【教学设计】函数的单调性与最大(小)值第2课时_数学
单调性与最大(小)值(第二课时)教案
1.3 函数的基本性质1.3.1 单调性与最大(小)值(第二课时)一、教材分析:二、学习目标:①通过实例,使学生体会、理解函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识;②能够用函数的性质解决日常生活中简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.三、教学重点:理解函数的最大(小)值的概念及其几何意义.四、教学难点:了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.五、课时安排:1课时六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m2的矩形新厂址,新厂址的长为x m,则宽为m,所建围墙y m,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短?2、自主探索,尝试解决老师给出学生们一些问题让学生思考,并对学生的回答进行点评,然后一起总结得出结论.层层引入,完成本节课学习的主题.问题1:作出函数y=-x2-2x,y=-2x+1(x∈[-1,+∞)),y=f(x)的图象如图所示.观察这三个图象的共同特征.函数y=-x2-2x图象有最高点A,函数y=-2x+1,x∈[-1,+∞)图象有最高点B,函数y=f(x)图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.问题2:你是怎样理解函数y=f(x)的图象的?函数图象是点的集合,是函数y=f(x)的一种表示形式,其上每一点的坐标(x,y)的意义是:自变量x的取值为横坐标,相应的函数值y为纵坐标.图象从“形”的角度描述了函数的变化规律.问题3:你是怎样理解函数图象最高点的?图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值.问题4:问题1中,在所作函数y=f(x)的图象上任取一点A,设图像最高点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象的最高点C?由于点C是函数y=f(x)图象的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.3、信息交流,揭示规律问题5:在数学中,形如问题1中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?函数最大值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.问题6:函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.问题7:函数最大值的几何意义是什么?函数图象上最高点的纵坐标,体现了数形结合思想的应用.问题8:函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.问题9:点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?不是,因为该函数的定义域中没有-1.问题10:由这个问题你发现了什么值得注意的地方?讨论函数的最大值,要坚持定义域优先的原则;函数图象有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.问题11:类比函数的最大值,请大家思考一下给出函数最小值的定义及其几何意义.函数最小值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.函数最小值的几何意义:函数图象上最低点的纵坐标.问题12:类比问题10,你认为讨论函数最小值应注意什么?讨论函数的最小值,也要坚持定义域优先的原则;函数图象有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.(二)、合作学习 让学生合作做练习,教师巡视指导然后讲解例题. 【例1】“菊花”烟花是最壮观的烟花之一. 制造时一般是期望在它达到最高点时爆裂. 如果烟花距地面的高度h m 与时间t s 之间的关系为h (t ) = – 4.9t 2 + 14.7t + 18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m )?解:作出函数h (t ) = – 4.9t 2 + 14.7t + 18的图象(如图). 显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t ) = – 4.9t 2 + 14.7t +18,我们有:当t =14.72( 4.9)-⨯-=1.5时,函数有最大值h =24( 4.9)1814.74( 4.9)⨯-⨯-⨯-≈29.于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29m.【例2】已知函数y =21x -(x [2,6]),求函数的最大值和最小值.分析:由函数y =21x -(x [2,6])的图象可知,函数y =21x -在区间[2,6])的图象可知,函数y =21x -在区间[2,6]上递减. 所以,函数y =21x -在区间[2,6]的两个端点上分别取得最大值和最小值.解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1) – f (x 2) =122211x x --- =21122[(1)(1)](1)(1)x x x x -----=21122()(1)(1)x x x x ---. 由2≤x 1<x 2≤6,得x 2 –x 1>0,(x 1–1) (x 2–1)>0,于是 f (x 1) – f (x 2)>0,即 f (x 1)>f (x 2).所以,函数y =21x -是区间[2,6]上是减函数. 因此,函数y =21x -在区间[2,6]的两个端点上分别取得最大值与最小值,即在x =2时取得的最大值,最大值是2,在x = 6时的最小值,最小值是0.4(三)、当堂检测1、课本题组题,1,5,3932B p p2、已知函数f (x ) = x 2 – 2x – 3,若x ∈[t ,t +2]时,求函数f (x )的最值.解:∵对称轴x = 1,(1)当1≥t +2即t ≤–1时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (t +2) = t 2 +2t –3.(2)当22t t ++≤1<t +2,即–1<t ≤0时,f (x )max = f (t ) = t 2 –2t –3,f (x )min = f (1) = – 4.(3)当t ≤1<22t t ++,即0<t ≤1,f (x )max = f (t +2) = t 2 + 2t – 3,3、.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取利润最大,并求出最大利润.解:设商品售价定为x 元时,利润为y 元,则y=(x-8)[60-(x-10)·10]=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16).当且仅当x=12时,y 有最大值160元,即售价定为12元时可获最大利润160元.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)请同学们从下列几方面分组讨论:1.最值的概念2.应用图象和单调性求最值的一般步骤.3..函数的最值及几何意义如何?4..你学了哪几种求函数最值的方法?5..求函数最值时,要注意什么原则?七.课外作业课本P39习题1.3 A组第5题,B组第1,2题.八、教学反思:。
单调性与最大(小)值(第2课时)课件-高一上学期数学人教A版(2019)必修第一册
那么,称M是函数y=f(x)的最小值
思考2:若函数f(x)≤M,则M一定是函数的最大值吗?
提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才
是函数的最大值,否则不是.
函数的最值与值域有怎样的关系?
(1)函数的值域一定存在,函数的最值不一定存在.
x1 x2 x1 x2
由2 x1 x2 6,得x2 x1 0,x1 x2 0,于是
f ( x1 ) f ( x2 ) 0,即f ( x1 ) f ( x2 )
∴ 函数f(x) =
是区间[2,6]上的单调递减.
x
求函数的最大(小)值的方法总结:
1.利用二次函数的性质(配方法)求函数的最大(小)值;
1.求函数
f(x)=x+ x在[
1
2
1)
1
2
1
2
x 1x 2
1x 2 1,4] 上的最值.
x
x
x
1x 2
1
2
.
x
4x 2-x 1
x 1x 2-4
x
x
4
4
4x
-x
x
x
1
2
2
1
1 2-4
=(x
=
1-x 2)
4
4
-f(x
)=x
+
-x
-
=x
-x
+
=+
12-4
1
2x 1-x 2=(x
2)
2x 1x
x
-4
∵1≤x
1 1-x
2 2)1 2
1<x 2<2,∴x 1-x 2<0,
第02课函数的单调性与最大(小)值(课件)
【典例】(多选)下列函数在(0,+∞)上单调递增的是( )
A.y=ex-e-x
B.y=|x2-2x|
C.y=x+cos x
D.y= x2+x-2
【解析】∵y=ex 与 y=-e-x 为 R 上的增函数,∴y=ex-e-x 为 R 上的增函数,故 A 正确; 由 y=|x2-2x|的图象知,故 B 不正确;对于选项 C,y′=1-sin x≥0,∴y=x+cos x 在 R 上为增函数,故 C 正确; y= x2+x-2的定义域为(-∞,-2]∪[1,+∞),故 D 不正确.
【典例】已知二次函数 f(x)=x2-2x+3, 当 x∈[t,t+1]时,求 f(x)的最小值 g(t).
【解析】①当 t>1 时,f(x)在[t,t+1]上是增函数, 所以当 x=t 时,f(x)取得最小值,此时 g(t)=f(t)=t2-2t+3. ②当 t≤1≤t+1,即 0≤t≤1 时,f(x)在[t,t+1]上先递减后递增, 故当 x=1 时,f(x)取得最小值,此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上是减函数,所以当 x=t+1 时,f(x)取得最小值,
函数 f(x)= x-1在其定义域内是增函数.
【解析】函数 f(x)= x-1的定义域是[1,+∞),
设∀x1,x2∈[1,+∞),且 x1<x2,则 f(x2)-f(x1)= x2-1- x1-1
=
x2-1- x1-1 x2-1+ x2-1+ x1-1
x1-1=
x2-x12-+x1x1-1.
因为 x1,x2∈[1,+∞),且 x1<x2,所以 x2-1+ x1-1>0,x2-x1>0.
02 教学设计_ 函数单调性(第2课时)1
3.1.2 函数单调性(第2课时)
【教学目标】
1.了解函数单调性的概念,会用定义判断或证明函数的单调性
2.会借助图像和定义求函数的单调区间
3.理解函数的最大(小)值及其几何意义,并能借助图像求函数的最大(小)值
4.会借助函数的单调性求最值
5.会根据函数的单调性求参数或解参数不等式
【核心素养】
1.数学抽象:了解函数单调性的概念,理解函数的最大(小)值及其几何意义
2.直观想象:借助图像求函数的单调区间和最值
3.数学运算: 判断函数区间的单调性和求最值
4.数据分析:函数最值在实际生活中的应用 教学重点:
借助平均变化率理解函数的单调性.
教学难点:
借助平均变化率理解函数单调性的应用.
教学过程:
一、问题引入
1.复习函数单调性的概念
一般地,设函数y = f(x)的定义域为D ,且I ∈D:
(1)如果对任意I x x ∈21,,当x 1<x 2时,都有f(x 1)<f(x 2),则称 y= f(x)在Ⅰ上是增函数(也称在Ⅰ上单调递增);
(2)如果对任意I x x ∈21,,当x 1<x 2时,都有f(x 1)>f(x 2),则称 y = f(x)在Ⅰ上是减函数(也称在Ⅰ上单调递减);
问题1:从形的角度理解函数单调性,限制条件的对象是图像上的任意两点。
我们知道,两点确定一条直线。
那么,能否用图象上任意两点连线的相关性质来刻画单调性呢?
2.直线斜率的概念
一般地,对于给定平面直角坐标系中的任意两点 A(x 1,y 1),B(x 2,y 2),当x 1≠ x 2时,
3. 学有余力的同学探究的单调性。
3.2.1单调性与最大(小)值教学设计(2)
3.2.1单调性与最大(小)值《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。
在此之前,学生己学习了函数的概念、定义域、值域及表示法,这为过渡到本位的学习起着铺垫作用。
学生在初中己经学习了一次函数、二次函数、反比例函数的图象.在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。
函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。
课程目标1、理解增函数、减函数一的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义:4、学会运用函数图象理解和研究函数的性质.数学学科素养1.数学抽象;用数学语言表示函数单调性和最值;2.逻辑推理:证明函数单调性:3.数学运算:运用单调性解决不等式;4.数据分析;利用图像求单调区间和最值;5.数学建模:在具体问题情境中运用单调性和最值解决实际问题。
重点:1、函数单调性的定义及单调性判断和证明:2.利用函数单调性或图像求最值.难点:根据定义证明函数单调性.教学方法:以学生为主体,采用诱思探究式教学,精讲多练.教学工具:多媒体。
一、情景导入观察下列各个函数的图象,并探讨下列变化规律:①随X 的增大,y 的值有什么变化?②能否看出函数的最大、最小值?要求:让学生自由发言,教师不做判断.而是引导学生进一步观察.研探・二、 预习课本,引入新课阅读课本76-80页,思考并完成以下问题1.增函数、减函数的概念是什么?2.如何表示函数的单调区间?3.函数的单调性和单调区间有什么关系4.函数最大(小)值的定义是什么?5.从函数的图象可以看出函数最值的几何意义是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题.三、 新知探究1.增函数、减函数定义增函数减函数定义一般地,设函数/U )的定义域为/:如果对于定义域/内某个区间D 上的任意两个自变量的值由上,当X1VX2时,都___________/(X1)</(X2)y (xi )>/(x2)那么就说函数yw 在区间。
高中必修第一册《3.2 函数的基本性质》优质课教案教学设计
3.2.1 单调性与最大(小)值《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。
在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
A.理解增函数、减函数、单调区间、单调性概念;B.掌握增(减)函数的证明与判断;C.能利用单调性求函数的最大(小)值;D.学会运用函数图象理解和研究函数的性质;1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。
多媒体教学过程教学设计意图 核心素养目标 一、情景引入1. 观察这些函数图像,你能说说他们分别反映了相应函数的哪些特征吗?2、它们分别反映了相应函数有什么变化规律?二、探索新知 探究一 单调性1、思考:如何利用函数解析式2)(x x f =描述“随着x 的增大,相应的f(x)随着增大?”【答案】图象在区间 )+∞,0(上 逐渐上升, 在)+∞,0(内随着x 的增大,y 也增大。
对于区间)+∞,0(内任意21,x x ,当21x x <时,都有)()(21x f x f <。
这是,就说函数2)(x x f =在区间 )+∞,0(上是增函数.2、你能类似地描述2)(x x f =在区间)0,(-∞上是减函数吗? 【答案】在区间)0,(-∞内任取21,x x ,得到211)(x x f =,222)(x x f =,当21x x <时,都有)()(21x f x f >。
3.2.1单调性与最大(小)值(第2课时)教学设计 - 高一数学 人教A版2019 必修第一册
《3.2.1单调性与最大(小)值》教学设计第2课时函数的最值教材内容:函数的最大、最小值与函数的单调性有着密切的关系。
通常要想求出函数的最大、最小值,首先要求出函数的单调性。
本节课是对函数的单调性内容的进一步深化,也是对值域这一函数性质的进一步学习。
同时,本节课所展现出的极限的数学思想对于接下来学习幂函数、函数的实际应用也有着不可替代的作用。
教学目标:1.理解函数的最大(最小)值及几何意义,培养学生数学抽象的核心素养;2.利用图象、单调性求最值,提升直观想象和数学运算的核心素养;3.会利用单调性解决比较大小、解不等式等问题,提升逻辑推理的核心素养。
教学重点与难点:1.重点:函数最值的定义;函数最值的求法。
2.难点:单调性求最值;讨论二次函数的最值问题.教学过程设计:(一)新知导入1. 创设情境,生成问题科考队对沙漠气候进行科学考察,下图是某天气温随时间的变化曲线.请你根据曲线图说说气温的变化情况?【提示】气温从0时逐渐降底,6时气温达到最低,从6时到17时,气温逐渐升高,17时气温达到最高,从17时到24时,气温逐渐降低。
2.探索交流,解决问题【探究1】观察下列两个函数的图象,回答有关问题:【问题1】比较两个函数的图象,它们是否都有最高点?【提示】图①中函数y=−x2的图象上有一个最高点;图②中函数y=-x的图象上没有最高点.【问题2】通过观察图①你能发现什么?【提示】对任意x∈R,都有f(x)≤f(0),f(0)是最大值。
【探究2】观察下列两个函数的图象,回答有关问题.【问题3】比较两个函数的图象,它们是否都有最低点?【提示】图①中函数y=x2的图象有一个最低点.图②中函数y=x的图象没有最低点.【问题4】通过观察图①你能发现什么?【提示】对任意x∈R都有f(x)≥f(0),f(0)是最小值。
【设计意图】通过探究,引导学生直观感受函数的最大值是函数图象的最高点纵坐标,最小值是函数图象最低点的纵坐标,并尝试用数学语言表示函数的最值,提高学生用数形结合的思维方式思考并解决问题的能力。
【教案】《函数的单调性与最值》公开课教学设计
公开课《函数的单调性与最值》教学设计(建阳一中市级公开周)函数的单调性是函数应用中最基本、最重要的知识点,求函数的最值都离不开单调性,而单调性的基础数形结合,这类题型是历年高考的热点,也是难点,针对这类基础薄弱的学生,起点不宜太高,只能从最基础的部分拾起,以题目贯穿内容,逐级而上.教学方法:提示练习探讨法教学过程一、复习引入1.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意的x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ; (4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值二、新课讲授典例讲解问题一:不含参数的函数的单调性例1.求函数 12-=x y 在区间[2,6]上的最大值和最小值..求函数 []10,2,16)(∈+=x xx x f 的最大值.例2.求下列函数的最值. (1)2)(x x f =(2)[)3,0,12)(2∈--=x x x x f2(3)()21[1,1]f x x ax =---求函数在上的最小值。
【题后感悟】(1)如何求二次函数在闭区间[m,n]上的最值? 确定二次函数的对称轴,如x=a;根据对称轴与给定区间的位置关系分类讨论; 结合图象明确函数的单调区间进而求解.(2)二次函数在闭区间上的最值只可能在区间的端点处及二次函数图象的对称轴处取得.跟踪练习.][)[][).()(1,3)(3,22)(0,2)1(,32)(2t g x f t t x x f x x f x x x f x的最小值时,求)当(的最值;时,求)当(的最值;时,求当已知二次函数+∈-∈-∈+-=课堂小结利用函数单调性判断函数的最大(小)值的方法 1. 利用图象求函数的最大(小)值2.利用二次函数的性质(配方法)求函数的最大(小)值3.利用函数单调性判断函数的最大(小)值 (1)如果函数y=f(x)在区间[a ,b]上单调递增,则函数y=f(x)在x=a 处有最小值f(a),在x=b 处有最大值f(b) ;(2)如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);若函数f(x)=ax2-(2a+1)x+a+1对于x∈[-1,1]时恒有f(x)≥0,则实数a的取值范围是________.。
3.2.1函数单调性与最大(小)值-第2课时高一上学期数学人教A版(2019)必修第一册
1
3.函数 f(x)= ,x∈[ 1,2] ,则 f(x)的最大值为________,
x
最小值为________.
【答案】1 ,
1
【解析】∵f(x)= 在区间[ 1,2] 上为减函数,
x
1
∴f(2)≤f(x)≤f(1),即 ≤f(x)≤1.
2
二、知识回顾
函数最大值与最小值
最大值
最小值
=
.
x1x2
x1x2
∵1≤x1<x2<2,∴x1-x2<0,x1x2-4<0,x1x2>0,
∴f(x1)>f(x2),∴f(x)在[1,2)上是减函数.
同理 f(x)在[ 2,4] 上是增函数.
∴当 x=2 时,f(x)取得最小值 4;当 x=1 或 x=4 时,f(x)取得最大值 5.
题型三 函数最值的实际应用
【规律方法】
解实际应用题的四个步骤
1审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量
的条件关系.
2建模:建立数学模型,列出函数关系式.
3求解:分析函数性质,利用数学知识探究问题解法一定注意自变量的取
值范围.
4回归:数学问题回归实际问题,写出答案.
【跟踪训练】
3.将进货单价为 40 元的商品按 50 元一个出售时,能卖出 500 个,已知这
1
D. ,2
2
【答案】C
【解析】由图可知,f( x)的最大值为 f( 1)=2,f(x) 的最小
值为 f(-2)=-1.
2.设函数 f(x)=2x-1(x<0),则 f(x)(
)
A.有最大值
B.有最小值
《函数单调性与最大(小)值(第2课时)》教学设计
第三节 函数的基本性质1.3.1 第二课时 函数的最大(小)值(李波)一、教学目标(一)核心素养教材以二次函数2()f x x =图象为例,观察出函数图象的最低点(0,0),这给我们提供了一种求函数最值的方法“图象观察法”,这也是一种最直接,最直观的方法.结合上一课时函数的单调性,学生通过函数图象,研究函数性质,寻求最值.在实际生活中,常遇到最值问题,我们是通过建立函数模型来进行研究,体现了数学与社会生活紧密联系.本节课,在探究函数的最值问题中,不断培育学生的数学运算、数学抽象、数学建模等数学核心素养.(二)学习目标1.通过函数图象,理解函数最大(小)值及几何意义.2.结合函数单调性求最大(小)值.3.函数最大(小)值的实际问题中的应用.(三)学习重点1.理解函数最大(小)值的概念及几何意义.2.求函数的最大(小)值.(四)学习难点结合函数单调性求最大(小)值.二、教学设计(一)课前设计1.预习任务一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有______;(2)存在0x I ∈,使得_______,那么我们称M 是函数()y f x =的最____值. 详解:()f x M ≤;0()f x M =;大或 ()f x M ≥;0()f x M =;小.2.预习自测(1)作函数22y x x =-+的图象,指出函数是否有的最值?若有,请求出最值. 详解:有最大值,无最小值;最大值为1.(二)课堂设计1.知识回顾(1)常见初等函数的图象.(2)函数的单调性.2.问题探究探究一 通过函数图象,函数最高(低)点的位置特征及几何意义●活动① 学生作函数y x =,1y x =,2y x =图象,观察图象的最高(低)点生:y x =图象上下无限延伸,没有最高点,也没有最低点;1y x=图象上下无限延伸,没有最高点,也没有最低点,且中间断开; 2y x =图象往上无限延伸,没有最高点,最低点在(0,0)处;师:结合图像观察结论,能否阐述函数图象最高(低)点的位置特质及几何意义? 生:2y x =图象最低点在(0,0)处.仔细观察发现,位置特征:最低点位于函数图象上,不是图像外的其他点;几何意义:函数图象上所有点在坐标系中的位置都高于它或和它一样高(最低点本身).【设计意图】观察图象易找到最高(低)点,教学时对最高(低)点的位置特征、几何意义进行探究,展现数学概念生成的过程,培养学生严谨的逻辑推理能力. ●活动② 图象的最高(低)点所体现的函数对应关系本质师:点之间位置高度的如何量化,更显数学的严谨性.由第一课时函数单调性推导,我们在描述()f x 随着x 的增大而增大,任取点11(,)A x y 到22(,)B x y ,其中12x x <刻画x 的增大,因此,我们是借助于点的坐标来探究.同学们可以想一想:在坐标系中,图象的点的高度,是由构成图象点的纵坐标决定的.师:下面以2y x =图象最低点在(0,0)O 为例,探究函数对应关系本质图象上其他点的位置不低于点O⇔图象上任意点(,)Q x y 位置不低于点(0,0)O⇔任意点(,)Q Q Q x y 的纵坐标Q y 的值与(0,0)O 纵坐标O y 的值关系:Q O y y ≥;而任意点(,)Q Q Q x y 的横坐标Q x 的值与(0,0)O 横坐标O x 的关系:,Q O x x R ∈(定义域) ⇔定义域R 内,寻求纵坐标的最小值因此,我们可以下结论:函数图象的最高(低)点(,)Q Q Q x y 的实质是:函数在定义域内任取x 所对应的y 值小于或等于(大于或等于)该点的函数值Q y ;也可以这样描述,函数整个定义域I 内的函数值y 在Q x x =处有最大(小)值Q y ,称Q y 为函数的最大(小)值.关系流程如图:【设计意图】从图象的最高(低)点的“形”,如何过渡到最大(小)值这个“数”,是教学设计的重点.我们从最高(低)点的位置特征,几何意义分析,让学生充分认识到点的坐标,是图象的构成元素点的数量体现,对“形”的认识自然过渡到“数”的分析.点的坐标由横、纵坐标组成,在坐标系中图象上的点投影在x 轴所覆盖的范围、y 轴所覆盖的范围,分别对应了函数的定义域和值域.最高(低)点的横、纵坐标,在坐标系中该点投影在x 轴是其横坐标取值、y 轴上是其纵坐标取值,与其他点投影到y 轴上的值相比较,是最大(小)值,同时该点横、纵坐标分别对应了定义域内某个值,值域内的最大(小)值.●活动③函数最大(小)值的概念师:由以上的推导,我们能否生成函数最大(小)值的概念?生:存在某个值使得所有函数值都比它大(小)也可相等.师:由几何特征,这个值在值域中吗?请继续完善.生:这个值在值域中.值域中存在某个值,使得所有函数值都比它大(小). 师:函数定义域优先,值域中某个值是否有一个x 与之对应?生:至少有一个x 与之对应,即存在性.师:一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有()f x M ≤(()f x M ≥);(2)存在0x I ∈,使得0()f x M =,那么我们称M 是函数()y f x =的最大(小)值.【设计意图】学生要充分认识图象的最高(低)点的位置、该点坐标形式、坐标的对应实质这三者之间的联系,才能从“形”的位置特征及几何意义,到“数”对应方式,呈现了函数最大(小)值概念的生成过程.探究二 结合函数单调性求最大(小)值●活动①由图象观察函数最值.例1已知函数()11f x x x =++-.(1)画出()f x 的图象;(2)根据图象写出()f x 的最小值.【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】(1)解:()11f x x x =++-2,12,112,1x x x x x -≤-⎧⎪=-<<⎨⎪≥⎩其图象如图所示:(2)由图象,得函数()f x 的最小值为2.【思路点拨】画出函数()y f x =的图象,依据函数最值的几何意义,借助图象写出最值.【答案】(1)略;(2)2.同类训练 如图为函数()y f x =,[4,7]x ∈-的图象,指出它的最大值、最小值.【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是( 1.5,2)--,所以当3x =时取得最大值,最大值是3;当 1.5x =-时取得最小值,最小值是-2.【思路点拨】从左至右观察图象,在最高(低)点对应的纵坐标值,为函数的最大(小)值.【答案】3,-2.【设计意图】考查学生如何观察函数最值●活动②利用函数单调性求最值例2:求函数21y x =-在区间[2,6]上的最大值和最小值. 【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】解:12,[2,6]x x ∀∈,且12x x <211212122()22()()11(1)(1)x x f x f x x x x x --=-=----, 12,[2,6]x x ∈,12(1)(1)0x x ∴-->.12x x <,120x x ∴->,12()()0f x f x ∴->,即12()()f x f x >.21y x ∴=-是区间[2,6]上的减函数. 因此,函数21y x =-在区间[2,6]的两个端点分别取得最大值与最小值,即在2x =时取得最大值,最大值为2,在6x =时取得最小值,最小值为0.4.【思路点拨】由图象可观察函数单减,在2x =处有最大值,在6x =处有最小值.在实际解答题中,能说明函数的单调性应先证明,再求最值.【答案】2,0.4.同类训练 求函数4()f x x x=+在[1,2]x ∈上的最大值与最小值. 【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】解:12,[1,2]x x ∀∈,且12x x <,则121212121212444()()()()()x x f x f x x x x x x x x x --=+-+=-. 12x x <,120x x ∴-<,1212,[1,2](1,4)x x x x ∈∴∈,,1212401x x x x ∴-<,>,1212()()0()().f x f x f x f x ∴->,即>4()f x x x∴=+在[1,2]x ∈上是减函数. 从而函数的最大值是(1)145f =+=,最小值是(2)224f =+=.【思路点拨】由函数单调性求最值.【答案】5,4.【设计意图】求函数最值时,首先判定函数在给定区间的单调性,结合函数图象,在区间的端点值处取得最值.●活动③二次函数的最值问题例3求函数2()22f x x ax =-+在[2,4]上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x ax =-+的对称轴是x a =,当2a <时,()f x 在[2,4]上单增,min ()(2)64f x f a ==-,当4a >时,()f x 在[2,4]上单减,min ()(4)188f x f a ==-,当24a ≤≤时,2min ()()2f x f a a ==-.综上所述2min64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩同类训练 求函数2()22f x x x =-+在[,1]t t +上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x x =-+的对称轴是1x =.当110t t +<⇒<时,()f x 在[,1]t t +上单减,2min ()(1)1f x f t t =+=+; 当1t >时,()f x 在[,1]t t +上单增,2min ()()22f x f t t t ==-+;当1101t t t ≤≤+⇒≤≤时,min ()(1)1f x f ==.综上所述2min21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩例4 函数2()34f x x x =--的定义域为[0,]m (0m >),值域为25[,4]4--,求m 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:2()34(4)(1)f x x x x x =--=-+如图min 325()()24f x f ==-,=-43[,3]2m ∴∈. 【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.同类训练:函数2()23f x x x =-+在[0,]a (0a >)上最大值是3,最小值是2,求a 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:22()23(1)2f x x x x =-+=-+如图:要取到最小值2,a 必须对称轴1x =右侧取值.最大值为3,则a 的必须在对称轴1x =左侧取值.[1,2]a ∴∈.【答案】[1,2]a ∈.【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.【设计意图】通过值域寻求定义域的问题,结合二次函数图象,找出对应的坐标轴的取值范围.●活动④函数关系中恒成立问题例5已知函数223()x x f x x++=([2,)x ∈+∞). (1)求()f x 的最小值;(2)若()f x a >恒成立,求a 的取值范围.【知识点】函数单调性求最值,恒成立问题转化.【数学思想】变量分离思想、等价转化思想.【解题过程】解:(1) 12,[2,)x x ∀∈+∞,且12x x <,223()x x f x x++=则12121212(3)()()()x x f x f x x x x x --=-.12x x <,120x x ∴-<,12,[2,)x x ∈+∞,124x x ∴>,1230x x ∴->,12()()0f x f x ∴-<,即12()()f x f x <. 故函数223()x x f x x++=在[2,)+∞上为增函数. ∴当2x =时,()f x 有最小值,即11(2)2f =. (2) ()f x 有最小值为11(2)2f =. ()f x a >恒成立,只需min ()f x a >,即112a <. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题.【答案】(1)112;(2)112a <. 同类训练 函数2()3f x x x a =++-,[1,1]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】函数单调性、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想.【解题过程】解:[1,1],()0x f x ∈-≥恒成立,23a x x ∴≤++,[1,1]x ∈-时恒成立.记:2()3g x x x =++, 只需min 11()4a g x ≤=,即114a ≤. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题. 【答案】114a ≤. 例6 函数2()3,f x x ax a =++-若[2,3]a ∈-时,()0f x ≥恒成立,求实数x 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想、分类讨论思想.【解题过程】解:22()3(1)(3)f x x ax a a x x =++-=-++,[2,3]a ∈-,()0f x ≥恒成立,记:2()(1)(3)g a a x x =-++,转化为()0g a ≥恒成立,[2,3]a ∈-.当1x =时,()40g a =>恒成立1x ∴=…………….①当1x >时,2()(1)(3)g a a x x =-++在[2,3]-上单增,22min ()(2)25(1)40g a g x x x =-=-+=-+>恒成立,1x ∴>…………….②当1x <时,2()(1)(3)g a a x x =-++在[2,3]-上单减,2min ()(3)30g a g x x ==+> 31x x ∴≤-≤<或0…………….③由①②③:(,3][,)x ∈-∞-⋃+∞0.【思路点拨】也可用二次函数图象问题求解,若向一次函数图象问题转化,问题变得相对容易.【答案】(,3][,)-∞-⋃+∞0.同类训练 函数2()3,f x x ax a =++-[2,2]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】分类讨论思想.【解题过程】函数2()3f x x ax a =++-图象的对称轴是2a x =-. 当22a -≤-,即4a ≥时,()f x 在[2,2]-上单增,min ()(2)730f x f a =-=-≥73a ∴≤. a ∴∈Φ………….① 当22a -≥,即4a ≤-时,()f x 在[2,2]-上单减,min ()(2)70f x f a ==+≥7a ∴≥-, [7,4]a ∴∈--.…………….②当222a -<-<,即44a -<<时,2min 412()()024a a a f x f ---+==≥62a ∴-≤≤, (4,2]a ∴∈-.………….③由①②③:[7,2]a ∈-.【思路点拨】对称轴与给定区间位置不同关系,由函数图象观察单调性,结合最值求解.【答案】[7,2]a ∈-.【设计意图】函数的最值与单调性的关系:若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最大值为()f a ,最小值为()f b ;若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最大值为()f b ,最小值为()f a .探究三 函数最大(小)值的实际问题中的应用●活动① 生活问题构建函数模型例7 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:2400,0400()280000,400x x x R x x ⎧-≤≤⎪=⎨⎪>⎩,其中x 是仪器的月产量. (1)将利润表示为月产量的函数()f x ;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:(1)月产量为x 台,则总成本为20000100x +元,从而⎪⎩⎪⎨⎧>-≤≤-+-=)400(,10060000)4000(,2000030021)(2x x x x x x f(2)当0400x ≤≤时,21()(300)25000,2f x x =--+ 当300x =时,max ()25000f x =;当400x >时,()60000100f x x =-是减函数,()60001004002000025000.f x <-⨯=<综上所述:300x ∴=时,max ()25000f x =.即每月生产300台仪器时利润最大,最大利润为25000元.【思路点拨】分段函数模型要注意x 的不同取值范围,所对应的利润求值问题.【答案】(1)2130020000,(0400)()260000100,(400)x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩;(2)每月生产300台仪器时利润最大,最大利润为25000元.同类训练 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少?【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:设售价为x 元,利润为y 元,单个涨价50x -元,销量减少10(50)x -个. 2(40)[50010(50)](40)(100010)10(70)9000.y x x x x x =---=--=--+故当70x =时,max 9000y =所以售价为70元时,利润最大为9000元.【思路点拨】构建一元二次方程求最值.【答案】售价为70元时,利润最大为9000元.【设计意图】 (1)解决实际问题,首先要理解题意,然后建立数学模型转化成数学问题解决.(2)分清各种数据之间的关系是正确构造函数关系式的关键.3. 课堂总结知识梳理(1)通过函数图象,探究函数最大(小)值及几何意义.(2)结合函数单调性求函数最大(小)值.(3)函数最大(小)值在实际问题中的应用.重难点归纳(1)函数最大(小)值概念的生成.(2)求函数最大(小)值.(三)课后作业基础型 自主突破1.若函数()f x x =则( ) A ()f x 的最大值为0,无最小值 B ()f x 无最大值,最小值为0C ()f x 的最大值为+∞,最小值为0D ()f x 的最大值为0,最小值为-∞【知识点】图象应用【数学思想】数形结合思想【解题过程】如图: ()f x x =在(,0),[0,)-∞+∞在0x =处有最小值(0)0f =,无最大值【思路点拨】由图象观察求最值【答案】B 2.若函数26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩,则()f x 的最大值、最小值分别为( ) A 10,6 B 10,8 C 8,6 D 8,8【知识点】一次函数图象性质【数学思想】【解题过程】解:由一次函数单调性26,(1,2]y x x =+∈,7,[1,1]y x x =+∈-,因此26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩在区间[1,2]x ∈-,min max ()(1)6,()(2)10f x f f x f =-===【思路点拨】也可用图象观察的方法.【答案】A3.函数2()2f x x x =+(1)在(2,5]-的最大值,最小值分别是________(2)在(1,2]-的最大值,最小值分别是________【知识点】二次函数图象【数学思想】数形结合思想【解题过程】函数2()2f x x x =+对称轴1x =-(1)(2,5]x ∈-,函数在1x =-处有最小值,min ()(1)1f x f =-=-在5x =处有最大值,max ()(5)35f x f ==(2)函数在(1,2]-上单增,在2x =处有最大值,max ()(2)8f x f ==【思路点拨】给定区间求最值,作图观察.【答案】(1)35,-1;(2)8,无4.函数1()12f x x=--在(2,5]x ∈上的值域是______ 【知识点】函数单调性【数学思想】数形结合思想【解题过程】解:函数11()122x f x x x-=-=--,定义域为(,2)(2,)-∞⋃+∞ 由一次分函数图象知: ()f x 在(2,5]上单减min 4()(5)3f x f ==,函数无最大值【思路点拨】可用定义法证明函数单调性,也可分析法2y x =-在(2,5]为减,12y x =-在(2,5]为增, 112y x=--在(2,5]为减. 【答案】4[,)3+∞ 5. 已知二次函数()f x 满足且()f x 的最大值为8,求此二次函数的解析式【知识点】待定系数法求函数解析式 【数学思想】函数与方程的思想【解题过程】解:设2()(0)f x ax bx c a =++≠ (2)(1)1f f =-=-,()f x 的最大值为824211484a b c a b c ac b a ⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得447a b c =-⎧⎪=⎨⎪=⎩2()447f x x x ∴=-++【思路点拨】也可以用顶点式、两点式求解【答案】2()447f x x x =-++6. ()1f x ax =+在[1,2]上的最大值与最小值之差为2,求a 的值【知识点】一次函数单调性【数学思想】分类讨论思想【解题过程】解:()1f x ax =+当0a =时,()1f x =常值函数,在[1,2]上无单调性当0a >时,()1f x ax =+在[1,2]上单增,min max ()(1)1,()(2)21f x f a f x f a ==+==+ max min ()()(21)(1)2f x f x a a a ∴-=+-+==当0a <时,()1f x ax =+在[1,2]上单减,max min ()(1)1,()(2)21f x f a f x f a ==+==+max min ()()(1)(21)22f x f x a a a a ∴-=+-+=-=⇒=-【思路点拨】一次函数y kx b =+的单调性,0,();0,()k f x k f x ><【答案】2或-2能力型 师生共研7.已知2()2(1)2f x x a x =+-+在区间[1,5]上的最小值为(5)f ,求a 的范围【知识点】二次函数单调性【数学思想】数形结合思想【解题过程】解:2()2(1)2f x x a x =+-+对称轴为1x a =- min ()(5)f x f =2()2(1)2f x x a x ∴=+-+在区间[1,5]单减,称轴为154x a a =-≥⇒≤-【思路点拨】【答案】4a ≤-8.设1()1f x kx x =--,其中1k >,若()f x 在[2,)+∞上有最小值,求k 的值 【知识点】单调性应用【数学思想】【解题过程】解:11()11f x kx kx x x =-=+--,其中y kx =,11y x =-在[2,)+∞均单调递增1()1f x kx x ∴=--在[2,)+∞单增min 3()(2)2f x f k ⇒=⇒= 【思路点拨】性质法判断函数单调性【答案】32k = 探究型 多维突破9.若函数2(),[1,1]f x ax x a x =+-∈-的最大值为178,求a 的值.【知识点】二次函数根的分布【数学思想】数形结合思想、分类讨论思想【解题过程】解:函数2(),[1,1]f x ax x a x =+-∈-当0a =时,()f x x =在[1,1]-上单增,max ()(1)1f x f ==矛盾当0a >时,函数2()f x ax x a =+-图象对称轴102x a =-< max ()(1)1f x f ∴==矛盾当0a <时,函数2()f x ax x a =+-图象对称轴102x a=-> 当112a -≤,即12a ≤-时, 2max14117()()248a f x f a a --=-==,2a ∴=- 当112a ->,即102a -<<时max ()(1)1f x f ∴== 矛盾 综上所述:2a =-【思路点拨】二次函数根的分布问题,结合函数图象及函数在区间上的单调性讨论【答案】2a =-10.建造一个容积为6400立方米,深为4米的长方体无盖蓄水池,池壁的造价为每平方米200元,池底的造价为每平方米100元.(1)把总造价y 元表示为池底的一边长x 米的函数;(2)由于场地原因,蓄水池的一边长不能超过40米,问蓄水池的这个底边长为多少时总造价最低?总造价最低是多少?【知识点】数学建模【数学思想】函数与方程思想【解题过程】解:(1)由已知池底的面积为640016004=平方米,底面的另一边长为1600x 米, 则池壁的面积为:160024()x x⨯⨯+平方米. 所以总造价: 16001600()160000,(0,)y x x x=++∈+∞ (2)由题意知16001600()160000,(0,40]y x x x=++∈ 设12040x x <<≤,则121212121212(1600)160016001600()1600()1600()x x y y x x x x x x x x --=+-+=- 12040x x <<≤,120x x ∴-<,1201600x x ∴<<1216000x x ∴-<,120y y ∴->即12y y >从而这个函数在(0,40]上是减函数,故当40x =时,min 288000y =所以当池底是边长为40米的正方形时,总造价最低为288000元.【思路点拨】函数单调性求最值【答案】边长为40米的正方形时,总造价最低为288000元.自助餐1.函数2()43,[1,4]f x x x x =-+∈,则()f x 的最大值为( )A. -1B.0C.3D.-2【知识点】二次函数求最值【数学思想】数形结合思想【解题过程】解:2()43(1)(3)f x x x x x =-+=--, 如图:max ()(4)3f x f ==【思路点拨】给定区间求最值【答案】C2.函数()21f x x x =-+的值域为( )A.1[,)2+∞B.1(,]2-∞ C.[1,)+∞ D.(0,)+∞ 【知识点】函数值域【数学思想】等价转化思想【解题过程】()21f x x x =-+定义域1[,)2+∞ 21,y x y x =-=在1[,)2+∞上单增 ()21f x x x ∴=-+在1[,)2+∞上单增,∴值域1[,)2+∞ 【思路点拨】性质法判断函数单调性,再求最值【答案】A3. 函数2202,()02,x x x f x x x -≤≤⎧--=⎨<≤⎩,则()f x 的最大值、最小值分别为______ 【知识点】分段函数求最值【数学思想】数形结合思想【解题过程】解:如图所示max ()(2)2f x f ==min ()(2)(0)0f x f f =-==【思路点拨】分段函数在对应区间求一次函数、二次函数的最值【答案】2,04.函数2()45f x x x =-+在[0,]m 上的最大值5,最小值1,则m 的取值范围______【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:22()45(2)1f x x x x =-+=-+如图所示:max ()(0)(4)5f x f f ===min ()(2)1f x f == [2,4]m ∴∈【思路点拨】由值域反推定义域【答案】[2,4]5.已知函数2()22,[5,5]f x x ax x =++∈-(1)当1a =-时,求函数()f x 的最大值和最小值(2)函数()y f x =在区间[5,5]-上是单调函数,则a 的取值范围【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:(1)当1a =-时,22()22(1)1f x x x x =++=++ [5,5]x ∈-,min ()(1)1f x f ∴=-=,max ()(5)37f x f =-=(2)22()()2f x x a a =++-,函数对称轴x a =-函数在区间[5,5]-上是单调函数,5a ∴≤-或5a ≥【思路点拨】二次函数的对称轴与开口方向,决定了函数单调区间6.求函数223,[1,2]y x ax x =--∈的最大值()M a 和最小值()m a .【知识点】二次函数单调性【数学思想】分类讨论思想【解题过程】解:函数2()23f x x ax =--的对称轴是x a = 当1a <时,()f x 在[1,2]上单增,min ()(1)22()f x f a m a ==--=max ()(2)14()f x f a M a ==-=当2a >时,()f x 在[1,2]上单减,max ()(1)22()f x f a M a ==--=min ()(2)14()f x f a m a ==-=当12a ≤≤时,2min ()()3()f x f a a m a ==--= 最大值由区间端点与对称轴决定1 1.5a ≤≤max ()(2)14()f x f a M a ==-=1.52a <≤max ()(1)22()f x f a M a ==--=综上所述:222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩ 【思路点拨】对称轴与区间的位置关系,分类讨论【答案】222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩。
新教材高中数学第三章函数的概念与性质 单调性与最大小值第2课时函数的最大小值学案新人教A版必修第一册
第2课时函数的最大(小)值课程标准(1)理解函数的最大值和最小值的概念及其几何意义.(2)能借助函数的图象和单调性,求一些简单函数的最值.(3)能利用函数的最值解决有关的实际应用问题.新知初探·课前预习——突出基础性教材要点要点函数的最大值与最小值助学批注批注❶函数的最值与值域的关系:(1)函数的值域一定存在,函数的最值不一定存在.(2)若函数的最值存在,则最值一定是值域中的元素.(3)若函数的值域是开区间,则函数无最值;若函数的值域是闭区间,则闭区间的端点值就是函数的最值.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何函数都有最大(小)值.( )(2)如果一个函数有最大值,那么最大值是唯一的.( )(3)函数f(x)取最大值时,对应的x可能有无限多个.( )(4)如果f(x)的最大值、最小值分别为M,m,则f(x)的值域为[m,M].( )2.函数f(x)=1x在[1,+∞)上( )A.有最大值无最小值B.有最小值无最大值C.有最大值也有最小值D.无最大值也无最小值3.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5B.-3,5C.1,5D.-5,34.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是________.题型探究·课堂解透——强化创新性题型 1 利用函数的图象求函数的最值例1 已知函数f(x)={x2−x,0≤x≤22x−1,x>2,求函数f(x)的最大值、最小值.方法归纳图象法求最值的一般步骤巩固训练1 若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为( )A.2B.1C.-1D.无最大值题型 2 利用函数的单调性求最值.例2 已知函数f(x)=2x+1x+1(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.方法归纳函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.在区间[2,6]上的最大值和最小值.巩固训练2 求函数y=2x−1题型 3 求二次函数的最值例3 (1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值.(2)求函数f(x)=x2-2x+2在区间[t,t+1]上的最小值g(t).(3)已知函数f(x)=x2-ax+1,求f(x)在[0,1]上的最大值.方法归纳求二次函数最值问题的解题策略一般都是讨论函数的定义域与对称轴的位置关系,往往分三种情况:(1)定义域在对称轴左侧;(2)对称轴在定义域内;(3)定义域在对称轴右侧.在讨论时可结合函数图象,便于分析、理解.巩固训练3 已知二次函数f(x)=-x2+2ax-a在区间[0,1]上有最大值2,求实数a的值.第2课时 函数的最大(小)值新知初探·课前预习[教材要点]要点≤ ≥ f (x 0)=M 纵坐标 纵坐标[基础自测]1.答案:(1)× (2)√ (3)√ (4)×2.解析:函数f (x )=1x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )单调递减,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.答案:A3.解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.答案:B4.解析:由图象知点(1,2)是最高点,点(-2,-1)是最低点, ∴y max =2,y min =-1. 答案:-1,2题型探究·课堂解透例1 解析:作出f (x )的图象如图:由图象可知,当x =2时,f (x )取最大值2;当x =12时,f (x )取最小值-14.所以f (x )的最大值为2,最小值为-14.巩固训练1 解析:在同一坐标系中,作出函数的图象(如图中的实线部分), 则f (x )max =f (1)=1. 答案:B例2 解析:(1)f (x )在(-1,+∞)上单调递增,证明如下:任取-1<x 1<x 2, 则f (x 1)-f (x 2)=2x 1+1x 1+1−2x 2+1x 2+1=x 1−x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2), 所以f (x )在(-1,+∞)上单调递增. (2)由(1)知f (x )在[2,4]上单调递增, 所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.巩固训练2 解析:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x1−1−2x 2−1=2(x 2−x 1)(x1−1)(x 2−1)由于2<x 1<x 2<6, 得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,f (x 1)>f (x 2) 所以,函数y =2x−1在区间[2,6]上单调递减.x =2时取最大值,最大值是2,在x =6时取最小值,最小值为25.例3 解析:(1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2).图1∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)当t +1<1,即t <0时,函数图象如图1所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1; 当t >1时,函数图象如图2所示,图2图3函数f (x )在区间[t ,t +1]上为增函数,所以最小值为g (t )=f (t )=t 2-2t +2.当t ≤1≤t +1,即0≤t ≤1时, 函数图象如图3所示,最小值为g (t )=f (1)=1,综上所述,g (t )={t 2+1,t <01,0≤t ≤1t 2−2t +2,t >1.(3)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2>12,即a >1时,f (x )的最大值为f (0)=1. 综上f (x )max ={2−a ,a ≤11,a >1.巩固训练3 解析:f(x)=-(x-a)2+a2-a,对称轴为x=a.(1)当a<0时,f(x)在[0,1]上单调递减,∴f(0)=2,即a=-2.(2)当a>1时,f(x)在[0,1]上单调递增,∴f(1)=2,即a=3.(3)当0≤a≤1时,f(x)在[0,a]上单调递增,在[a,1]上单调递减, ∴f(a)=2,即a2-a=2,解得a=2或a=-1,与0≤a≤1矛盾.综上a=-2或a=3.。
3.2.1单调性与最大(小)值第2课时课件(人教版)
−
− −
=(x1-x2)(1)=
∵x1<x2,∴x1-x2<0.当1≤x1<x2≤2时,x1x2>0,1<x1x2<4,
即x1x2-4<0.
∴f(x1)>f(x2),即f(x)在区间[1,2]上是减函数.
(2)由(1)知f(x)的最小值为f(2),f(2)=2+2=4;
整理得y=- +162x-21
000=- (x-4
050)2+307 050.
所以当x=4 050,即每辆车的租金为4 050元时,租赁公司的月收益
最大,最大月收益是307 050元.
五、归纳小结
1.函数最大值、最小值的概念;
2.利用单调性求最大值、最小值的方法.
谢
谢!
3.2.1 单调性与最大(小)值
第2课时 函数的最大(小)值
一、情境引入
画出下列函数的图象,分析图象的变化趋势.
(1)f(x)=-2x+3
(2)f(x)=-2x+3,
x∈[-1,2]
(3)f(x)=x2+2x+2,
x∈[-3,-2]
(4)f(x)=x2+2x+2,
x∈[-2,1]
二、新知探究
探究:根据上面所画函数图象思考下列问题:
(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最
大月收益是多少?
解:(1)当每辆车的月租金为3 600元时,未租出的车辆数为
−
=12,所以此时租出了88辆.
(2)设每辆车的月租金为x元,租赁公司的月收益为y=ቀ −
【教案】函数的单调性(第2课时)教学设计人教A版(2019)选择性必修第二册
第五章一元函数的导数及其应用《5.3.1 函数的单调性》教学设计第2课时◆教学目标1.理解可导函数的单调性与其导数的关系;2.能够利用导数确定函数的单调性以及函数的单调区间;3.能够利用函数的单调性解决有关问题.◆教学重难点◆教学重点:利用导数确定函数的单调性以及函数的单调区间.教学难点:含参函数的单调性以及逆向求参问题.◆课前准备PPT课件.◆教学过程【新课导入】问题1:阅读课本第87~89页,回答下列问题:(1)本节将要探究哪类问题?(2)本节探究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,并在本节课中回答相应问题.预设的答案:(1)本节课主要学习函数的单调性;(2)学生已经具有导数概念、导数几何意义、导数计算、函数的单调性等相关的数学概念知识,对函数的单调性有一定的认识,对相应导数的内容也具有一定的储备.函数的单调性是函数性质中的一个重要性质,学生在必修一中已经学习了函数单调性的内容,如利用函数图象、单调性定义来研究函数的单调性,在学习导数的基础上利用导数相关知识研究函数单调性是导数的一个重要应用,也为下一节学习函数的极值打下基础,因此,本节内容具有承上启下的作用.在学习过程中,注意特殊到一般、数形结合、转化与化归的数学思想方法的渗透.问题2:函数f (x)的单调性与导函数f ′(x)正负的关系如何?师生活动:学生思考后回答.预设的答案:定义在区间(a ,b )内的函数y =f (x ):f ′(x )的正负 f (x )的单调性 f ′(x )>0 单调递增 f ′(x )<0单调递减问题师生活动:学生思考后回答,教师完善. 预设的答案:第1步:确定函数的定义域; 第2步:求出导数f ′(x )的零点;第3步:用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.设计意图:复习前一节课的知识,便于学生更好地学习和理解本节课的知识.发展学生数学抽象、直观想象、数学建模的核心素养.【探究新知】知识点1:三次函数的单调性二次函数是一类重要的函数,而三次函数的导函数是二次函数,所以三次函数也是一类特殊的重要函数,三次函数32()(0)f x ax bx cx d a =+++≠的单调性如何呢?这里我们不妨以一具体的三次函数为例进行研究:求函数3211()2132f x x x x =--+的单调区间.师生活动:让学生按步骤求解.教师完善.预设的答案:函数32()2132f x x x x =--+的定义域为R .对()f x 求导数,得2()2(1)(2)f x x x x x ==+'---. 令()0f x '=,解得1x =-或2x =.1x =-和2x =把函数定义域划分成三个区间,()f x '在各区间上的正负,以及()f x 的单调性如表所示.x (1)-∞-,1-(12)-,2 (2)+∞,+0 -0 + ()f x 单调递增13(1)6f -=单调递减7(2)3f =-单调递增设计意图:通过典型例题的分析和解决,帮助学生熟练利用导数研究函数单调性和单调区间的步骤.发展学生数学运算、直观想象和数学抽象的核心素养.知识总结:三次函数的单调性情形可以有四类:以函数y =x 3为代表的,在整个定义域内单调递增;以函数y =-x 3为代表的,在整个定义域内单调递减;以本例为代表的先增后减再增;相应地函数3211()(21)32f x x x x =---+先减后增再减.知识点2:对数函数与幂函数的增长快慢情况我们知道底数大于1的对数函数与指数大于0的幂函数在(0)+∞,上都是单调递增的,那么它们的增长速度是否一样呢?下面来研究对数函数ln y x =与幂函数3y x =在区间(0)+∞,上增长快慢的情况. 对数函数ln y x =的导数为10((0))y x x'=>∈+∞,,所以ln y x =在区间(0)+∞,上单调递增.当x 越来越大时,1y x'=越来越小,所以函数ln y x =递增得越来越慢,图象上升得越来越“平缓”,如图(1).幂函数3y x =的导数为230((0))y x x ∈'=>+∞,,所以3y x =在区间(0)+∞,上单调递增.当x 越来越大时,23y x '=越来越大,函数3y x =递增得越来越快,图象上升得越来越“陡峭”,如图(2).结论:一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓”. 【想一想】判断正误(正确的打“√”,错误的打“×”)(1)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( ) (2)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( ) 师生活动:学生思考后回答,教师完善.预设的答案: (1)× 切线的“陡峭”程度与|f ′(x )|的大小有关,故错误. (2)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.【巩固练习】例1设10()ln ()1x f x x g x x>==-,,,两个函数的图象如图所示.判断()f x ,()g x 的图象与1C ,2C 之间的对应关系.师生活动:学生分组讨论,每组派一代表回答,教师完善.预设的答案:因为1()ln ()1f x x g x x ==-,,所以211()()f x g x x x''==,.当1x =时,()()1f x g x ''==; 当01x <<时,()()1g x f x ''>>; 当1x >时,0()()1g x f x ''<<<.所以,()f x ,()g x 在(0)+∞,上都是增函数.在区间(01),上,()g x 的图象比()f x 的图象要“陡峭”;在区间(1)+∞,上,()g x 的图象比()f x 的图象要“平缓”. 所以,()f x ,()g x 的图象依次是图中的2C ,1C .设计意图:通过特例,体会函数增长快慢与导数之间的关系,发展学生直观想象、数学抽象、数学运算和数学建模的核心素养.总结:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓”.例2 设g (x )=ln x -ax 2+(a -2)x ,a <0,试讨论函数g (x )的单调性.师生活动:让学生先求函数的导数,然后思考能否通过解不等式得出函数的单调性.教师完善.预设的答案:先对原函数求导得1()2(2)(1)(21)g x ax a x ax x x=-+-=-+-'(x >0),下面需要对a 分类讨论得函数g (x )的单调性.(1)当a <-2时,∵112a -<,∴()(21)()0a x x a g x x =-+->'等价于1()(21)0x x a +->,易得函数g (x )在1(0,)a -和1(,)2+∞上单调递增,同理可得在11(,)2a -上单调递减;(2)当a =-2时,21()0(2)x g x x-'=≥恒成立,∴函数g (x )在(0,+∞)上单调递增;(3)当-2<a <0时,∵112a ->,∴1()(21)()0a x x a g x x =-+->'等价于1()(21)0x x a +->,易得函数g (x )在1(0,)2和1(,)a -+∞上单调递增,同理可得在11(,)2a -上单调递减.设计意图:通过典型例题的分析和解决,帮助学生体会含参函数的求导问题,发展学生数学运算,直观想象和数学抽象的核心素养.方法总结:利用导数研究含参函数f (x )的单调区间的一般步骤: 第1步:确定函数f (x )的定义域; 第2步:求出导数f ′(x )的零点;第3步:分析参数对区间端点、最高次项的系数的影响,以及不等式解集的端点与定义域的关系,恰当确定参数的不同范围,并进行分类讨论;第4步:在不同的参数范围内,解不等式f ′(x )>0和f ′(x )<0,确定函数f (x )的单调区间.练习:教科书P 89练习1、2设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养.【课堂总结】1.板书设计:5.3.1 函数的单调性(第2课时) 新知探究巩固练习 知识点1:形如32()(0)f x ax bx cx d a =+++≠的函数的单调性例1知识点2:函数的变化快慢与导数的关系例2 2.总结概括:三次函数的单调性;自然对数函数与幂函数y =x 3的增长快慢情况;含参函数的单调性问题与分类讨论.师生活动:学生总结,老师适当补充.3.课堂作业:教科书P 97习题5.32教科书P 89练习3【目标检测设计】1.若函数e (si ()n )x f x x a =+在区间,22⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是( )A .[2,)+∞B .(1,)+∞C .[1,)+∞D .(2,)+∞设计意图:进一步巩固函数的单调性与导数的符号关系,恒成立问题的求解模式. 2.试求函数f (x)=kx -ln x 的单调区间.设计意图:进一步巩固含参函数的单调性的求解方法以及分类讨论思想的应用.3.已知a ∈R ,函数()()32634f x x x a x =-+-.(1)若曲线()y f x =在点()()3,3f 处的切线与直线30x y -=垂直,求a 的值; (2)若函数()f x 在区间()1,4上单调递减,求a 的取值范围.设计意图:进一步巩固导数的几何意义以及根据函数的单调性如何求参数范围的方法. 参考答案:1.Cππ()e (sin ),,22x f x x a x ⎛⎫=+∈- ⎪⎝⎭,()e (sin os 'c )xf x x x a ∴=++.函数()e (sin )x f x x a =+在区间ππ,22⎛⎫- ⎪⎝⎭上单调递增,ππ,,()02'2x f x ⎛⎫∴∀∈-≥ ⎪⎝⎭,即sin cos 0x x a ++≥,得πsin cos 24a x x x ⎛⎫≥--=-+ ⎪⎝⎭. 当ππ22x -<<时,π221,14x a ⎛⎫-≤+<∴≥ ⎪⎝⎭,∴实数a 的取值范围是[1,)+∞.故选C .2.解:函数f (x)=kx -ln x 的定义域为(0,+∞),f ′(x)=k -11kx x x-=. 当k ≤0时,kx -1<0,∴f ′(x)<0,则f (x)在(0,+∞)上单调递减. 当k >0时,由f ′(x)<0,得10kx x -<,解得0<x <1k; 由f ′(x )>0,得10kx x ->,解得x >1k. ∴当k >0时,f (x )的单调递减区间为1(0,)k ,单调递增区间为1(,)k+∞.综上所述,当k ≤0时,f (x )的单调递减区间为(0,+∞);当k >0时,f (x )的单调递减区间为1(0,)k,单调递增区间为1(,)k +∞.3.解:(1)因为()231212'3x x x a f =-+-,所以曲线()y f x =在点()()3,3f 处的切线斜率()'3273612333k f a a ==-+-=-. 而直线30x y -=的斜率为13,则333a -=-,得2a =.(2)由()f x 在()1,4上单调递减,得()2'3121230f x x x a =-+-≤在()1,4上恒成立,即244a x x ≥-+在()1,4上恒成立.又()1,4x ∈时,2444y x x =-+<,所以4a ≥, 所以a 的取值范围是[4,)+∞.。
3.2.1单调性与最大(小)值教学设计-023-2024学年高一上学期数学人教A版(2019)必修一
课堂教学设计学科:高一数学姓名:课题:3.2.1 单调性与最大(小)值(第二课时)课型:新授课教学背景分析(一)课题及教学内容分析本节课是新课标人教A版(2019)必修1中第三章函数的性质之函数的单调性和最大(小)值的第2课时,也是对函数性质的进一步研究。
函数的最值问题对于学生来说并不陌生,初中已经学习了求二次函数的最大(小)值的问题。
本节在函数的单调性之后,目的在于引导学生用单调性探究函数的最值问题,同时对解决日常生活中的最值问题起着重要作用。
通过本节课的学习,可以让学生理解函数最值的定义和几何意义,进一步加深对函数性质的理解,同时,对于常见题型的研究,也将数学结合和分类讨论思想充分体现,对培养学生直观想象、数学建模等核心素养都具有重要意义。
(二)学生情况分析现阶段大部分学生学习的主动性较差,且随着高中数学难度的加大,学习信心不足。
通过对常见函数的单调性问题的学习,找到初中知识和高中知识的衔接点,从特殊到一般,再通过类比,使学生更容易掌握新知识。
因此,学生已经具备了探索、发现、研究函数单调性的基础,通过问题引导,使学生独立思考、大胆尝试和灵活应用,从中体会类比、归纳、转化等数学思想。
学习目标1.借助函数的单调性,结合函数图象,形成函数最大(小)值的概念及几何意义。
2.在最值概念的形成过程中,体会到以具体到抽象,从感性到理性的认知过程以及从特殊到一般的研究方法领会数形结合的数学思想。
教学重点和难点1.教学重点:抽象概括函数最大(小)值的定义,能利用单调性求一些函数最值2.教学难点:函数最大(小)值形式化定义的形成与理解教学资源和教学方法采用多媒体和黑板结合,创设情景,从具体函数图像引入新课。
以学生为主体,通过问题衔接,引导学生思考探究学习。
教学过程(第二课时)教学环节教师活动学生活动设计意图教师个人二次备课环节一复习回顾引出课题问题1:上节课我们研究了函数的单调性,请叙述单调性的定义,并回答单调性证明的一般步骤。
1.3.函数的单调性与最大(小)值第2课时
例1
常见的函数单调性----一次函数
(1)一次函数y=2x+1在R上是 (2)一次函数y=-3x+2在R上是 (填增,减函数)
函数。 函数。
对于一次函数y=kx+b的单调性:
(1)当k>0时,函数在R上是增函数 (2)当k<0时,函数在R上是减函数
例2
常见的函数单调性----二次函数
(-∞,3] y x2 6 x 减区间是_____________ (1)函数的 y 2 x2 3x 1,[0, 2] 减区间是______________ , [¾,2] (2)函数的 [0,¾] 增区间是 ____________。
,则f(x)在区间D上是减函数.
基础知识梳理
2、单调区间的定义 若函数f(x)在区间D上是 增函数 或 减函数 ,则 称函数f(x)在这一区间上具有(严格的)单调性, 区间D 叫做f(x)的单调区间.
3、函数单调性的判断方法 (1)依据已知函数的单调性判断。如一次函数、 二次函数、反比例函数,指数函数,对数函数等. (2)依据函数的图象. (3)依据单调性的定义. (4)利用复合函数的单调性法则(同增异减).
4 = 1-a 4 ≤ 1-a
注意:1.已知函数的单调性求参数的取值范围,要注意数形结合思 想,采用逆向思维。 2,求函数增减区间要求较完善的准确的最大区间,该函数可 以在这个最大区间内的所有非空子集区间里为增减函数。
1 例5、讨论函数f(x)= x + x 在(0,+∞) 上的单调性. 解:设 0 <x1 < x2 -(x1 –x2) (x1 x2 –1) 1 1 则 f (x1) – f ( x2) =(x1 - x2)+ x1 x2 = x1·2 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的最大(小)值教学设计
【课标解读】
1.知识目标:理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质.2.能力目标:理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质.培养学生自主学习的能力,以及勇于探索、严谨求学的科学态度。
3.情感目标:利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性.
【教材分析】
《函数的最值》是高中数学必修一第一章第三节的内容。
在此之前,学生已学习了利用定义证明函数的单调性,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是求函数值域,解决恒成立问题的基础。
重点是利用函数单调性求函数最值,以及与二次函数有关的最值的求解及应用。
难点是有关求最值时的分类讨论问题。
【学情分析】
在教学过程中,教师创设情景,揭示课题,质疑答辩,排难解惑,通过教师的启发点拨,学生的不断探索,逐步解决求函数的最值问题。
整个教学过程使学生主动参与、积极思考、探索尝试;让学生体验到了学习数学的乐趣,培养学生自主学习的能力以及严谨的科学态度,养成勇于探索、乐于实践的学风。
【教学目标】
知识与技能:
1.通过生活中的例子帮助学生理解函数最值的定义及其几何意义。
2.学会应用函数的单调性求解函数的最值或值域。
过程与方法:
1.通过本节课的教学,渗透数形结合、分类讨论的数学思想,对学生进行辩证唯物主义的教育。
2.通过探究与活动,培养学生合作探究、自主学习的能力。
情感与态度:
1.通过本节课的教学,使学生能结合函数的单调性求函数的最值。
2.通过生活实例感受函数单调性对函数最值的影响,培养
学生的识图能力和分类讨论的能力,养成科学严谨的求学态度,使之成为一种习惯。
【教学过程】
(一)问题情境.
1.引入: 喷泉喷出的抛物线型水柱到达“最高点”后
便下落,经历了先“增”后“减”的过程,从中我们发现单调性与函数的最值之间似乎有着某种“联系”,让我们来研究——函数的最大值与最小值。
2.课堂探究:
探究点1 函数的最大值: 观察下列两个函数图象:
思考1
高点B,也就是说,这两个函数的图象都有最高点.
思考2 设函数y=f(x)图象上最高点的纵坐标为M,则对函数
定义域内任意自变量x,f(x)与M 的大小关系如何?(学生回答)
【解答】 f(x)≤M
(二)深入学习
最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实
数M 满足:
(1)对于任意的x ∈I ,都有f(x)≤M;
(2)存在x 0∈I ,使得f(x 0) = M
那么,称M 是函数y=f(x)的最大值
y
图2
请同学们仿此给出函数最小值的定义
最小值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:
(1)对于任意的x ∈I ,都有f(x)≥M;
(2)存在x 0∈I ,使得f(x 0) = M
那么,称M 是函数y=f(x)的最小值
注意:1、函数最大(小)值首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ;
函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).
(三) 典例讲解:
例1.求函数12
)(-=x x f 在区间[2,6]上的最大值和最小值.
(四)探究创新:
求函数 的最大值.
例2.求下列函数的最值.
(1) (2) (五)跟踪练习:
(六)课堂小结:
利用函数单调性判断函数的最大(小)值的方法 :
1. 利用图象求函数的最大(小)值
2.利用二次函数的性质(配方法)求函数的最大(小)值 16(),[2,10]f x x x x =+∈2();
f x x =2()21,[0,3)
f x x x x =--∈.
]1,1[22)()3(2上的最小值在求函数-+-=ax x x f ][)[][).
()(1,3)(3,22)(0,2)1(,
32)(2t g x f t t x x f x x f x x x f x 的最小值时,求)当(的最值;
时,求)当(的最值;
时,求当已知二次函数+∈-∈-∈+-=
3.利用函数单调性的判断函数的最大(小)值
(1)如果函数y=f(x)在区间[a,b]上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b) ;
(2)如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
(七)课后练习
教材39页A组5、B组3.
(八)板书设计。