最新人教版--八年级数学下册《一次函数》单元测试题

合集下载

人教版八年级数学下《第19章一次函数》单元测试含答案解析

人教版八年级数学下《第19章一次函数》单元测试含答案解析

人教版八年级数学下《第19章一次函数》单元测试含答案解析一、选择题1.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v (千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量C.v是变量D.s是常量2.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y=.其中y是x函数的是()A.①②③B.①②③④C.①③D.①③④3.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()A.Q=8x B.Q=8x﹣50 C.Q=50﹣8x D.Q=8x+50二、填空题4.3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.5.函数y=|x﹣b|,当x=1或3时,对应的两个函数值相等,则实数b的值是.6.下面是用棋子摆成的“上”字:按照图中规律继续摆下去,第n个“上”字需用棋子数s与n之间的关系式为.三、解答题7.写出下列问题中的关系式,并指出其中的变量和常量.(1)直角三角形中一个锐角a与另一个锐角β之间的关系;(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).8.等腰三角形周长为10cm,底边BC长为ycm,腰AB长为xcm.(1)写出y关于x的函数关系式;(2)求x的取值范围;(3)求y的取值范围.9.一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?10.杨嫂在社区扶持下,创办了“润扬”报刊零售点.对经营的某种晚报,杨嫂提供了如下信息:①买进每份0.50元,卖出每份1元;②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.20元退回给报社.(1)一个月内每天买进该种晚报的份数分别为100和150时,月利润是多少元?(2)上述的哪些量在发生变化?自变量和函数各是什么?(3)设每天从报社买进该种晚报x份(120≤x≤200),月利润为y元,请写出y与x的关系式,并确定月利润的最大值.《第19章一次函数》参考答案与试题解析一、选择题1.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v (千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量C.v是变量D.s是常量【考点】常量与变量.【专题】计算题.【分析】根据常量和变量的定义即可作出判断.【解答】解:甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中常量是:距离s,变量是时间t 和速度v.故选A.【点评】本题考查了常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.2.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y=.其中y是x函数的是()A.①②③B.①②③④C.①③D.①③④【考点】函数的概念.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:y是x函数的是①x﹣y=5;③:y=|x|;④y=.当x=1时,在y2=2x中y=±,则不是函数;故选D.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.3.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()A.Q=8x B.Q=8x﹣50 C.Q=50﹣8x D.Q=8x+50【考点】函数关系式.【专题】数字问题.【分析】剩余的钱=原有的钱﹣用去的钱,可列出函数关系式.【解答】解:依题意得,剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50﹣8x.故选:C.【点评】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.二、填空题4.3x﹣y=7中,变量是x和y,常量是3和7.把它写成用x的式子表示y的形式是y=3x﹣7.【考点】常量与变量.【专题】计算题.【分析】要把二元一次方程3x﹣y=7中的y用含x的式子表示,首先要移项,把y放在左边,并使其系数为1.【解答】解:3x﹣y=7中,变量是x和y,常量是3和7.把它写成用x的式子表示y的形式是y=3x﹣7.故答案是:x和y;3和7;y=3x﹣7.【点评】本题考查的是方程的基本运算技能:移项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,系数化1就可用含x的式子表示y的形式.5.函数y=|x﹣b|,当x=1或3时,对应的两个函数值相等,则实数b的值是2.【考点】函数值.【专题】计算题.【分析】把x=1和3代入函数关系式,解绝对值方程即可.【解答】解:∵x=1或3时,对应的两个函数值相等,∴|1﹣b|=|3﹣b|,∴1﹣b=3﹣b,此时无解,或1﹣b=b﹣3,解得b=2,综上所述,实数b的值是2.故答案为:2.【点评】本题考查了函数值求解,列出绝对值方程是解题的关键.6.下面是用棋子摆成的“上”字:按照图中规律继续摆下去,第n个“上”字需用棋子数s与n之间的关系式为S=4n+2.【考点】规律型:图形的变化类;根据实际问题列一次函数关系式.【专题】规律型.【分析】第1个“上”字中的棋子个数是6=4+2;第2个“上”字中的棋子个数是10=4×2+2;第3个“上”字中的棋子个数是14=4×3+2;每一次都比前面的多4个棋子,由此进发现规律解决问题.【解答】解:第1个“上”字用6个棋子,第2个“上”字用10个棋子,比第1个多用了4个;第3个“上”字用14个棋子,比第2个多用了4个.…每一个比上一个多用4个.所以第n个“上”字需用4n+2个.故答案为:S=4n+2.【点评】此题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.三、解答题7.写出下列问题中的关系式,并指出其中的变量和常量.(1)直角三角形中一个锐角a与另一个锐角β之间的关系;(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).【考点】函数关系式;常量与变量.【专题】计算题.【分析】(1)根据直角三角形的性质:直角三角形中,两锐角互余可得α+β=90°;根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.(2)根据题意可得剩余水量=原有水量﹣流出水量可的函数关系式.【解答】解:(1)由题意得:α+β=90°,即α=90°﹣β;常量是90,变量是α,β.(2)依题意得:y=30﹣0.5t.常量是30,0.5,变量是y、t.【点评】此题主要考查了根据实际问题列出函数关系式,关键是掌握常量和变量的定义.8.等腰三角形周长为10cm,底边BC长为ycm,腰AB长为xcm.(1)写出y关于x的函数关系式;(2)求x的取值范围;(3)求y的取值范围.【考点】一次函数的应用.【分析】(1)根据周长公式即可求得y关于x的函数关系式y=10﹣2x;(2)利用三角形边长为正数和三边关系求自变量的范围;(3)把用y表示的x的式子直接代入x的取值范围直接解不等式组即可.【解答】解:(1)y=10﹣2x;(2)∵x>0,y>0,2x>y∴10﹣2x>0,2x>10﹣2x,解得;(3)∵x=5﹣∴<5﹣<5,解得0<y<5.【点评】主要考查利用一次函数的模型解决实际问题的能力.要读懂题意并根据题意列出函数关系式.解题的关键是要分析题意根据实际意义求解,并会根据实际意义求函数值和自变量的取值范围.9.一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?【考点】一次函数的应用.【专题】计算题.【分析】(1)每行程x,耗油0.1x,即总油量减少0.1x,则油箱中的油剩下50﹣0.1x.(2)从实际出发,x代表的实际意义为行驶里程,所以x不能为负数,又行驶中的耗油量为0.11x,不能超过油箱中的汽油量50L.(3)将x=200时,代入第一问中求出的x,y的关系式即可得出答案.【解答】解:(1)根据题意,每行程x,耗油0.1x,即总油量减少0.1x,则油箱中的油剩下50﹣0.1x,∴y与x的函数关系式为:y=50﹣0.1x;(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.1x,不能超过油箱中现有汽油量的值50,即0.1x≤50,解得,x≤500.综上所述,自变量x的取值范围是0≤x≤500;(3)当x=200时,代入x,y的关系式:y=50﹣0.1×200=30.所以,汽车行驶200km时,油桶中还有30L汽油.【点评】本题考查了一次函数的应用,难度不大,但比较繁琐,尤其是第二问要从实际考虑得出x的范围.10.杨嫂在社区扶持下,创办了“润扬”报刊零售点.对经营的某种晚报,杨嫂提供了如下信息:①买进每份0.50元,卖出每份1元;②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.20元退回给报社.(1)一个月内每天买进该种晚报的份数分别为100和150时,月利润是多少元?(2)上述的哪些量在发生变化?自变量和函数各是什么?(3)设每天从报社买进该种晚报x份(120≤x≤200),月利润为y元,请写出y与x的关系式,并确定月利润的最大值.【考点】函数关系式;常量与变量.【专题】销售问题.【分析】(1)利用一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份,利用一个月内每天买进该种晚报的份数分别为100和150时,分别求出月利润即可;(2)利用常量与变量的定义得出即可;(3)利用120≤x≤200,分别表示出20天以及另外10天的月利润,即可得出答案.【解答】解:(1)当一个月内每天买进该种晚报的份数为100份时,100×(1﹣0.5)×30=1500(元);一个月内每天买进该种晚报的份数为150时,150×(1﹣0.5)×20+120×(1﹣0.5)×10﹣(150﹣120)×(0.5﹣0.2)×10=(元);答:一个月内每天买进该种晚报的份数分别为100和150时,月利润分别是1500元、元;(2)发生变化的量是每天买进该种晚报的份数和月利润,自变量是每天买进该种晚报的份数,函数是月利润;(3)由题意得:y=(1﹣0.5)×20x+(1﹣0.5)×10×120﹣0.3×10×(x﹣120)=7x+960.当x=200时,月利润最大,y=7×200+960=2360.【点评】此题主要考查了一次函数的应用,根据已知得出月利润与买进报纸数量x的关系式是解题关键.。

初二数学一次函数单元试卷

初二数学一次函数单元试卷

一、选择题(每题5分,共50分)1. 下列函数中,表示一次函数的是()A. y = 2x + 3B. y = x^2 + 2C. y = 3x - 4xD. y = 5x^3 - 22. 已知一次函数y = kx + b,若k > 0,则函数图象()A. 在一、二、三象限B. 在一、二、四象限C. 在一、三、四象限D. 在一、二、三、四象限3. 一次函数y = -2x + 1中,当x = 2时,y的值为()A. -3B. -1C. 0D. 14. 下列关于一次函数的说法正确的是()A. 一次函数的图象是一条直线B. 一次函数的图象是一条曲线C. 一次函数的图象是一条抛物线D. 一次函数的图象是一条指数函数曲线5. 一次函数y = 3x - 2中,若k = 3,则b的值为()A. -2B. 0C. 2D. 3二、填空题(每题5分,共50分)6. 一次函数y = 2x + 1中,当x = 0时,y的值为______。

7. 一次函数y = -3x + 5中,当x = 2时,y的值为______。

8. 一次函数y = 4x - 7中,当x = -1时,y的值为______。

9. 一次函数y = -2x + 3中,当x = 4时,y的值为______。

10. 一次函数y = 5x - 6中,当x = 0时,y的值为______。

三、解答题(每题10分,共40分)11. 已知一次函数y = kx + b,若k = 2,b = -3,求该函数图象与x轴、y轴的交点坐标。

12. 已知一次函数y = 3x - 2,若x = 4时,y的值为10,求该函数图象与x轴、y轴的交点坐标。

13. 已知一次函数y = -2x + 5,若x的取值范围为-3 ≤ x ≤ 2,求y的取值范围。

14. 已知一次函数y = 4x - 7,若x = 3时,y的值为5,求该函数图象与x轴、y轴的交点坐标。

四、应用题(每题15分,共30分)15. 小明骑自行车从家出发,每小时骑行5公里。

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。

人教版八年级数学下册第19章一次函数单元测试题含答案

人教版八年级数学下册第19章一次函数单元测试题含答案

第十九章一次函数一、选择题(每小题4分,共28分)1.下列函数中:(1)y =πx ,(2)y =2x -1,(3)y =1x ,(4)y =2-3x ,(5)y =x 2-1,是一次函数的有( )A .4个B .3个C .2个D .1个2.若一次函数y =kx +b 的图象经过第二、三、四象限,则k ,b 的取值范围是( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b <0 D .k <0,b >03.对于函数y =-3x +1,下列结论正确的是( ) A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >13时,y <0D .y 的值随x 值的增大而增大4.若点A (2,4)在函数y =kx 的图象上,则下列各点在此函数图象上的是( ) A .(1,2) B .(-2,-1) C .(-1,2) D .(2,-4)5.一次函数y 1=ax +b 与一次函数y 2=-bx -a 在同一平面直角坐标系中的图象大致是( )图19-Z -16.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3 B .-32C .9 D .-94图19-Z -27.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离s (米)与用去的时间t (分)的关系如图19-Z -2所示,根据图象提供的有关信息,下列说法中错误的是( )A .兄弟俩的家离学校1000米B .他们同时到家,用时30分C .小明的速度为50米/分D .小亮中间停留了一段时间后,再以80米/分的速度骑回家二、填空题(每小题4分,共20分)8. 函数y =x +1x -1的自变量x 的取值范围是________. 9.如图19-Z -3,直线y =ax +b 与直线y =cx +d 相交于点(2,1),则关于x 的一元一次方程ax +b =cx +d 的解为____________.10.在平面直角坐标系xOy 中,直线y =12x +2向上平移两个单位长度得到直线m ,那么直线m 与x 轴的交点坐标是________.11.一次函数y =kx +b 的图象经过点A(0,4)且与两坐标轴围成的三角形的面积为2,则这个一次函数的解析式为____________.图19-Z -319-Z -412.如图19-Z -4,在平面直角坐标系中,直线y =-12x +2分别交x 轴、y 轴于A ,B两点,点P(1,m)在△AOB 内(不包含边界),则m 的取值范围是________.三、解答题(共52分)13.(8分)一次函数的图象经过(-2,1)和(1,4)两点. (1)求这个一次函数的解析式; (2)当x =3时,求y 的值.14.(10分)已知一次函数y=2x+4.(1)在如图19-Z-5所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B的坐标;(3)在(2)的条件下,求△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.图19-Z-515.(10分)如图19-Z-6,直线l1的函数解析式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的函数解析式;(3)求△ADC的面积.图19-Z-616.(10分)某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案:方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4名)学生听音乐会.(1)设学生人数为x名,付款总金额为y(元),分别建立两种优惠方案中y与x之间的函数关系式;(2)请计算并确定出最节省费用的购票方案.17.(14分)国庆节期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如下表:类别 彩电 冰箱 洗衣机 进价(元/台)200016001000售价(元/台) 2300 1800 1100的2倍.设该商店购买冰箱x 台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?详解详析1.B[解析] (1)y =πx ,(2)y =2x -1,(3)y =2-3x 是一次函数,共3个,故选B.2.C[解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k <0,b <0. 3.C4.A[解析]∵点A (2,4)在函数y =kx 的图象上,∴4=2k ,解得k =2,∴一次函数的解析式为y =2x .A .∵当x =1时,y =2,∴此点在函数图象上,故A 选项正确;B .∵当x =-2时,y =-4≠-1,∴此点不在函数图象上,故B 选项错误;C .∵当x =-1时,y =-2≠2,∴此点不在函数图象上,故C 选项错误;D .∵当x =2时,y =4≠-4,∴此点不在函数图象上,故D 选项错误. 5.D6.D[解析] 在函数y =2x +3中,当y =0时,x =-32,即交点坐标为(-32,0).把(-32,0)代入函数y =3x -2b ,求得b =-94.7.C[解析]A .根据函数图象右上端点的纵坐标可知,兄弟俩的家离学校1000米,故A 正确;B .根据函数图象右上端点的横坐标可知,兄弟俩同时到家,用时30分钟,故B 正确;C .根据小明与学校的距离s (米)与用去的时间t (分)的函数关系可知,小明的速度为1000÷30=1003(米/分),故C 错误;D .根据折线的第三段的端点坐标可知,小亮用5分钟走了400米,速度为400÷5=80(米/分),故D 正确.8.x ≠1[解析] 函数y =x +1x -1的自变量x 的取值范围是x -1≠0,即x ≠1.9.x =2 [解析] 观察图象,由直线y =ax +b 与直线y =cx +d 相交于点(2,1),即可知关于x 的一元一次方程ax +b =cx +d 的解为直线y =ax +b 与直线y =cx +d 交点的横坐标,即x =2.10.(-8,0) [解析]∵直线y =12x +2向上平移两个单位长度得到直线m ,∴直线m 的解析式为y =12x +4,∵当y =0时,12x +4=0,解得x =-8,∴直线m 与x 轴的交点坐标是(-8,0).11.y =4x +4或y =-4x +4 [解析]∵一次函数y =kx +b 的图象经过点A (0,4),∴b =4,设图象与x 轴交于点B ,设B (a ,0).∵三角形的面积为2,∴12×|a |×b =2,∴a =±1,∴点B 的坐标是(1,0)或(-1,0),∴k +b =0或-k +b =0,∴k =-4或4, ∴这个一次函数的解析式为y =4x +4或y =-4x +4.12.0<m <32[解析]因为点P (1,m )在△AOB 内(不包含边界),解得0<m <32.13.解:(1)设这个一次函数的解析式为y =kx +b , ∵该函数图象经过(-2,1)和(1,4)两点,∴这个一次函数的解析式为y =x +3.(2)当x =3时,y =3+3=6. 14.解:(1)如图所示:(2)令x =0,则y =4;令y =0,则x =-2.∴A (-2,0),B (0,4). (3)∵A (-2,0),B (0,4),∴OA =2,OB =4,∴△AOB 的面积=12OA ·OB =12×2×4=4.(4)由图象得x 的取值范围为x <-2.15.解:(1)由y =-3x +3,令y =0,得-3x +3=0,∴x =1,∴D (1,0).(2)设直线l 2的函数解析式为y =kx +b ,由图象知:x =4时,y =0;x =3时,y =-32.∴直线l 2的函数解析式为y =32x -6.∴C (2,-3).∵AD =3,∴S △ADC =12×3×||-3=92.16.解:(1)按优惠方案1可得y 1=20×4+(x -4)×5=5x +60(x ≥4); 按优惠方案2可得y 2=(5x +20×4)×90%=4.5x +72(x ≥4). (2)y 1-y 2=0.5x -12(x ≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24, ∴当学生人数为24时,两种优惠方案付款一样多; ②当y 1-y 2<0时,得0.5x -12<0,解得x <24, ∴学生人数不少于4且少于24时,选方案一较划算; ③当y 1-y 2>0时,得0.5x -12>0,解得x >24, ∴当学生人数多于24时,选方案二较划算. 17.解:(1)根据题意,得2000×2x +1600x +1000×(100-3x )≤170000.解得x ≤261213.∵x 为正整数, ∴x 最大为26.答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y =(2300-2000)×2x +(1800-1600)x +(1100-1000)×(100-3x )=500x +10000. ∵k =500>0,∴y 随x 的增大而增大.∵x ≤261213且x 为正整数,∴当x =26时,y 取最大值,最大值为500×26+10000=23000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23000元.。

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。

人教版八年级下学期一次函数单元测试卷与参考答案

人教版八年级下学期一次函数单元测试卷与参考答案

人教版八年级下学期一次函数单元测试卷(时间:45分钟 满分:100分)班级 姓名 座号 成绩一、选择题(每小题4分,共40分)1、下列函数中,是一次函数的有( )(1)x y π= (2)12-=x y (3)xy 1= (4)x y 32-= (5)12-=x y . A 、4个 B 、3个 C 、2个 D 、1个2、一次函数1-=x y 的图像不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、若点A (2-,m )在正比例函数x y 21-=的图象上,则m 的值是( ) A 、41 B 、41- C 、1 D 、1- 4、已知一次函数的图象与直线1+-=x y 平行,且过点(8,2),那么此一次函数的解析式为( )A 、2--=x yB 、6--=x yC 、10+-=x yD 、1--=x y5、已知(-5,1y ),(-3,2y )是一次函数231+-=x y 图象上的两点,则1y 与2y 的关系是( )A 、1y <2yB 、1y =2yC 、1y >2yD 、无法比较6、在同一平面直角坐标系中,若一次函数图象交于点,则点的坐标为( )A 、(1-,4)B 、(1-,2)C 、(2,1-)D 、(2,1)7、一次函数b kx y +=的图象经过点(m , 1)和点(1-, m ),其中m >1,则k , b 应满足的条件是( )A 、k >0且b >0B 、k <0且b >0C 、k >0且b <0D 、k <0且b <0 8、某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y (公里)和所用的时间x (分)之间的函数关系.下列说法错误的是( )A 、小强从家到公共汽车站步行了2公里B 、小强在公共汽车站等小明用了10分钟C 、公共汽车的平均速度是30公里/小时D 、小强乘公共汽车用了20分钟533-=+-=x y x y 与M M9、如图所示,已知直线l :x y 33=,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ;…;按此作法继续下去,则点4A 的坐标为( )A 、(0,64)B 、(0,128)C 、(0,256)D 、(0,512)10、如图,在平面直角坐标系中,点A (1-,m )在直线32+=x y 上,连结OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线b x y +-=上,则b 的值为( )A 、﹣2B 、1C 、1.5D 、2 二、填空题(每小题4分,共24分)11、使函数133+-=x y 有意义的自变量x 的取值范围是 .12、已知函数2)4(3+-=-m m y 是一次函数,则=m __ __.13、已知一次函数5)1(+-=x k y 随着x 的增大,y 的值也随着增大,那么k 的取值范围是__________.14、已知y 与12+x 成正比例,当5=x 时,2-=y ,则y 与x 之间的函数关系式为 .15、将直线13+=x y 向上平移1个单位长度后得到的直线是 .16、如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图像,图中s ,t 分别表示行驶距离和时间,则这两人骑自行车的速度相差_______h km /.第9题 第8题 第10题三、解答题(共36分)17、过点(0,﹣2)的直线1l :b kx y +=1(0≠k )与直线2l :12+=x y 交于点P (2,m ).(1)写出使得1y <2y 的x 的取值范围;(2)求点P 的坐标和直线1l 的解析式.18、如图,在直角坐标系中,直线4+=kx y 与x 轴正半轴交于一点A ,与y 轴交于点B ,已知△OAB 的面积为10,求这条直线的解析式.19、某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)根据图象求y 与x 的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?20、如图,直线l :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标.单元测试参考答案1、B2、C3、C4、C5、C6、D7、B8、D9、C 10、D11、x >31-12、4-13、k >114、112114--=x y 15、23+=x y16、417、(1)x <2 (2)2251-=x y 18、454+-=x y 19、(1)2402+-=x y (40≤x ≤120) (2)100元20、(1)A (4,0),B (0,2) (2)|4|2t S -= (3)M (2,0)或(-2,0)。

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版

八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。

八年级数学下册最新人教版第19章一次函数单元测试题(含答案)

八年级数学下册最新人教版第19章一次函数单元测试题(含答案)

第19章《一次函数》整章水平测试一、耐心填一填,一锤定音!(每小题3分,共30分)1.已知函数(1)1y k x k =++-,当k 时,它为一次函数,当k 时,它为正比例函数.2.直线1y x =+与直线22y x =-的交点坐标是 .3.一次函数1y x =-+的图象经过点P (m ,m -1),则m = .4.A ,B 两地的距离是160k m ,若汽车以平均每小时80k m 的速度从A 地开往B 地,则汽车距B 地的路程y (k m )与行驶的时间x (h )之间的函数关系式为 .5.已知函数3y x b =-+的图象过点(1,-2)和(a ,-4),则a = .6.一次函数y kx b =+中,y 随x 的增大而减小,且kb >0,则它的图象一定不经过 第 象限.7.已知某一次函数的图象如图1所示,则其函数表达式是 .8.直线y kx b =+过点(2,-1),且与直线132y x =+相交于y 轴上同一点,则其函数表达式为 .9.某一次函数图象过点(-1,5),且函数y 的值随自变量x 的值的增大而增大,请你写出一个符合上述条件的函数表达式 .10.若三点A (0,3),B (-3,0)和C (6,y )共线,则y = .二、精心选一选,慧眼识金!(每小题3分,共30分)1.下列各函数中,x 逐渐增大y 反而减少的函数是( )A .13y x =-B .13y x =C .41y x =+D .41y x =-2.下面哪个点不在函数23y x =-+的图象上( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)3.已知直线y =x +b ,当b <0时,直线不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线y =kx 过点(3,4),那么它还通过点( )A .(3,-4)B .(4,3)C .(-4,-3)D .(-3,-4)5.一次函数y =kx +b 的图象经过点(2,1)和点(0,3),那么这个函数表达式为( )A .132y x =-B .y =-x +3C .y =3x - 2D .y =-3x +26.如果直线y =kx +b 经过一、二、四象限,则有( )A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >07.关于正比例函数y =-2x ,下列结论中正确的是( )A .图象过点(-1,-2)B .图象过第一、三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <08.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限9.汽车由重庆驶往相距400千米的成都.如果汽车的平均速度是100千米/小时,那么汽车距离成都的路程s(千米)与行驶时间t(小时)的函数关系的图象表示为()A.B.C.D.10.甲、乙两人赛跑,所跑路程与时间的关系如图2所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙两人中先到达终点的是乙C.甲、乙同时起跑D.甲在这次赛跑中的速度为5m/s三、用心想一想,马到成功!(本大题共46分)1.(本小题11分)如图3所示,直线m是一次函数y=kx+b的图象.(1)求k、b的值;(2)当12x 时,求y的值;(3)当y=3时,求x的值.2.(本小题11分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元.(1)求出y与x的函数关系式(纯利润=总收入-总支出);(2)当y=106000时,求该厂在这个月中生产产品的件数.3.(本小题12分)某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元,该店制定两种优惠方案:①买一个书包赠送一个文具盒;②按总价九折付款。

一次函数单元测试卷

一次函数单元测试卷

一次函数单元测试卷新人教版八年级下册《第19章一次函数》单元测试卷一、选择题(每小题3分,共24分)1.下列各图给出了变量x与y之间的函数是(B)。

2.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有(B)m>,n<0.3.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是(C)y1<y2.4.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为(B)y=﹣x﹣6.5.一次函数y=﹣5x+3的图象经过的象限是(B)二,三,四。

6.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠)的图象的是(D)。

7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为(A)。

8.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四个信息,其中错误的是(B)甲,乙两人中先到达终点的是乙。

二、填空题(每小题3分,共24分)9.函数的自变量的取值范围是(未给出)。

10.已知y﹣3与x+1成正比例函数,当x=1时,y=6,则y与x的函数关系式为(y=3x+3)。

11.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b=(0)。

12.据如图的程序,计算当输入x=3时,输出的结果y=(11)。

13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是(m>﹣2)。

14.如图,若直线y=kx+b经过A,B两点,直线y=mx经过A点,则关于x的不等式kx+b>mx的解集是(x<b/(m﹣k))。

15.已知函数 $y=2x+b$ 和 $y=ax-3$ 的图象交于点 $P(-2,-5)$,根据图象可得方程$2x+b=ax-3$ 的解是$\frac{1}{2}x-1$。

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份含答案

人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。

最新部编人教版数学八年级下《一次函数》单元检测题含答案打印版.doc

最新部编人教版数学八年级下《一次函数》单元检测题含答案打印版.doc

第十九章《一次函数》单元检测题一、选择题1.把多项式分解因式的结果是A. B.C. D.2.在同一坐标系中,函数与的图象大致是A. B.C. D.3.已知函数,则A. B. 2 C. 0 D. 14.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的组成为记录寻宝者的进行路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为第2页,共14页A.B.C.D.5. 下列函数中,自变量x 的取值范围为的是A.B.C.D.6. 若存在过点的直线l 与曲线和都相切,则a的值为A. 1B. C. 1或D. 1或7. 已知函数是定义在上的函数,对任意两个不相等的正数,都有,记,则A.B.C.D.8. 下列对函数的认识正确的是A. 若y 是x 的函数,那么x 也是y 的函数B. 两个变量之间的函数关系一定能用数学式子表达C. 若y 是x 的函数,则当y 取一个值时,一定有唯一的x 值与它对应D. 一个人的身高也可以看作他年龄的函数9. 下列曲线中表示y 是x 的函数的是A.B.C.D.二、填空题 10. 已知正比例函数,点在函数上,则随的增大而增大或减小.11. 将函数的图象向上平移2个单位,所得函数图象的解析式为___________.12. 如图,函数和的图象相交于点,则不等式的解集为 .13. 直线与的位置关系为 ;14. 函数是y 关于x 的正比例函数,则______.三、解答题15.已知一次函数的图象过点,求直线AB的解析式;在给出的直角坐标系中,画出和的图象,并根据图象写出方16.求下列函数中当时的函数值:;;.第4页,共14页17.如图是一辆汽车的速度随时间变化而变化的图象,回答下面的问题:汽车从出发到最后停止共经过了多长时间?最高速度是多少?两点分别表示什么?说一说速度是怎样随时间变化而变化的.18.求下列函数中自变量的取值范围.;;;;.第6页,共14页【答案】1. D2. B3. B4. C5. D6. B7. B8. D9. C10. 减小11.12.13. 平行14. 115. 解:根据题意得,解得,所以直线AB的解析式为;画出函数和函数的图象,它们的交点坐标为,所以方程组的解为.16. 解:;;.17. 解:汽车从出发到最后停止共经过了35分钟,最高速度是90千米时;点表示10分时的速度为点表示30分时的速度是;在0到10分速度在逐渐增大;在10到15分速度保持不变;在15到20分时速度在逐渐增加;在20分到25分时速度保持不变;在25分到35分时速度在逐渐减小.18. 解:的取值范围为全体实数;解不等式,得,故x 的取值范围为;解不等式,得,故x 的取值范围为;第8页,共14页解不等式,得,故x的取值范围为;解不等式组得,故x的取值范围为.赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <2.下列各曲线中表示y 是x 的函数的是()A .B .C .D .3.一次函数24y x =+的图像与y 轴交点的坐标是()A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)4.已知一次函数y =kx +b ,当0≤x≤2时,对应的函数值y 的取值范围是-2≤y≤4,则k 的值为()A .3B .-3C .3或-3D .不确定5.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A .x=2B .x=0C .x=﹣1D .x=﹣37.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .28.一次函数()224y k x k =++-的图象经过原点,则k 的值为()A .2B .2-C .2或2-D .39.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是().A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <010.一辆汽车从甲地以50km/h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离s(km)与行驶时间t(h)之间的函数解析式是()A .s =150+50t(t≥0)B .s =150-50t(t≤3)C .s =150-50t(0<t <3)D .s =150-50t(0≤t≤3)11.如图,函数=2y x 和=+4y ax 的图象相交于A (m ,3),则不等式2+4x ax <的解集为()A .3x 2>B .x 3>C .3x 2<D .x 3<12.已知:将直线y =x ﹣1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是()A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小二、填空题13.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.14.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.15.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y _______2y .(填”>”,”<”或”=”)17.如图,矩形ABCO 在平面直角坐标系中,且顶点O 为坐标原点,已知点B(3,2),则对角线AC 所在的直线l 对应的解析式为___.三、解答题18.已知函数y =(m +1)x 2-|m |+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?19.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.20.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.21.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.22.如图,直角坐标系xOy中,一次函数y=﹣1x+5的图象l1分别与x,y轴交于A,B2两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B2.D3.B4.C5.C6.D7.B8.A9.C10.D 11.C12.C13.r c14.115.-116.<17.y=23-x+2解:∵四边形ABCO为矩形,BC x\轴,AB y∥轴,∵B(3,2),∴OA=BC=3,AB=OC=2,∴A(3,0),C(0,2),设直线AC解析式为y=kx+b,把A与C坐标代入得:30 {2k bb+==,解得:2 {32 kb=-=,则直线AC解析式为2 2.3y x=-+故答案为2 2.3y x=-+18.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.解:(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.19.(1)y=2x+1;(2)不在;(3)0.25.解:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-,此函数与x 轴、y 轴围成的三角形的面积为:11110.25224´´-==20.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.解:(1)根据题意得:()()70203540203513035063000y x x x x éù=--´´+-´´=-+ëû(2)因为7035(20)x x ³-,解得203x ³,又因为为正整数,且20x £.所以720x ££,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-´+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.21.(1)(1,3)-;(2)9;(3)1³x 解:(1)联立两函数解析式可得方程组24y x y x =--ìí=-î,解得:13x y =ìí=-î,\点A 的坐标为(1,3)-;(2)当10y =时,20x --=,解得:2x =-,,0()2B \-,当20y =时,40x -=,解得:4x =,(4,0)C \,6CB \=,ABC D ∴的面积为:16392´´=;(3)由图象可得:12y y £时x 的取值范围是1³x .22.(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.。

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)

【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。

最新人教版初中数学八年级数学下册第四单元《一次函数》测试卷(含答案解析)

最新人教版初中数学八年级数学下册第四单元《一次函数》测试卷(含答案解析)

一、选择题1.已知点P (m ,n )在第二象限,则直线y =nx +m 图象大致是下列的( )A .B .C .D .2.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩3.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ; ②小王走完全程需要36分钟; ③图中B 点的横坐标为22.5; ④图中点C 的纵坐标为2880. 其中错误..的个数是( )A .1B .2C .3D .44.如图,在平面直角坐标系中点A 的坐标为()0,6,点B 的坐标为3,52⎛⎫- ⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',若点B '的坐标为19,52⎛⎫- ⎪⎝⎭,点A '落在直线y kx =上,则k 的值为( )A .43-B .34-C .34 D .611- 5.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9B .11C .15D .186.对于函数31y x =-+,下列结论正确的是( ) A .y 随x 的增大而增大 B .它的图象经过第一、二、三象限 C .它的图象必经过点()0,1 D .当1x >时,0y >7.函数2y x x=+-()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限8.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小9.关于函数(3)y k x k =-+,给出下列结论: ①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-; ③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<. 其中正确结论的序号是( ) A .①②③B .①③④C .②③④D .①②③④10.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1B .3C .43D .5311.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-12.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( ) A .4B .1C .2D .-5二、填空题13.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____.14.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________. 15.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.16.在平面直角坐标系中,直线2y x =+和直线2y x b =-+的交点的横坐标为m .若13m -≤<,则实数b 的取值范围为____.17.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.18.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).19.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出:(),x y(),n n(),m n(),n m(),f x ynm n -m n +如:1,2213f =+=,2,1211f =-=,1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.三、解答题21.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.22.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式; (2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.23.直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点,直线24(0)y kx k k =+->与直线2y x =--相交于C 点.(1)请说明24(0)y kx k k =+->经过点(4,2);(2)1k =时,点D 是直线24(0)y kx k k =+->上一点且在y 轴的右侧,若2DOBDOA SS=,求点D 的坐标;(3)若点C在第三象限,求k的取值范围.24.如图1,在平面直角坐标系中,直线3:32AB y x=+与x轴交于点A,且经过点(2,)B m,已知点(3,0)C.(1)求点,A B的坐标和直线BC的函数表达式.(2)在直线BC上找一点D,使ABO与ABD△的面积相等,求点D的坐标.(3)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E再沿线段EA以每秒2个单位运动到A后停止,设点F在整个运动过程中所用时间为t,当t取最小值时,求点E的坐标.25.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y随x的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.26.淮北市榴园村,以石榴产业资源及“四季榴园”4A级旅游风景区为基础,规划面积3.33平方公里,布局为“一区两园一带”.2020年8月26日,榴园村入选第二批全国乡村旅游重点村名单.在坐拥近千亩的塔山明清古石榴园内,有古树587株,平均树龄150岁,是迄今华东地区年代最久远的古代石榴园.榴园村甲农户有20吨石榴,乙农户有30吨石榴,现将这些石榴运到A B 、两个贮藏仓库.已知A 仓库可储存24吨,B 仓库可储存26吨,从甲农户运往A B 、两仓库的费用分别为20元/吨、25元/吨,乙农户运往A B 、两仓库的费用分别为15元/吨、18元/吨.设从甲农户运往A 仓库的石榴为x 吨,甲农户、乙农户的运费分别为y 甲元、y 乙元.(1)请直接写出y 甲,y 乙与x 之间的函数关系式.(不必写出x 的取值范围). (2)试讨论当x 满足怎样条件时,甲、乙两农户哪户的运费较少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点P 在第二象限,确定m <0,n >0,根据k ,b 的符号,确定图像的分布即可. 【详解】∵点P (m ,n )在第二象限, ∴m <0,n >0,∴图像分布在第一,第三象限,第四象限, 故选C. 【点睛】本题考查了根据k ,b 的符号确定一次函数图像的分布,熟记k ,b 的符号与图像分布的关系是解题的关键.2.B解析:B 【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题. 【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0). 将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0). 将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0.因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B 【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.3.B解析:B 【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否. 【详解】解:由图可知,点C 表示小张到达终点,用时36min , 点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确; 小王的步行速度为:36004580(/min)m ÷=, 点B 表示两人相遇,∴3600(10080)20(min)÷+=, ∴两人20min 相遇,(20,0)B ,故③错误; ∵362016(min)-=,∴从两人相遇到小张到终点过了16min , ∴16(10080)2880()m ⨯+=, ∴小张到达终点时,两人相距2880m , ∴点C 的纵坐标为2880,故④正确, ∴错误的是②③, 故选:B . 【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答.4.B解析:B【分析】确定向左平移的距离为319()822---=,确定点A '的坐标为(-8,6),将其代入y=kx 中,得k=6(8)-=34-. 【详解】 ∵点B 的坐标为3,52⎛⎫-⎪⎝⎭,将AOB 沿x 轴向左平移得到A O B ''',且点B '的坐标为19,52⎛⎫- ⎪⎝⎭, ∴向左平移的距离为319()822---=, ∵点A 的坐标为()0,6, ∴点A '的坐标为(-8,6), ∵点A '落在直线y kx =, ∴6= -8k ,解得k=34-, 故选:B..【点睛】本题考查了平移的基本规律,正比例函数解析式的确定,熟记平移的规律是解题的关键.5.A解析:A 【分析】根据关于x 的不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩恰有4个整数解以及一次函数(6)1y a x =-+经过第一、二、三象限,可以得到a 的取值范围,然后即可得到满足条件的a 的整数值,从而可以计算出满足条件的所有整数a 的和,本题得以解决. 【详解】解:由不等式组10232113a x x x ⎧⎛⎫--> ⎪⎪⎪⎝⎭⎨+⎪+≥⎪⎩,解得23a x -≤<,∵不等式组恰有4个整数解,∴123a<≤,∴36a <≤,∵一次函数(6)1y a x =-+的图象经过第一、二、三象限,∴60a ->, ∴6a <, ∴36a <<, 又∵a 为整数, ∴a=4或5,∴满足条件的所有整数a 的和为4+5=9, 故选:A . 【点睛】本题考查一次函数的性质、一元一次不等式组的整数解,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.6.C解析:C 【分析】根据一次函数的图象与性质逐项判断即可得. 【详解】一次函数31y x =-+中的30k =-<, y ∴随x 的增大而减小,则选项A 错误;一次函数31y x =-+中的30,10k b =-<=>,∴它的图象经过第一、二、四象限,则选项B 错误;当0x =时,1y =,∴它的图象必经过点()0,1,则选项C 正确;当0y =时,310x -+=,解得13x =,y 随x 的增大而减小,∴当13x <时,0y >,则选项D 错误; 故选:C . 【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.7.B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <, ∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.8.A解析:A【分析】根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答.【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,∴直线y kx b =+的解析式为2(2)123y x x =+-=+,∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确;当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误;∵k=2>0,∴y 随x 的增大而增大,故D 错误,故选:A .【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.9.D解析:D【分析】①根据一次函数定义即可求解;②根据(3)(1)3y k x k k x x =-+=+-即可求解;③图象经过二、三、四象限,则30k -<,0k <,即可求解;④函数图象与x 轴的交点始终在正半轴,则03k x k=>-,即可求解; 【详解】①根据一次函数定义:0k ≠函数为一次函数,故正确;②(3)(1)3y k x k k x x =-+=+-,故函数过(-1,3),故正确;③图象经过二、三、四象限,则30k -<,0k <,解得:0k <,故正确;④函数图象与x 轴的交点始终在正半轴,则03k x k =>-,解得:03k <<,故正确. 故选:D .【点睛】本题考查了一次函数图象上的点的坐标特征,解答此题的关键是熟知一次函数图象上点的坐标特点,确定函数与系数之间的关系,进而求解; 10.D解析:D【分析】分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1, ∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1, ∴x>43, 即:x>43时,y=2x-1, ∵x>43, ∴2x >83,∴2x-1>53, ∴y >53, ∴y 的最小值=53, 故选:D .【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段. 11.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.12.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x 分类讨论,分别求出对应p 的取值范围,即可求出p 的最小值.【详解】11y x =+,224y x =-+的图象如图所示联立124y x y x =+⎧⎨=-+⎩,解得:12x y =⎧⎨=⎩∴直线11y x =+与直线224y x =-+的交点坐标为(1,2),∵对任意一个x ,p 都取1,y 2y 中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.二、填空题13.(15)或(-17)【分析】利用待定系数法求出直线AC 的解析式得到OCOB 的长设M 的坐标为用OC 作底用含m 的式子表示和的面积利用已知条件求得m 的值即可得到M 的坐标【详解】设直线AC 的解析式为:解得:解析:(1,5)或(-1,7)【分析】利用待定系数法求出直线AC 的解析式,得到OC 、OB 的长.设M 的坐标为(),6m m -+,用OC 作底,用含m 的式子表示OMC 和OAC 的面积,利用已知条件14OMC OAC S S =△△求得m 的值,即可得到M 的坐标.【详解】设直线AC 的解析式为:y kx b =+()()064,2C A ,,642b k b =⎧∴⎨+=⎩,解得:16k b =-⎧⎨=⎩∴直线AC 的解析式为:6y x =-+∴B 点的坐标为:()6,0M 在直线AC 上∴设M 点坐标(),6m m -+在OMC 中,OC=6,M 到OC 的距离1h m = ∴1116322OMC S OC h m m =⋅⋅=⨯⋅= 在OAC 中,OC=6,A 到OC 的距离24h = ∴211641222OAC S OC h =⋅⋅=⨯⨯= 14OMC OAC S S =13124m ∴=⨯ 1m =11m =或21m =-M ∴的坐标为(1,5)或(-1,7).故答案为:(1,5)或(-1,7).【点睛】本题考查了待定系数法求一次函数解析式及三角形的面积求法.利用待定系数法求解一次函数解析式:①设出一次函数解析式的一般形式;②把已知条件代入解析式,得到关于待定系数的方程组;③解方程组,求出待定系数的值,代入解析式得到一次函数解析式. 14.【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数的图象在一次函数的图象上方时且两者的函数图象都在x 轴上方时x 的取值范围【详解】解:(1)方程组的解就是一次函数解析:34x y =⎧⎨=⎩35x << 【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围.【详解】解:(1)方程组y kx b y mx n=+⎧⎨=+⎩的解就是一次函数y kx b =+与y mx n =+的交点坐标的横纵坐标, 由图知,34x y =⎧⎨=⎩; (2)不等式0kx b mx n <+<+的解就是找到图中一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围,由图知,35x <<.【点睛】本题考查一次函数与二元一次方程组和不等式的关系,解题的关键是能够理解方程组的解就是函数图象的交点坐标的横纵坐标,以及利用函数图象解不等式的方法.15.k=b=或k=b=【分析】分 k >0和 k <0两种情况结合一次函数的增减性可得到关于 k b 的方程组求解即可【详解】解:当 k >0时此函数是增函数∵当﹣1≤x≤4时3≤y≤6∴当x =﹣1时解析:k =35,b =185或k =35-,b=275. 【分析】 分 k >0和 k <0两种情况,结合一次函数的增减性,可得到关于 k 、 b 的方程组,求解即可.【详解】解:当 k >0时,此函数是增函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =3;当x =4时,y =6,∴346k b k b -+=⎧⎨+=⎩ ,解得35185k b ⎧=⎪⎪⎨⎪=⎪⎩; 当k <0时,此函数是减函数,∵当﹣1≤x≤4时,3≤y≤6,∴当x =﹣1时,y =6;当x =4时,y =3,∴643k b k b -+=⎧⎨+=⎩,解得35275k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故答案为:k =35,b =185或k =35-,b=275. 【点睛】本题考查一次函数知识,涉及一次函数的增减性以及求一次函数解析式,属于基础题,熟练掌握一次函数的增减性以及解析式的求法是解决此题的关键.16.【分析】求出两直线交点的横坐标m 代入求出b 的取值范围即可【详解】解:根据题意得解得∴∵∴∴故答案为:【点睛】此题主要考查了直线交点问题构造方程求交点是解答本题的关键解析:111b -≤<【分析】求出两直线交点的横坐标m ,代入13m -≤<,求出b 的取值范围即可.【详解】解:根据题意得,22x x b +=-+, 解得,23b x -=, ∴23b m -= ∵13m -≤< ∴2133b --≤< ∴111b -≤< 故答案为:111b -≤<【点睛】此题主要考查了直线交点问题,构造方程求交点是解答本题的关键.17.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩, ∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.18.③④【分析】根据一次函数的性质进行计算即可【详解】解:把x=1代入解析式得到y=1即函数图象经过(11)不经过点(10)故①错误;函数y=2x−1中k=2>0则该函数图象y值随着x值增大而增大故②错解析:③④【分析】根据一次函数的性质进行计算即可.【详解】解:把x=1代入解析式得到y=1,即函数图象经过(1,1),不经过点(1,0),故①错误;函数y=2x−1中,k=2>0,则该函数图象y值随着x值增大而增大,故②错误;把x=0代入解析式得到y=-1,即函数图象经过(0,-1),故③正确;函数y=2x−1中,k=2>0,b=−1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故④正确;故答案为:③④.【点睛】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.19.-1【分析】根据对应关系f分三种情况求出x的取值范围以及相应的x的值再作出判断即可【详解】解:①若1+2x=3x即x=1则3x=2解得x=(不符合题意舍去);②若1+2x>3x即x<1则1+2x-3解析:-1.【分析】根据对应关系f,分三种情况求出x的取值范围以及相应的x的值,再作出判断即可.【详解】解:①若1+2x=3x,即x=1,则3x=2,解得x= 23,(不符合题意,舍去);②若1+2x>3x,即x<1,则1+2x-3x=2,解得x=-1,③若1+2x<3x,即x>1,则1+2x+3x=2,解得x= 15(不符合题意,舍去),综上所述,x的值是-1.故答案为:-1.本题考查了一元一次不等式及一元一次方程的应用,函数的概念,理解新定义的运算方法是解题的关键,难点在于分情况讨论.20.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.解:(1)k=13,b=1;(2)5;(3)(-5,2)或(-3,4)或(-3,2). 【分析】(1)利用待定系数法即可求出k 和b 的值;(2)根据题意得到点A 、B 、E 、C 的坐标,再利用S 四边形AOBE =S △ACE +S 四边形OBEC 即可表示出结果;(3)分点A 为直角顶点,点E 为直角顶点,点P 为直角顶点三种情况分别求出点P 的坐标即可.【详解】解:(1)∵直线y kx b =+过点A (-3,0),B (0,1),则031k b b =-+⎧⎨=⎩, 解得:131k b ⎧=⎪⎨⎪=⎩,∴k=13,b=1;(2)∵A (-3,0),B (0,1),E (-1,m ),C (-1,0), ∴S 四边形AOBE =S △ACE +S 四边形OBEC =()1121122m m ⨯⨯+⨯+⨯ =3122m +; 当3m =时,S 四边形AOBE =313=522⨯+ (3)∵m=2,∴E (-1,2),∴CE=AC=2,∴△ACE 为等腰直角三角形,当直角顶点为点A 时,AP=AE ,∠PAE=90°,∴∠AEP=∠CAE=45°,∴PE ∥AC ,过P 作PF ⊥x 轴于F∴∠PAF=180º-∠PAE-∠CAE=180°-90°-45=45°∴△PAF ≌△EAC (AAS )∴PF=FA=AC=CE=2∴OF=AF+AC+OC=2+2+1=5∴点P (-5,2);当直角顶点为点E 时,EP=EA ,∠AEP=90°,∠EAP=45°, ∴∠PAC=90°,过E 作EG ⊥AP 于G ,PG=AG=GE=AC=CE=2AO=AC+OC=2+1=3,AP=2AG=4∴P (-3,4);当点P 为直角顶点时,PA=PE ,∠APE=90°,可得四边形APEC 为正方形,∴AP=AC=PE=EC ,∴AO=AC+OC=2+1=3,∴P (-3,2),综上:点P 的坐标为(-5,2)或(-3,4)或(-3,2).【点睛】本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,分类考虑以点A 、E 、P 为直角,正确的作出图形是解题的关键.22.(1)1364y x =-+,21y 12x =+;(2)15;(3)存在,理由见解析. 【分析】(1)直接把点A (0,6)代入l 1解析式中,求出m 的值;把点B (-2,0)代入直线l 2,求出k 的值即可;(2)首先求出点C 的坐标,然后求出点D 坐标,进而根据S △ABD =S △ACB +S △ACB 求出答案; (3)分点P 在点B 的左边和右边两种情况进行讨论,利用三角形面积公式求出点P 的坐标.【详解】解:(1)∵直线113:4l y x m =-+与y 轴交于A (0,6), ∴m =6, ∴1364y x =-+, ∵22:1l y kx =+分别与x 轴交于点B (−2,0),∴−2k +1=0,∴k =12, ∴21y 12x =+; (2)令21y 12x =+中x =0,求出y =1, ∴点C 坐标为(0,1), 联立364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ , 解得x =4,y =3∴点D 的坐标为(4,3), ∴11(61)2522ACB S AC BO =⨯=⨯-⨯=△ 154102ACD S =⨯⨯=△ ∴51015ABD ACD ACD S S S =+=+=△△△;(3)设点P 坐标为(m ,0),当点P 在B 点的右侧时,BP =m +2,114(2)615223ABP S BP AO m =⨯=⨯+⨯=⨯△, 解得m =143, 则点P 坐标为(143,0), 当点P 在B 点的左侧时,BP =−2−m , 114(2)615223ABP S BP AO m =⨯=⨯--⨯=⨯△, 解得m =−263, 则点P 坐标为(−263,0), 综上点P 的坐标为(143,0)或(−263,0). 【点睛】本题考查了一次函数综合题的知识,本题涉及到求一次函数解析式、两直线交点问题,三角形面积等知识,解本题(2)的关键是求出D 点的坐标,解答(3)的关键是进行分类讨论.23.(1)见解析;(2)(4,2)D 或42,33D ⎛⎫-⎪⎝⎭;(3)113k << 【分析】(1)把x=4代入函数关系求出y 的值即可;(2)先求出A ,B 的坐标,进而求出OA ,OB 的值,再设点D 的坐标为(,2)a a -,根根据2DOB DOA S S =,列出方程求解即可;(3)分别求出当直线24(0)y kx k k =+->经过点A ,B 时k 的值即可.【详解】解:(1)当4x =时,244242y kx k k k =+-=+-=∴点(4,2)在直线24(0)y kx k k =+->上.(2)∵直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点∴(2,0)A -,(0,2)B -∴2OA OB ==设D 的坐标为(,2)a a -∵2DOB DOA S S =,∴2|2|a a =-,∴4a =或43a =, ∴(4,2)D 或42,33D ⎛⎫- ⎪⎝⎭ (3)当直线24(0)y kx k k =+->经过点A 时,0224k k =-+-,解之得,13k =当直线24(0)y kx k k =+->经过点B 时,有224k -=-,解之得,1k =∴若点C 在第三象限,则113k <<. 【点晴】 本题考查了一次函数与一元一次方程,是一次函数的综合题,利用数形结合进行分析是解题的关键.24.(1)(2,0),(2,6),618A B y x -=-+;(2)1218,55⎛⎫ ⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭;(3)(2-.【分析】(1)令直线332y x =+中的0y =,得出点A 的坐标,再把x=2代入得出点B 的坐标,然后用待定系数法即可求解;(2)过点O作直线m,在点H上方作直线n,使直线m、n和直线AB等距离,则直线m (n)和BC的交点即为所求点,进而求解;(3)过点B作BM⊥x轴于点M,过点A作直线AH使∠CAH=30°,过点B作BH⊥AH于点H,交x轴于点E,则点E为所求点,进而求解.【详解】(1)令直线33 2y x=+中的0y=,则3302x+=,解得:2x=-,∴由题意得:(2,0)A-,将(2,)B m代入直线332y x=+中得3232m⨯+=,6m=,(2,6)B∴,设直线BC为:y kx b=+,∴代入(2,6),(3,0)B C可得,2630k bk b+=⎧⎨+=⎩,解得:618kb=-⎧⎨=⎩,∴直线BC的函数表达式为:618y x=-+.(2)设直线AB交y轴于点H,则点H(0,3),过点O作直线m,在点H上方作直线n,使直线m、n和直线AB等距离,由AB的表达式知,直线m的表达式为32y x=直线n的表达式为362y x=+∴32618y xy x⎧=⎪⎨⎪=-+⎩,解得125,185xy⎧=⎪⎪⎨⎪=⎪⎩故点D的坐标为1218(,)553+62618y x y x⎧=⎪⎨⎪=-+⎩,解得85,425x y ⎧=⎪⎪⎨⎪=⎪⎩点D′的坐标为842,55⎛⎫ ⎪⎝⎭故点D 的坐标为为1218,55⎛⎫⎪⎝⎭或842,55⎛⎫ ⎪⎝⎭ (3)过点B 作BM ⊥x 轴于点M ,过点A 作直线AH 使∠CAH=30°,过点B 作BH ⊥AH 于点H ,交x 轴于点E ,则点E 为所求点,理由:∵∠CAH=30°,∴12EH AE =∴12=+=+=BE EA t BE EH BH 为最小, ∴∠EBM=∠BME-∠BEM=90°-∠BEM=90°-∠AEH=∠EAH=30°,设EM=x ,则BE=2x ,BM=6,∴BE 2=EM 2+BM 2,即(2x )2=x 2+36,解得23x =∴23,=-=-OE OM EM∴点E 的坐标为(223,0)-.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、最小距离问题等,有一定的综合性.25.(1)3600,20;(2)休息前65米/分,休息后55米/分(3)1100米【分析】根据图象获取信息:(1)甜甜到达山顶用时80分钟,中途休息了20分钟,行程为3600米;(2)休息前30分钟行走1950米,休息后30分钟行走(3600﹣1950)米.(3)求慧慧到达缆车终点的时间,计算甜甜行走路程,求离缆车终点的路程.解:(1)根据图象知:甜甜行走的总路程是3600米,她途中休息了20分钟.故答案为 3600,20;(2)甜甜休息前的速度为:1950=6530(米/分),甜甜休息后的速度为:360019501650=553030-=(米/分);(3)慧慧所用时间:360018002=10 180180=(分),甜甜比慧慧迟到80﹣50﹣10=20(分),∴慧慧到达终点时,甜甜离缆车终点的路程为20551100⨯=米【点睛】此题考查函数及其图象的应用,从图象中获取相关信息是关键.此题第3问难度较大.26.(1) y A=500-5x,,y B=3x+468;(2)当0≤x<4时,B地的费用较少;当x=4时,两地的费用相同;当4<x≤20时,A地的费用较少.【分析】(1)甲农户运往A仓库的石榴为x吨,则运往B仓(20-x)吨,乙农户运往A仓库的石榴为(24-x)吨,运往B仓(x+6)吨,根据费用等于吨数×每吨的费用,即可写出函数解析式;(2)把两个解析式进行比较,解不等式即可.【详解】解:(1)设甲农户运往A仓库的石榴为x吨,则运往B仓(20-x)吨,乙农户运往A仓库的石榴为(24-x)吨,运往B仓(x+6)吨,则为y A=20x+25(20-x),即y A=500-5x;y B=15(24-x)+18(x+6),即y B=3x+468;(2)根据题意得:20024060xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,解得:0≤x≤20,当y A>y B时,即500-5x>3x+468,解得:x<4,当y A=y B时,即500-5x=3x+468,解得:x=4,y A<y B时,即500-5x>3x+468,解得:x>4.则当0≤x<4时,B地的费用较少;当x=4时,两地的费用相同;当4<x≤20时,A地的费用较少.本题考查了一次函数的应用,常用的方法就是转化为函数问题,正确表示出从甲农户和乙农户运送到A和B各自的吨数是关键.。

新人教版初中数学八年级下册 归类整理的的一次函数单元测试题(含答案)

新人教版初中数学八年级下册 归类整理的的一次函数单元测试题(含答案)

第十四章 一次函数测试题(时间:90分钟 总分120分)一、相信你一定能填对!(每小题3分,共30分) 知识点:求自变量的取值范围1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x -知识点:由一次函数的特点来求字母的取值5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-1211.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_______知识点:函数图像的意义2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.知识点:判断是否为一次函数或正比例函数3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+1 知识点:k.、b 定位4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四C .一、二、四D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3知识点:确定一次函数的表达式7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-110.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.知识点:函数图象的理解8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t(时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题3分,共30分)知识点:双直线的观察图象14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.xy1234-2-1CA-14321O知识点:一次函数(或正比例函数)的增减性16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)知识点:一次函数与坐标轴围成三角形的面积问题19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.三、认真解答,一定要细心哟!(共60分)知识点:确定一次函数的表达式21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).566-2xy1234-2-15-14321O22.(12分)一次函数y=kx+b 的图象如图所示: (1)求出该一次函数的表达式;(2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?知识点:双函数经济型应用题的解决方案问题25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

八年级数学(下)第十九章《一次函数》单元测试卷含答案

八年级数学(下)第十九章《一次函数》单元测试卷含答案

八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。

八年级数学下册《一次函数》单元检测卷及答案(人教版)

八年级数学下册《一次函数》单元检测卷及答案(人教版)

八年级数学下册《一次函数》单元检测卷及答案(人教版) 一、选择题(计30分)1.若y=x+2﹣3b是正比例函数,则b的值是()A.0B.C.D.2.一次函数y=2x+3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.分别给出了变量y与x之间的对应关系,y不是x的函数的是()A.B.C.D.4.一次函数y=x+2的图象大致是()A.B.C.D.5.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x﹣201y3p0 A.1B.2C.3D.46.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2B.x≤2C.x≥4D.x≤47.将一次函数y=x+k与y=kx的图象画在同一坐标系中,正确的是()A.B.C.D.8.已知y﹣1与x成正比,当x=2时,y=9;那么当y=﹣15时,x的值为()A.4B.﹣4C.6D.﹣69.过点P(8,2)且与直线y=x+1平行的直线是()A.y=x+10B.y=x﹣10C.y=x﹣2D.y=x﹣610.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(计24分)11.函数y=(k﹣2)x+3中,y随x增大而减小,则k.12.在函数y=中,自变量x的取值范围是.13.已知y=﹣mx+1的图象经过A(﹣1,3),B(■,﹣9)两点,B点的横坐标被墨水污染了,被污染处是.14.若三点A(0,3),B(﹣3,0)和C(6,a)在同一条直线上,则a=.15.若一次函数y=kx﹣(2k+1)的图象与y轴交于点A(0,2),则k=.16.已知方程组的解为,则一次函数y=3x﹣3与y=﹣x+3的交点P的坐标是.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4…的等边三角形(如图所示).根据图形推断每个等边三角形卡片总数S与边长n的关系式.三、解答题(计66分)19.已知函数y=2x﹣3.(1)作出函数的图象,并标出图象与x轴、y轴的交点坐标;(2)由图象观察:当﹣2≤x≤4时,函数值y的变化范围.20.已知一条直线经过A(0,4)、点B(2,0),如图.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数解析式.21.已知y是x的一次函数,它的图象上有两点分别为点A(1,1),B(5,9).(1)求这个一次函数的表达式;(2)判断点C(3,7)是否在这条直线上;(3)当x取何值时,y>0?22.科学家探究出一定质量的某气体在体积不变的情况下,压强p(103Pa)随温度t(℃)变化的函数解析式是p=kt+b,其图象为如图所示的射线AB.(1)根据图象求出上述气体的压强p与温度t的函数解析式;(2)当压强为200×103Pa时,求上述气体的温度.23.广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?24.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.参考答案一、选择题(计30分)1.解:由正比例函数的定义可得:2﹣3b=0解得:b=.故选:B.2.解:∵一次函数y=2x+3,k=2,b=3∴该函数的图象经过第一、二、三象限,不经过第四象限故选:D.3.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B不正确.故选:B.4.解:一次函数y=x+2当x=0时,y=2;当y=0时,x=﹣2故一次函数y=x+2图象经过(0,2)(﹣2,0);故根据排除法可知A选项正确.故选:A.5.解:一次函数的解析式为y=kx+b(k≠0)∵x=﹣2时y=3;x=1时y=0∴解得∴一次函数的解析式为y=﹣x+1∴当x=0时,y=1,即p=1.故选:A.6.解:不等式ax+b≥0的解集为x≤2.故选:B.7.解:A.一次函数y=kx的k>0与一次函数y=x+k的k<0矛盾,错误;B.从图象知,一次函数y=kx的图象不经过原点,错误;C.一次函数y=kx的k>0与一次函数y=x+k的k>0一致,正确;D.从图象知,一次函数y=kx的图象不经过原点,错误.故选:C.8.解:根据题意设y﹣1=kx把x=2,y=9代入得9﹣1=2k,解得k=4所以y﹣1=4x,即y=4x+1当y=﹣15时,4x+1=﹣15,解得x=﹣4.故选:B.9.解:设所求一次函数的解析式为y=kx+b∵直线y=kx+b与y=x+1平行∴k=1∴y=x+b将P(8,2)代入y=x+b得2=8+b解得b=﹣6∴所求一次函数的解析式为y=x﹣6.故选:D.10.解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt把(5,300)代入可求得k=60∴y甲=60t设乙车离开A城的距离y与t的关系式为y乙=mt+n把(1,0)和(4,300)代入可得解得∴y乙=100t﹣100令y甲=y乙可得:60t=100t﹣100,解得t=2.5即甲、乙两直线的交点横坐标为t=2.5此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50当100﹣40t=50时,可解得t=当100﹣40t=﹣50时,可解得t=又当t=时,y甲=50,此时乙还没出发当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或时,两车相距50千米∴④不正确;综上可知正确的有①②共两个故选:B.二、填空题(计24分)11.解:∵一次函数y=(k﹣2)x+3中,y随x增大而减小∴k﹣2<0∴k<2.故答案为:<2.12.解:根据题意得解得x≥2且x≠4∴自变量x的取值范围是x≥2且x≠4故答案为x≥2且x≠4.13.解:把A(﹣1,3)代入y=﹣mx+1得3=m+1,解得m=2∴函数解析式为y=﹣2x+1把y=﹣9代入y=﹣2x+1得﹣9=﹣2x+1,解得x=﹣5∴被污染处是5.故答案为:5.14.解:设直线的解析式是y=kx+b.把A(0,3),B(﹣3,0)代入函数解析式,得解得:∴y=x+3,①把C(6,a)代入①,得a=6+3=9,即a=9;故答案是:9.15.解:∵一次函数y=kx﹣(2k+1)的图象与y轴交于点A(0,2)∴﹣(2k+1)=2解得:k=﹣.故答案为:﹣.16.解:方程组的解为;即x=,y=1同时满足方程组中的两个方程;因此点(,1)同时满足两个一次函数的解析式.所以一次函数y=3x﹣3与y=﹣x+3的交点P的坐标是(,1).故答案为:(,1).17.解:设直线解析式为y=kx+b把(2,0)代入得2k+b=0,解得b=﹣2k所以y=kx﹣2k把x=0代入得y=kx﹣2k得y=﹣2k所以直线与y轴的交点坐标为(0,﹣2k)所以×2×|﹣2k|=2,解得k=1或﹣1所以所求的直线解析式为y=x﹣2或y=﹣x+2.故答案为y=x﹣2或y=﹣x+2.18.解:图1中,当n=2时,S=4.图2中,当n=3时,S=9.….依此类推,总数S与边长n的关系式S=n2(n≥1).三、解答题(计66分)19.解:(1)令x=0,得y=﹣4;令y=0,得x=2,描出(0,﹣4),(2,0)这两个点,如图∴图象与x轴、y轴的交点坐标分别为(,0),(0,﹣3);(2)∵k=2>0,图象经过第一,三象限,y随x的增大而增大∴当x=﹣2,y=﹣7;当x=4,y=5.所以当﹣2≤x≤4时,函数值y的变化范围为﹣7≤y≤5.20.解:设直线AB的解析式为y=kx+b,把A(0,4)、点B(2,0)代入得解得,故直线AB的解析式为y=﹣2x+4;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣2x﹣4.21.解:(1)设一次函数解析式为y=kx+b∵图象过两点A(1,1),B(5,9)∴解得:∴函数解析式为:y=2x﹣1;(2)当x=3时,y=6﹣1=5≠7∴点C(3,7)不在这条直线上;(3)∵y>0∴2x﹣1>0∴x>.22.解:(1)函数p=kt+b的图象过点(0,10),(25,120)可得.解得.所求的函数关系式是p=t+110(t≥0);(2)当p=200×103Pa时由(1)得t+110=200解得t=225即当压强为200千帕时,气体的温度是225℃.23.解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意可得:5x+9(140﹣x)=1000解得:x=65∴140﹣x=75(千克)答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元设总利润为W,由题意可得出:W=3x+4(140﹣x)=﹣x+560故W随x的增大而减小,则x越小W越大因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍∴140﹣x≤3x解得:x≥35∴当x=35时,W最大=﹣35+560=525(元)故140﹣35=105(kg).答:当甲购进35千克,乙种水果105千克时,此时利润最大为525元.24.解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0∴x=1∴D(1,0);(2)设直线l2的解析表达式为y=kx+b由图象知:x=4,y=0;x=3,,代入表达式y=kx+b∴∴∴直线l2的解析表达式为;(3)由解得∴C(2,﹣3)∵AD=3∴S△ADC=×3×|﹣3|=;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C 纵坐标的绝对值=|﹣3|=3则P到AD距离=3∴P纵坐标的绝对值=3,点P不是点C∴点P纵坐标是3∵y=1.5x﹣6,y=3∴1.5x﹣6=3x=6所以P(6,3).第11 页共11 页。

【带答案】新人教版八年级数学下册《一次函数》章节测试题及答案

【带答案】新人教版八年级数学下册《一次函数》章节测试题及答案

新人教版八年级数学下册《一次函数》章节测试题及答案班级____姓名_____得分_____一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

1.若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是().A.(0,) B.(,0) C.(8,20) D.(,)2.变量x,y有如下关系:①x+y=10②y=③y=|x-3④y=8x.其中y是x的函数的是A. ①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示是的函数是().A. B. C. D.4.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A. 4 B. 5 C. 6 D. 75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位 B.向下平移5个单位C.向上平移个单位 D.向下平移个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为A.2B.0C.-2D. ±211.根据如图的程序,计算当输入时,输出的结果.12.已知直线y=2x与直线y= -2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y<y④直线y=2x与直线y=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。

新人教版八年级下册一次函数单元测试题(附答案)

新人教版八年级下册一次函数单元测试题(附答案)

新人教版八年级下册一次函数单元测试题(附答案)一次函数单元测试题一、填空(30分)1.已知函数y=(k-3)xk-8是正比例函数,则k=4.2.函数表示法有三种,分别是解析式、图象、数据表。

3.函数y=(x-1)/(x-2),自变量x的取值范围是x≠2.4.已知一次函数经过点(-1,2)且y随x增大而减小,请写出一个满足上述条件的函数关系式y=-x+1.5.已知y+2和x成正比例,当x=2时,y=4且y与x的函数关系式是y=2x。

6.直线y=3x+b与y轴交点(0,-2),则这条直线不经过第三象限。

7.直线y=x-1和y=x+3的位置关系是平行,由此可知方程组y=x-1y=x+3解的情况为无解。

8.一次函数图象经过第二、三、四象限,那么它的表达式是y=-x。

9.已知点A(a,-2)。

B(b,-4)在直线y=-x+6上,则a、b的大小关系是a>b。

10.从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间七分钟(t≥3且t是整数),则付话费y元与t分钟函数关系式是y=2.4+(t-3)。

二、选择(30分)1.下列函数,y随x增大而减小的是(B)。

A.y=xB.y=x-1C.y=x+1D.y=-x+12.若点A(2,4)在直线y=kx-2上,则k=(C)。

A.2B.3C.4D.53.y=kx+b图象如图则(B)。

A.k>0.b>0B.k>0.b<0XXX<0.b<0D.k04.已知直线y=(k-2)x+k不经过第三象限,则k的取值范围是(D)。

A.k≠2B.k>2C.0<k<2D.k≤25.函数y=3-x自变量x取值范围是(C)。

A.x≥3B.x>3C.x≤3D.x<36.y=kx+k的大致图象是(C)。

ABCD7.函数y=kx+2,经过点(1,3),则y=0时,x=-2. A.-2B.2C.0D.±28.直线y=x+1与y=-2x-4交点在(A)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册一次函数单元测试题
一、选择题(18分)
1. 下列各图给出了变量x 与y 之间的函数是: ( )
2.函数6y x =-中,自变量x 的取值范围是 ( ).
A. x ≤6
B. 6x ≥
C. x ≤-6
D. x ≥-6
3.下列函数中,y 是x 的正比例函数的是( )
A .y=2x-1
B .y=3
x C .y=2x 2 D .y=-2x+1 4.当k >0时,正比例函数y=kx 的图象大致是( )
A 、
B 、
C 、
D 、
5.下面哪个点在函数y=
12
x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)
6.一次函数2y x =+的图象不.经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )
8小明从家中出发,到离家1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是( )
A .
B .
C .
D .
9.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )
x y o A x y o x y
o D x y o
A .y=-x-2
B .y=-x-6
C .y=-x+10
D .y=-x-1 二、填空题(12分)
10.函数1
-=x x y 中,自变量x 的取值范围是 . 11.直线2y x =-与y 轴的交点坐标为___________,与x 轴交点的坐标是___________.
12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为
________________.
13.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩
的解是________.
14.如右图:一次函数y kx b =+的图象经过A 、B 两点,则△AOC 的面积为___________。

15.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),则下列说法:
①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =.其中说法正确的有 (把你认为说法正确的序号都填上).
第15题图 第16题图
三、解答题(20分)
16.假定甲、乙两人在一次赛跑中,路程S 与时间T 的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题: (1)这是一次 米赛跑;
(2)甲、乙两人中先到达终点的是 ;
(3)乙在这次赛跑中的速度为 ;
(4)甲到达终点时,乙离终点还有 米。

17.已知:一次函数的图象经过M (0,2),(1,3)两点.
(l) 求一次函数的解析式;
(2) 若一次函数的图象与x 轴的交点为A (a ,0),求a 的值.
18. 下面有两处移动电话计费方式
全球通 神州行
月租费 50元/月
0 本地通话 0.40元/分 0.60元/分 y x
O
(1)若一个月内在本地通话x分,试用含x的式子表示出两种方式的费用;
(2)一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?
(3)对于某个本地通话时间,会出现两种计费方式的收费一样的情况吗?
(4)小明想在这两种通讯中选择一种,请问哪一种方式更合算(省钱)?
解析(1)根据两种方案下费用与通话时间的关系,即全球通方案下费用=50元+0.40元×通话时间,神州行方案下,费用=0.60元×通话时间,列出式子即可;
(2)根据已列出的关系式,分别代入200分和300分即可得出所求;
(3)令两种方案收费一致,求出通话时间即可;
(4)根据全球通方案下费用分别大于、等于、小于神州行方案下的费用的不同情况求出答案.
解答解:(1)一个月内在本地通话x分时,
全球通的费用为(50+0.4x)元,神州行的费用为0.6x元;
(2)当一个月内在本地通话200分钟时,
全球通需交费:50+0.4×200=130元,神州行需交费:0.6×200=120元;
当一个月内在本地通话300分钟时,
全球通需交费:50+0.4×300=170元,神州行需交费:0.6×300=180元;
(3)根据题意有:50+0.4x=0.6x,解得:x=250,
即当本地通话时间为分钟时,两种计费方式的收费一样;
(4)由50+0.4x>0.6x,解得:x<250
即当本地通话时间少于250分时,用神州行更合算;由50+0.4x=0.6x,解得:x=250,
即当本地通话时间等于250分时,用神州行和全球通没有区别,由50+0.4x<0.6x,解得:x>250
当本地通话时间多于250分时,用全球通更合算.
根据图象可知乙到达终点时,横坐标t=12.5秒,纵坐标s=100,所以乙的速度为:100÷12.5=8(米/秒),甲到达终点时,乙离终点还有:100﹣12×8=4(米).
【解答】解:∵乙到达终点时,横坐标t=12.5秒,纵坐标s=100,
∴乙的速度为:100÷12.5=8(米/秒),
甲到达终点时,乙离终点还有:100﹣12×8=4(米),故答案为:4.。

相关文档
最新文档