2010年考研真题北京大学数学分析高等代数几何
北京大学2010年数学分析考研试题的解答
一致收敛于 及 , 0,
lim
n→∞
bn
=
b
3
所以有 f (x) = P(x) + b ,即 f (x) 也是多项式,结论得证。
4、证明 记 F ( x) = e1−x2 f ( x) ,
则由积分中值定理,存在η ∈(0,) ,使得
证明 因为实系数多项式序列{ 在 fn(x)} R 上一致收敛于实值函数 f (x) ,
所以对任意ε > 0 ,存在 N ∈ N* ,使得当 m,n > N 时,有 fn(x) − fm (x) < ε ,
又因为 fn(x) − fm (x) 也是多项式,若 fn(x) − fm (x) 不为常数,则当 x 趋于无穷时, fn(x) − fm (x)
也趋于无穷,矛盾。所以 fn(x) − fm(x) = an,m ,其中{an,m} 为一无穷小序列。
由上面结论及 fn(x) 是多项式,可知当n > N 时,
, fn (x) = P(x) + bn
其中 P(x) 为某一固定的多项式,{bn}为某一收敛数(因为bn − bm = an,m 为柯西列)
1
∫ F (η ) = 2 ( ) e2 1−x2 f x dx , 0
由题设条件知, F (η ) = f (1) = F (1) ,
由 Lagrange 中值定理,推得,
存在ξ ∈(η,1) ⊂ (0,1) ,使得
0 = F′(ξ ) = e1−ξ2 ( f ′(ξ ) − 2ξ f (ξ )) ,
βn
= sup
0< x<1
2010年考研数学一真命题及答案解析
2010年考研数学一真题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)极限limx→∞[x2(x−a)(x+b)]x=(A)1 (B)e (C)e a−b (D)e b−a 【考点】C。
【解析】【方法一】这是一个“1∞”型极限lim x→∞[x2(x−a)(x+b)]x=limx→∞{[1+(a−b)x+ab(x−a)(x+b)](x−a)(x+b)(a−b)x+ab}(a−b)x+ab(x−a)(x+b)x=e a−b【方法二】原式=limx→∞e xlnx2(x−a)(x+b)而limx→∞ xln x2(x−a)(x+b)=limx→∞xln(1+(a−b)x+ab(x−a)(x+b))=limx→∞x∙(a−b)x+ab(x−a)(x+b)(等价无穷小代换) =a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法三】对于“1∞”型极限可利用基本结论:若limα(x)=0, limβ(x)=0,且limα(x)β(x)=A 则li m(1+α(x))β(x)=e A,求极限由于limx→∞α(x)β(x)=limx→∞x2−(x−a)(x+b)(x−a)(x+b)∙x=limx→∞(a−b)x2+abx(x−a)(x+b)=a−b则limx→∞[x2(x−a)(x+b)]x=e a−b【方法四】lim x→∞[x2(x−a)(x+b)]x=limx→∞[(x−a)(x+b)x2]−x=limx→∞(1−ax)−x∙limx→∞(1+bx)−x=e a∙e−b=e a−b综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数z=z(x,y)由方程F(yx ,zx)=0确定,其中F为可微函数,且f′′2≠0,则xðzðx+yðzðy=。
2010考研数学二真题及答案解析
2010年全国硕士研究生入学统一考试数学二试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 函数()f x =( )(A) 0. (B) 1. (C) 2. (D) 3. (2) 设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数λμ,使12y y λμ+是该方程的解,12y y λμ-是该方程对应的齐次方程的解,则( )(A) 11,22λμ==. (B) 11,22λμ=-=-. (C) 21,33λμ==. (D) 22,33λμ==.(3) 曲线2y x =与曲线ln (0)y a x a =≠相切,则a = ( )(A) 4e. (B) 3e. (C) 2e. (D) e. (4) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B) 仅与n 的取值有关.(C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (5)设函数(,)z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(6) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()1120111dx dy x y ++⎰⎰. (7) 设向量组12I:,,,r ααα 可由向量组12II:,,,s βββ 线性表示,下列命题正确的是( )(A) 若向量组I 线性无关,则r s ≤. (B) 若向量组I 线性相关,则r s >.(C) 若向量组II 线性无关,则r s ≤. (D) 若向量组II 线性相关,则r s >. (8) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭. (C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 3阶常系数线性齐次微分方程220y y y y ''''''-+-=的通解为y = .(10) 曲线3221x y x =+的渐近线方程为 .(11) 函数()ln 120y x x =-=在处的n 阶导数()()0n y= .(12) 当0θπ≤≤时,对数螺线r e θ=的弧长为 .(13) 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加.则当cm 12l = ,cm 5w =时,它的对角线增加的速率为 .(14)设,A B 为3阶矩阵,且132,2A B A B -==+=,,则1A B -+= . 三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)求函数2221()()x t f x x t e d -=-⎰的单调区间与极值.(16)(本题满分10分)( I ) 比较()1ln ln 1nt t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;( II ) 记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. (17)(本题满分10分)设函数()y f x =由参数方程22,(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有2阶导数,且5(1)(1) 6.2ψψ'==,已知223,4(1)d y dx t =+求函数()t ψ.(18)(本题满分10分)一个高为l 的柱体形贮油罐,底面是长轴为2a ,短轴为2b 的椭圆.现将贮油罐平放,当油罐中油面高度为32b 时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m 3)(19) (本题满分11分)设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u ux x y y ∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换,x ay x by ξη=+=+下化简为20uξη∂=∂∂.(20)(本题满分10分) 计算二重积分2 sin DI r θ=⎰⎰,其中(),|0s e c ,04D rr πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭. (21) (本题满分10分)设函数()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,且(0)0f =,1(1)3f =,证明:存在1(0,)2ξ∈,1(,1)2η∈,使得22()()=.f f ξηξη''++(22)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (23)(本题满分11 分)设0141340A a a -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,正交矩阵Q 使得TQ A Q 为对角矩阵,若Q 的第1列为2,1)T ,求,a Q .2010年全国硕士研究生入学统一考试数学二试题参考答案一、选择题(1)【答案】 (B).【解析】因为()f x =0,1x =±,又因为0lim ()lim x x x f x →→→=,其中00lim 1,lim 1x x +-→→===-,所以0x =为跳跃间断点.显然1lim ()2x f x →==,所以1x =为连续点.而1lim ()limx x f x →-→-==∞,所以1x =-为无穷间断点,故答案选择B.(2)【答案】 (A).【解析】因12y y λμ-是()0y P x y '+=的解,故()()()12120y y P x y y λμλμ'-+-=,所以()1122()0y P x y y p x y λμ⎡⎤⎡⎤''+-+=⎣⎦⎣⎦,而由已知 ()()()()1122,y P x y q x y P x y q x ''+=+=,所以()()0q x λμ-=, ① 又由于一阶次微分方程()()y p x y q x '+=是非齐的,由此可知()0q x ≠,所以0λμ-=.由于12y y λμ+是非齐次微分方程()()y P x y q x '+=的解,所以()()()()1212y y P x y y q x λμλμ'+++=,整理得 ()()()1122y P x y y P x y q x λμ⎡⎤⎡⎤''+++=⎣⎦⎣⎦,即 ()()()q x q x λμ+=,由()0q x ≠可知1λμ+=, ②由①②求解得12λμ==,故应选(A). (3)【答案】 (C).【解析】因为曲线2y x =与曲线ln (0)y a x a =≠相切,所以在切点处两个曲线的斜率相同,所以2a x x =,即(0)x x =>.又因为两个曲线在切点的坐标是相同的,所以在2y x =上,当x =2a y =;在ln y a x =上,x =, ln 22a a y a ==.所以ln 222a a a= .从而解得2a e =.故答案选择(C). (4)【答案】 (D).【解析】0x =与1x =都是瑕点.应分成dx dx =+⎰,用比较判别法的极限形式,对于,由于1210[ln (1lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(5) 【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''. (6) 【答案】 (D). 【解析】()()222211111()nnnn i j i j n nn i n j n i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (7) 【答案】 (A).【解析】由于向量组I 能由向量组II 线性表示,所以(I)(II)r r ≤,即11(,,)(,,)r s r r s ααββ≤≤若向量组I 线性无关,则1(,,)r r r αα= ,所以11(,,)(,,)r s r r r s ααββ=≤≤ ,即r s ≤,选(A).(8) 【答案】 (D).【解析】:设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭. 二、填空题(9)【答案】2123cos sin x y C e C x C x =++.【解析】该常系数线性齐次微分方程的特征方程为 32220λλλ-+-=,因式分解得()()()()2222210λλλλλ-+-=-+=,解得特征根为2,i λλ==±,所以通解为 2123cos sin x y C e C x C x =++. (10) 【答案】2y x =.【解析】因为3221lim 2x x x x→∞+=,所以函数存在斜渐近线,又因为 333222222lim 2lim 011x x x x x xx x x →∞→∞---==++,所以斜渐近线方程为2y x =. (11)【答案】()21!nn -⋅-.【解析】由高阶导数公式可知()ln (1)n x +1(1)!(1)(1)n nn x --=-+, 所以 ()()()1(1)!(1)!ln12(1)22(12)(12)n n n n n nn n x x x ----=-⋅-=---, 即()(1)!(0)22(1)!(120)n nn nn yn -=-=---⋅. (12))1e π-.【解析】因为 0θπ≤≤,所以对数螺线r e θ=的极坐标弧长公式为πθ⎰=0e d πθθ⎰)1e π-.(13)【答案】3cm/s .【解析】设(),()l x t w y t ==,由题意知,在0t t =时刻00()12,()5x t y t ==,且0()2,x t '=0()3y t '=,设该对角线长为()S t ,则 ()S t =,所以()S t '=所以0()3S t '===.(14)【答案】3.【解析】由于1111()()A A B B E AB B B A ----+=+=+,所以11111()A B A A B B A A B B -----+=+=+因为2B =,所以1112BB--==,因此 11113232A B A A B B ---+=+=⨯⨯=. 三、解答题(15)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .(16) 【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(17)【解析】根据题意得(),22dy t dy dt dxdx t dtψ'==+()()()()()()222222222232241t d t t t t t d y dt dx dx t t dtψψψ'⎛⎫ ⎪'''+-+⎝⎭+===++ 即()()()()222261t t t t ψψ'''+-=+,整理有()()()()2131t t t t ψψ'''+-=+,解()()()()()31151,162t t t t ψψψψ'⎧''-=+⎪⎪+⎨⎪'==⎪⎩,令()y t ψ'=,即()1311y y t t '-=++. 所以()()()11113113dt dt t t y e t e dt C t t C -++⎛⎫⎰⎰=++=++ ⎪⎝⎭⎰,1t >-.因为()()116y ψ'==,所以0C =,故()31y t t =+,即()()31t t t ψ'=+,故()()2313312t t t dt t t C ψ=+=++⎰. 又由()512ψ=,所以10C =,故()233,(1)2t t t t ψ=+>-.(18)【解析】油罐放平,截面如图建立坐标系之后,边界椭圆的方程为:22221x y a b+= 阴影部分的面积2222bbba S xdyb --==⎰⎰ 令sin ,y b t y b ==-时;22b t y π=-=时6t π=. 266221122cos 2(cos 2)(223S ab tdt ab t dt ab πππππ--==+=⎰⎰所以油的质量2(3m abl πρ=.(19)【解析】由复合函数链式法则得u u u u ux x y x ξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂, u u u u ua b y y y ξηξηξη∂∂∂∂∂∂∂=⋅+=⋅+⋅∂∂∂∂∂∂∂, 22222222u u u u u u u x x x x x xξηηηξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅ ⎪∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 222222,u u uξηξη∂∂∂=++∂∂∂∂ 2222222u u u u u u u x y y y y y yξηηηξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅ ⎪∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 22222(),u u ua b a b ξηξη∂∂∂=+++∂∂∂∂ 22222222()()u u u u u u ua b a a b b a a y y ξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂=+=+++ ⎪∂∂∂∂∂∂∂∂∂∂⎝⎭ 22222222,u u u a b ab ξηξη∂∂∂=++∂∂∂∂ 故222224125u u ux x y y∂∂∂++∂∂∂∂[]2222222(5124)(5124)12()1080,u u u a a b b a b ab ξηξη∂∂∂=+++++++++=∂∂∂∂所以 22512405124012()1080a a b b a b ab ⎧++=⎪++=⎨⎪+++≠ ⎩,则25a =-或2-,25b =-或2-.又因为当(,)a b 为22(2,2),(,)55----时方程(3)不满足,所以当(,)a b 为2(,2)5-- ,2(2,)5--满足题意.(20)【解析】2sin DI rθ=⎰⎰sin Dr rdrdθ=⎰⎰D=⎰⎰100xdx =⎰⎰()312201113x dx ⎡⎤=--⎢⎥⎣⎦⎰ ()311220011133dx x dx =--⎰⎰20113cos 43316d πθθπ=-=-⎰.(21)【解析】令()()313F x f x x =-,对于()F x 在10,2⎡⎤⎢⎥⎣⎦上利用拉格朗日中值定理,得存在10,,2ξ⎛⎫∈ ⎪⎝⎭使得()()11022F F F ξ⎛⎫'-= ⎪⎝⎭.对于()F x 在1,12⎡⎤⎢⎥⎣⎦上利用拉格朗日中值定理,得存在1,1,2η⎛⎫∈ ⎪⎝⎭使得()()11122F F F η⎛⎫'-= ⎪⎝⎭,两式相加得 ()()22f f ξηξη''+=+.所以存在110,,,122ξη⎛⎫⎛⎫∈∈ ⎪⎪⎝⎭⎝⎭,使()()22f f ξηξη''+=+. (22) 【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫⎪⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-. 方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→-⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫⎪⎛⎫ ⎪⎪⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(23)【解析】由于0141340A a a -⎛⎫⎪=- ⎪ ⎪⎝⎭,存在正交矩阵Q ,使得TQ AQ 为对角阵,且Q 的第一T,故A对应于1λ的特征向量为12,1)Tξ=.根据特征值和特征向量的定义,有1Aλ=,即10141113224011aaλ-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,由此可得11,2aλ=-=.故014131410A-⎛⎫⎪=--⎪⎪-⎝⎭.由14131(4)(2)(5)041E Aλλλλλλλ--=-=+--=-,可得A的特征值为1232,4,5λλλ==-=.由2()0E A xλ-=,即1234141710414xxx--⎛⎫⎛⎫⎪⎪-=⎪⎪⎪ ⎪--⎝⎭⎝⎭,可解得对应于24λ=-的线性无关的特征向量为2(1,0,1)Tξ=-.由3()0E A xλ-=,即1235141210415xxx-⎛⎫⎛⎫⎪⎪=⎪⎪⎪ ⎪-⎝⎭⎝⎭,可解得对应于35λ=的特征向量为3(1,1,1)Tξ=-.由于A为实对称矩阵,123,,ξξξ为对应于不同特征值的特征向量,所以123,,ξξξ相互正交,只需单位化:312123123,1,0,1),1,1)T T Tξξξηηηξξξ====-==-,取()123,,0Qηηη⎫⎪⎪==⎪⎪⎭,则245TQ AQ⎛⎫⎪=Λ=-⎪⎪⎝⎭.。
1999-2000,2,5-8,10北京大学高等代数考研真题
1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。
其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。
3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。
4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。
数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。
用U 表示K 上所有n 级循环矩阵组成的集合。
证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。
5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。
在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。
试问:f 是不是n R 上的一个内积,写出理由。
(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。
令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
2010全国研究生入学考试数学试题一答案
2010考研数学(一)真题及参考答案一、选择题(1)、极限(C)A、1B、C、D、(2)、设函数,由方程确定,其中F为可微函数,且,则(B)A、B、C、D(3)、设施正整数,则反常积分的收敛性( C)A、仅与的取值有关B、仅与有关C、与都有关D、都无关(4)、( D )A、B、C、D、(5)、设A为型矩阵,B为型矩阵,E为m阶单位矩阵,若AB=E,则(A)A、秩r(A)=m, 秩r(B)=mB、秩r(A)=m, 秩r(B)=nC、秩r(A)=n, 秩r(B)=mD、秩r(A)=n, 秩r(B)=n(6) 设A为4阶实对称矩阵,且,若A的秩为3,则A相似于(D)A. B.C. D.(7) 设随机变量的分布函数,则 {x=1}= (C)A.0 B. C. D.(8) 设为标准正态分布的概率密度,为上的均匀分布的概率密度,若为概率密度,则应满足:(A )A、B、C、D、二、填空题(9)、设求(10)、(11)、已知曲线的方程为起点是终点是则曲线积分0(12)、设则的形心坐标(13)设若由形成的向量空间维数是2,则 6(14)设随机变量概率分布为,则 2三、解答题(15)、求微分方程的通解解答:(16)、求函数的单调区间与极值解答:单调递减区间单调递增区间极大值,极小值(17)、(Ⅰ)比较与的大小,说明理由(Ⅱ)设,求极限解答:(18)、求幂级数的收敛域及和函数解答:收敛域,和函数(19)设为椭球面上的动点,若在点处的切平面为面垂直,求点的轨迹,并计算曲面积分,其中是椭球面位于曲线上方的部分解答:(1)(2)(20)、设已知线性方程组存在2个不同的解,(Ⅰ)求,;(Ⅱ)求方程组的通解。
解答:(Ⅰ)(Ⅱ)的通解为(其中k为任意常数)(21)已知二次型在正交变换下的标准形为,且的第3列为(Ⅰ)求矩阵;(Ⅱ)证明为正定矩阵,其中为3阶单位矩阵。
答案:(Ⅰ)(Ⅱ)证明:为实对称矩阵又的特征值为1,1,0的特征值为2,2,1,都大于0为正定矩阵。
2010年考研数学一真题及参考答案
2010考研数学(一)真题及参考答案一、选择题 (1)、极限2lim ()()xx xx a x b →∞⎛⎫=⎪-+⎝⎭( C ) A 、1 B 、e C 、a be - D 、b ae-【详解】()()2222ln 1()()()()()()()()lim lim lim ()()lim lim xx x xx x a x b x a x b x x x a b x ab a b x abxx x a x b x a x b x x a bxe ex a x b ee e ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞-+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞-⎛⎫== ⎪-+⎝⎭===(2)、设函数(,)z z x y =,由方程(,)0y z F x x =确定,其中F 为可微函数,且20F '≠,则z z xy u y∂∂+=∂∂( B )A 、xB 、zC 、x -D z -【详解】 等式两边求全微分得:121212()()()0x x y y z z Fu F v dx Fu F v dy Fu F v dz ''''''+++++=,所以有,1212xx z z Fu F v z x Fu F v ''+∂=-''∂+,1212y yz zFu F v z y Fu F v ''+∂=-''∂+, 其中,2x y u x =-,1y u x =,0z u =,2x z v x =-,0yv =,1z v x =,代入即可。
(3)、设,m n 是正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性( D )(A)仅与m 的取值有关 (B)仅与n 有关(C)与,m n 都有关 (D)都无关 【详解】:显然0,1x x ==是两个瑕点,有222111212ln (1)ln (1)ln (1)mmmnnnx x x dx dx dx xxx---=+⎰⎰⎰对于2120ln (1)m nx dx x-⎰的瑕点0x =,当0x +→时212ln (1)ln (1)mmn nx x x x--=-等价于221(1)m m nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故2120ln (1)mn x dx x -⎰收敛;对于2112ln (1)m n x dx x -⎰的瑕点1x =,当1(1,1)(0)2x δδ∈-<<时12122ln (1)2ln (1)2(1)m n m n m n x x x x -<-<-,而2112(1)m x d x -⎰显然收敛,故2112ln (1)mnx dx x-⎰收敛。
中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)
|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵
a21
a1a2 + 1 · · · a1an + 1
A
=
a2a1 + 1
a22
···
a2an + 1
,
···
··· ··· ···
ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.
2010年全国硕士研究生入学统一考试考研数学一真题及详解【圣才出品】
lim 1 x
0
x1-
nx
1
又反常积分 1 2
1 dx 收敛,所以 1 x
1 m ln2 (1 x)
1 2
dx 收敛。 nx
1 m ln2 (1 x)
综上,无论正整数 m 和 n 取何值,反常积分 0
dx 都收敛,故选 D。 nx
n n
n
4. lim n
i 1
j1 (n i)(n2
j2)
1 m ln2 (1 x)
3.设 m,n 均是正整数,则反常积分 0
dx 的收敛性( )。 nx
A.仅与 m 的取值有关
B.仅与 n 的取值有关
C.与 m,n 的取值都有关
D.与 m,n 的取值都无关
【答案】D
【考点】反常积分的性质,收敛性判别
【解析】分析过程如下
1 m ln2 (1 x)
【解析】在 F(y/x,z/x)=0 两边对 x 求导得
F1 (
y x2
)
F2
(
z x2
zx ) x
0
zx
yF1 zF2 xF2
再在 F(y/x,z/x)=0 两边对 y 求导得
F1
(
1 x
)
F2
(
zy x
)
0
zy
F1 F2
故 x∂z/∂x+y∂z/∂y=z。
2 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
1 m ln2 (1 x)
1 m ln2 (1 x)
0
dx 2
nx
0
n x
dx 1
2
dx nx
1 m ln2 (1 x)
北京科技大学2010年高等代数考研试题解答
看什么看,没见过美女? 3
七.解:A的特征多项式为 |λE − A| = λ + 4 10 0 −1 λ − 3 0 = (λ − 1)2 (λ + 2) −3 −6 λ − 1
故A的特征值为λ1 = λ2 = 1, λ3 = −2. 解方程组(λ1 E − A)x = 0求出属于特征值λ1 的线性无关的特征向量为 α1 = (−2, 1, 0)T , α2 = (0, 0, 1)T 解方程组(λ3 E − A)x = 0求出属于特征值λ3 的线性无关的特征向量为 α3 = (−5, 1, −3)T 可知α1 , α2 , α3 线性无关,令P = (α1 , α2 , α3 ),则有 A = P diag (1, 1, −2)P −1 于是 A100 = P diag (1, 1, −2)100 P −1 八.证:(1)充分性.显然. 必要性.由β ∈ Imσ = {σ (α)|α ∈ V },则存在α ∈ V 使得 σ (α ) = β 于是 σ (β ) = σ (σ (α)) = σ 2 (α) = σ (α) = β. (2)先证明V = Imσ + kerσ.首先,Imσ + kerσ ⊂ V.其次,∀α ∈ V,有 α = σ (α) + (α − σ (α)) 且σ (α) ∈ Imσ,容易验证α − σ (α) ∈ kerσ.即V ⊂ Imσ + kerσ.从而V = Imσ + kerσ. α,且 再证明:V = Imσ ⊕ kerσ. ∀α ∈ Imσ ∩ kerσ,则存在β ∈ V 使得σ (β ) = 0 = σ (α) = σ 2 (β ) = σ (β ) = α. 即Imσ ∩ kerσ = {0}.从而结论成立. 4
若(p(x), f (x)) = 1,则存在u(x), v (x)使得 p(x)u(x) + f (x)v (x) = 1 设p(x), f (x)的公共根为α,则代入上式有0=1.矛盾. 六.证:充分性.由α ̸= 0, β ̸= 0知A ̸= 0,故r(A) ≥ 1.又 r(A) = r(αβ T ) ≤ min(r(α), r(β T )) = 1 必 要 性. 由 于r(A) = 1,任 取A的 一 个 非 零 列 向 量X,则A的 其 余 列 都 是X 的数乘,故A可以表示为 A = (c1 X, c2 X, · · · , X, · · · , cn X ) = X (c1 , c2 , · · · , 1 · · · , cn ) 令α = X, β = (c1 , c2 , · · · , 1 · · · , cn )T 即可. 休息一下,插个图片养养眼.
2010年真题及答案
设总体 的概率分布为
1
2
3
其中 未知,以 来表示来自总体 的简单随机样本(样本容量为 )中等于 的个数 试求常数 使 为 的无偏估计量,并求 的方差.
考点:无偏估计概念.
解:
典型错误:
①
②
注:
解:(1)
其中矩阵Q的第3列就是属于特征值0的特征向量,记为 .
设 为A的属于特征值1的特征向量.由于实对称矩阵属于不同特征值的特征向量是正交的,则
即为属于特征值1的两个标准正交的特征向量.
(2)解法1因A的特征值为1,1,0,所以矩阵A+E的特征值为2,2,1;又A+E为实对称矩阵,故A+E是正定矩阵
解题思路:由非齐次方程组Ax =b存在两个不同的解,则|A | =0,可求得参数,进步可解方程组.
解(1)因为非齐次线性方程组Ax =b有两个不同的解,即解不是唯一的,所以系数行列式
(2)
典型错误:
①部分考生将非齐次方程组Ax =b的特解与齐次方程组Ax =0的非零解弄混.
②还有人得出齐次方程组Ax =0的基础解系包含两个解向量.
为A的特征值, 为其对应的特征向量.由
由此可知只有选项(D)是正确的.
注:本题中“A为实对称矩阵冶的条件是可以不要的,但若取消该条件,题目的难度将加大,
此时,因为证明A相似于对角阵本身不是一个容易的证明题.
(7)设随机变量 的分布函数 则 =
(A)0(B)
(C) (D)
答:(C).
考点:分布函数的性质.
答:6.
考点:本题考查向量空间维数的概念.
解题思路:由向量空间维数的概念可知所给向量组线性相关即可求参数.
2010年考研数学试题详解及评分参考
.
【答】 应填
2 3
.
{ } 【解】 记 D = ( x, y) x2 + y2 £ 1 ,有
òòò òò ò òò ò ò W
dxdydz =
D
dxdy
1 dz
x2 + y2
= (1- x2 - y2 )dxdy =
D
2p dq
0
1(1- r2 )rdr
0
=
p 2
,
òòò òò ò òò ò ò W
.
【答】 应填 -4p .
【解】 令 x = t ,则 dx = 2tdt ,于是有
ò ò ò ò p2 0
x cos
xdx =
p 2t2 costdt = 2t2 sin t
0
p 0
-4
p 0
t sin tdt
=
4t cos
p 0
-4
p 0
cos tdt
=
-4p .
(11) 已知曲线 L 的方程为 y = 1- | x | (x Î[-1,1]) ,起点是 (-1, 0) ,终点为 (1, 0) ,则曲线
【答】 应填 0 .
【解】
因
dy dx
=
dy dx
/ /
dt dt
=
ln(1+ t2 ) -e-t
,
d2y dx2
=
d dt
[
ln(1+t -e-t
2
)
]
1 dx /
dt
=
e2t [ 2t 1+ t
+ ln(1+
t 2 )],
d2y 故 dx2
t=0
2010年考研数学一真题及解析
2010年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)极限2lim ( )()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦(A)1 (B)e(C)a be-(D)b ae-答案:C 详解:2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦=2233221ln ()()()()lim lim lim xxx x bx abxx x x a x b a bx a x b x ax bx abx x x e e ee⎛⎫-+-- ⎪⋅ ⎪-+--+⎝⎭-+-→∞→∞→∞===(2)设函数(),z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '=,则x z x y u y ∂∂+∂∂=( ) (A)x (B)z (C)x - (D)z -答案:B详解:12221222,1x z y z y zF F F F F z x x x x x F F F x⎛⎫⎛⎫''-+-''⋅+⋅⎪ ⎪'∂⎝⎭⎝⎭=-=-=''∂'⋅112211y x F F F z x xF F F x'⋅''∂=-=-=-''∂'⋅1212222yF zF yF F z z z xyz xxF F F ''''+⋅∂∂+=-=='''∂∂(3)设,m n是正整数,则反常积分0⎰的收敛性(A)仅与m 的取值有关 (B)仅与n 取值有关 (C)与,m n 取值都有关 (D)与,m n 取值都无关 答案:C 详解:11222111111111ln 1(ln (1))1111mmn mm np p p nnx p p m dx p x p np -∞∞∞⋅⋅⋅⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪-⎛⎫⎝⎭⎝⎭⎝⎭==-= ⎪⎛⎫⎝⎭⎛⎫ ⎪ ⎪⎝⎭⎝⎭∑∑∑⎰⎰2121121n mm np n m m nn m p m n -∞--⎧>⎪⎛⎫⎪=⎨⎪-⎝⎭⎪≤⎪⎩∑收敛,发散, (4)()()2211limnnx i j nn i n j→∞--=++∑∑(A)()()12111x dx dy x y++⎰⎰(B)()()10111x dx dy x y ++⎰⎰(C)()()1100111dx dy x y ++⎰⎰(D)()()112111dx dy x y++⎰⎰答案:D详解:()()22211112limlim11nnnnx x i j i j nnn i nji j n n n n →∞→∞----=⎛⎫++⎛⎫⎛⎫+⋅⋅+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑2211111lim11n nx i j inj n n →∞--=⋅⋅⎛⎫++ ⎪⎝⎭∑∑()()112111dx dy x y=++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,E 为m 阶单位矩阵,若AB =E ,则( ) (A)秩(),r A m =秩()r B m =(B)秩(),r A m =秩()r B n = (C)秩(),r A n =秩()r B m = (D)秩(),r A n =秩()r B n =答案:A解析:由于A B E =,故()()r A B r E m ==,又由于()(),()()r A B r A r A B r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A 。
北京大学2010年数学分析试题及解答
|Pn(x) − Pm(x)| < ε.
因为 I 为无穷区间, 因此当 n > m ⩾ Nε 时, |Pn(x) − Pm(x)| 为常数. 设
|PNε (x) − Pn(x)| = cn, n > N,
于是 {cn} 为有界数列, 必有收敛子列 {cnk }∞ k=1, 设
结合 |PNε (x) − Pnk (x)| = cnk , 令 k → ∞ 得
2ε
∫1
3 + |t − t0| η0
∫1
0
xt0+θ(t−t0)(ln x)2
η0
xa(ln x)2 · f (x) dx
· f (x) dx
η0
θ ∈ (0, 1)
因此存在正数 δ <
ε
{∫ 1 , 其中 M = max
3M
η0
xa(ln x)2 · f (x)
} dx, 1 . 当 |t − t0| < δ 时, 就有
ε
{∫ A0 , 其中 M = max
3M
0
xb(ln x)2 · f (x)
} dx, 1 . 当 |t − t0| < δ 时, 就有
|J2(t) − J2(t0)| < ε.
这说明 J2(t) 在 [a, b] 上连续, 由 [a, b] 的任意性知 J2(t) 在 (−1, 1) 上连续. 因此 J(t) = J1(t) + J2(t) 在 (−1, 1) 上连续.
ε <,
∀t ∈ [a, b].
A
3
于是 ∀t, t0 ∈ [a, b]
∫ +∞
∫ +∞
|J2(t) − J2(t0)| =
2010高等代数考研真题.856答案
2010年硕士研究生入学考试试题答案及评分标准考试科目代码: 856 考试科目名称: 高等代数一.(40分)答:1.(D)2.(D)3.(A)4.(D)5.(B)6.(C)7.(B)8.(D)9.(D) 10.(C)二.(20分)证明下列命题:(1). 如果多项式(),()f x g x 不全为零,证明:()((),())f x f xg x 与()((),())g x f x g x 互素。
(2). 证明:0x 是()f x 的k 重根的充分必要条件是1000()()()0k f x f x fx -'==== 而0()0kf x ≠.答:(1).证: 存在多项式(),()u x v x , 使((),())()()()()f x g x u x f x v x g x =+. (4分)因而()()()()1((),())((),())f x g x u x v x f x g x f x g x +=. (7分)由定理3,()(),1.((),())((),())()f x g x f x g x f x g x = (10分)(2). 必要性:设0x 是()f x 的k 重根。
那么0x 是()f x '的1k -重根,……,是1()k fx -的1重根,是()k f x 的0重根,即不是()k f x 的根,(3分)所以 1000()()()0k f x f x fx -'==== 而0()0kf x ≠. (5分)充分性:设1000()()()0k f x f x f x -'==== 而0()0kf x ≠. 设0x 是()f x 的l 重根。
由必要性的证明 1000()()()0l f x f x fx -'==== 而0()0lf x ≠. 从而l k =.(10分)三.(15分)已知行列式12114126211214783D --=. 求13233343A A A A +++,其中ij A 是元素ija 的代数余子式。
2010年全国硕士研究生入学统一考试数学一试题参考答案
1)
2)
3)
4)
5)若A可逆,则
6)若 , 是 矩阵,则
7)若 则
在本题中,
由于 ,故 .又由于 ,故
①
由于 为 矩阵, 为 矩阵,故
②
由①、②可得 ,故选A.
(6)设 为4阶实对称矩阵,且 ,若 的秩为3,则 相似于( )
(A) .(B) .
(C) .(D) .
【答案】D
【考点】矩阵的特征值和特征向量;相似对角矩阵
【难易度】★★
【详解】本题涉及到的主要知识点:
(i) 与对角矩阵相似的充分条件:① 有 个不同的特征值;② 是实对称矩阵
(ii) 与对角矩阵相似的充要条件:对于矩阵 的每一个 重特征值 ,其线性无关的特征向量的个数恰好等于该特征值的重根数 ,即秩 .
在本题中,
设 为 的特征值,由于 ,所以 ,即 ,这样 的特征值为-1或0.由于 为实对称矩阵,故 可相似对角化,即 , ,因此, ,即 .
夹逼定理:设 ,若 ,则 。
在本题中,
当 时, ,所以 与
均为定积分,故
(I)当 时 ,
故 ,所以
(II)
故由 ,
根据夹逼定理得
故 .
(18)(本题满分10分)
求幂级数 的收敛域及和函数.
【考点】幂级数的收敛域及和函数
【难易度】★★★
【详解】本题涉及到的主要知识点:
幂级数 的收敛域的定义及求法,分三种情况:
,
则 的体积
在这种情形要确定上、下曲面及投影区域。
在本题中,
(13)设 ,若由 形成的向量空间
维数是2,则 = .
【答案】
【考点】向量空间维数的概念
2010年考研数学一真题及答案
20XX年考研数学一真题一、选择题( 1 8 小题,每小题 4 分,共 32 分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1) 极限(A)1(B)(C)(D)【考点】 C。
【解析】【方法一】这是一个“”型极限【方法二】原式而(等价无穷小代换 )则【方法三】对于“”型极限可利用基本结论:若,,且则,求极限由于则【方法四】综上所述,本题正确答案是C。
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算,两个重要极限(2)设函数由方程确定,其中为可微函数,且,则。
(A)(B)(C)(D)B。
【答案】【解析】因为,所以综上所述,本题正确答案是(B)。
【考点】高等数学—多元函数微分学—多元函数的偏导数和全微分(3) 设为正整数,则反常积分的收敛性(A)仅与的取值有关(B)仅与的取值有关(C)与的取值都有关(D)与的取值都无关【答案】 D。
【解析】本题主要考察反常积分的敛散性,题中的被积函数分别在和时无界在反常积分中,被积函数只在时无界。
由于,已知反常积分收敛,则也收敛。
在反常积分中,被积函数只在时无界,由于(洛必达法则 )且反常积分收敛,所以收敛综上所述,无论取任何正整数,反常积分收敛。
综上所述,本题正确答案是D。
【考点】高等数学—一元函数积分学—反常积分(4)(A)(B)(C)(D)D。
【答案】【解析】因为综上所述,本题正确答案是C。
【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用(5)设为矩阵,为矩阵,为阶单位矩阵,若,则(A)秩秩(B)秩秩(C)秩秩(D)秩秩【答案】 A。
【解析】因为为阶单位矩阵,知又因,故另一方面,为矩阵,为矩阵,又有可得秩秩综上所述,本题正确答案是A。
【考点】线性代数—矩阵—矩阵的秩(6) 设为4阶实对称矩阵,且,若的秩为3,则相似于(A)(B)(C)(D)【答案】D。
【解析】由知,那么对于推出来所以的特征值只能是、再由是实对称矩阵必有,而是的特征值,那么由,可知 D正确综上所述,本题正确答案是D。