 的坐标为〔,1〕,那么z=•的最大值为〔〕A.4B.3C.4D.3答案:C16.〔2021•〕平面直角坐标系xOy上的区域D 由不等式组给定.假设M〔x,y〕为D上的动点,点A 的坐标为,那么z=•的最大值为〔〕A.3B.4C.3D.4解析:z=•=,即y=﹣x+z做出l0:y=﹣x,将此直线平行挪动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B 〔,2〕,所以z的最大值为4应选:B17.〔2021•〕设不等式组表示的平面区域为D,假设指数函数y=a x的图象上存在区域D上的点,那么a的取值范围是〔〕A.〔1,3] B.[2,3] C.〔1,2] D.[3,+∞]解:作出区域D的图象,联络指数函数y=a x的图象,由得到点C〔2,9〕,当图象经过区域的边界点C〔2,9〕时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.应选:A.18.〔2021•〕设变量x,y满足约束条件,那么目的函数z=3x﹣4y的最大值和最小值分别为〔〕A.3,﹣11 B.﹣3,﹣11 C.11,﹣3 D.11,3解:作出满足约束条件的可行域,如右图所示,可知当直线z=3x﹣4y平移到点〔5,3〕时,目的函数z=3x﹣4y获得最大值3;当直线z=3x﹣4y平移到点〔3,5〕时,目的函数z=3x﹣4y获得最小值﹣11,应选A.19.〔2021•校级模拟〕假设实数x、y满足〔x+2〕2+y2=3,那么的最大值为〔〕A.B.C.D.解:〔x+2〕2+y2=3,表示以〔﹣2,0〕为圆心,以为半径的圆表示圆上的点与〔0,0〕连线的斜率,设为k那么y=kx由图知,当过原点的直线与圆相切时斜率最大故有解得或者由图知,应选A20.〔2021•〕在平面直角坐标系中,假设不等式组〔a为常数〕所表示的平面区域的面积等于2,那么a的值是〔〕A.﹣5 B.1C.2D.3解:不等式组所围成的区域如下图.∵其面积为2,∴|AC|=4,∴C的坐标为〔1,4〕,代入ax﹣y+1=0,得a=3.应选D.21.〔2021•〕假设x,y满足约束条件,目的函数z=ax+2y仅在点〔1,0〕处获得最小值,那么实数a的取值范围是〔〕A.〔﹣1,2〕B.〔﹣4,2〕C.〔﹣4,0] D.〔﹣2,4〕解:不等式组所围成的区域如下图.∵其面积为2,∴|AC|=4,∴C的坐标为〔1,4〕,代入ax﹣y+1=0,得a=3.应选D.22.〔2021•〕假设不等式组所表示的平面区域被直线分为面积相等的两局部,那么k的值是〔〕A.B.C.D.解:可行域为△ABC,如图,当a=0时,显然成立.当a>0时,直线ax+2y﹣z=0的斜率k=﹣>k AC=﹣1,a<2.当a<0时,k=﹣<k AB=2a>﹣4.综合得﹣4<a<2,应选B.23.〔2021•〕不等式组,所表示的平面区域的面积等于〔〕A.B.C.D.答案:A24.〔2021•〕设x,y满足约束条件,假设目的函数z=ax+by〔a>0,b>0〕的值是最大值为12,那么的最小值为〔〕A.B.C.D.4解:不等式表示的平面区域如下图阴影局部,当直线ax+by=z〔a>0,b>0〕过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点〔4,6〕时,目的函数z=ax+by〔a>0,b>0〕获得最大12,即4a+6b=12,即2a+3b=6,而=,应选A.25.〔2021•〕设a,b∈R,假设a﹣|b|>0,那么以下不等式中正确的选项是〔〕A.b﹣a>0 B.a3+b3<0 C.a2﹣b2<0 D.b+a>0解:利用赋值法:令a=1,b=0b﹣a=﹣1<0,故A错误;a3+b3=1>0,故B错误;a2﹣b2=1>0,故C错误;排除A,B,C,选D.26.〔2021•〕设二元一次不等式组所表示的平面区域为M,使函数y=a x〔a >0,a≠1〕的图象过区域M的a的取值范围是〔〕A.[1,3] B.[2,] C.[2,9] D.[,9]解析:平面区域M如如下图.求得A〔2,10〕,C〔3,8〕,B〔1,9〕.由图可知,欲满足条件必有a>1且图象在过B、C两点的图象之间.当图象过B点时,a1=9,∴a=9.当图象过C点时,a3=8,∴a=2.故a的取值范围为[2,9]应选C.27.〔2021•〕假设实数x、y满足那么的取值范围是〔〕A.〔0,2〕B.〔0,2〕C.〔2,+∞〕D.[,+∞〕解:不等式组,当获得点〔2,3〕时,获得最小值为,所以答案为[,+∞〕,应选D.创作人:历恰面日期:2020年1月1日。

2019年高考数学二轮复习专题06:不等式与线性规划

2019年高考数学二轮复习专题06:不等式与线性规划

2019年高考数学二轮复习专题06:不等式与线性规划一、单选题(共12题;共24分)1.(2分)已知实数 x,y 满足条件 {y ≤x −1x ≤3x +5y ≥4 ,令 z =lnx −lny ,则 z 的最小值为( )A .B .C .D .2.(2分)设x ,y 满足约束条件 {x +y ≥1x −y ≥−12x −y ≤2 ,若目标函数 z =ax +3y 仅在点(1,0)处取得最小值,则a 的取值范围( ) A .(-6,-3)B .(-6,3)C .(0,3)D .(-6,0]3.(2分)已知 {x −y ≥03x −y −6≤0x +y −2≥0 ,则z =22x +y 的最小值是( )A .1B .16C .8D .44.(2分)满足线性约束条件 {2x +y ≤3,x +2y ≤3,x ≥0,y ≥0 的目标函数 z =x +y 的最大值是 ( ) A .1B .C .2D .35.(2分)记 min{a,b,c} 为 a,b,c 中的最小值,若 x,y 为任意正实数,则 M =min{2x,1y ,y +1x} 的最大值是( ) A .B .2C .D .6.(2分)下列函数中,最小值为4的是( )A .B .C .D .7.(2分)已知实系数一元二次方程 x 2+(1+a)x +a +b +1=0 的两个实根为 x 1 , x 2 ,且0<x 1<1<x 2 ,则 b a 的取值范围是( )A .B .C .D .8.(2分)设 a >0 , b >0. 若3是 3a 与 3b 的等比中项,则1a +1b的最小值为 ( ) A .4 B .2 C .1 D .9.(2分)若关于x 的不等式 x 2−4x −2−a ≥0 在区间 [1,4] 内有解,则实数a 的取值范围是 ()A .B .C .D .10.(2分)设 x,y 满足约束条件 {x +y −3≥0x −y +1≥0x ≤3 ,则 z =2x +y 的最小值与最大值的和为( ) A .7B .8C .13D .1411.(2分)若正实数 a,b 满足1a +2b =√ab,则 ab 的最小值为( )A .B .C .D .12.(2分)已知m ,n ∈ R ,且m ﹣2n+6=0,则 2m+14n 的最小值为( )A .B .4C .D .3二、填空题(共7题;共13分)13.(1分)设变量 x,y 满足约束条件 {y ≥xx +2y −2≤0x +2≥0 ,则 z =|x −3y| 的最大值是 .14.(1分)已知 {2x −y +2≥0x +y −2≤0y −1≥0,则函数 z =3x −y 的取值范围是 .15.(1分)设任意实数 a >b >c >0 ,要使 log a b2018+4log b c2018≥m ⋅log c a2018 恒成立,则 m 的最小值为 .16.(2分)已知 x >0,y >0 ,且 x +2y =4 ,则 xy 的最大值是 , 1x +2y 的最小值是 .17.(1分)已知变量 x,y 满足约束条件 {x +y ≤6,x −3y ≤−2,x ≥1,,若目标函数 z =ax +by(a >0,b >0)的最小值为2,则 1a +3b的最小值为 .18.(2分)已知 x,y ∈R ,且 4x 2+y 2+xy =1 ,则 4x 2+y 2 的最小值 ,此时 x 的值为 .19.(5分)已知实数x,y满足约束条件{x−y≤0 x+y≥0x+2y−2≤0,则z=2x−y的取值范围是;三、解答题(共3题;共25分)20.(10分)已知函数f(x)=|x−5|+|x+4|(1)(5分)求不等式f(x)≥12的解集;(2)(5分)若f(x)−21−3a−1≥0对∀x∈R恒成立,求实数a的取值范围. 21.(10分)已知关于x的不等式x2+2x+1−a2≤0.(1)(5分)若a=2时,求不等式的解集;(2)(5分)当a为常数时,求不等式的解集.22.(5分)已知关于x的不等式ax2−3x+2>0的解集为{x|x<1或x>b}.(Ⅰ )求a,b的值;(Ⅱ )当x>0,y>0且满足ax+by=1时,有2x+y≥k2+k+2恒成立,求k的取值范围.答案解析部分1.【答案】A【解析】【解答】作可行域如图,A(3,2),则yx≤k OA=23∴z=lnx−lny=lnxy≥ln32,故答案为:A.【分析】本题利用二元一次不等式组画出可行域,再利用线性规划问题的解决方法求出目标函数的最小值。

专题7 线性规划与基本不等式(培优)

专题7 线性规划与基本不等式(培优)

专题7-1线性规划归类【题型一】三大基础题型:截距,斜率与距离(圆系)【典例分析】若实数x ,y 满足{x ≤4y ≤33x +4y ≥12,则x 2+y 2的取值范围是___【提分秘籍】基本规律1.线性,注意Z 与截距之间的正反比例关系,如变式22.斜率型,要写层标准的斜率公式形式,如变式13.距离型,注意圆与直线(线段)的位置关系:点到线的垂直关系还是点到点的关系,如典例分析【变式演练】1.设,x y 满足约束条件20{230 0x y x y x y --≤-+≥+≤,则46y x ++的取值范围是 ( ) A. []4,1- B. 33,7⎡⎤-⎢⎥⎣⎦C. (][),31,-∞-⋃+∞D. []3,1-2.若实数x ,y 满足约束条件{x ≥2,x +y ≤6,x −y ≤0,则目标函数z =2x −3y 的最大值是__________.3.设点(),Px y 是平面区域0{10 220x x y x y ≤++≤++≥内的任意一点,则224x y x +-的最小值为 A. 12 B. 1 C. 92D. 5【题型二】 由参数确定图像形状【典例分析】若不等式组0220x y x y y x y a -≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩,表示的平面区域是一个三角形区域,则a 的取值范围是( )A.43a ≥B.01a <≤C.413a ≤≤ D.01a <≤或43a ≥【提分秘籍】基本规律分类讨论,动图研究【变式演练】1.设不等式组4,0,10,x y y x x +≤⎧⎪-≥⎨⎪-≥⎩表示的平面区域为D ,若圆222:(1)(1)(0)C x y r r +++=>不经过区域D 上的点,则r 的取值范围是A .22,25⎡⎣B .(22,32]C .(22,25]D .(0,22)(25,)+∞2.不等式组表示的是一个对称四边形围成的区域,则 .3.已知圆的方程为224x y +=,P 是圆O 上的一个动点,若OP 的垂直平分线总是被平面区域||||x y a +≥覆盖,则实数a 的取值范围是( ) A .1a ≥B .1a ≤C .01a <≤D .0a ≤【题型三】 含参线性规划【典例分析】给出平面区域如图所示,其中A (1,1),B (2,5),C (4,3),若使目标函数(0)Z ax y a =->取得最大值的最优解有无穷多个,则a 的值是A .B .1C .4D .【提分秘籍】基本规律含参型,注意区分参数所在位置而采取的不同处理方法。

高考专题一第2讲 不等式及线性规划

高考专题一第2讲  不等式及线性规划

<3 x<-2 或 x>1,而 x<-2 或 x>1 1<x<3,所以,“|x-2|<1”是
“x2+x-2>0”的充分而不必要条件,选 A.
答案 A 2.(2015·临汾模拟)若点 A(m,n)在第一象限,且在直线3x+4y=1 上,则 mn 的最大
值是( )
A.3
B.4
C.7
D.12
解析 因为点 A(m,n)在第一象限,且在直线3x+4y=1 上, 所以 m,n∈R+,且m3 +n4=1, 所以m3 ·n4≤(m3 +2 n4)2当且仅当m3 =n4=12,即m=32,n=2时,取“=”,
x-2y+2≥0,
小值等于________. 解析 如图,可行域为阴影部分,线性目标函数 z=2x-y 可化为 y=2x-z,由图形可知当 y=2x-z 过点-1,12时 z 最小,zmin=2×(-1)-12=-52. 答案 -52 7.(2015·浙江卷)已知函数 f(x)=x+2x-3,x≥1, 则 f(f(-3))=________,f(x)
答案 6
Go the distance
三、解答题
9.已知函数 f(x)=x22+x 6. (1)若 f(x)>k 的解集为{x|x<-3,或 x>-2},求 k 的值;
(2)对任意 x>0,f(x)≤t 恒成立,求 t 的取值范围.
解 (1)f(x)>k kx2-2x+6k<0.
由已知{x|x<-3,或 x>-2}是其解集,得 kx2-2x+6k=0 的两根是-3,
由 x-x1<0,x-x2<0 得 a>0.
(2)解
f′(0)>0, 在题设下,0<x1<1<x2<2 等价于 f′(1)<0,
f′(2)>0,
2-b>0,
2-b>0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题练习:不等式与线性规划1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1,43 B.⎝ ⎛⎭⎪⎫12,43 C.⎝ ⎛⎭⎪⎫1,74 D.⎝ ⎛⎭⎪⎫12,74 答案 D解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13×⎝ ⎛⎭⎪⎫32n 恒成立,只需1-a <13×⎝ ⎛⎭⎪⎫321,解得a >12; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13×⎝ ⎛⎭⎪⎫32n 恒成立,只需a -1<13×⎝ ⎛⎭⎪⎫322,解得a <74. 综上,12<a <74,故选D.2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D.3.设函数f (x )=⎩⎨⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3) 答案 A解析 f (1)=3.由题意得⎩⎨⎧ x ≥0,x 2-4x +6>3或⎩⎨⎧x <0,x +6>3,解得-3<x <1或x >3.4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2C.若a <b <0,则1a <1b D.若a <b <0,则b a >ab 答案 B解析 B 中,∵a <b <0, ∴a 2-ab =a (a -b )>0, ab -b 2=b (a -b )>0. 故a 2>ab >b 2,B 正确.5.为了竖一块广告牌,要制造三角形支架,如图,要求∠ACB =60°,BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A.⎝⎛⎭⎪⎫1+32米B.2米C.(1+3)米D.(2+3)米答案 D6.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )9.已知a ,b ∈(0,+∞),且a +b +1a +1b =5,则a +b 的取值范围是( ) A .[1,4] B .[2,+∞) C .(2,4) D .(4,+∞)解析:因为a+b+1a+1b=(a+b)(1+1ab)=5,又a,b∈(0,+∞),所以a+b=51+1ab≤51+⎝⎛⎭⎪⎫2a+b2,当且仅当a=b时,等号成立,即(a+b)2-5(a+b)+4≤0,解得1≤a+b≤4,故选A.答案:A10.若x,y满足约束条件⎩⎨⎧x-y+2≥0,y+2≥0,x+y+2≥0,则(x+2)2+(y+3)2的最小值为()A.1 B.92C.5 D.9解析:可行域为如图所示的阴影部分,由题意可知点P(-2,-3)到直线x+y+2=0的距离为|-2-3+2|2=32,所以(x+2)2+(y+3)2的最小值为⎝⎛⎭⎪⎫322=92,故选B.答案:B11.已知变量x,y满足约束条件⎩⎨⎧x+y-3≥0,2x-y-9≤0,y≤2,若使z=ax+y取得最小值的最优解有无穷多个,则实数a的取值集合是()A.{-2,0} B.{1,-2}C.{0,1} D.{-2,0,1}解析:作出不等式组表示的平面区域,如图中阴影部分所示.由z =ax +y 得y =-ax +z .若a =0,则直线y =-ax +z =z ,此时z 取得最小值的最优解只有一个,不满足题意;若-a >0,则直线y =-ax +z 在y 轴上的截距取得最小值时,z 取得最小值,此时当直线y =-ax 与直线2x -y -9=0平行时满足题意,此时-a =2,解得a =-2;若-a <0,则直线y =-ax +z 在y 轴上的截距取得最小值时,z 取得最小值,此时当直线y =-ax 与直线x +y -3=0平行时满足题意,此时-a =-1,解得a =1. 综上可知,a =-2或a =1.故选B. 答案:B12.若不等式组⎩⎨⎧x 2-2x -3≤0,x 2+4x -1+a ≤0的解集不是空集,则实数a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,20]D .[-40,20)13.已知实数x ,y 满足约束条件⎩⎨⎧y ≥0x -y ≥02x -y -2≥0,则z =y -1x +1的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-1,13 B.⎣⎢⎡⎦⎥⎤-12,13 C.⎣⎢⎡⎭⎪⎫-12,+∞ D.⎣⎢⎡⎭⎪⎫-12,1 解析:由题知可行域如图阴影部分所示,∴z =y -1x +1的取值范围为[k MA,1),即⎣⎢⎡⎭⎪⎫-12,1.答案:D14.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( ) A .-3 B .2 C .3D .8解析:y =x -4+9x +1=x +1+9x +1-5,因为x >-1,所以x +1>0,9x +1>0.所以由基本不等式,得y =x +1+9x +1-5≥2x +1·9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号,所以a =2,b =1,a +b =3. 答案:C15.若x ,y 满足约束条件⎩⎨⎧x +y ≥1x -y ≥-12x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( ) A .[-4,2] B .(-4,2) C .[-4,1] D .(-4,1)解析:作出不等式组表示的区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B.答案:B16.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( ) A.⎝ ⎛⎭⎪⎫-235,+∞ B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞)D .(-∞,-1)解析:x 2+ax -2>0,即ax >2-x 2. ∵x ∈[1,5],∴a >2x -x 成立.∴a >⎝ ⎛⎭⎪⎫2x -x min .又函数f (x )=2x -x 在[1,5]上是减函数,∴⎝ ⎛⎭⎪⎫2x -x min =25-5=-235,∴a >-235.故选A. 答案:A17.设x ,y 满足约束条件⎩⎨⎧x ≥0y ≥x4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[2,10] D .[3,11]解析:设z =x +2y +3x +1=x +1+2y +1x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:D18.已知函数f (x )=4x -14x +1,若x 1>0,x 2>0,且f (x 1)+f (x 2)=1,则f (x 1+x 2)的最小值为( )A .14B .45C .2D .4解析:由题意得f (x )=4x -14x +1=1-24x +1,由f (x 1)+f (x 2)=1得2-241x +1-242x +1=1,化简得412x x +-3=41x +42x ≥2×212x x +,解得2x 1+x 2≥3,所以f (x 1+x 2)=1-2412x x ++1≥1-232+1=45.故选B. 答案:B19.已知a ,b 都是正实数,且2a +b =1,则1a +2b 的最小值是________. 解析:1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+4a b +ba ≥4+24a b ×b a =8,当且仅当4a b =b a ,即a =14,b =12时,“=”成立,故1a +2b 的最小值是8. 答案:820.对于实数x ,当且仅当n ≤x <n +1,n ∈N *时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集是________.解析:由4[x ]2-36[x ]+45<0得32<[x ]<152,又当且仅当n ≤x <n +1,n ∈N *时,[x ]=n ,所以所求解集是[2,8). 答案:[2,8)21.已知函数f (x )=⎩⎨⎧x 2+ax ,x ≥0bx 2-3x ,x <0为奇函数,则不等式f (x )<4的解集为________.解析:因为f (x )为奇函数,所以f (-x )=-f (x ),可得a =-3,b =-1,所以f (x )=⎩⎨⎧x 2-3x ,x ≥0-x 2-3x ,x <0.当x ≥0时,由x 2-3x <4解得0≤x <4;当x <0时,由-x 2-3x <4解得x <0,所以不等式f (x )<4的解集为(-∞,4). 答案:(-∞,4)22.设不等式组⎩⎨⎧x ≥0x +2y ≥42x +y ≤4所表示的平面区域为D ,则可行域D 的面积为________.解析:如图,画出可行域.易得A ⎝ ⎛⎭⎪⎫43,43,B (0,2),C (0,4),∴可行域D 的面积为12×2×43=43.答案:4 323.已知函数f(x)=2xx2+6.(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.24.如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-120(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.解(1)令y=0,得kx-120(1+k2)x2=0,由实际意义和题设条件知x>0,k>0,故x=20k1+k2=20k+1k≤202=10,当且仅当k=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标存在k>0,使3.2=ka -120(1+k 2)a 2成立关于k 的方程a 2k 2-20ak +a 2+64=0有正根判别式Δ=(-20a )2-4a 2(a 2+64)≥0 a ≤6. 所以当a 不超过6千米时,可击中目标.25.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2. (1)证明:a >0;(2)若z =a +2b ,求z 的取值范围. (1)证明 求函数f (x )的导数 f ′(x )=ax 2-2bx +2-b .由函数f (x )在x =x 1处取得极大值, 在x =x 2处取得极小值, 知x 1、x 2是f ′(x )=0的两个根, 所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f (x )为增函数,f ′(x )>0, 由x -x 1<0,x -x 2<0得a >0.(2)解在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎨⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎨⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A ⎝ ⎛⎭⎪⎫47,67,B (2,2),C (4,2).z 在这三点的值依次为167,6,8. 所以z 的取值范围为⎝ ⎛⎭⎪⎫167,8.26.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1<0对任意实数x 恒成立,求实数a 的取值范围.27.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x . (1)求函数g (x )的解析式; (2)解不等式g (x )≥f (x )-|x -1|.解析:(1)设函数y =f (x )的图象上任意一点Q (x 0,y 0)关于原点的对称点为P (x ,y ),∵点Q (x 0,y 0)在函数y =f (x )的图象上,∴-y =x 2-2x ,即y =-x 2+2x ,故g (x )=-x 2+2x . (2)由g (x )≥f (x )-|x -1|,可得2x 2-|x -1|≤0. 当x ≥1时,2x 2-x +1≤0,此时不等式无解.当x <1时,2x 2+x -1≤0,解得-1≤x ≤12.因此原不等式的解集为⎣⎢⎡⎦⎥⎤-1,12.28.若对一切x >2均有不等式x 2-2x -8≥(m +2)x -m -15成立,求实数m 的取值范围. 解析:由x 2-2x -8≥(m +2)x -m -15, 得x 2-4x +7≥m (x -1),∴对一切x >2均有不等式x 2-4x +7x -1≥m 成立. ∴m 应小于或等于f (x )=x 2-4x +7x -1(x >2)的最小值. 又f (x )=x 2-4x +7x -1=(x -1)+4x -1-2≥ 2(x -1)·4x -1-2=2, 当且仅当x -1=4x -1,即x =3时等号成立. ∴f (x )min =f (3)=2.故m 的取值范围为(-∞,2].29.某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的,是面积为200平方米的十字形地带.计划在正方MNPQ 上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.(1)设总造价是S 元,AD 长为x 米,试建立S 关于x 的函数关系式;(2)当x 为何值时,S 最小?并求出最小值.解析:(1)设AM =y ,则x 2+4xy =200.∴y =50x -x 4.∴S =4 200x 2+210×4×xy +80×4×12y 2=4 000x 2+4×105×1x 2+38 000(x >0).(2)S =4 000x 2+4×105×1x 2+38 000≥ 2 4 000x 2×400 000x 2+38 000=118 000,当且仅当x =10时等号成立,即x =10米时,S 有最小值118 000元.30.在平面直角坐标系中,不等式组⎩⎨⎧ x +y ≤0,x -y ≤0,x 2+y 2≤r 2,(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为________. 解析:作出不等式组表示的平面区域,如图中阴影部分所示,由题意,知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,表示可行域内的点与点P (-3,2)连线的斜率加上1,由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =1-125=-75.答案:-7531.不等式组⎩⎨⎧ x +y -1≥0,x -y -1≤0,y ≤m ,m >1所表示的平面区域的面积为S ,则当不等式S +3m -1≥a 恒成立时,实数a 的取值范围是______________.答案 (-∞,6]。

相关文档
最新文档