河北省2018年12月高中数学学业水平考试试题 附考点分析及详细答案解析
2018年河北省对口高考数学真题+考点分析+详细答案解析

的面积为
.
30.将一枚硬币抛掷 3 次,则至少出现一次正面的概率为
.
三、解答题(本大题共 7 小题,共 45 分,请在答题卡中对应题号下面指定的位置作答,要写出
必要的文字说明、注明过程和演算步骤)
31.(5 分)已知集合 A x x2 x 6 0 ,B x x m ,且 A B A ,求 m 的取值范围.
A. y 1 x 3
B. y 2x2
C. y x3
D. y 1 x
5.函数
y
sin
2x
4
的图象可以由函数
y
sin
2x
的图象如何得到(
)
A. 向左平移 个单位 4
B. 向右平移 个单位 4
C. 向左平移 个单位
D. 向右平移 个单位
6.已知向量
a
8
1,
2,b
3,
m
,
a b
2018 年河北省普通高等学校对口招生考试
数学试题
一、选择题(本大题共 15 小题,每小题 3 分,共 45 分.在每小题给出的四个选项中,只有
一个符合题目要求)
1.设集合 M 0,1, 2,3, 4 , N x 0 x 3 ,则 M N (
)
A. 1,2
B. 0,1,2
C. 1,2,3
16 12
3
36.(7 分)在 ABC 中, ACB 90, AC BC 1,VC 平面 ABC ,VC 1 , D 为VA 中点.
(1)求证:VA 平面 DBC ;
(2)求 DB 与平面 ABC 所成角的正弦值.
V
D
C
B
A
37.(6 分)从 4 名男生和 3 名女生中任选 3 人参加学校组织的“两山杯”环保知识大赛,设
河北省2018年高考文科数学试题及答案汇总(word解析版)

绝密★启用前河北省2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={0,2},B={ -2,-1,0,1,2},则A∩B=A. {0,2}B. {1,2}C. {0}D. {-2,-1,0,1,2}2,设z=,则∣z∣=A. 0B.C. 1D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为A.B.C.D.5.已知椭圆的上、下底面的中心分别为O₁,O₂,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π6.设函数f(x)=x ³+(a-1)x ²+ax。
若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为A. y=-2xB. y=-xC. y=2x7.在∆ABC中,AD为BC边上的中线,E为AD的中点,则=A. -B. -C. +D. +8.已知函数f(x)=2cos ²x-sin ²x+2,则A. f(x)的最小正周期为π,最大值为3B. 不f(x)的最小正周期为π,最大值为4C. f(x)的最小正周期为2π,最大值为3D. D. f(x)的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图。
2018年河北省对口高考数学真题+考点分析+详细答案解析

2018年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一个符合题目要求)1.设集合{}0,1,2,3,4M =,{}03N x x =<≤,则M N =I ( ).A {}1,2 .B {}0,1,2 .C {}1,2,3 .D {}0,1,2,32.若,,a b c 为实数,a b >,则( ).A a c b c ->- .B 22a b > .C ac bc > .D 22ac bc >3.“2x >”是“2x >”的( ).A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件4.下列函数中,既是奇函数又是减函数的是( ).A 13y x = .B 22y x = .C 3y x =- .D 1y x= 5.函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象可以由函数sin 2y x =的图象如何得到( ) .A 向左平移4π个单位 .B 向右平移4π个单位 .C 向左平移8π个单位 .D 向右平移8π个单位 6.已知向量()()1,2,3,a b m =-=u u r u r ,a b a b +=-u u r u r u u r u r ,则m =( ) .A 32- .B 32.C 6 .D 6- 7.下列函数中,周期为π的偶函数是( ).A sin y x = .B sin 2y x = .C sin y x = .D cos 2x y = 8.在等差数列{}n a 中,若12312a a a ++=,23418a a a ++=,则345a a a ++=( ) .A 22 .B 24 .C 26 .D 309.记n S 为等比数列{}n a 的前n 项和,若2410,40S S ==,则6S =( ) .A 50 .B 70 .C 90 .D 13010.下列各组函数中,表示同一个函数的是( ).A y x =与y .B y x =与y =.C y x =与y = .D y y =11.过圆2225x y +=上一点()3,4的切线方程为( ).A 34250x y +-= .B 34250x y ++=.C 34250x y --= .D 34250x y -+=12.某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组2名队员,分配方案共有( ).A 2种 .B 3种 .C 6种 .D 12种13.设()201822018012201821x a a x a x a x -=++++L ,则122018a a a +++=L ( ) .A 0 .B 1 .C 1- .D 201821-14.已知平面上三点()()()1,2,3,0,4,3A B C -,则点B 关于AC 中点的对称点的坐标是( ).A ()1,4 .B ()5,6 .C ()1,4-- .D ()2,115.下列命题中正确的是( )(1)平行于同一直线的两条直线平行 (2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行 (4)平行于同一平面的两个平面平行.A (1)(2) .B (1)(3) .C (1)(4) .D (2)(4)二、填空题(本大题共15小题,每小题2分,共30分)16.已知函数()24,0ln ,0x x f x x x ⎧+≤=⎨>⎩,则(){}f f f e ⎡⎤=⎣⎦ . 17.函数2log y x -的定义域为 .18.计算:14281log cos30!16π-⎛⎫+-= ⎪⎝⎭ . 19.不等式21139x x +⎛⎫> ⎪⎝⎭的解集为 . 20.若()f x 为定义在R 上的奇函数,则()10f e += .21.已知等差数列{}n a 的前n 项和24n S n n =-,则公差d = . 22.ABC ∆为等边三角形,则 AB u u u r 与CA u u u r 的夹角为 .23.若sin cos 2αα-=,则sin2α= . 24.过直线230x y +-=和直线210x y -+=的交点,且斜率为1-的直线的一般式方程为 .25.若333sin ,cos ,tan 888a b c πππ===,则,,a b c 从小到大的顺序为 . 26.过抛物线28y x =的焦点的弦AB 的中点的横坐标为3,则AB = .27.设直线a 与平面α所成的角为3π,直线b α⊆,则a 与b 所成角的范围是 . 28.已知锐角ABC ∆的外接圆的面积为9π,若3a =,则cos A = .29.在ABC ∆中,5AB AC cm ==,6BC cm =,若PA ⊥平面ABC ,PA =,则PBC ∆的面积为 .30.将一枚硬币抛掷3次,则至少出现一次正面的概率为 .三、解答题(本大题共7小题,共45分,请在答题卡中对应题号下面指定的位置作答,要写出必要的文字说明、注明过程和演算步骤)31.(5分)已知集合{}{}260,A x x x B x x m =--≥=≥,且A B A =U ,求m 的取值范围.32.(8分)如图,将直径为8分米的半圆形铁板裁成一块矩形铁板,使矩形铁板ABCD的面积最大.(1)求AD的长;(2)求矩形铁板ABCD的最大面积.33.(6分)已知{}n a为等差数列,n a n=,记其前n项和为n S,1nnbS=,求数列{}n b的通项公式及{}n b的前n项和n T.34.(6分)已知函数2cos siny x x x=-.(1)求函数的值域;(2)求函数的最小正周期;(3)求使函数取得最大值的x的集合.35.(7分)已知直线l交椭圆2211612x y+=于,A B两点,()2,1M为AB的中点,求直线l的方程.OA BCD•36.(7分)在ABC ∆中,90,1ACB AC BC ∠=︒==,VC ⊥平面ABC ,1,VC D =为VA 中点.(1)求证:VA ⊥平面DBC ; (2)求DB 与平面ABC 所成角的正弦值.37.(6分)从4名男生和3名女生中任选3人参加学校组织的“两山杯”环保知识大赛,设ξ表示选中3人中女生的人数.求(1)至少有1名女生的概率;(2)ξ的概率分布.A CD V B参考答案一、选择题1.【答案】C .【考点】集合的交(两集合的公共元素组成的集合).【解析】M N I 表示M 和N 的公共元素组成的集合,故选C .2.【答案】.A【考点】不等式的基本性质.【解析】B 项反例:1,2a b ==-;C 、D 项反例:0c =;根据不等式性质:不等式两边同时加上或减去同一个数,不等式不变。
河北省2019年12月高中数学学业水平考试(会考)试题 附考点分析及详细答案解析 (可下载)

启用前为机密2018年12月河北省最新高中数学学业水平考试数学试卷(附考点分析及答案解析版)注意事项:1.本试卷共4页,包括两道大题,共33小题,总分100分,考试时间120分钟。
2.所有答案在答题卡上作答,在本试卷和草稿纸上作答无效,答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。
3.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮将原选涂答案擦干净,再选其他答案。
4.考试结束后,请将本试卷与答题卡一并交回。
参考公式:柱体的体积公式:Sh V =(其中S 为柱体的底面积,h 为高)椎体的体积公式:Sh V 31=(其中S 为柱体的底面积,h 为高)台体的体积公式:h S S S S V ⎪⎭⎫ ⎝⎛++=''31(其中'S 、S 分别为台体的上、下底面积,h 为高)球的体积公式:334R V π=(其中R 为球的半径)球的表面积公式:24R S π=(其中R 为球的半径)一、选择题(本大题共30道小题,1-10题,每小题2分;11-30题,每题3分,共80分,在每小题给出的四个选项中,只有一个是符合题目要求的).1.若{}21<<-=x x A ,{}31<<=x x B ,则A B =.A {}11<<-x x .B {}21<<x x .C {}31<<x x .D φ考点:集合间基本运算.答案:B .解析:两集合的交集是指这两个集合的公共元素组成的集合,画数轴易知B 项正确.2.=︒︒30cos 30sin .A 21.B 41.C 23.D 43考点:正弦倍角公式:αααcos sin 22sin =解析:4360sin 2130cos 30sin 22130cos 30sin ==⨯=︒︒︒︒︒.答案:.D 3.从某班级100名学生中,采用系统抽样的方法抽取5名学生进行学情调查,则分段间隔为.A 16.B 8.C 10.D 20考点:简单随机抽样的系统抽样.解析:系统抽样也叫“等距抽样”,其间隔205100===组数总n n d .答案:.D 4.某正方体的棱长为32,其八个顶点在同一球面上,则该球的表面积为.A π4.B π16.C π36.D π64考点:①正方体基本性质.②球体的表面积.解析:正方体外接球的直径等于这个正方体的体对角线长,等于正方体棱长的3倍.设一个正方体的棱长为a ,外接球半径为R ,则有a R 32=,∴a R 23=∴外接球表面积为()πππππ36323323442222=⨯==⎪⎪⎭⎫ ⎝⎛⨯==a a R S 球.答案:.C 5.样本数据1,2,3,4,5的方差是.A 1.B 2.C 2.D 1考点:①方差的计算②平均数的计算.解析:n 个常数n a a a ,,,21 的平均数为()n a a a nx +++=211,方差为()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++-+-=2222121x x x x x x n s n ∴1,2,3,4,5的平均数为()35432151=++++=x ,方差为()()()()()[]2353433323151222222=-+-+-+-+-=s .答案:.B 6.在x 轴上截距为3且倾斜角为︒120的直线方程为.A 033=--y x .B 033=-+y x .C 0333=--y .D 0333=-+y x 考点:①斜率定义αtan =k (其中α为直线的倾斜角).②直线方程的点斜式:()00x x k y y -=-.解析:由斜率定义可知直线的斜率为3120tan -==︒k ,由直线在x 轴上截距为3可知直线过点()0,3,∴由直线的点斜式方程可得)330:--=-x y l ,化简得0333:=-+y x l .答案:.D 7.已知角α的终边过点()4,3-P ,则=αsin .A 53.B 53-.C 54.D 54-考点:三角函数值定义式的推广式.解析:设角α的终边过点()y x P -,,22y x OP r +==,则r y =αsin ,r x =αcos ,xy =αtan ;∵()54322=-+=r ∴54sin -==r y α.答案:.D 8.已知直线01:1=-+y ax l 与直线()031:2=+-+ay x a l 互相垂直,则实数=a .A -1.B 0.C 1.D 2考点:两直线垂直的充要条件.解析:直线0:1111=++C y B x A l 与直线0:2222=++C y B x A l ⇔02121=+B B A A ∴由直线01:1=-+y ax l 与直线()031:2=+-+ay x a l 互相垂直得()()011=-⨯++a a a ,解得0=a .答案:.B 9.一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为3231.π+A 3231.π+B 6231.π+C 621.π+D 考点:①三视图②球体、椎体体积解析:由三视图可知,上面是半径为22的半球,体积为6222342131ππ=⎪⎪⎭⎫ ⎝⎛⨯⨯=V ,下面是底面积为1,高为1的四棱锥,体积3111312=⨯⨯=V .∴该几何体体积为623121π+=+=V V V .答案:C.10.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为A.8B.15C.53 D.35考点:计数原理.解析:每封电子邮件都有3种不同的发送方法,共有53种不同的发送方法.答案:C.11.四边形ABCD 中,若AB 与DC 共线,且22DC AB =,则四边形ABCD 是.A 矩形.B 菱形.C 正方形.D 平行四边形考点:①向量共线定理.②22aa =.③平行四边形判定定理.解析:∵AB 与DC 共线,由向量共线定理可知,AB //DC ,∴四边形ABCD 中,CD AB //.又22DC AB =,∴CD AB =,∴CDAB =∴CD AB //,由平行四边形判定定理可知,四边形ABCD 为平行四边形.答案:.D 12.已知()⎩⎨⎧>-≤+=0,20,12x x x x x f 则()()=1f f .A 1.B 3.C 5.D 7考点:①复合函数求值.②分段函数;口诀为“分段函数分段求,分段函数分段画”.解析:∵()2121-=⨯-=f ,∴()()()()512212=+-=-=f f f .答案:.C 13.已知向量a 、b 的夹角为︒120,且1=a ,2=b ,则=+ba 2.A 1.B -1.C 2.D -2考点:①向量的数量积θcos b ab a =⋅(其中θ为a 、b 的夹角).②22aa=.解析:2b a ==+242121414=+⎪⎭⎫⎝⎛-⨯⨯⨯+⨯=答案:.C 14.如图,长方体1111D C B A ABCD -中,21==AB AA ,1=AD ,E、F、G 分别是1DD 、AB 、1CC 的中点,则异面直线E A 1与GF 所成角余弦值是.A 515.B 22.C 510.D 0考点:①正方体性质②异面直线所成的角.解析:如图,分别连结G B 1,F B 1.∵E A G B 11//,∴GF B 1∠或其补角即为异面直线E A 1与GF 所成的角.在FG B 1∆中,易知3=FG ,21=G B ,51=F B ,∵21212F B G B FG =+由勾股定理可知︒=∠901GF B ∴090cos cos 1==∠︒GF B .答案:.D 15.若在圆()()161222=++-y x 内任取一点P,则点P 落在单位圆122=+y x 内的概率为A.21B.31C.41D.161考点:几何概型.解析:所求概率为224π1π⨯⨯=161.答案:D .16.在公比为q 的等比数列{}n a 中,63=a ,前三项183=S ,则=q .A 1.B 21-.C 1或21-.D -1或21-考点:等比数列前n 项和及等比数列通项公式.解析:∵⎩⎨⎧==61833a S ∴⎩⎨⎧==++6183321a a a a 即⎪⎩⎪⎨⎧==++)2(6)1(18212111q a q a q a a )2()1(得3122=++q q q 分式化为整式并化简得0122=--q q 解得1=q 或21-=q .答案:.D 17.若直线()011=+++y x m 与圆0222=-+x y x 相切,则m的值为.A 1或-1.B 2或-2.C 1.D -1考点:①圆的标准方程()()222r b y a x =-+-的圆心坐标为()b a ,,半径为r .②点到直线距离公式:设点()00,y x P ,直线0:=++C By Ax l ,则()00,y x P 到直线l 的距离2200BA CBy Ax d +++=.解析:圆0222=-+x y x 可化为()1122=+-y x ,可知此圆圆心为(1,0),半径为1.因为直线与圆相切,所以圆心到直线距离等于半径,∴()1111012=+++++m m 即()1122++=+m m 。
2018年-河北数学(理科)高考试题参考答案

2
2
22
2
3
设 DP 与平面 ABFD 所成角为 ,则 sin |
HP DP
| 4
3
.
| HP | | DP | 3 4
所以 DP 与平面 ABFD 所成角的正弦值为
3
.
4
19.(12 分)
解:(1)由已知得 F(1, 0) ,l 的方程为 x=1.
由已知可得,点 A 的坐标为 (1, 2 ) 或 (1, 2 ) .
综上, OMA OMB .
20.(12 分)
解:(1)20
件产品中恰有
2
件不合格品的概率为
f
( p)
C
2 20
p2 (1
p)18 .因此
f ( p) C220[2 p(1 p)18 18 p2 (1 p)17 ] 2C220 p(1 p)17 (110 p) .
令 f ( p) 0 ,得 p 0.1.当 p (0, 0.1) 时, f ( p) 0 ;当 p (0.1,1) 时, f ( p) 0 .
由(1)可得,DE⊥PE.又 DP=2,DE=1,所以 PE= 3 .又 PF=1,EF=2,故 PE⊥PF.
可得 PH 3 , EH 3 .
2
2
则 H (0, 0, 0), P(0, 0, 3 ), D(1, 3 , 0), DP (1, 3 , 3 ), HP (0, 0, 3 ) 为平面 ABFD 的法向量.
5
由题设知, ADB 90,所以 cos ADB
1 2
23
.
25 5
(2)由题设及(1)知, cos BDC sin ADB
2018-2019年河北数学高三水平会考真题及答案

2018-2019年河北数学高三水平会考真题及答案班级:___________ 姓名:___________ 分数:___________题号一二三总分得分1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.如图,,,M、N分别是BC、AB的中点,沿直线MN将折起,使二面角的大小为,则与平面ABC所成角的正切值为()A. B. C. D.【答案】C【解析】试题分析:设.过作,垂足为,则,,.考点:空间的二面角及线面角.2.执行下边的程序框图,输出m的值是().A.3B.4C.5D.6【答案】A【解析】试题分析:第一次执行循环体时:,,,选择“否”;第二次:,,,选择“否”;第三次:,,,选择“是”,故此输出的值为3.正解答案选A.考点:1.程序框图;2.幂运算.3.若tanα=3,,则tan(α﹣β)等于()A.﹣3B.C.3D.【答案】D【解析】∵tanα=3,∴故选D4.在等比数列( )A.B.4C.D.5【答案】B【解析】因为,又,所以,选B.5.某算法程序框图如图所示,若,则输出的结果是()A.B.C.D.【答案】D【解析】试题分析:根据框图可知,输出的是最大的数. ,所以,即. 又,所以.所以输出的为.考点:1、程序框图;2、比较大小.6.设全集是实数集R,,,则()A.B.C.D.【答案】A【解析】试题分析:∵,∴,故选A.考点:集合的补集与交集运算.7.已知是的一个零点,,则 ( )A.B.C.D.【答案】C【解析】试题分析:因为,函数在是单调减函数,所以,当是的一个零点时,在的两侧,函数值异号;如果,应有,故选C.考点:函数零点存在定理,函数的单调性.8.若动点A(x1,y1),B(x2,y2)分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则线段AB的中点M到原点的距离的最小值为( )A.2B.3C.3D.4【答案】C【解析】由题意知,M 点的轨迹为平行于l 1,l 2且到l 1,l 2距离相等的直线l,其方程为x+y-6=0, ∴M 到原点的距离的最小值d==3.9.已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+,则f(-1)=( ) A .-2 B .0 C .1 D .2【答案】A【解析】f(-1)=-f(1)=-2.10.已知m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列命题: ①若,,则;②若,,且,则;③若,,则; ④若,,且,则.其中正确命题的序号是( )A .①④B .②③C .②④D .①③【答案】B 【解析】 试题分析:当,时,有、等多种可能情况,所以①不正确;当,且时,由平面垂直的判定定理知,所以②正确;因为,,所以,③正确; ④若,,且,则或相交,其不正确,故选B.考点:平行关系,垂直关系. 评卷人 得 分二、填空题11.若x ,y 满足约束条件,则的最大值是.【答案】0【解析】约束条件的可行域如图所示,即△ABC 部分,目标函数过A(0,O3)时值最大,最大值为1-1=0.【考点】线性规划.12.设均为正实数,且,则的最小值为____________.【答案】16【解析】试题分析:由,化为,整理为,∵均为正实数,∴,∴,解得,即,当且仅当时取等号,∴的最小值为16,故答案为:16.考点:基本不等式.13.若海上有A、B、C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B、C间的距离是________海里.【答案】5【解析】由正弦定理,知,解得BC=5(海里).14.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为.【答案】13+23+33+43+53+63=212【解析】由13+23=(1+2)2=32;13+23+33=(1+2+3)2=62;13+23+33+43=(1+2+3+4)2=102得,第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.15.已知函数,函数,若存在,使得成立,则实数的取值范围是.【答案】.【解析】试题分析:当时,,此时函数单调递减,则有,,当,,此时,则函数在上单调递增,,即,故函数在上的值域为,,所以,所以,由于,,,故有或,解得.考点:1.函数的值域;2.存在性命题评卷人得分三、解答题16.某学校的篮球队、羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.【答案】(1)(2)【解析】分析:根据韦恩图,正确理解“只属”、“最多”.从图中可以看出,3个球队共有20名队员.(1)记“随机抽取一名队员,该队员只属于一支球队”为事件A,则P(A)==.故随机抽取一名队员,该队员只属于一支球队的概率为.(2)记“随机抽取一名队员,该队员最多属于两支球队”为事件B,则P(B)=1-P(B)=1-=.故随机抽取一名队员,该队员最多属于两支球队的概率为.17.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐【答案】(2,2),【解析】因为直线l的参数方程为(t为参数),由x=t+1,得t=x-1,代入y =2t,得到直线l的普通方程为2x-y-2=0.同理得到曲线C的普通方程为y2=2x.联立方程组解得公共点的坐标为(2,2),18.设△ABC的内角A,B,C所对的边分别为a,b,c.已知a=1,b=2,.(1)求边c的长;(2)求cos(A﹣C)的值.【答案】(1)2 (2)【解析】(1)由,结合已知条件及向量的数量积的定义可求cosC,然后利用c2=a2+b2﹣2abcosC可求c(2)由(1)中所求cosC,利用同角平方关系可求sinC,然后结合正弦定理及三角形的大边对大角可判断A为锐角,进而可求cosA=,最后代入cos(A﹣C)=cosAcosC+sinAsinC可求(1)由,得abcosC=.…(2分)因为a=1,b=2,所以,…(4分)所以c2=a2+b2﹣2abcosC=4,所以c=2.…(7分)(2)因为,C∈(0,π),所以sinC==,…(9分)所以=,…(11分)因为a<c,所以A<C,故A为锐角,所以cosA==所以cos(A﹣C)=cosAcosC+sinAsinC=…(14分)考点:平面向量数量积的运算;两角和与差的余弦函数;余弦定理点评:本题主要考查了同角平方关系、正弦定理及余弦定理、和差角公式的综合应用,解题的关键是公式的熟练掌握19.中央电视台星光大道某期节目中,有5位实力均等的选手参加比赛,经过四轮比赛决出周冠军(每一轮比赛淘汰l位选手).(1)求甲、乙两位选手都进入第三轮比赛的概率;(2)求甲选手在第三轮被淘汰的的概率.【答案】(1)(2)【解析】试题分析:(1)由于甲、乙两位选手都进入第三轮比赛,故第一、第二轮淘汰的是另三位选手中的两位选手,所以甲、乙两位选手都进入第三轮比赛的概率为6分(2)甲选手在第三轮被淘汰的概率为 12分考点:古典概型点评:主要是考查了古典概型的概率的计算,结合组合数公式来得到,属于基础题。
河北省高中数学学业水平考试试题+考点分析+答案解析

启用前为机密2018年12月河北省高中数学学业水平考试数学试卷(后附详细考点分析及答案解析)注意事项:1.本试卷共4页,包括两道大题,共33小题,总分100分,考试时间120分钟。
2.所有答案在答题卡上作答,在本试卷和草稿纸上作答无效,答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。
3.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮将原选涂答案擦干净,再选其他答案。
4.考试结束后,请将本试卷与答题卡一并交回。
参考公式:柱体的体积公式:Sh V =(其中S 为柱体的底面积,h 为高)椎体的体积公式:Sh V 31=(其中S 为柱体的底面积,h 为高)台体的体积公式:h S S S S V ⎪⎭⎫ ⎝⎛++=''31(其中'S 、S 分别为台体的上、下底面积,h 为高)球的体积公式:334R V π=(其中R 为球的半径)球的表面积公式:24R S π=(其中R 为球的半径)一、选择题(本大题共30道小题,1-10题,每小题2分;11-30题,每题3分,共80分,在每小题给出的四个选项中,只有一个是符合题目要求的).1.若{}21<<-=x x A ,{}31<<=x x B ,则A B =.A {}11<<-x x .B {}21<<x x .C {}31<<x x .D φ2.=︒︒30cos 30sin .A 21.B 41.C 23.D 433.从某班级100名学生中,采用系统抽样的方法抽取5名学生进行学情调查,则分段间隔为.A 16.B 8.C 10.D 204.某正方体的棱长为32,其八个顶点在同一球面上,则该球的表面积为.A π4.B π16.C π36.D π645.样本数据1,2,3,4,5的方差是.A 1.B 2.C 2.D 16.在x 轴上截距为3且倾斜角为︒120的直线方程为.A 033=--y x .B 033=-+y x .C 0333=--y x .D 0333=-+y x 7.已知角α的终边过点()4,3-P ,则=αsin .A 53.B 53-.C 54.D 54-8.已知直线01:1=-+y ax l 与直线()031:2=+-+ay x a l 互相垂直,则实数=a .A -1.B 0.C 1.D 29.一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为3231.π+A 3231.π+B 6231.π+C 621.π+D 10.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为A.8B.15C.53 D.3511.四边形ABCD 中,若AB 与DC 共线,且22DC AB =,则四边形ABCD 是.A 矩形.B 菱形.C 正方形.D 平行四边形12.已知()⎩⎨⎧>-≤+=0,20,12x x x x x f 则()()=1f f .A 1.B 3.C 5.D 713.已知向量a 、b 的夹角为︒120,且1=a ,2=b ,则=+ba 2.A 1.B -1.C 2.D -214.如图,长方体1111D C B A ABCD -中,21==AB AA ,1=AD ,E、F、G 分别是1DD 、AB 、1CC 的中点,则异面直线E A 1与GF 所成角余弦值是.A 515.B 22.C 510.D 015.若在圆()()161222=++-y x 内任取一点P,则点P 落在单位圆122=+y x 内的概率为A.21B.31C.41D.16116.在公比为q 的等比数列{}n a 中,63=a ,前三项183=S ,则=q .A 1.B 21-.C 1或21-.D -1或21-17.若直线()011=+++y x m 与圆0222=-+x y x 相切,则m 的值为.A 1或-1.B 2或-2.C 1.D -118.设3.07=a ,73.0=b ,3.0log 7=c ,则a 、b 、c 的大小关系是.A cb a <<.B ab c <<.C ba c <<.D ac b <<19.函数()()R x x x x f ∈+=cos 3sin 的图象的一条对称轴是.A 6π=x .B 6π-=x .C 3π=x .D 3π-=x 20.正方体的表面积与其外接球的表面积的比为A.π:3B.π:2C.π2:1D.π3:121.若圆C 与圆()()11222=-++y x 关于原点对称,则圆C 的方程是.A ()()11222=++-y x .B ()()11222=-+-y x .C ()()12122=++-y x .D ()()12122=-++y x 22.函数()()ϕω+=x A x f sin (其中πϕω<<>>0,0,0A )的图象如图所示,为得到()x x g 2sin =的图象,只需将()x f 图象上所有点.A 向左移3π个单位长度.B 向右移3π个单位长度.C 向左移6π个单位长度向右移6π个单位长度23.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状为.A 锐角三角形.B 直角三角形.C 钝角三角形.D 不能确定24.在等差数列{}n a 中,已知1684=+a a ,则该数列前11项和11S 为.A 58.B 88.C 143.D 17625.若x,y 满足约束条件0200x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则34=-z x y 的最小值为..A -1.B 0.C 1.D226.已知某程序框图如图所示,则执行该程序后输出的结果是.A -1.B 1.C 2.D 1227.已知函数()x f 是定义在R 上的偶函数,当0<x 时,()x f y =是减函数,若21x x <,则.A ()()021<-x f x f .B ()()021>-x f x f .C ()()021<+x f x f .D ()()021>+x f x f 28.已知向量()2,1-=a ,()1,-=y x b ,()0,0>>y x 且b a //,则y x 12+的最小值为.A 7.B 8.C 9.D 1029.设函数()()0ln 31>-=x x x x f ,则()x f y =.A 在区间⎪⎭⎫⎝⎛1,1e ,()e ,1内均有零点.B 在区间⎪⎭⎫⎝⎛1,1e ,()e ,1内均无零点.C 在区间⎪⎭⎫⎝⎛1,1e 内有零点,在区间()e ,1内无零点.D 在区间⎪⎭⎫⎝⎛1,1e 内无零点,在区间()e ,1内有零点30.在数列{}n a 中,21=a ,⎪⎭⎫⎝⎛++=+n a a n n 11ln 1,则n a 等于.A nln 2+.B ()nn ln 12-+.C nn ln 2+.D nn ln 1++二、解答题(本题共3道小题,31题6分,32题7分,共20分,解答题应写出文字说明,演算步骤或证明过程)31.已知a 、b 、c 分别是ABC ∆的三个内角A 、B 、C 所对的边,(1)若ABC ∆的面积23=∆ABC S ,2c =,60o A =,求a 、b 的值;(2)若cos a c B =,且sin b c A =,试判断ABC ∆的形状.32.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:m的概率;(2)估计该家庭使用节水龙头后,日用水量小于0.353(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)2018年12月河北省高中数学学业水平考试题答案一、选择题1.考点:集合间基本运算.答案:B .解析:两集合的交集是指这两个集合的公共元素组成的集合,画数轴易知B 项正确.2.考点:正弦倍角公式:αααcos sin 22sin =解析:4360sin 2130cos 30sin 22130cos 30sin ==⨯=︒︒︒︒︒.答案:.D 3.考点:简单随机抽样的系统抽样.解析:系统抽样也叫“等距抽样”,其间隔205100===组数总n n d .答案:.D 4.考点:①正方体基本性质.②球体的表面积.解析:正方体外接球的直径等于这个正方体的体对角线长,等于正方体棱长的3倍.设一个正方体的棱长为a ,外接球半径为R ,则有a R 32=,∴a R 23=∴外接球表面积为()πππππ36323323442222=⨯==⎪⎪⎭⎫ ⎝⎛⨯==a a R S 球.答案:.C 5.考点:①方差的计算②平均数的计算.解析:n 个常数n a a a ,,,21 的平均数为()n a a a nx +++=211,方差为()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++-+-=2222121x x x x x x n s n ∴1,2,3,4,5的平均数为()35432151=++++=x ,方差为()()()()()[]2353433323151222222=-+-+-+-+-=s .答案:.B 6.考点:①斜率定义αtan =k (其中α为直线的倾斜角).②直线方程的点斜式:()00x x k y y -=-.解析:由斜率定义可知直线的斜率为3120tan -==︒k ,由直线在x 轴上截距为3可知直线过点()0,3,∴由直线的点斜式方程可得)330:--=-x y l ,化简得0333:=-+y x l .答案:.D 7.考点:三角函数值定义式的推广式.解析:设角α的终边过点()y x P -,,22y x OP r +==,则r y =αsin ,r x =αcos ,xy =αtan ;∵()54322=-+=r ∴54sin -==r y α.答案:.D 8.考点:两直线垂直的充要条件.解析:直线0:1111=++C y B x A l 与直线0:2222=++C y B x A l ⇔02121=+B B A A ∴由直线01:1=-+y ax l 与直线()031:2=+-+ay x a l 互相垂直得()()011=-⨯++a a a ,解得0=a .答案:.B 9.考点:①三视图②球体、椎体体积解析:由三视图可知,上面是半径为22的半球,体积为6222342131ππ=⎪⎪⎭⎫ ⎝⎛⨯⨯=V ,下面是底面积为1,高为1的四棱锥,体积3111312=⨯⨯=V .∴该几何体体积为623121π+=+=V V V .答案:C.10.考点:计数原理.解析:每封电子邮件都有3种不同的发送方法,共有53种不同的发送方法.答案:C.11.考点:①向量共线定理.②22aa =.③平行四边形判定定理.解析:∵AB 与DC 共线,由向量共线定理可知,AB //DC ,∴四边形ABCD 中,CD AB //.又22DC AB =,∴CD AB =,∴CDAB =∴CD AB //,由平行四边形判定定理可知,四边形ABCD 为平行四边形.答案:.D 12.考点:①复合函数求值.②分段函数;口诀为“分段函数分段求,分段函数分段画”.解析:∵()2121-=⨯-=f ,∴()()()()512212=+-=-=f f f .答案:.C 13.考点:①向量的数量积θcos b ab a =⋅(其中θ为a 、b 的夹角).②22aa=.解析:()2224422bb a ab a b a +⋅+=+=+242121414=+⎪⎭⎫⎝⎛-⨯⨯⨯+⨯=答案:.C 14.考点:①正方体性质②异面直线所成的角.解析:如图,分别连结G B 1,F B 1.∵E A G B 11//,∴GF B 1∠或其补角即为异面直线E A 1与GF 所成的角.在FG B 1∆中,易知3=FG ,21=G B ,51=F B ,∵21212F B G B FG =+由勾股定理可知︒=∠901GF B ∴090cos cos 1==∠︒GF B .答案:.D 15.考点:几何概型.解析:所求概率为224π1π⨯⨯=161.答案:D .16.考点:等比数列前n 项和及等比数列通项公式.解析:∵⎩⎨⎧==61833a S ∴⎩⎨⎧==++6183321a a a a 即⎪⎩⎪⎨⎧==++)2(6)1(18212111q a q a q a a )2()1(得3122=++qq q 分式化为整式并化简得0122=--q q解得1=q 或21-=q .答案:.D 17.考点:①圆的标准方程()()222r b y a x =-+-的圆心坐标为()b a ,,半径为r .②点到直线距离公式:设点()00,y x P ,直线0:=++C By Ax l ,则()00,y x P 到直线l 的距离2200BA CBy Ax d +++=.解析:圆0222=-+x y x 可化为()1122=+-y x ,可知此圆圆心为(1,0),半径为1.因为直线与圆相切,所以圆心到直线距离等于半径,∴()1111012=+++++m m 即()1122++=+m m 。
河北省石家庄2018届高三教学质量检测(二)数学(理)试卷(含答案)

河北省石家庄2018届高三教学质量检测(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}12A x x =-<≤,{}0B x x =<,则下列结论正确的是( ) A.(){}12R C A B x x =-<≤I B.{}10A B x x =-<<I C.(){}0R A C B x x =≥UD.{}0A B x x =<U2.已知复数满足()zi i m m R =+∈,若z 的虚部为1,则复数z 在复平面内对应的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{}n a 中,2a =2,516a =,则6a =( ) A.28B.32C.64D.144.设0a >且1a ≠,则“log 1a b >”是“b a >”的( ) A.必要不充分条件 B.充要条件C.既不充分也不必要条件D.充分不必要条件5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值3.14,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的n 值为( )(参考数据:sin150.2588=°,sin7.50.1305=°,sin3.750.0654=°)A.24B.36C.48D.126.若两个非零向量a r ,b r 满足2a b a b b +=-=r r r r r ,则向量a b +r r 与a r的夹角为( ) A.3πB.23πC.56πD.6π 7.在()()5121x x -+的展开式中,含4x 项的系数为( ) A.5-B.15-C.25-D.258.如图,格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.83B.3C.8D.539.某学校A 、B 两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差①A 班数学兴趣小组的平均成绩高于B 班的平均成绩 ②B 班数学兴趣小组的平均成绩高于A 班的平均成绩 ③A 班数学兴趣小组成绩的标准差大于B 班成绩的标准差 ④B 班数学兴趣小组成绩的标准差小于A 班成绩的标准差 其中正确结论的编号为( ) A.①④B.②③C.②④D.①③10.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,已知点()0,3A ,,06B π⎛⎫⎪⎝⎭,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 的图象的一条对称轴方程为( )A.4x π=B.3x π=C.23x π=D.12x π=11.倾斜角为4π的直线经过椭圆()222210x y a b a b +=>>右焦点F ,与椭圆交于A 、B 两点,且2AF FB =u u u r u u u r,则该椭圆的离心率为( )2233 12.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( )A.()()()1f a a f b >+B.()()()1f b a f a >-C.()()af a bf b >D.()()af b bf a >二、填空题(每题5分,满分20分,将答案填在答题纸上)13.用1,2,3,4,5组成无重复数字的五位数,若用1a ,2a ,3a ,4a ,5a 分别表示五位数的万位、千位、百位、十位、个位,则出现12345a a a a a <<>>特征的五位数的概率为_____________. 14.设变量,x y 满足约束条件30320x x y y -≤⎧⎪+≥⎨⎪-≤⎩,则1y x +的最大值为_____________.15.已知数列{}n a 的前n 项和12nn S ⎛⎫=- ⎪⎝⎭,如果存在正整数n ,使得()()10n n m a m a +--<成立,则实数m 的取值范围是_____________.16.在内切圆圆心为M 的ABC △中,3AB =,4BC =,5AC =,在平面ABC 内,过点M 作动直线l ,现将ABC △沿动直线l 翻折,使翻折后的点C 在平面ABM 上的射影E 落在直线AB 上,点C 在直线l 上的射影为F ,则EF CF的最小值为_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的内角,,A B C 的对边长分别为,,a b ctan tan A B =+.(1)求角A 的大小;(2)设AD 为BC边上的高,a AD 的范围.18.随着络的发展,上购物越来越受到人们的喜爱,各大购物站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:(1) 根据数据可知y 与x 具有线性相关关系,请建立y 关于x 的回归方程$$y bx a =+$(系数精确到0.01);(2) 已知6月份该购物站为庆祝成立1周年,特制定奖励制度:以z (单位:件)表示日销量,[)1800,2000z ∈,则每位员工每日奖励100元;[)2000,2100z ∈,则每位员工每日奖励150元;[)2100,z ∈+∞,则每位员工每日奖励200元.现已知该站6月份日销量z 服从正态分布()0.2,0.0001N ,请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位).参考数据:81338.5i i i x y ==∑,8211308i i x ==∑,其中i x ,i y 分别为第i 个月的促销费用和产品销量,1,2,3,...8i =.参考公式:(1) 对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程$$y bx a =+$的斜率和截距的最小二乘估计分别为1221ni ii n i i x ynx ybx nx==-=-∑∑$,$ay bx =-$. (2) 若随机变量Z 服从正态分布()2,N μσ,则(),0.6827P μσμσ-+=,()2,20.9545P μσμσ-+=. 19.如图,三棱柱111ABC A B C -中,侧面11BB C C 为160CBB =∠°的菱形,1AB AC =.(1)证明:平面1AB C ⊥平面11BB C C .(2)若1AB B C ⊥,直线AB 与平面11BB C C 所成的角为30°,求直线1AB 与平面11A B C 所成角的正弦值. 20.已知圆()()229:4C x a y b -+-=的圆心C 在抛物线()220x py p =>上,圆C 过原点且与抛物线的准线相切.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于,A B 两点,分别在点,A B 处作抛物线的两条切线交于P 点,求三角形PAB 面积的最小值及此时直线l 的方程. 21.已知函数()ln f x x ax x =+.()a ∈R (1)讨论函数()f x 的单调性;(2)若函数()ln f x x ax x =+存在极大值,且极大值为1,证明:()2x f x e x -≤+.22.在直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(其中ϕ为参数),曲线222:184x y C +=.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 、2C 的极坐标方程;(2)射线():0l θαρ=≥与曲线1C 、2C 分别交于点,A B (且,A B 均异于原点O )当02πα<<时,求22OB OA -的最小值.23.已知函数()221f x x a x =-++. (1)当1a =时,求()2f x ≤的解集;(2)若()243g x x ax =+-,当1a >-,且1,22a x ⎡⎤∈-⎢⎥⎣⎦时,()()f x g x ≥,求实数a 的取值范围.石家庄市2017-2018学年高中毕业班第二次质量检测试题理科数学答案一、选择题1-5BABCC 6-10DBAAD 11-12AC 二、填空题13.14. 315. 3(,)24-16.25三、解答题17.解:(1)在△ABC中sin sin tan tan cos sin cos cos cos C A BA B a B A B A B =+∴=+Qsin cos +sin cos cos cos 1tan sin cos 3A B B AA B A A A A π=∴=则:=(2)22211sin ,2212123cos =22203=302ABC S AD BC bc A AD bcb c a bc A bc bcbc b c AD ∆=⋅=∴=+--=≥∴<≤∴<≤Q 由余弦定理得:(当且仅当时等号成立) 18(1)由题可知11,3x y ==,将数据代入1221ˆni ii ni i x y nx ybx nx ==-=-∑∑得338.5811374.5ˆ0.219130********b-⨯⨯==≈-⨯ˆˆ30.219110.59ay bx =-=-⨯≈所以y 关于x 的回归方程ˆ0.220.59yx =+(2)由题6月份日销量z 服从正态分布()0.2,0.0001N ,则日销量在[1800,2000)的概率为0.95450.477252=, 日销量在[2000,2100)的概率为0.68270.341352=,日销量[2100,)+∞的概率为10.68270.158652-=,所以每位员工当月的奖励金额总数为(1000.477251500.341352000.15865)30⨯+⨯+⨯⨯3919.7253919.73=≈元.19.证明:(1)连接1BC 交1B C 于O ,连接AOQ 侧面11BB C C 为菱形,∴ 11B C BC ⊥ Q 1AB AC =, O 为1BC 的中点,∴1AO BC ⊥又1B C AO O ⋂=,∴1BC ⊥平面1AB C1BC ⊂平面11BB C C ∴平面1AB C ⊥平面11BB C C .(2)由1AB B C ⊥,1BO B C ⊥,AB BO B ⋂=, ∴1B C ⊥平面ABO ,AO ⊂平面ABO∴1AO B C⊥从而OA ,OB ,1OB 两两互相垂直,以O 为坐标原点,OB uuu r的方向为x 轴正方向,建立如图所示空间直角坐标系O xyz -Q 直线AB 与平面11BB C C 所成的角为030,∴030ABO ∠=设1AO =,则3BO =,又0160CBB ∠=,∴△1CBB 是边长为2的等边三角形∴1(0,0,1),(3,0,0),(0,1,0),(0,1,0)A B B C -,1111(0,1,1),(0,2,0),(3,0,1)AB BC A B AB =-=-==-u u u r u u u r u u u u r u u u r设(,,)n x y z =r 是平面11A B C 的法向量,则11100n A B n B C ⎧⋅=⎪⎨⋅=⎪⎩r u u u u r r u u u r 即3000200x y z x y z ⎧+⋅-=⎪⎨⋅-+⋅=⎪⎩令1x =则3)n =r设直线1AB 与平面11A B C 所成的角为θ则1116sin |cos ,|||||||AB n AB n AB n θ⋅=<>==⋅u u u r ru u u r r u u u u r r∴直线1AB 与平面11A B C 620.解:(1)由已知可得圆心),(:b a C ,半径23=r ,焦点)2,0(p F ,准线2p y -=因为圆C 与抛物线F 的准线相切,所以223pb -=,且圆C 过焦点F ,又因为圆C 过原点,所以圆心C 必在线段OF 的垂直平分线上,即4p b =所以4223p p b =-=,即2=p ,抛物线F 的方程为y x 42=(2)易得焦点)1,0(F ,直线L 的斜率必存在,设为k ,即直线方程为1+=kx y 设),(),,(2211y x B y x A⎩⎨⎧=+=yx kx y 412得0442=--kx x ,0>∆,4,42121-==+x x k x x 对42x y =求导得2'xy =,即21x k AP =直线AP 的方程为)(2111x x x y y -=-,即211412x x x y -=, 同理直线BP 方程为222412x x x y -= 设),(00y x P ,联立AP 与BP 直线方程解得⎪⎪⎩⎪⎪⎨⎧-===+=1422210210x x y k x x x ,即)1,2(-k P所以)1(412212k x x k AB +=-+=,点P 到直线AB 的距离22212122k k k d +=++=所以三角形PAB 面积4)1(412)1(42123222≥+=+⋅+⋅=k k k S ,当仅当0=k 时取等号综上:三角形PAB 面积最小值为4,此时直线L 的方程为1=y . 21.解:(Ⅰ)由题意0x >,()1ln f x a a x '=++① 当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;② 当0a >时,函数()1ln f x a a x '=++单调递增,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '<,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增;③ 当0a <时,函数()1ln f x a a x '=++单调递减,11()1ln 00af x a a x x e--'=++=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()0f x '>,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.(Ⅱ)由(Ⅰ)可知若函数()ln f x x ax x =+存在极大值,则0a <,且111a e--=,解得1a =-, 故此时()ln f x x x x =-,要证2()x f x ex -≤+,只须证2ln x x x x e x --≤+,及证2ln 0x e x x x x -+-+≥即可, 设()2ln x h x e x x x x -=+-+,0x >.()2ln x h x e x x -'=-++,令()()g x h x '=()120x g x e x-'=++>,所以函数()2ln x h x e x x -'=-++单调递增, 又11210e h e e e -⎛⎫'=-+-< ⎪⎝⎭,()1120h e '=-+>, 故()2ln x h x e x x -'=-++在1,1e ⎛⎫ ⎪⎝⎭上存在唯一零点0x ,即0002ln 0x e x x --++=. 所以当()00,x x ∈,()0h x '<, 当()0,x x ∈+∞时,()0h x '>,所以函数()h x 在()00,x x ∈上单调递减,函数()h x 在()0,x x ∈+∞上单调递增,故()()0200000ln x h x h x e x x x x -≥=+-+,所以只须证()0200000ln 0x h x ex x x x -=+-+≥即可, 由0002ln 0x e x x --++=,得0002ln x e x x -=+,所以()()()00001ln h x x x x =++,又010x +>,所以只要00ln 0x x +≥即可, 当00ln 0x x +<时,000000ln 0x x x x x ee x --<-⇒<⇒-+< 所以00x e x --++00ln 0x x +<与0002ln 0x e x x --++=矛盾,故00ln 0x x +≥,得证.(另证)当00ln 0x x +<时,000000ln 0x x x x x ee x --<-⇒<⇒-+< 所以00x e x --++00ln 0x x +<与0002ln 0x e x x --++=矛盾;当00ln 0x x +>时,000000ln 0x x x x x ee x -->-⇒>⇒-+> 所以00x e x --++00ln 0x x +>与0002ln 0x e x x --++=矛盾;当00ln 0x x +=时,000000ln 0x x x x x ee x --=-⇒=⇒-+= 得0002ln 0x e x x --++=,故 00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即2()x f x ex -≤+.22.解:(1)曲线1C 的普通方程为1)122=+-y x (,1C 的极坐标方程为,cos 2θρ= 2C 的极坐标方程为αρ22sin 18+= (2)联立)0(≥=ραθ与1C 的极坐标方程得α22cos 4=OA , 联立)0(≥=ραθ与2C 的极坐标方程得ααα2222sin 18sin 2cos 8+=+=OB , 则22OA OB -= αα224cos -sin 18+=)sin -14-sin 1822αα(+ =8-)sin 14sin 1822αα+++( .8288)sin 1(4)sin 18(222-=-+⨯+≥αα(当且仅当12sin -=α时取等号). 所以22OA OB -的最小值为.828-23.解:)1(当1=a 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤--<-=.21,4,2121,2,21,4)(x x x x x x f当21-<x 时,2)(≤x f 无解; 当2121≤≤-x 时,2)(≤x f 的解为2121≤≤-x ; 当21->x 时,2)(≤x f 无解; 综上所述,2)(≤x f 的解集为⎭⎬⎫⎩⎨⎧≤≤-2121x x )2(当⎥⎦⎤⎢⎣⎡-∈2,21a x 时,1)12()2()(+=++-=a x x a x f 所以)()(x g x f ≥可化为)(1x g a ≥+又34)(2-+=ax x x g 的最大值必为)21-(g 、)2a (g 之一 …………………9分 即⎪⎩⎪⎨⎧≤≤--≥2342a a 即.234≤≤-a 又,1->a 所以.21≤<-a 所以a 取值范围为(]2,1- 11()21()2a g a a g ⎧+≥-⎪⎪∴⎨⎪+≥⎪⎩。
2018年河北省高考数学试卷(文科)(全国新课标Ⅰ)(答案解析版)

2018年河北省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0B.C.1D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题:本题共4小题,每小题5分,共20分。
2018河北中考数学试题及答案

2018河北中考数学试题及答案2018年河北省中学生学业水平考试(简称河北中考)是中国河北省教育部门在全省范围内进行的一项重要考试。
其中,数学试题一直是考生们最为关注的科目之一。
本文将为大家整理和提供2018年河北中考数学试题及答案,供广大考生参考。
第一部分:选择题(共80分)1. 某变量x与y的关系如右图所示,试判断下列图象中哪一组数对(x,y)满足条件:A) (3, 3), B) (4, 5), C) (6, 2), D) (8, 1)答案:A2. 阳光书店举行“五折大甩卖”,请问下列哪个图形代表了享受五折优惠后的价格?A) □□□□□□ B) □□□□□□□ C) □□□□□□□□ D) □□□□□□□□□□答案:C3. 请问下列数对中,哪一对的横纵坐标之和最小?A) (2, 5) B) (4, 3) C) (6, 1) D) (8, -1)答案:D第二部分:填空题1. 设P是角A的角平分线与当前的交点,若∠A的度数为72°,则∠APC的度数是______。
答案:36°2. 计算:(3×10² + 2×10⁰)÷(4×10)。
答案:8.253. 化简:2x² + 3x - 5 - (x² - 6x + 2)。
答案:x² + 9x - 7第三部分:解答题1. 找出满足以下条件的自然数x:它加10后的结果再乘以3与它自身的平方之和相等。
解答:设x为满足条件的自然数。
根据题意得到方程:(x + 10)×3 = x² + (x + 10)²。
解这个方程可得:x = 20。
2. 如下图所示,若ØADC和ØDCE是垂直角,同时ØBCF和ØBFC也是垂直角,试判断BC和DE的关系。
解答:根据题意可以得知ØADC与ØBFC是相对的内角,根据内角的性质得知ØADC = ØBFC = 90°,同理ØDCE = ØBCF = 90°。
河北省2018年高中会考[数学]考试真题与答案解析
![河北省2018年高中会考[数学]考试真题与答案解析](https://img.taocdn.com/s3/m/9494e2d7fbb069dc5022aaea998fcc22bdd14376.png)
河北省2018年高中会考[数学]考试真题与答案解析一.选择题1.已知集合A={1,2,3},B={2,3,4},则AUB=A {2,3}B {1,4}C{1,2,3,4} D{1,3,4}2. sin150.0 =A B - C D - 3.函数y=sinx 是A 偶函数,最大值为1B 奇函数,最大值为1C 偶函数,最小值为1D 奇函数,最小值为14.已知△ABC 中,cosA=,则A=A 600 B 1200 C300 或1500 D 600或12005. 如果a,b 是两个单位向量,那么下列四个结论中正确的是A a=bB a 2=b 2C a·b=1D ∣a ∣≠∣b ∣6. 已知a=(1,1),b=(2,2),则a – b =A (1,1)B (1,-1)C (-1.-1)D (-1,1)7. 已知△ABC 中,a=6,b=8,c=10,则 cosA=A B C D 8.已知等差数列{a n },a 1=1,a 3=5,则a n =A 2n-1B nC n+2D 2n+19.已知等比数列{a n },a 1=2,q=3,则a 3 =A 8B 12C 16D 1810.已知a›b ›0,则212123232154535251A ac ﹥bcB -a ﹤-bC ﹥D ﹥11.不等式x 2-x-2﹥0的解集为A (-1,2) B (-∞,-1)U (2,+∞) C (-1,2〕D 〔-1,2〕12.已知sinx=1,则cosx=A -1B 1C 不存在D 0二.填空题13.已知x,y 满足约束条件y ≤x ,x+y ≤1,y ≥﹣1,则z=2x+y 的最大值是________14.已知口袋里有5个红球,15个白球,则从口袋里任取一个球,取到的是红球的概率为____15.已知函数y=Acosx 最大值为2,则A=__________16.已知四边形ABCD 中,=,则四边形ABCD 的形状为___________三.解答题17.已知集合A={1,2,3,4},B={3,4,5,6},求(1)A ∪B,A ∩B(2)已知全集I={1,2,3,4,5,6,7},求C I A,C I B.18. 解不等式组x 2-x-6≤0,x ﹣1>0的解集。
河北省石家庄市威州中学2018年高三数学理月考试卷含解析

河北省石家庄市威州中学2018年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 某几何体的三视图如图所示,则此几何体的体积等于A.30B.12C.24D.4参考答案:【知识点】由三视图求面积、体积.G2C 解析:由图可得几何体的直观图如右图,可得此几何体的体积等于×3×4×5-××3×4×3=24.【思路点拨】三视图复原的几何体是三棱柱去掉一个三棱锥的几何体,结合三视图的数据,求出体积即可.2. 已知椭圆的上焦点为F,直线x+y-1=0和x+y+1=0与椭圆分别相交于点A,B和C,D,则AF+BF+CF+DF=( ).A. B. C.4D.8参考答案:D略3. 已知为奇函数,且,则当=()A.B.C.D.参考答案:略4. 函数的导函数在区间上的图像大致是( )A. B.C. D.参考答案:A5. 已知函数,若函数在R上有三个不同零点,则的取值范围是()A. B. C. D.参考答案:D当时,令,求得或,即在上有两个不同的零点,则由题意知在有且仅有一个零点,则由,得,故选D.6. 一元二次方程有一个正根和一个负根的充分不必要条件是()A.a<0 B.a>0 C.a<-1 D.a>1参考答案:答案:C7. 将圆O:上各点的纵坐标变为原来的一半(横坐标不变),得到曲线C.设O为坐标原点,直线l:与C交于A、B两点, N为线段AB的中点,延长线段ON交C于点E.若,则m= ()A. B. C.D.参考答案:D8. 如图,在正方体ABCD﹣A1B1C1D1中,O1为底面的中心,则O1A与上底面A1B1C1D1所成角的正切值是()A.1 B. C. D.2参考答案:C【考点】直线与平面所成的角.【专题】空间角.【分析】连结A1C1,则∠AO1A1即为O1A与上底面A1B1C1D1所成角的平面角,利用勾股定理得A1O1,在Rt△AA1O1中利用tan∠AO1A1=计算即可.【解答】解:连结A1C1,则∠AO1A1即为O1A与上底面A1B1C1D1所成角的平面角,设该正方体的边长为a,则A1C1=a,∴A1O1=A1C1=a,在Rt△AA1O1中,tan∠AO1A1==,故选:C.【点评】本题考查线面角的三角函数值,注意解题方法的积累,属于基础题.9. 右图为一正方体的平面展开图,在这个正方体中,有以下结论①②CF与EN所成的角为60°③BD//MN④二面角的大小为45°其中正确的个数是()A.1B.2C.3D.4参考答案:C10. 将函数的图像上的点按向量(其中)平移后得到点,若点在函数的图像上,则()A.,的最小值为B.,的最小值为C. ,的最小值为D.,的最小值为参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 若函数是[1,2]上的单调函数,则实数a的取值范围为________.参考答案:略12. 函数f(x)=,若方程f(x)=mx﹣恰有四个不相等的实数根,则实数m的取值范围是.参考答案:(,)【考点】函数的零点与方程根的关系.【专题】计算题;作图题;函数的性质及应用;导数的综合应用.【分析】方程f(x)=mx﹣恰有四个不相等的实数根可化为函数f(x)=与函数y=mx﹣有四个不同的交点,作函数f(x)=与函数y=mx﹣的图象,由数形结合求解.【解答】解:方程f(x)=mx﹣恰有四个不相等的实数根可化为函数f(x)=与函数y=mx﹣有四个不同的交点,作函数f(x)=与函数y=mx﹣的图象如下,由题意,C(0,﹣),B(1,0);故k BC =,当x>1时,f(x)=lnx,f′(x)=;设切点A的坐标为(x1,lnx1),则=;解得,x1=;故k AC =;结合图象可得,实数m的取值范围是(,).故答案为:(,).【点评】本题考查了方程的根与函数的零点的关系应用及函数的图象的作法与应用,属于基础题.13. 运行如图所示的程序框图,则输出的结果S为.参考答案:﹣1007【考点】EF:程序框图.【分析】程序运行的功能是求S=1﹣2+3﹣4+…+(﹣1)k﹣1?k,根据计算变量n判断程序终止运行时的k值,利用并项求和求得S.【解答】解:执行程序框图,有k=1,S=0满足条件n<2015,S=1,k=2;满足条件n<2015,S=﹣1,k=3;满足条件n<2015S=2,k=4;满足条件n<2015S=﹣2,k=5;满足条件n<2015S=3,k=6;满足条件n<2015S=﹣3,k=7;满足条件n<2015S=4,k=8;…观察规律可知,有满足条件n<2015S=1006,k=2012;满足条件n<2015S=﹣1006,k=2013;满足条件n<2015S=1007,k=2014;满足条件n<2015,S=﹣1007,k=2015;不满足条件n<2015,输出S的值为﹣1007.故答案为:﹣1007.14. 某公司对一批产品的质量进行检测,现采用系统抽样的方法从100件产品中抽取5件进行检测,对这100件产品随机编号后分成5组,第一组1~20号,第二组21~40号,…,第五组81~100号,若在第二组中抽取的编号为24,则在第四组中抽取的编号为.参考答案:64设在第一组中抽取的号码为,则在各组中抽取的号码满足首项为,公差为的等差数列,即,又第二组抽取的号码为,即,所以,所以第四组抽取的号码为.15. 若变量满足约束条件则的最小值为 * * * * . 参考答案:-616. 命题“”的否定是。
河北省廊坊市广安中学2018年高三数学理测试题含解析

河北省廊坊市广安中学2018年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是()A.B.C.D.参考答案:A2. (5分)在△ABC中,B(﹣2,0),C(2,0),A(x,y),若△ABC满足条件分别为①周长为10;②∠A=90°;③k AB k AC=1.则A的轨迹方程分别是a:x2+y2=4(y≠0);;c:x2﹣y2=4(y≠0),则正确的配对关系是()B△ABC中,∵B(﹣2,0),C(2,0),A(x,y),∴BC=4,=(﹣2﹣x,﹣y),=(2﹣x,﹣y),k AB=,k AC=,①△ABC的周长为10,即AB+AC+BC=10,而BC=4,所以AB+AC=6>BC,故动点A的轨迹为椭圆,与b对应;②∠A=90°,故?=(﹣2﹣x,﹣y)(2﹣x,﹣y)=x2+y2﹣4=0,与a对应;③k AB k AC=1,故.即x2﹣y2=4,与c对应.故选B.3. 已知sin(+α)=,则cos2α等于( )A.B.C.﹣D.﹣参考答案:C考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin(+α)=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的值.解答:解:∵sin(+α)=,∴cosα=,∴cos2α=2cos2α﹣1=2×=﹣,故选:C.点评:本题主要考查了二倍角的余弦公式,诱导公式的应用,属于基础题.4. 设P为椭圆上的一点,是该双曲线的两个焦点,若则的面积为( )A. 2B. 3 .C. 4D. 5参考答案:C略5. 已知一个几何体的三视图如图所示,则该几何体的体积为()A.27﹣B.18﹣C.27﹣3πD.18﹣3π参考答案:B【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由三视图知几何体为直四棱柱且中间挖去半个圆柱,根据三视图的数据求四棱柱和圆柱的高、以及底面上的几何元素对应的数据,代入体积公式计算即可.【解答】解:由三视图可知,该几何体为放到的直四棱柱,且中间挖去半个圆柱,由三视图中的数据可得:四棱柱的高为3,底面为等腰梯形,梯形的上、下底边分别为2、4,高为2,圆柱的高为3,圆柱底面的半径都是1,∴几何体的体积V==,故选:B.【点评】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象能力.6. 已知恒成立,则的取值范围是A. B. C.D.参考答案:B7. (文)对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有()A.f(x)≥f(a) B.f(x)≤f(a) C.f(x)>f(a) D.f(x)<f(a)参考答案:A(文)解析由(x-a)f′(x)≥0知,当x>a时,f′(x)≥0;当x<a时,f′(x)≤0,所以当x =a时,函数f(x)取得最小值,则f(x)≥f(a).答案 A8. 将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为A.6种B.12种C.18种D.24种【解析】根据数的大小关系可知,1,2,9的位置是固定的,,则剩余5,6,7,8四个数字,而8只能放在在A,B两个位置,若8放在B处,,则C处可以从5,6,7三个数字中选一个放在C处,剩余两个按照大小放在D,A处,此时共有3种,同理,若8放在A 处,则可以从5,6,7三个数字中选一个放在D处,剩余两个按照大小放在B,C处,此时也有3种,所以共有6种填法,选A.参考答案:根据数的大小关系可知,1,2,9的位置是固定的,,则剩余5,6,7,8四个数字,而8只能放在在A,B两个位置,若8放在B处,,则C处可以从5,6,7三个数字中选一个放在C处,剩余两个按照大小放在D,A处,此时共有3种,同理,若8放在A处,则可以从5,6,7三个数字中选一个放在D处,剩余两个按照大小放在B,C处,此时也有3种,所以共有6种填法,选A.【答案】A9. 在△ABC中,若角A,B,C成公差大于0的等差数列,则cos2A+cos2C的最大值为A. B. C.2 D.不存在参考答案:D∵角A,B,C成等差数列,∴A+C=2B,又A+B+C=180°,∴B=60°,A+C=120°.cos2A+cos2C=+=1+(cos2A+cos2C)=1+[cos(240°-2C)+cos2C]=1+cos(2C+60°).∵60°<C<120°,∴180°<2C+60°<300°,∴<1+cos(2C+60°)<,即cos2A+cos2C的最大值不存在故选D10. 定义域在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,则实数a的值为()A.B.C.D.参考答案:B【考点】函数奇偶性的性质.【分析】由题意,作函数y=f(x)与y=a的图象,从而可得x1+x2=﹣6,x4+x5=6,x3=1﹣2a,从而解得.【解答】解:由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=.故选B.【点评】本题考查了数形结合的思想应用及函数的性质应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11. 由曲线与所围成的封闭图形的面积为____________.参考答案:略12. 圆x2+y2=20的弦AB的中点为P(2,﹣3),则弦AB所在直线的方程是.参考答案:2x﹣3y﹣13=0【考点】直线与圆的位置关系.【专题】直线与圆.【分析】先求得直线OP的斜率,可得弦AB的斜率,再用点斜式求得弦AB所在直线的方程.【解答】解:由于弦AB的中点为P(2,﹣3),故直线OP的斜率为=﹣,∴弦AB的斜率为,故弦AB所在直线的方程是y+3=(x﹣2),即 2x﹣3y﹣13=0,故答案为:2x﹣3y﹣13=0.【点评】本题主要考查直线和圆相交的性质,用点斜式求直线的方程,属于基础题.13. 如图4,圆的直径,为圆周上一点,,过作圆的切线,过作直线的垂线,为垂足,与圆交于点,则线段的长为参考答案:4略14. 若两函数与的图像有两个交点、,是坐标原点,是锐角三角形,则实数的取值范围是 .参考答案:【测量目标】分析问题与解决问题的能力/能综合运用基本知识、基本技能、数学基本思想方法和适当的解题策略,解决有关数学问题.【知识内容】图形与几何/曲线与方程/曲线与方程的概念.【参考答案】【试题分析】函数的定义域为,值域为,联立两函数的方程消去得,,因为两函数的图像有两个交点,所以,解得,设,则,,,因为是锐角三角形,所以即,解得,所以的取值范围为,故答案为.15. 如右图,已知圆的半径为,从圆外一点引切线和割线,圆心到的距离为,,则切线的长为________.参考答案:16. 函数的导函数.参考答案:略17. 若在区间上是增函数,则实数的取值范围参考答案:三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
启用前为机密
2018年12月河北省最新高中数学学业水平考试
数学试卷
(附考点分析及答案解析版)
注意事项:
1.本试卷共4页,包括两道大题,共33小题,总分100分,考试时间120分钟。
2.所有答案在答题卡上作答,在本试卷和草稿纸上作答无效,答题前请仔细阅读答题卡上的 “注意事项”,按照“注意事项”的规定答题。
3.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮将原选涂答案擦干净,再选其他答案。
4.考试结束后,请将本试卷与答题卡一并交回。
参考公式:
柱体的体积公式:Sh V =(其中S 为柱体的底面积,h 为高) 椎体的体积公式:Sh V 3
1
=(其中S 为柱体的底面积,h 为高) 台体的体积公式:h S S S S V ⎪⎭⎫ ⎝
⎛++=''31(其中'S 、S 分别为台体的上、下底面积,h 为高) 球的体积公式:334R V π=(其中R 为球的半径) 球的表面积公式:24R S π=(其中R 为球的半径)
一、选择题(本大题共30道小题,1-10题,每小题2分;11-30题,每题3分,共80分,在每小题给出的四个选项中,只有一个是符合题目要求的).
1.若{}21<<-=x x A ,{}31<<=x x B ,则A B =
.A {}11<<-x x .B {}21<<x x .C {}31<<x x .D φ
考点:集合间基本运算.
答案:B .
解析:两集合的交集是指这两个集合的公共元素组成的集合,画数轴易知B 项正确. 2.=︒︒30cos 30sin
.A 21 .B 41 .C 23 .D 4
3 考点:正弦倍角公式:αααcos sin 22sin =
解析:4
360sin 2130cos 30sin 22130cos 30sin =
=⨯=︒︒︒︒︒. 答案:.D 3.从某班级100名学生中,采用系统抽样的方法抽取5名学生进行学情调查,则分段间隔为 .A 16 .B 8 .C 10 .D 20
考点:简单随机抽样的系统抽样.
解析:系统抽样也叫“等距抽样”,其间隔205100===
组数总n n d . 答案:.D
4.某正方体的棱长为32,其八个顶点在同一球面上,则该球的表面积为
.A π4 .B π16 .C π36 .D π64
考点:①正方体基本性质.
②球体的表面积.
解析:正方体外接球的直径等于这个正方体的体对角线长,等于正方体棱长的3倍.
设一个正方体的棱长为a ,外接球半径为R ,则有a R 32=,∴ a R 23=
∴ 外接球表面积为()
πππππ36323323442222=⨯==⎪⎪⎭⎫ ⎝⎛⨯==a a R S 球
. 答案:.C
5.样本数据1,2,3,4,5的方差是
.A 1 .B 2 .C 2 .D 1
考点:①方差的计算 ②平均数的计算.
解析:n 个常数n a a a ,,,21 的平均数为()n a a a n x +++= 211, 方差为()()()
⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛
-++-+-=2222121x x x x x x n s n ∴ 1,2,3,4,5的平均数为()35432151=++++=
x , 方差为()()()()()[]
2353433323151222222=-+-+-+-+-=s . 答案:.B。