分式函数求最值班 班

合集下载

分式型函数的最值求法及简单应用

分式型函数的最值求法及简单应用

分式型函数的雏形是反 比例 函数 ) , = ( k ≠
0 ) , 通过对函数 图像 的平移 , 可得到形式为“ Y = 口+
时, - 等号成立. 1
所 以函数的最小值为 2 √ + 3 , 此时 = √ + 2 .
由于函数形 式符合了基本 不等式的“ 一正数 ,
二定值 , 三相等” 的要求 , 于是顺理成章 的借助基本 不等式完成了本题 ( 2 )仍然可整理 孥 化为( 1 ) 中的函数形式, 但由 于t 的范围限制, 故基本不等式在本题中不能使用了, 并目 该 函 数不 是初等函数, 故必厮 U 用导数说明 单调性
处不 展开说 明.
( > 2 ) ; ( 3 ≤ ≤5 ) .
6 O・
< 数学之友 )
2 0 1 5年第 2 O期
解 法二 : ‘ . ‘ ∈R, . ‘ . 分子 分 母 I

时, 要 注恿
0的情 况分 开讨论 :
② t ∈ 【 一 丢 , 。 ) u ( 。 , 】 时 , , , + _ = = _


. > 0时, + ≥2 ( 当且仅 当 :1 时, 等号

t= 一
成立) ’ . . . + . = 1 -
l ≥1 , y E( 0 , 1 ] .





・ 菇< 0时 , + ≤一 2 ( 当且仅 当 =一1 时,

所以, 综上, 函数的最小值为 一1 , 此时 = 3;
这类函数与“ ” 型的处理方式有一定相 同之 处, 第一步也是“ 分 离常数” , 然后转化 为 “ ” 型
= , 一 耥 ( 2 一 一 1 ) 2 = 一 ( 2 一 一 1< ) 2 、 o u ’

求函数最值问题常用的10种方法

求函数最值问题常用的10种方法
分析 先求闭区间上的函数的极值,再与端点函数值比
较大小,确定最值.
解析 因为f′(x)=3x2-3,所以令f′(x)=0,得x=
-1(舍正).又f(-3)=-17,f(-1)=3,f(0)=1,
比较得,f(x)的最大值为3,最小值为-17.故填3, -17. 点评 (1)利用导数法求函数最值的三个步骤:第一, 求函数在(a,b)内的极值;第二,求函数在端点的函 数值f(a)、f(b);第三,比较上述极值与端点函数值 的大小,即得函数的最值.(2)函数的最大值及最小 值点必在以下各点中取得:导数为零的点,导数不存 在的点及其端点.
三、换元法 换元法是指通过引入一个或几个新的变量,来替换 原来的某些变量(或代数式),以便使问题得以解决 的一种数学方法.在学习中,常常使用的换元法有 两类,即代数换元和三角换元,我们可以根据具体 问题及题目形式去灵活选择换元的方法,以便将复 杂的函数最值问题转化为简单函数的最值问题,从 而求出原函数的最值.如可用三角代换解决形如a2 +b2=1及部分根式函数形式的最值问题.
【例 4】设 x,y,z 为正实数,x-2y+3z=0,则 y 2 xz
的最小值为________. 分析 先利用条件将三元函数化为二元函数,再利用基 本不等式求得最值.
解析 因为x-2y+3z=0,
x+3z
y2 x2+9z2+6xz
所以y=
2
,所以 = xz
4xz
.
y2 6xz+6xz
又x,z为正实数,所以由基本不等式,得 ≥
∴Δ=(3y+3)2-4(y-1)(4y4)≥0,11
解得7≤y≤7(y≠1).综上得ymax=7,ymin=7.
点评 判别式法的应用,对转化的(y-1)x2+(3y+3)x +4y-4=0来说,应该满足二次项系数不为0,对二次 项系数为0时,要另行讨论,对本题若y-1=0,即 y=1,有(3+3)x+4-4=0,所以x=0.一般来说, 利用判别式法求函数的最值,即根据g(y)x2+h(y)x+

分式函数最值及函数值范围问题

分式函数最值及函数值范围问题

分式函数最值及函数值范围问题
在数学中,分式函数是由分子和分母分别是多项式的函数。

分式函数的最值和函数值范围问题是研究该类型函数的关键内容。

本文将介绍分式函数的最值以及如何确定函数值的范围。

1. 分式函数的最值问题
1.1 分式函数的最大值
要确定分式函数的最大值,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。

2. 找出函数的极值点,即导数为零或不存在的点,这些点可能是函数的最大值点。

3. 将定义域中的边界点和极值点一起代入函数,比较函数值,找出最大值。

1.2 分式函数的最小值
要确定分式函数的最小值,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。

2. 找出函数的极值点,即导数为零或不存在的点,这些点可能是函数的最小值点。

3. 将定义域中的边界点和极值点一起代入函数,比较函数值,找出最小值。

2. 分式函数的函数值范围问题
要确定分式函数的函数值范围,我们可以通过以下步骤进行分析:
1. 找出函数的定义域,即使得分母不等于零的变量取值范围。

2. 分析分子和分母的符号和关系,找出函数的正负性。

3. 综合考虑定义域边界点、极值点以及正负性,确定函数值的范围。

总结
分式函数的最值和函数值范围问题是研究分式函数的关键内容。

通过分析函数的定义域、极值点、边界点以及分子分母的符号和关系,我们可以确定分式函数的最值和函数值范围。

这些分析步骤可
以帮助我们更好地理解和运用分式函数。

函数最大值的求法

函数最大值的求法

函数最大值的求法
---------------------------------------------------------------------- 函数最值分为函数最小值与函数最大值。

简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值,下面是求最大值和最小值的方法。

一、求函数的最大值和最小值:
f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的最大值和最小值。

一般而言,可以把函数化简,化简成为:
f(x)=k (ax+b)2+c的形式,在x的定义域内取值。

当k>0时,k(ax+b)2≥0,f(x)有极小值c。

当k<0时,k(ax+b)2≤0,f(x)有最大值c。

二、常见的求函数最值方法有:
1、配方法:形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。

2、判别式法:形如的分式函数,将其化成系数含有y的关于x的二次方程.由于, 0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。

3、利用函数的单调性﹒首先明确函数的定义域和单调性,再求最值。

4、利用均值不等式,形如的函数,及,注意正,定,等的应用条件,即: a,b均为正数,是定值,a=b的等号是否成立。

5、换元法:形如的函数,令,反解出x,代入上式,得出关于t的函数,注意t的定义域范围,再求关于t的函数的最值。

对一道分式三角函数最值问题的解法的探究

对一道分式三角函数最值问题的解法的探究

探索探索与与研研究究分式三角函数比较常见,函数式中往往含有一个、两个,甚至多个不同名称的三角函数式,因而分式三角函数最值问题通常较为复杂,无法直接利用三角函数的单调性和有界性求得最值.此时需运用一些技巧,如运用化一法、换元、借助几何图形的性质等求解.下面结合实例进行探讨.例题:求函数f ()x =4sin xcos x +3的最小值.解法一:利用化一法若分式函数式中含有或可化为有关正弦、余弦函数的式子,则可采用化一法求函数的最值.首先令y =f ()x ,并将其化为整式;然后根据辅助角公式将函数式化为只含有一种三角函数名称的式子,如y =sin ()ωx +φ、y =cos ()ωx +φ;再根据正余弦函数的有界性和单调性来确定三角函数的最值.解:令y =4sin xcos x +3,则4sin x -y cos x =3y ,由辅助角公式得16+y 2sin ()x +φ=3y ,化简得sin ()x +φ=3y,由三角函数的有界性得()x +φ≤1,即1≤3y 16+y2≤1,得y ≥-2,所以函数f ()x 的最小值为-2.运用化一法求分式三角函数的最值,需灵活运用辅助角公式,以及正余弦函数的有界性和单调性.这就要求我们熟记辅助角公式a sin x +b cos x =a 2+b 2sin ()x +φ=a 2+b 2cos ()x +θ,熟练掌握正余弦函数的有界性和单调性.一般地,若x ∈R ,则|sin x |≤1,|cos x |≤1.解法二:利用换元法换元法是简化复杂函数式的重要方法.对于分式三角函数式,我们可以将分子、分母或频繁出现的式子用一个字母t 替换,将分式三角函数式化为简单的一元函数,根据一元函数的图象、性质进行求解,即可得到分式三角函数的最值.解:令t =cos x +3,则t ∈[]2,4,1t ∈éëùû14,12,则sin x =±1-cos 2x =±-t 2+6t -8,可得f ()x =4sin x cos x +3===,由二次函数的性质知,当1t ∈éëùû14,12时,-8æèöø1t -382+18∈éëùû0,18,则8[]0,2,所以f ()x ≥-2.令t =cos x +3,即可将分式函数式化为关于t 的一元函数式,根据一元二次函数和y =x 的性质,快速求得分式函数的最值.解法三:借助几何图形的性质形如y =a sin x +bc cos x +d的分式三角函数式与直线的斜率公式的结构类似,可将三角函数式看作单位圆上的点()cos x ,sin x 与点æèöøb a ,dc 连线的斜率.结合圆的性质以及两点的连线与单位圆的位置关系,寻找直线的斜率取得最值时的情形,即可解题.解:由题意得f ()x =4sin xcos x +3=4∙sin x -0cos x -()-3,可将该式看作圆上的点()cos x ,sin x 与点()-3,0连线的斜率k 的4倍,由图可知,当过定点()-3,0的直线y =k ()x +3与单位圆相切时直线的斜率k最小.由点到直线的距离公式可得||3k 1+3k2=1,解得k =,所以函数f ()x 的最小值为4×æèçø=-2.将函数式f ()x =4∙sin x -0cos x -()-3看作圆上的点()cos x ,sin x 与点()-3,0连线的斜率k 的4倍,即可将问题转化定点()-3,0的直线y =k ()x +3与单位圆的位置关系问题,利用圆的性质和点到直线的距离公式进行求解即可.(作者单位:西华师范大学)51Copyright ©博看网. All Rights Reserved.。

函数详解之分式函数

函数详解之分式函数

函数详解之分式函数30.函数xa x x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.解:(1)显然函数)(x f y =的值域为),22[∞+;(2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞; (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a-上单调减,在]1,[22a -上单调增,无最大值,当22a x-=时取得最小值a22-.31.已知函数21()(0,0,)ax f x a b c R bx c+=>>∈+是奇函数,当0x >时,有()f x 最小值2,其中b N ∈,且5(1)2f =.(Ⅰ)试求函数()f x 的解析式;(Ⅱ)问函数()f x 的图像上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,请说明理由. 解 (Ⅰ)由2211()()ax ax f x f x bx cbx c++-=-⇒=--++,即bx c bx c -+=--,0c ∴= ……………………………………………2分0,0,0a b c >>= ,21()ax f x bx+∴=b a∴= ……………………4分又515(1)22a f b+<∴<,即221525202b b b b+<⇒-+<12()1,2b b N b⇒<<∈⇒=∴11abc=⎧⎪=⎨⎪=⎩……………………………6分(Ⅱ)设00(,)M x y关于点(1,0)的对称点为N,则00(2,)N x y--,………………8分00020000121122y xxx xy xx⎧=+⎪⎪∴⇒--⎨⎪-=-+⎪-⎩⇒01222xy⎧=+⎪⎨=⎪⎩或01222xy⎧=-⎪⎨=-⎪⎩…………11分∴存在两点(12,22)M+与(12,22)N--关于点(1,0)对称.………12分32.已知函数2211()af xa a x+=-,常数0>a.(1)设0m n⋅>,证明:函数()f x在[]m n,上单调递增;(2)设0m n<<且()f x的定义域和值域都是[]m n,,求常数a的取值范围.解:(1)任取1x,],[2nmx∈,且12x x<,12122121()()x xf x f xa x x--=⋅,因为12x x<,1x,],[2nmx∈,所以12x x>,即12()()f x f x<,故)(xf在],[nm上单调递增.或求导方法.(2)因为)(xf在],[nm上单调递增,)(xf的定义域、值域都是⇔],[nm(),()f m m f n n==,即nm,是方程2211aa a xx+=-的两个不等的正根1)2(222=++-⇔xaaxa有两个不等的正根.所以04)2(222>-+=∆aaa,222a aa+>⇒12a>33.已知定义域为R的函数abxfxx++-=+122)(是奇函数.(1)求a,b的值;(2)若对任意的Rt∈,不等式0)2()2(22<-+-ktfttf恒成立,求k的取值范围.解(1)因为)(xf是R上的奇函数,所以1,021,0)0(==++-=babf解得即从而有.212)(1axfxx++-=+又由aaff++--=++---=1121412)1()1(知,解得2=a(2)解法一:由(1)知,121212212)(1++-=++-=+xx xx f由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得解法二:由(1)知,2212)(1++-=+x xx f又由题设条件得0221222121221222222<++-+++-+--+--k t kt t t tt即0)12)(22()12)(22(2222212212<+-+++-+-+--+-kt t t tt k t整理得12232>--kt t,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得34.已知函数()a f x x x =-.(1)若13log [8()]y f x =-在[1,)+∞上是单调减函数,求实数a 的取值范围;(2)设1,a x y k =+=,若不等式22()()()2k f x f y k≥-对一切,(0,)x y k ∈恒成立,求实数k的取值范围.解: (1)令8a t x x=-+,则要使13log [8()]y f x =-在[1,)+∞上是单调减函数,则/21080a t xa t x x ⎧=-≥⎪⎪⎨⎪=-+>⎪⎩在[1,)+∞上恒成立,则21180a x a ⎧≥-≥-⎨-+>⎩所以, 19a -≤< (7)分 (2) 2222111()()()()()x y x yf x f y x y x y xy-++=--=222221212(0)4k xy x yk kxy xy xyxy-++-==++<≤. (10)分 令u xy=,则221()()2,(0,]4k kf x f y u u u-=++∈当2214kk -≥即0252k <≤-时,21()()2k f x f y u u -=++在2(0,]4ku ∈上为减函数,所以 2222min22142[()()]22()4424kk kk f x f y kkk-=++=+-=-即当0252k <≤-时,22()()()2k f x f y k≥-……………………………12分 当2214kk -<,222min 242[()()]2122()42kk f x f y k kk=-+<+-=-与题意不合.所以,所求的k 的取值范围为 : 0252k <≤-. ………………………14分35.(本小题满分14分)设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数14)(2+-=x a x x f .(Ⅰ)求f (α)·f (β)的值;(Ⅱ)证明f (x )是[α,β]上的增函数;(Ⅲ)当a 为何值时,f (x )在区间[α,β]上的最大值与最小值之差最小? 解:(Ⅰ)由题意知α+β=2a ,α·β=-1,∴α2+β2=242+a,∴f (α)·f (β)=1)(41614142222222+++++-=+-⋅+-ββαβααβββααa aa a a41241216222-=++++--=aa a .……………………………………………………… 4分(Ⅱ)证明:当α≤x ≤β时,22\22\\)1()1)(4()1()4()(++--+-=xx a x xa x x f222222)1()22(2)1(2)4()1(4+---=+⋅--+=x ax x x xa x x ………… 6分∵α、β是方程2x 2-ax -2=0的两根, ∴当α≤x ≤β时,恒有2x 2-ax -2≤0, ∴)(\x f ≥0,又)(x f 不是常函数,∴)(x f 是[α,β]上的增函数.……………………………………………… 9分 (Ⅲ)f (x )在区间[α,β]上的最大值f (β)>0,最小值f (α)<0,又∵| f (α)·f (β) |=4, ……………………………………………………… 10分 ∴f (β)-f (α)=| f (β)|+| f (α)|≥4)()(2=⋅βαf f当且仅当| f (β)|=| f (α)|=2时取“=”号,此时f (β)=2,f (α)=-2 …… 11分∴⎪⎩⎪⎨⎧=--=+-)2(022)1(21422 ββββa a……………………………………… 13分由(1)、(2)得0)16(2=+a a ,∴a =0为所求.…………………………………………………… 14分 36.已知函数)0()(>+=t xt x x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64 , 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(xt x f -=', ∴切线PM 的方程为:))(1()(12111x x x t x t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , ………………………………………………(1) …… 2分同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * ) ……………………… 4分22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-=])1(1][4)[(22121221x x t x x x x -+-+=,把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g . ……………………5分(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴1111--+x x t x =1222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) …………… 7分把(*)式代入(3),解得21=t .∴存在t ,使得点M 、N 与A 三点共线,且 21=t . ……………………9分(Ⅲ)解法1:易知)(t g 在区间]64,2[nn +上为增函数,∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i ,则)64()()()()2(21n n g m a g a g a g g m m +⋅≤+++≤⋅ .依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, …………11分)64(20)n6420(n 22022022nn m +++<⋅+⋅,即)]64()n64[(n 612nn m +++<对一切的正整数n 恒成立,.1664≥+nn , 3136]1616[61)]64()n64[(n 6122=+≥+++∴nn ,3136<∴m .由于m 为正整数,6≤∴m . ……………………………13分 又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6. ……………………………14分 解法2:依题意,当区间]64,2[nn +的长度最小时,得到的m 最大值,即是所求值.1664≥+nn ,∴长度最小的区间为]16,2[, …………………11分当]16,2[∈i a )1,,2,1(+=m i 时,与解法1相同分析,得)16()2(g g m <⋅,解得3136<m .37.已知函数xa x y +=有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值; (2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +xa 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =nx x )1(2++nx x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).(理)解:(1)函数2(0)by x x x=+>的最小值是2b2,则226b=,∴2log 9b =(2)设120x x <<,222221212122222112()(1)c c c y y x x x x xxx x-=+--=--⋅.当412c x x <<时,21y y >,函数22c y x x=+在[4c ,+∞)上是增函数;当4120x x c <<<时,21y y <,函数22c y x x=+在(0,4c ]上是减函数.又22c y x x=+是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为(0)n na y x a x=+>,其中n 是正整数.当n 是奇数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数,在(-∞,-na 2]上是增函数, 在[-n a 2,0)上是减函数;当n 是偶数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-na 2]上是减函数, 在[-n a 2,0)上是增函数;21()()nF x x x=++nx x)1(2+=)1()1()1()1(323232321220nnn n rn rn r n n n n nnn xx C xx C xxC xxC ++++++++----因此()F x 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +.38已知函数()()2211xf x x R x x-=∈++.(Ⅰ)求函数()f x 的单调区间和极值; (Ⅱ)若()2220t t t e x e x e +++-≥对满足1x ≤的任意实数x恒成立,求实数t 的取值范围(这里e 是自然对数的底数);(Ⅲ)求证:对任意正数a 、b 、λ、μ,恒有2222a b a b a b f f λμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫+++-⎢⎥ ⎪ ⎪ ⎪+++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥22a b λμλμ+-+.【解】(Ⅰ)()()()()()()()()22222223232121111x x x x xx x f x x x x x ⎡⎤⎡⎤---+⋅----++-+-⎣⎦⎣⎦'==++++∴()f x 的增区间为()23,23---+,()f x 减区间为(),23-∞--和()23,-++∞.极大值为()23233f -+=,极小值为()23233f --=-.…………4′(Ⅱ)原不等式可化为()22211t x e x x-++≥由(Ⅰ)知,1x ≤时,)(x f 的最大值为332.∴()22211xx x-++的最大值为433,由恒成立的意义知道433t e ≥,从而433t ln≥…8′(Ⅲ)设()()()22101xg x f x x x x x x-=-=->++则()()()()()243222224124621111x x x x x x g x f x x x x x -++++++''=-=-=-++++.∴当0x >时,()0g x '<,故()g x 在()0,+∞上是减函数,又当a 、b 、λ、μ是正实数时,()()222220a b a b a bλμλμλμλμλμλμ-⎛⎫++-=- ⎪+++⎝⎭≤ ∴222a b a bλμλμλμλμ⎛⎫++ ⎪++⎝⎭≤. 由()g x 的单调性有:222222a b a b a b a b f f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥, 即222222a b a b a b a bf f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥ ⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥.…………12′ 39.(本题12分) 已知函数()1bx c f x x +=+的图象过原点,且关于点(-1,1)成中心对称.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若数列{}n a (*)n N ∈满足:()2110,1,()n n n a a a f a +>==,求数列{}n a 的通项n a ; (Ⅲ)若数列{}n a 的前n 项和为n S ,判断n S 与2的大小关系,并证明你的结论. 解 (Ⅰ) 因为函数()1bx c f x x +=+ 的图象过原点,所以c =0,即()1bx f x x =+.又函数()11bx bf x b x x ==-++的图象关于点(-1,1)成中心对称,所以1,()1xb f x x ==+。

均值不等式的应用——分式二次型函数求最值

均值不等式的应用——分式二次型函数求最值

1平均值不等式平均值不等式是一类重要的不等式,通常用来证明最大值和最小值及求解最大值和最小值等相关问题。

简单说,平均值不等式一般式如下:$$\begin{align*}\frac{x_1+x_2+x_3+.....+x_n}{n}\geqq\sqrt[n]{x_1x_2x_3....x_n}\end{align*}$$上式中$n$为等式右边的$x_i$($i=1,2,3,...,n$)的个数。

2分式二次函数求最值分式二次函数的定义为:$$f(x)=\frac{a_1x^2+a_2x+a_3}{b_1x^2+b_2x+b_3}$$其中$a_1,a_2,a_3,b_1,b_2,b_3$均为常数。

求函数$f(x)$的极值点,通常有两种方法:一种是求函数$f(x)$的导函数$f'(x)$并解出导函数等于0的解;另一种就是使用平均值不等式求函数$f(x)$的极值。

在此使用平均值不等式来证明分式二次函数求最值。

$$\begin{align*}\frac{a_1x^2+a_2x+a_3}{b_1x^2+b_2x+b_3}\geqq\sqrt[2]{(a_1x^2+a_2x+a_3)\ast(b_1x^2+b_2x+b_3)}\end{align*}$$根据平均值不等式,令两边取对数:$$\begin{align*}\ln(a_1x^2+a_2x+a_3)-\ln(b_1x^2+b_2x+b_3)\geqq0 \end{align*}$$再令$y=a_1x^2+a_2x+a_3$,将以上等式转化为:$$\begin{align*}f''(y)=(a_1-b_1)y+(a_2-b_2)\geqq0\end{align*}$$因此,等式右边单调递增,此时$y$取最大或最小时,则等式右边$x$可取得最大值或最小值,即:$$\begin{align*}\frac{a_1x^2+a_2x+a_3}{b_1x^2+b_2x+b_3}\end{align*}$$也可取得极大值或极小值,证毕。

圆锥曲线解题中几种分式型函数最值的求法

圆锥曲线解题中几种分式型函数最值的求法

圆锥曲线解题中几种分式型函数最值的求法在圆锥曲线解题中,我们常常会遇到各种分式型函数,并需要求出函数的最值。

本文将介绍几种常见的分式型函数最值求解方法,帮助读者更好地解决相关问题。

一、分式函数求极值的常见方法在解析几何中,我们常常遇到形如f(x) = P(x) / Q(x) 的分式函数,其中P(x)和Q(x)分别是x的多项式函数。

要求解该分式函数的最值,可以使用以下几种方法:1. 利用导数法求解导数法是最常用的方法之一。

通过求解函数的导数,再通过导数的性质来确定函数的最值点。

具体步骤如下:(1)求出函数f(x)的导数f'(x);(2)求解f'(x)=0的解,即为函数f(x)的驻点;(3)将驻点和函数的定义域的端点进行比较,找出函数的最值。

2. 利用等价变形法求解有时,我们可以通过等价变形将分式函数转化为新的形式,从而更容易求解最值。

常见的等价变形方法有:(1)分子分母同乘以相同的因式,从而将分式函数简化成更简单的形式;(2)将分式函数展开为多项式,然后通过求解多项式的最值来求解分式函数的最值;(3)将分式函数分解成若干个部分,然后通过分别求解每个部分的最值,再综合得出总的最值。

二、若干种分式型函数的最值求法1. 高斯型函数高斯型函数是一种形如f(x) = e^(-ax^2 + bx + c)的分式函数。

其中a, b, c为常数。

对于这种类型的函数,我们可以通过以下步骤来求解最值:(1)求出函数的导数f'(x);(2)求解f'(x) = 0的解,即为函数的驻点;(3)将驻点与函数定义域的端点进行比较,找出函数的最值。

2. 有理分式型函数有理分式型函数是指分子和分母都是多项式函数的函数。

对于这种类型的函数,我们可以使用以下方法来求解最值:(1)对函数进行等价变形,将分子分母简化为最简形式;(2)找出函数的定义域以及分母为零的点,剔除无定义的点;(3)求解导数f'(x)=0的解,即为函数的驻点;(4)将驻点与函数定义域的端点进行比较,找出函数的最值。

二次分式函数最值求解

二次分式函数最值求解

二次分式函数最值的求解—-根判别式法函数最值的求解方法有:反函数、单调性、导数等方法.针对二次分式函数的最值求解适用于判别式的方法.二次分式函数的形式为:ax2+bx+cpx2+qx+r(px2+qx+r=0).若要运用根判别式法,要求定义域D为R,然后分式函数整理成整式,利用根判别式,注意二次项系数的讨论.否则(定义域不为R),则要分离参数.如果函数中有根式,一般先换元(包括三角换元,所有换元的前提是不能改变变量的范围).在圆锥曲线中,根判别式法还有应用.假设直线和圆锥曲线有交点,意味两者联立消元得到后的二次函数有实数解.即, ≥0.还有在圆锥曲线中的“点差法”的应用1.根的判别式只适用于判断实系数一元二次方程根的情况.复数不适用.注意,不能忽视对方程ax2+bx+c=0中a的讨论.1.求函数y=2x+√1−2x的最值2.1.1求函数y=x+4√1−x的值域.1.2求函数y=x+√1−x2的值域.解析:已知某两数的平方和大于、小于或者等于某数,或已知定义域区间为对称的,可以用三角换元.比如下面这2题:1.3设x2+y2≤2,求函数f(x,y)=|x2−2xy−y2|的最大值.1.4已知x2+4(y−1)2=4,求x2+y2的最值.1.5(平方法化简为二次函数)已知函数y=√1−x+√x+3,求y的最大值和最小值.1.6求函数y=x+x(2−x)的最大值和最小值.1.7求函数y=√x+√1−x的最大值和最小值.2.实数x,y满足4x2−5xy+4y2=5.设s=x2+y2,求s的最大值和最小值3.3.(2010江苏14)将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=(梯形边长)2/(梯形面积),则S的最小值是?4.已知p3+q3=2,其中p,q是实数,求p+q的最大值.4解析和总结:凡是题目中出现或者隐含两个变量p+q,pq的形式,都可以转化为二次函数利用根判别式进行求解最值.1点差法是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式相减,可得一个与弦的斜率及中点相关的式子,再结合有关条件来求解.当题目涉及弦的中点、斜率或借助曲线方程中变量的取值范围求其他变量的范围时,一般都可以用“点差法”来求解.这种方法对有关点的坐标设而不求,充分发挥整体思想25/43化简成关于x/y的二次函数,利用根判别式方法.10/3;10/134此题关键在于构建二次函数,设s=p+q,立方和展开表示成p+q的二次函数,得到pq=f(s),则利用韦达定理构建关于s的二次函数,p,q为两个根,再利用根判别式定理.5.求函数y =x 2−x +12x 2−2x +3的值域.类似的题型:求函数y =x 2−x x 2−x +1的值域.5.1求函数y =ax 2+x +1x +1(x >−1,a >0)的最小值.解析:分子分母分离系数,利用均值不等式.注意条件的验证.6.当实数t 为何值时,一元二次方程x 2+3ix +t 2−2=0,(i 为虚数单位)有实数根?5解析:因为根判别式不适用于复数方程.进行参变分类,转化为x 2+3ix =2−t 2,方程右边为实数,则左边的复数项为0,得到2−t 2=0.7.已知方程sin 2x +2cosx −2m −1=0有实数根,求m 的取值范围6.8∗.已知直线y =(a +1)x −1与曲线y 2=ax 恰有一个公共点,求实数a 的值.解析:直线与二次曲线只有一个交点并不一定相切.不能等价转化为二次函数的根存在问题. =0只是该问题的一个充分不必要条件.可以转化为方程组解的个数模型,实质就为参数a =0?;a +1=0?的讨论问题,要求达到的条件是只有一个根-1,0,-4/5.9.已知函数y =log 2(x 2+ax +2);(1)当函数的定义域为R 时,求a 的取值范围.(2)当函数的值域为R 时,求a 的取值范围.解析:判别式的几何意义是函数与x 轴的交点个数.(1)通过 <0转化为恒成立的问题.(2)利用反证法来理解.x 2+ax +2能取到一切正数,等价于 ≥0.10.已知函数f (x )=ax 2−2x (0≤x ≤1).求f (x )的最小值g (a ).11(利用反函数法).讨论函数y =10x +10−x10x −10−x的定义域和值域.利用反函数的方法表示102x 求解值域y .127.求函数y =x 2(1−3x )在[0,13]时的最大值.12.1求函数f (x )=2x 3+3x 2−12x +14在[-3,4]上的最大值和最小值.13.若实数x ,y 满足|x |+|y |=5,求t =x 2+y 2−2x 的最值.解析:利用数形结合+线性规划.t =x 2+y 2−2x 可以认为是圆的方程.它表示一个同心圆簇,半径为√t +1.13.1求函数v =sinucosu +sinu +cosu 的最大值.解析:利用换元法,令cosu =x ,sinu =y ,有x 2+y 2=1.则转化为点(x ,y )在单位圆x 2+y 2=1上运动,xy +x +y −v =0在y 轴上的截距v 的最大值.(v 视为常数)13.2已知x 2+y 2−2x +4y −20=0,求x 2+y 2的最值.14.已知正数x ,y ,满足x +2y =1,求1x +1y的最小值.5注意根判别式法适用的条件,不能在复数方程中,系数不能保证都为实数.6换元后转化为二次函数注意定义域的同步变化7求导法。

小班专题分式函数值域求法

小班专题分式函数值域求法

专题:分式函数值域求法数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决解析几何有关最值问题的一个重要工具. 首先我们给出分式函数的定义:形如()()()p x f x q x =的函数叫做分式函数,其中)(x p 、()q x 是既约整式且()q x 的次数不低于一次.下面就)(x p 、()q x 的次数不超过二次的分式函数进行分类讨论.1、一次分式函数:(1)定义:()p x 、()q x 的次数不高于一次的分式函数叫做一次分式函数,即形如(),,0ax b f x x A c cx d+=∈≠+的函数. (2)求法:一次分式函数值域的通常求法是逆求法,即改写成1()x f y -=,由于x A ∈,则A y f ∈-)(1,解出y 的取值范围,即函数f(x)的值域.例1、求函数232x y x +=-,[]3,8x ∈的值域. 解:改写成232y x y +=-,因为[]3,8x ∈,所以23382y y +≤≤-, 解得1996y ≤≤,即原函数的值域是19,96⎡⎤⎢⎥⎣⎦.2、二次分式函数:(1)定义:()p x 、()q x 至少有一个的次数是二次的分式函数叫做二次分式函数, 即形如22(),,ax bx c f x x A a d dx ex f++=∈++、不全为零的函数. (2)解法:若A=2|0x dx ex f ++≠{},则可采用根的判别式法求值域.例2、求函数224544x x y x x ++=++的值域. 解:化为关于x 的方程2(1)4(1)450y x y x y -+-+-=.若1y =,则方程无解,即1y ≠.因为R x ∈,所以0∆≥,解得1y ≥,即原函数的值域是(1,+∞)。

若A 2|0x dx ex f ++≠{},则再分类讨论。

2.1.(1)定义:形如2()c f x dx ex f=++,,0x A d ∈≠且0c ≠的函数. (2)解法:先利用二次函数的性质求出分母的值域,再利用复合函数的单调性求出函数()f x 的值域.例3、求函数21(),[3,5]23f x x x x =∈---的值域. 解:令[)(]22()23(1)4,3,33,5g x x x x x =--=--∈-⋃,则[)(]()4,00,12g x =-⋃,所以函数()f x 的值域是11(,][,)412-∞-⋃+∞.2.2.(1)定义:形如2()bx c f x dx ex f+=++,,0x A d ∈≠且0b ≠ (*) 或2()ax bx c f x ex f++=+,,0x A a ∈≠且0e ≠的分式函数. (2)解法:下面就形式(*)讨论解法.≠ ⊂2.2.1.若c=0,则分子分母同除以x ,得()f x =b f dx e x++. 只要讨论函数(),f g x dx x A x=+∈且0x ≠的值域. 不妨设0d >.若0f <,则函数()g x 在(,0)-∞和(0,)+∞上分别是增函数;若0f >,则函数()g x在和[上分别是减函数,在)+∞和(,-∞上分别是增函数.这样利用函数()g x 的单调性,先求出()g x 的值域,从而求出函数()f x 的值域.例4、求函数2(),[1,)24x f x x x x =∈+∞++的值域. 解:1(),142f x x x x=≥++.令4(),1g x x x x =+≥,则()4g x ≥, 所以函数()f x 的值域是1(0,]6.2.2.2.若0c ≠,则换元,令t bx c =+,转化为2.2.1.形式的分式函数.例5、求函数21(),(1,1)(1,3)23x f x x x x +=∈-⋃+-的值域. 解:令1t x =+,则21,(0,2)(2,4)44t y t t t t==∈⋃--. 因为4(,0)(0,3)t t -∈-∞⋃,所以函数()f x 的值域是1(,0)(,)3-∞⋃+∞.2.3.(1)定义:形如22(),,0ax bx c f x x A a dx ex f++=∈≠++且0d ≠的分式函数. (2)解法:2.3.1.若0b c ==或0e f ==,则分子分母同除以2x ,转化为求关于1x的二次函数的值域,从而求出函数()f x 的值域.例6、求函数221(),[,1]413x f x x x x =∈-+的值域. 解:22111(),[1,3]1411(2)3f x xx x x==∈-+--.因为函数 211()(2)3,[1,3]g x x x =--∈的值域是[3,2]--,所以函数()f x 的值域是11[,]23--.2.3.2.若分子分母有一个是完全平方式,不妨设22()(),,0a x m f x x A a dx ex f+=∈≠++且0d ≠,则可令t x m =+,转化为2.3.1形式的分式函数.例7、求函数2244(),[1,0]45x x f x x x x ++=∈-++的值域. 解:令2t x =+,则222111,[,1]1121t y t t t==∈++.因为2151[,2]4t +∈, 所以函数()f x 的值域是14[,]25.2.3.3.若都不是前两种形式的分式函数,则改写成部分分式,即:2()()ae af b x c a d d f x d dx ex f-+-=+++,转化为2.2形式的分式函数. 例8、求函数2245(),[0,2]43x x f x x x x ++=∈++的值域. 解:2222()11,[0,2]43(2)1f x x x x x =+=+∈+++-,所以函数()f x 的值域是175[,]153.。

分式函数三种值域求法

分式函数三种值域求法

分式函数三种值域求法分式函数是指由多项式函数构成的有理函数。

它包含了一个或多个分子和一个分母,其中分子和分母可以是多项式。

分式函数在数学和实际问题中的应用广泛,了解如何求解分式函数的值域对于我们理解和解决问题至关重要。

在这篇文章中,我将介绍三种常见的方法来求解分式函数的值域,它们分别是图像法、限制法和分解法。

这些方法各有特点,可以帮助我们更加全面地了解和解决分式函数的问题。

让我们来学习图像法。

图像法是通过绘制分式函数的图像来确定其值域的一种方法。

我们可以根据分式函数的定义域和其在定义域内的行为来判断其值域。

具体来说,我们可以观察分式函数的图像是否有水平渐近线、垂直渐近线或者有界。

水平渐近线表示分式函数在无穷远处趋于某个值,垂直渐近线表示分式函数在某个点处的值趋于无穷大或无穷小,而有界表示分式函数在某个区间内的值处于有限范围内。

通过观察这些特征,我们可以确定分式函数的值域。

让我们来学习限制法。

限制法是通过限制分式函数的变量取值范围来确定其值域的一种方法。

对于分式函数,我们通常会限制其变量的取值范围,避免分母为零或分式函数没有定义的情况。

通过解决限制条件,我们可以确定分式函数的值域。

让我们来学习分解法。

分解法是通过将分式函数拆分成更简单的形式来确定其值域的一种方法。

我们可以将分式函数进行因式分解,得到其最简形式。

在分解过程中,我们可能会发现一些因子可以抵消,使得分式函数的值域更加清晰和简单。

通过分解分式函数,我们可以更好地理解其值域。

通过以上三种方法,我们可以综合考虑分式函数的图像、限制条件和分解形式,来确定其值域。

对于每个具体的问题,我们可以根据实际情况选择最适合的方法来求解。

对于分式函数三种值域求解法的个人看法,我认为每种方法都有其独特的优势和适用场景。

图像法可以将抽象的数学概念通过图像的形式呈现出来,直观易懂,适合直观思维的人。

限制法可以通过限制变量的取值范围,直接对分式函数的值域进行约束,适合求解特定范围内的问题。

高中数学求最值的方法

高中数学求最值的方法

高中数学求最值的方法
1、配方法:形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。

2、判别式法:形如的分式函数,将其化成系数含有y的关于x 的二次方程。

由于,∴≥0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。

3、利用函数的单调性:首先明确函数的定义域和单调性,再求最值。

4、利用均值不等式,形如的函数,及≥≤,注意正,定,等的应用条件,即:a,b均为正数,是定值,a=b的等号是否成立。

5、换元法:形如的函数,令,反解出x,代入上式,得出关于t 的函数,注意t的定义域范围,再求关于t的函数的最值。

还有三角换元法,参数换元法。

6、数形结合法形:如将式子左边看成一个函数,右边看成一个函数,在同一坐标系作出它们的图象,观察其位置关系,利用解析几何知识求最值。

求利用直线的斜率公式求形如的最值。

7、利用导数求函数最值:首先要求定义域关于原点对称然后判断f(x)和f(-x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数。

求最值的10种方法

求最值的10种方法

三、换元法 换元法是指通过引入一个或几个新的变量,来替换 原来的某些变量(或代数式),以便使问题得以解决 的一种数学方法.在学习中,常常使用的换元法有 两类,即代数换元和三角换元,我们可以根据具体 问题及题目形式去灵活选择换元的方法,以便将复 杂的函数最值问题转化为简单函数的最值问题,从 而求出原函数的最值.如可用三角代换解决形如a2 +b2=1及部分根式函数形式的最值问题.
那么|O P |的最小值等于________,最大值等于 ________.
分析 本题实质上可以视为线性规划问题,求解时, 先找出约束条件,再画可行域,最后求出最值
解析 由题意,得点P (x, y)的坐标
x y 4,
满足
y
x,
x 1.
画出可行域,如图所示.
由条件,得A (2,2),|O A |=2 2 ; B (1,3),|O B |= 10 ;C (1,1),|O C |= 2 . 故|O P |的最大)的最大值.
这些命题中,真命题的个数是(
A.0
B.1
C.2
) D.3
解析 根据函数的最大值的定义知,①是假命题:虽 然满足最大值定义中的任意性,但不满足存在性,故 ①错误.②、③正确:实质上,它们是等价命题,都 满足最值定义中的两个条件.故选C. 点评 利用定义解决函数最值的相关问题时,其重要 的一点就是要把握定义的内涵,准确地加以应用.需 要注意的是:函数一定有值域,但不一定有最值,如 函数f(x)=1的值域为(-∞,0)∪(0,+∞),但它
∴Δ=(3y+3)2-4(y-1)(4y-4)≥0,
1
1
解得7≤y≤7(y≠1).综上得ymax=7,ymin=7.
点评 判别式法的应用,对转化的(y-1)x2+(3y+3)x +4y-4=0来说,应该满足二次项系数不为0,对二次 项系数为0时,要另行讨论,对本题若y-1=0,即 y=1,有(3+3)x+4-4=0,所以x=0.一般来说, 利用判别式法求函数的最值,即根据g(y)x2+h(y)x+

最值怎么求

最值怎么求

最值怎么求
常见的求最值方法有:
1、配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。

2、判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程。

由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验。

3、利用函数的单调性首先明确函数的定义域和单调性, 再求最值。

4、利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立。

5、换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值。

还有三角换元法, 参数换元法。

6、数形结合法形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值。

求利用直线的斜率公式求形如的最值。

7、利用导数求函数最值2。

首先要求定义域关于原点对称然后判断f(x)和f(-x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数。

如:函数f(x)=x^3,定义域为R,关于原点对称;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函数。

又如:函数f(x)=x^2,定义域为R,关于原点对称;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函数。

例谈简单分式型正、余切三角函数最值(值域)的求法

例谈简单分式型正、余切三角函数最值(值域)的求法

案例分析新课程NEW CURRICULUM函数最值和值域的求法是高中数学函数的一个重点,也是难点,更是每年高考的热点.而三角函数最值和值域的求法比一般函数最值和值域的求法,其解题过程要更复杂,解题方法要更灵活,解题技巧要更多样.本文就以简单分式型正、余切三角函数为例,对其最值和值域的求法加以归类并指出解题方法.例1.求函数y =tan x +1tan x -1的值域.解法1:(“1”的代换与公式法的结合)原函数等价于y =tan π4+tan x1-tan π4tan x =-tan (x +π4),因为x ≠k π+π2且x ≠k π+π4,所以x +π4≠k π+3π4且x +π4≠k π+π2,从而-tan (x +π4)≠-tan (k π+3π4)=-tan 3π4=1,即y ≠1.所以原函数的值域为y ∈{y|y ≠1}.点评:上面的解题过程,要注意“1”代换的内容和两角和与差正切公式的正确运用。

解法2:(分离常数法)原函数可化为:y =tan x -1+2tan x -1=1+2tan x -1,因为2tan x -1≠0,所以1+2tan x -1≠1,即y ≠1,从而原函数的值域为y ∈{y |y ≠1}.现在的高中生物教学情况仍不乐观,虽然高中生物也是高考的重要学科,但是很多学生对其不感兴趣。

生物学科没有得到很好的重视。

为了改变这样的情况,我们生物老师要及时发现问题,了解学生学习心理,改变教学模式和方法,提高学生生物学习能力。

一、高中生物教学中存在的问题1.忽略了学生的主体地位很多课堂上都是老师在讲台上唱“独角戏”,老师通常在课堂上花费很多的时间和精力讲课,但学生的收获甚微,久而久之,学生就会逐渐地听不懂课,随后就会失去学习兴趣,甚至产生厌学心理。

2.只注重知识的讲授,忽略了学生的创新思维在生物教学中,很多老师只看重高考教学重点的讲授,忽略了学生思维能力的培养。

受我国应试教育的影响,老师会对知识点尽可能详细地讲,让学生反复练习,使学生在规定时间内掌握更多的考点。

多项式分式求最值

多项式分式求最值
多项式分式求最值
要求多项式分式的最值,可以通过以下步骤来进行:
步骤1:将多项式分式化简为一个多项式。如果多项式分式可以化简为一个多项式,那么 可以直接求该多项式的最值。如果无法化简为一个多项式,可以考虑其他方法。
步骤2:对多项式进行求导。求导可以得到多项式的导函数通过求导可以找到多项式的 极值点。
步骤3:解导函数为零的方程。将导函数设置为零,解方程得到多项式的极值点。
多项式分式求最值
步骤4:确定多项式的最值。通过将多项式的极值点代入多项式函数,可以确定多项式的 最值。
需要注意的是,多项式的最值可能存在于极值点,也可能存在于多项式的端点。因此,除 了求导找到极值点外,还需要考虑多项式在定义域的端点处是否存在最值。
另外,如果多项式分式的分母存在实数根,那么该实数根可能是多项式分式的不可取值点 ,需要排除在求最值的范围之外。
多项式分式求最值
综上所述,求多项式分式的最值需要综合运用化简、求导、解方程和代入等方法,结合多 项式的性质和定义域来进行分析和计算。

求分式函数值域的几种方法

求分式函数值域的几种方法

求分式函数值域的几种方法摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.关键词:分式函数 值域 方法.1 引言求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析.2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域如果分式函数变形后可以转化为2122ay b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域.例1 求21231y x x =-+的值域. 解:2131248y x =⎛⎫--⎪⎝⎭,因为231248x ⎛⎫-- ⎪⎝⎭≥18-,所以函数的值域为:(],8-∞-∪()0,+∞.例2 求函数221x xy x x -=-+的值域.解:2111y x x -=+-+, 因为22112x x x ⎛⎫-+=- ⎪⎝⎭34+≥34,所以34-≤2101x x -<-+, 故函数的值域为1,13⎡⎫-⎪⎢⎣⎭.先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件.2.2 利用判别式法求分式函数的值域我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ∆=-≥0常常利用这一结论来求分式函数的值域.例1 求223434x x y x x -+=++的值域.解:将函数变形为()()()2133440y x y x y -+++-=①,当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以∆≥0,即()()()334144y y y +---7507y y =-+-≥0, 解得,17≤y ≤1或1y <≤7,又当1y =时,0x =,故函数的值域为1,77⎡⎤⎢⎥⎣⎦.例2 函数2221x bx cy x ++=+的值域为[]1,3,求b ,c 的值.解:化为()20y x bx y c --+-=,⑴当2y ≠时()()42x R b y y c ∈⇒∆=---≥0,⇒()224428y c y c b -++-≥0,由已知()2244280y c y c b -++-=的两根为1,3, 由韦达定理得,2c =,2b =±. ⑵当2y =时20cx b-==有解 综上⑴和⑵,2b =±,2c =.由这两个例题我们知道在利用判别式法求分式函数的值域时要注意下列问题: 1、函数定义域为R (即分母恒不为0)时用判别式求出的值域是完备的.2、当x 不能取某些实数时(分母为零),若要用判别式法求它的值域则需要对使()22222111y a x b x c a x b x c ++=++的判别式0∆=的y 值进行检验.3、转换后的一元二次方程若二次项系数中含有字母则需要讨论其是否为0只有在其不为0的情况下才可以使用判别式法.2.3 利用函数单调性求分式函数的值对于求函数的值域问题,我们通常使用能够揭示此类函数本质特征的通性通法即利用函数的单调性来求其值域.例1求函数21(,1)1x y x R x x -=∈≠-+的值域. 解:211x y x -=+=2(1)31x x +-+321x =-+, 当1x >-时,31x +是x 减函数进而y 是x 的增函数,于是(),2y ∈-∞-; 当1x <-时,同样y 是x 的增函数,于是y ∈()2,+∞; 所以211x y x -=+(1)x ≠-的值域为(),2-∞-∪()2,+∞. 在求分式函数时我们常运用函数ay x x=+的单调性的结论: ⑴当0a >时在(-∞和)+∞上增函数,在)⎡⎣和(上是减函数.⑵当0a <时在(),0-∞和()0,+∞上是增函数.例2 求函数24xy x x =-+(1≤x ≤3)的值域. 解:0x ≠所以41xy x x=+-.令4t x x=+在[]1,2上是减函数,在[]2,3是上增函数,所以2x =时,min 4t =;1x =时,max 5t =; 所以[]4,5t ∈,[]13,t t -∈,故值域为11,43⎡⎤⎢⎥⎣⎦.2.4 利用反函数法求分式函数的值域设()y f x =有反函数,则函数()y f x =的定义域是它反函数的值域,函数()y f x =的值域是其反函数的定义域.那么如果一个分式函数的反函数存在,我们就可以通过求反函数的定义域来求其值域.例1求函数251xy x =+的值域. 解:由于函数251x y x =+1()5x ≠-的映射是一一映射因此反函数存在,其反函数为25x y x =- 明显知道该函数的定义域为2|5x x ⎧⎫≠⎨⎬⎩⎭, 故函数的值域为2,5⎛⎫-∞ ⎪⎝⎭∪2,5⎛⎫+∞ ⎪⎝⎭.说明:由于本方法中所具有的某些局限性,一般说来,用此方法求值域只用ax by cx d+=+(c≠0)的函数,并且用此方法求函数的值域,也不是比较理想的方法.我们用这种方法目的是找关于y 的不等式所以反函数求值域的实质是反函数的思想树立这种思想是我们的宗旨.下面这种方法就是利用了反函数的思想比较通用的方法.2.5 利用方程法求分式函数的值域在1999年第2期《数学教学》第38页给出了下面的结论和证明.对函数()y f x =()x D ∈将其视为方程若能通过同解变形得到单值函数()x g y =*()y A ∈即()y f x =()x D ∈⇔()x g y =*()y A ∈则*A 即为()y f x =的值域利用这一结论函数问题转化为方程问题.又在2006年第2期《数学教学》“用方程法求函数值域”一文中给出了这样的引理及其证明.引理:设函数()y f x =的定义域为A 值域为B ,又设关于x 的方程()y f x =在A 中有解的y 的取值集合为C ,则C B =.例1 (2005年全国高考理科卷Ⅲ第22题)已知函数247()2x f x x -=-[]0,1x ∈求函数()f x 的值域解:247()2x f x x-=-,[]0,1x ∈,所以2247y xy x -=-,[]0,1x ∈, 即24(72)0x yx y +-+=,[]0,1x ∈.这样函数的值域即为关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解的y 的取值集.令()g x =24(72)x yx y +-+,[]0,1x ∈,则关于x 的方程24(72)0x yx y +-+=在[]0,1x ∈内有解⇔(0)(1)g g ⋅≤0或(0)0(1)00122444(72)0g g b ya b ac y y >⎧⎪>⎪⎪⎨<-=-<⎪⨯⎪-==⨯--≥⎪⎩⇔72-≤y ≤3-或4-≤y ≤72-⇔4-≤y ≤3, 即所求函数的值域为[]4,3--.2.6 利用换元法求分式函数的值域当题目的条件与结论看不出直接的联系(甚至相去甚远)时,为了沟通已知与未知的联系,我们常常引进一个(或几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向.换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式).在中学数学问题中,常见的基本换元形式有式代换、三角代换、点代换、参数代换等.例1求函数]0,1[,5444)(22-∈++++=x x x x x x f 的值域. 解:令2+=x t ,则]1,21[1,1111222∈+=+=t t t t y .因为]2,45[112∈+t , 所以函数)x (f 的值域是]54,21[.例2 求函数423(1)x y x =+的值域.解:令tan x θ=,(,)22ππθ∈-, 则44233tan tan (1tan )sec y θθθθ==+=42sin cos θθ =2221sin sin 2cos 2θθθ≤32221sin sin 2cos 23θθθ⎛⎫++ ⎪⎝⎭427=. 当且仅当2tan 2θ=时“=”成立.所以函数423(1)x y x =+的值域为40,27⎡⎤⎢⎥⎣⎦. 在这道例题中不仅用了换元法还用了均值不等式.利用三角函数来代换是我们在用换元法解题最常用的在换元后根据三角函数的有界性求能求出函数的值域 .在用换元法的时候重要的就是要注意换元后的自变量发生了改变,那么它的定义域也就变了.注意到这点才能准确地求出值域.2.6 利用不等式法求分式函数的值域“不等式法”就是通过利用不等式的一些性质和均值不等式来求某些具有一定特性的分式函数的值域.若原函数通过变形后的分子分母符和下列条件①各变数为正;②各变数的和或积为常数.则可以考虑用均值不等式求它的值域.要注意在得到结论之后要说明其中等号能够取到.例1 求函数224(1)(3)x y x +=+(1)x >-的值域.解:224(1)(1)4(1)4x y x x +=++++244(1)41x x =++++. 因为10x +>,所以411x x +++≥4,则41481x x +++≥+,所以0y <≤2438=(当1x =时取等号),故函数的值域为(]0,3. 例2 设123n S n =++++,n N ∈求1()(32)nn S f n n S +=+的最大值.(2000年全国高中数学联赛)解:1()(32)n n S f n n S +=+(1)2(1)(2)(32)2n n n n n +=+++⋅2(32)(2)3464n n n n n n ==++++, 即化为了求分式函数最值的问题1()6434f n n n =++.又因为6434n n++≥34+50=, 当64n n =即8n =时“=”成立,所以对任何n N ∈有()f n ≤150, 故()f n 的最大值为150.例2表面上看是数列的问题而实际是我们可以将其转化为求函数值域的问题在这里我们利用均值不等式的性质来求其值域就使得整个解题过程利用数更简单.2.8 斜率法求分式函数的值域数形结合是中学数学中的一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.这种方法不仅仅体现在数学的其它领域中,在求函数的值域与最值时也有良好的反映.联想到过11(,)A x y ,22(,)B x y 的直线AB L 的斜率为2121AB y y k x x -=-,我们可以考虑把分式函数化为斜率式并利用数形结合法来求函数的值域.例1 求函数232()()2(32)3t f t t t =>-的最小值. 解:函数()f t 可变形为()f t 23064t t -=-2()3t >,设2(6,3)A t t ,(4,0)B 则()f t 看作是直线AB 的斜率, 令6x t =,23y t =则212(4)x y x =>.在直角坐标系中A 点的轨迹为抛物线的一部分直线与抛物线相切是斜率最小. 过点(4,0)B 直线方程为:(4)y k x =-将它代入212x y =, 有212480x kx k -+=,则0∆=推算出43k =此时8x =, 即8t =时,min 4()3f t =. 例2 求211x x y x +-=+1(2-≤x ≤1)的值域.解:2()1(1)x x y x +-=--,令(1,1)A -,2(,)B x x x +,则AB y k =,点B 的轨迹方程为2y x x =+1(2-≤x ≤1), 111(,)24B --,2(1,2)B ,152AB k =-,212AB k =,所以51,22AB y k ⎡⎤=∈-⎢⎥⎣⎦,即函数的值域为51,22⎡⎤-⎢⎥⎣⎦.斜率法同样可以运用在形如ax by cx d+=+的分式函数中,函数的值域就转化为求直线斜率的范围给出了这样的结论:对于函数ax by cx d+=+22(0,0,0)c a b bc ad ≠+≠-≠,x ∈[],m n ,若记{}1min (),()m f m f n =,{}2max (),()m f m f n =,则当dx c=-(),m n ∈时值域为(]1,m -∞∪[)2,m ∞.当dx c=-∉(),m n 时,值域为[]12,m m .3 结论整篇文章介绍了求分式函数八种比较常用的方法,可以根据题目不同的特点灵活选取不同的方法,而实际上在我们通常遇到的题目中并不是只用一种方法就能解决问题,而是要综合几种方法.当然有一些特殊的分式函数,在求值域的时就会用到特殊的方法.但是最重要的是每种方法都要注意其函数的定义域.参考文献:[1]贾士代.用方程法求函数值域[J] . 数学教学,2006(2):21[2]王习建. 21112222a x b x c y a x b x c ++=++型函数值域的求法[J] .数理化解题研究 ,2003(6):25[3]张莲生.sin sin a x by c x d+=+ 的值域的求法[J] .数理天地(高中版),2001(10):19-20[4]王建海. 活用均值不等是巧解数学题[J] .数学教学通讯,2003(12):17 [5]钟国雄 .一个函数最小值问题的多种解法[J] . 中学生数学,2002(5):23 [6]江思容、望孝明 .求最值问题的若干途径[J] . 中学数学研究,2003(8):35 [7]傅洪海、陈宏. 关于反函数求值域的思考[J] . 数学教学, 1999(2):29-30 [8]陈士明.从求()bf x x x a=++的单调区间谈起[J] . 数学教学,1999(2):27-28。

分式型函数求值域

分式型函数求值域

分式型函数求值域
本文主要讨论分式型函数的值域。

分式型函数是一种特殊的函数,它可以用分式的形式表示:f(x)=〖a/b〗 ^c其中a、b和c是常数,a和b不能同时为
分式型函数的值域是指函数值的取值范围。

要求分式型函数的值域,可以根据函数表达式的特点来分析。

首先,当a和b同符号时,分式型函数的值域是实数集合,即(-∞,+∞)。

其次,当a和b异符号时,根据函数表达式的特点,分式
型函数的值域是(-∞,0)∪(
0,+∞)。

最后,当c为偶数时,分式型函数的值域是实数集合,即(-∞,+∞);当c为奇数时,分式型函数的值域是(-∞,0)∪(
0,+∞)。

综上所述,分式型函数的值域可以根据函数表达式的特点分析出来,它可以是实数集合,也可以是(-∞,0)∪(
0,+∞)。

通过本文,我们可以比较清楚地了解分式型函数的值域,并且可以根据不同的参数特点来更加准确地计算出函数的值域。

赏析一道分式函数求最值问题的解法

赏析一道分式函数求最值问题的解法

赏析一道分式函数求最值问题的解法胡玉胜【期刊名称】《高中数理化》【年(卷),期】2018(000)020【总页数】2页(P12-13)【作者】胡玉胜【作者单位】云南省曲靖一中麒麟学校【正文语种】中文分式函数求最值问题是高中数学的常见题型之一,经常出现在高考试题中,主要考查考生对不等式知识的理解与运用能力,然而许多学生往往对此类题型感到束手无策,因而失去得分机会.其实分式函数求最值并不是无章可循的,只要我们在平时教学中注意总结解题规律,许多问题便可以迎刃而解.笔者在这里就以一道分式函数求最值为例展开探讨,揭示其解题规律,希望对读者有所帮助.例设正实数x,y满足则y的最小值是________.解法1 由去分母并整理得yx2+(1-y2)x+9y=0,因为x>0,y>0,所以方程yx2+(1-y2)x+9y=0在区间(0,+∞)上有实数根,所以⟹解得所以故答案为对于可以转化为二元二次方程的分式函数求最值,首选就是去分母,转化为二元二次方程,然后利用判别式求出值域,从而求出最值.解法2 由去分母并整理得xy2-(x2+9)y-x=0,解得(负值舍去),又x>0,所以设则因为x>0,所以当且仅当即x=3时,取等号.因为函数在区间[6,+∞)上单调递增,所以故答案为因为本题的分式方程可以转化为二元二次方程,所以要求y的最小值,可以利用求根公式将变量x,y进行分离,将y表示成x的函数,再求函数的最小值.解法3 由题意可知即当且仅当即x=3时,取等号. 由可知y2-6y-1≥0,解得故答案为通过将分式的分母与比值进行交换,实现分式的裂项,然后再通过适当移项,巧妙地实现变量x,y分离.根据x>0,求出的取值范围,从而得到的取值范围,再进一步求出y的最小值.解法4 设y-x=t,则x=y-t,代入得所以因为x>0,y>0,所以所以y-x>0,即t>0,所以当且仅当即时,取等号.由得所以或舍,因为此时所以故答案为利用增量代换,引进变量t,适当变形,出现多项式由于t与的乘积为定值,因此可以利用均值不等式求出y的最小值.解法5 设=t,则代入得所以设t-1=m,则t=m+1,所以因为x>0,y>0,所以所以y-x>0,所以y>x>0, t>1, m=t-1>0,所以所以当且仅当即时,取等号,所以故答案为通过比值代换,引进变量t,适当变形,实现变量y与t的分离,然后引进变量m,变形出现多项式由于9m与乘积为定值,因此可以利用均值不等式求出y的最小值.通过以上几种解法探讨,我们不难发现:解这种题型的关键就是实现变量的分离,而分离变量的方法有许多,如果能从不同角度出发进行思考,就不难找到解决方法.多角度思考对增加学生对数学学习的乐趣、消除数学学习的恐惧心理、提高数学的解题能力大有裨益.由此可见,作为一线教师任重而道远,需要引导学生在日常学习中培养其良好的思维习惯,让他们学会从多角度思考问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式函数的图象及性质和值域(4,13班) 耿9.2 在近几年的高考和模拟考试题目中,经常会出现求解模型函数为分式函数值域的题目,而分式函数的值域求法有共同的规律,本节课给大家介绍解法并总结出通法! 【知识要点】 1.函数(0,)ax b
y c ad bc cx d
+=
≠≠+
(1)定义域:{|}d x x c
≠-(2)值域:{y 调性:单调区间为(,),(,+)d d
c c -∞--∞(4中心:渐近线为直线,
d a x y c c =-=,(5)奇偶性:当0a d ==时为奇函数。

(6)图象:如图所示。

2.函数(0,0)
b
y ax a b x
=+>>的图象和性质:
(1)定义域:{|0}x x ≠(2){|y y y ≥≤-或(3
单调性:在区间+),(,∞-∞间上是减函数(5直线y ax =为渐近线(6)图象:如图所示。

3.函数(0,0)b
y ax a b x
=+><的图象和性质:
(1)定义域:{|0}x x ≠(2)值域:R (3)奇偶性:奇函数(4)单调性:在区间(0,+)∞和(,0)-∞上是增函数。

(5)渐近线:以y 轴和直线y ax =为渐近线(6)图象:如图所示。

4.函数(0)b
y ax a x
=+<的图象(如图所示)和性质(略):
类型一:(,,,)ax b
y a b c d R cx d
+=
∈+(
“一次比一次”型) 备注:本质上一定是反比例函数上下或左右平移而来,所以一定是中学对称函数,可以从图像观察出其值域范围。

例1。

函数1
1
+-
=x y 的图象是 ( )
A B C D
例2、画出函数21
1
x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。

【分析】212(1)112111x x y x x x --+=
==+---,
即函数211x y x -=-的图像可以经由函数1
y x
=的图像向右平移1个单位,再向上平移2个单位得到。

如下表所示:
由此可以画出函数21
1
x y x -=
-的图像,如下: 单调减区间:(,1),(1,)-∞+∞;
值域:(,2)(2,)-∞+∞;
对称中心:(1,2)。

例3.不等式14x x
>的解集为
( )
1111111. (,0)(,) . (-,)(,) . (,0)(0,,+) .(,0)(0,)2222222
A B C D -+∞∞-+∞-∞-
类型二:22,bx c dx ex f
y or y dx ex f bx c
+++==+++,(“一次比二次”或“二次比一次”型)
备注:处理这种分式函数时主要用换元法,即“照着低次配高次”,然后在分离变形。


4、设1x >,求函数221
1
x x y x -+=-的最小值.
例5、 求2710
(1)1
x x y x x ++=
>-+的值域。

例6:1
43442122+-=⋅=∆k k PQ d S OPQ
,求面积函数的取值范围 例7、求函数2
y =
的值域。

例8.已知函数2
()ax b
f x x c
+=
+的图象如图所示,则,,a b c 的大小关系为
( )
. . . .A a b c B a c b C b a c Db c a >>>>>>>>
类型三:22ax bx c y dx ex f
++=++,(“二次比二次”型)
备注:处理这种分式函数时主要是先分离,再用类型二的方法去处理。

例9:函数221
x x
y x x -=-+的值域是
例10、求函数22
45
(),[0,2]43
x x f x x x x ++=∈++的值域. 类型四:“二次比四次型”
备注:处理这种分式函数时,若二次仅有二次项,则直接将其换元后分离,若二次项比较复杂时,则先将二次转化为完全平方因式,再用换元法拆分后变形
例11.求4221x x y x -=+的值域
例12.求
24
2
2
2e e e λ-=-.的值域, 类型五:“四次比四次型”:
例13
:2()1)ABC S f k k ∆==
>,求面积函数的取值范围
例14求四边形PMQN面积S=
)2
()
1(2 4
2
2
2
2 +
+
k k k
的取值范围。

相关文档
最新文档