数学建模与数学实验

合集下载

《数学建模与数学实验》

《数学建模与数学实验》
2
建模实例分析
通过分析和学习一些优秀的数学建模实例或论文。使学生初步了解数学建模的一般流程,对使用数学知识解决实际问题有较直观的感受,在这个过程中激发学生想自己动手尝试的实践热情。
3
论文写作指导
指导学生正确的论文结构以及书写要求,使学生初步体验规范的学术研究过程。
●“科目实施”
1
教学组织形式
规模:一般15—20个人的规模开展教学活动
1.用数学语言描述实际现象的“翻译”能力。
2.综合应用已学过的数学知识,对问题进行分析处理的能力。
3.想象力和洞察力。进而提高学生的综合素质和创新能力。
4
活动总量
共有超过40个专题,可供高一高二的学生选择,以学期为单位,共4期。学生每学完1期,要求提交一片独立完整的数学建模小论文。
●“科目目标”
1
知识与技能
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
4
教学目标
设计原则和要求
1.教学目标要注重结合基础教材内容。
2.教学目标要注重对规律的总结,授之以渔。
3.教学目标要注重多样性和开放性。
4.教学目标的设计要从学生的实际水平出发,对于高一高二的学生,所能够使用的数学模型多局限于初等数学模型,因此在制定面向大多数学生的实际情况教学目标时要注意这方面的考虑,选取适合学生的材料和内容。
4
实施要求和德育思考
1.通过多种建模方法的培训和大量实例的分析,提高学生学习数学的兴趣与热情。
2.体会应用数学的广泛应用,感悟学有所用的成就感。
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模及数学实验

数学建模及数学实验

握相关学科的基本理论和知识,以便更好地进行数学建模和实验。
02 03
提高计算机技能
在现代数学建模和实验中,计算机技能尤为重要。建议学习者提高自己 的计算机编程、算法设计和数据分析能力,以便更高效地处理大规模数 据和复杂模型。
关注前沿动态
随着科学技术的发展,新的数学建模和实验方法不断涌现。建议学习者 关注前沿动态,了解最新的研究进展和应用案例,以便更好地把握学科 发展方向。
03
数学实验的基本方法
数值计算实验
数值计算实验是数学实验中的 一种重要方法,它通过数值计
算来求解数学问题。
数值计算实验通常使用数值计 算软件,如MATLAB、Python 等,进行数学公式的计算和模
拟。
数值计算实验可以用于解决各 种数学问题,如微积分、线性 代数、概率统计等。
数值计算实验的优点是能够快 速得到近似解,并且可以通过 调整参数来观察不同情况下的 结果。
人工智能与大数据分析
人工智能和大数据技术的发展将为数学建模和数学实验提 供更丰富的数据资源和更高效的技术手段,推动其进一步 发展。
复杂系统与多学科协同
面对复杂系统的挑战,需要多学科协同合作,共同开展数 学建模和数学实验研究,以解决实际问题。
05
结论
对数学建模和数学实验的总结
数学建模与数学实验的关系
数学建模和数学实验是相辅相成的。数学建模是利用数学方法解决实际问题的过程,而数学实验则是通过实验手段验 证数学理论或解决数学问题的方法。在实际应用中,数学建模和数学实验常常相互渗透,共同推动问题的解决。
应用领域
数学建模和数学实验在各个领域都有广泛的应用,如物理学、工程学、经济学、生物学等。通过建立数学模型和进行 数学实验,可以深入理解各种现象的本质,预测其发展趋势,为实际问题的解决提供有力支持。

数学实验与数学建模(校本教材)

数学实验与数学建模(校本教材)

x x x + + = 60
11
12
13
x x x + + = 80
21
22
23
②各销地运进的数量应等于其当地预测的销售量,即
x x + = 50
11
21
x x + = 50
12
22
x x + = 40
13
23
③从各产地运往各销地的数量不能为负值,即
x ≥ 0(i = 1,2; j = 1,2,3) ij
400
A2
400
700
300
问每个产地向每个销地各发货多少,才能使总的运费最少? 解 (1)在该问题中,所要确定的量是各产地运往各销地的香蕉数量,即决策变量是运输量。 设 Xij(i=1,2; j =1,2,3)分别表示由产地 Ai 运往销地 Bi 的数量。
(2)在解决问题的过程中,要受到如下条件限制,即约束条件: 1各产地运出的数量应等于其产量,即
a C x C x C x b ≤
+
+ ... +

n
1n 1
2n 2
mn n
n
x1 + x2 + ... + xm = 1
xi ≥ 0,(i = 1,..., m)
d x d x 并使目标函数 S =
+ ... +
最小。
11
mm
一、 线性规划问题数学模型的一般形式和标准形式
上面我们建立了经济领域中常见的实际问题的数学模型,尽管这些实际问题本身是多种多样的,
42
的精确在允许的范围内。
数学实验与数学建模(校本教材)

《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述

《数学建模与数学实验》电子课件-赵静、但琦 第12讲 数据的统计分析与描述

n
p( x1 , 1 , k ) p( x2 , 1 , , k ) p( xn , 1 , k )
p( xi ,1 , k )
i 1
使L(1,,k ) 达到最大,从而得到参i数 的估计ˆi 值 .此估计值叫极大似然估计值.函数
L(1,,k ) 称为似然函数.
求极大似然估计值的问题,就是求似然函数L(1,,k ) 的最大值的问题,则
统计的基本概念 参数估计 假设检验
3
一、统计量
1、表示位置的统计量—平均值和中位数
平均值(或均值,数学期望) :X1 n
ni1
Xi
中位数:将数据由小到大排序后位于中间位置的那个数值.
2、表示变异程度的统计量—标准差、方差和极差
标准差:s[n11i n1(Xi
1
X)2]2
它是各个数据与均值偏离程度的度量.
数学建模与数学实验
数据的统计描述和分析
2021/7/31
后勤工程学院数学教研室
1
实验目的
1、直观了解统计基本内容。 2、掌握用数学软件包求解统计问题。
实验内容
1、统计的基本理论。 2、用数学软件包求解统计问题。 3、Matlab数据统计 4、实验作业。
数 据 的 统 计 描 述 和 分 析
2021/7/31
若 X ~N ( 0, 1) , Y ~ 2( n) , 且 相 互
独 立 , 则 随 机 变 量
TX Y
n
服 从 自 由 度 为 n的 t分 布 , 记 为 T ~t( n) . t分 布 t( 20) 的 密 度 函 数 曲 线 和 N ( 0, 1) 的
曲 线 形 状 相 似 .理 论 上 n 时 , T ~t( n) N ( 0, 1) .

数学建模与实验教学大纲

数学建模与实验教学大纲

数学建模与实验课程教学大纲课程名称:数学建模与实验(Mathematical Modelling and Experiments)课程性质:选修课程代码:FN116120B学时/学分:48/3开课单位:理学院先修课程:解析几何、数学分析、高等代数、概率论与数理统计、常微分方程适用专业、年级:数学与应用数学和信息与计算科学、三年级评分方式:平时出勤、作业(30%),命题论文(课程设计)(20%),结业考试(50%)一、课程的性质、目的与任务“数学建模与实验”课程是数学与应用数学和信息与计算科学等专业学生的专业基础选修课程,是一门充分应用其它各数学分支的应用类课程,其主要任务不是“学数学”,而是学着“用数学”,是为培养善于运用数学知识建立实际问题的数学模型,从而善于解决实际问题的应用型数学人材服务的。

从这个意义上讲,本课程的开设将对提高广大学生优良的数学素质和出色的工作能力,开展创新教育和素质教育等诸方面起到重要作用,其发展潜力巨大,前景十分广阔。

通过本课程的学习,使学生较为系统的获得利用数学工具建立数学模型的基本知识、基本技能与常用技巧,并使用数学软件包解答问题的能力,培养学生的抽象概括问题的能力,用数学方法和思想进行综合应用与分析问题的能力,并着力导引实践—理论—实践的认识过程,培养学生辩证唯物主义的世界观。

根据整个教学计划的内容安排,本课程将主要介绍微分和积分模型,运筹学模型,微分方程模型和概率统计模型这四类常见数学模型中的较基本、较简单的部分,以及如何使用数学软件包求解,使学生对数学建模的基本想法与做法有一个较全面的初步的了解,为应用所学数学知识解决实际问题奠定一个较好的基础。

二、教学基本要求1.对相关课程内容的基本要求由于本课程的特点,对学生的基本数学基础有下列要求:熟练掌握常微分方程的基本内容,概率论与统计分析基础,运筹学中的线性规划、目标规划的初步知识,图论基础知识、决策论、存贮论与排队论初步等知识。

数学建模与实验-比例建模

数学建模与实验-比例建模

比例建模比例是最基本也是最常用的数学建模方法之一. 在实际应用领域和理论推导过程中, 比例关系往往发挥着至关重要的作用. 例如牛顿第二定律ma F =, 微分公式dx x f x df )()('=等等.一、比例的定义变量y 与x 成比例(x y ∝):)0(>=k kx y . 显然, 比例关系具有反身性, 对称性, 传递性:x x ∝,y x x y ∝⇔∝, z x z y y x ∝⇒∝∝,.比例关系还可推广, 如x e y x y x y ∝∝∝,ln ,α.一般地,)(x f y ∝.实际应用举例:导数: 函数的增量与自变量的增量之比的极限x x f x f ∆∆/)()(=', 当导数大于零时, 在自变量很小时可近似地认为函数的增量与自变量的增量成比例.间谍照片经翻拍, 成为胶片上芝麻大的一点, 剪下后便于隐藏. 其中图形的大小关系显然要利用比例来计算. (华盛顿特区间谍博物馆)生产队的分配比例: 拿1万斤粮食分配给社员家庭, 其中30%按人口比例分配, 70%按工分比例分配, 每家应得的粮食斤数.二、比例的几何表示y 与x 成比例, 即0,>=k kx y , y 的图形为xy 坐标系中过原点的直线. 若)(x f y ∝, 在坐标系中横轴表示f (x ), 纵轴表示y , 这时y 的图形也为直线. 下图为25.0x y =的图形: 注: 比例的图形为直线, 但图形为直线的量未必成比例. 例如42+=x y , y 与x 并不成比例. 但是, 4-y 与x 成比例.著名公式中的比例关系Hooke's law: F = kS (虎克定律: 弹力与形变成正比) Newton's law: F = ma Ohm's law: V = iRBoyle's law: V = k /p (玻尔定律: 常温下一定量的气体体积与压强成反比, 即与压强的倒数成正比)Einstein's theory of relativity: E = c 2MKepler's third law: T = cR 3/2, 开普勒第三定律:T 为行星绕太阳运行的周期, R 为行星到太阳的平均距离.例1 以著名的开普勒第三定律(Kepler's third law)为例进行讨论. 1601年, 德国天文学家Johannes Kepler 成为Prague 天文台的主任. Kepler 曾帮助Tycho Brahe 收集了13年的火星相对运动的资料. 到了1609年, Kepler 建立了他的前两个定律:1. 每个行星沿一个椭圆运动, 太阳位于此椭圆的一个焦点上.2. 对于每个行星, 太阳到此行星的直线在相同的时间里扫过相同的面积.Kepler 花费了许多年推导了这两个定律, 并进而得到了上述的第三定律, 此定律把行星的轨道运行周期和到太阳的平均距离联系了起来. 以下是1993年世界年鉴(World Almanac)给出的资料:表1 行星的轨道周期和到太阳的平均距离行星周期T (天) 平均距离R (百万哩) Mercury 水星 88.0 36 V enus 金星 224.7 67.25 Earth 地球 365.3 93 Mars 火星 687.0 141.75 Jupiter 木星 4331.8 483.80 Saturn 土星 10760.0 887.97 Uranus 天王星 30684.0 1764.50 Neptune 海王星 60188.3 2791.05 Pluto 冥王星90466.83653.90以2/3R 为横坐标, T 为纵坐标, 用Matlab 画出其图形(编制程序为period1.m)如下:可见各点基本上是在过原点的直线2/3cR T =上, 由于各点相对距离相差较大, 前四个点重叠在一起. 把上述方程两边同取对数, 改写为等价的形式R c T ln 23ln ln +=,其图形相当于上述图形中坐标刻度向原点压缩, 在画出上述图形的程序中把画图命令plot(R.^(3/2), T)改为loglog(R.^(3/2), T)即可. 图形如下. 各点仍基本在一条直线上, 体现了ln T 和ln R 间的线性关系, 但直线不过原点, 因为直线在ln P 轴上有截距ln c . c 可用最小二乘法求出为0.4095.若假设αcR T =, 对表1中给出的T 和R 的数据, 用最小二乘法可求出c = 0.4043, α = 1.5016. 这也验证了Kepler 第三定律的正确性.对给定的两组数据{x i }和{y i }, 如何建立它们间的比例关系呢?进行数学实验, 在坐标系中画出点{x i , y i }, 如不是直线或不过原点, 可通过试验, 寻找y 0和函数f (x ), 使{y i - y 0, f (x i )}基本在过原点的直线上, 则有)(0x f y y ∝-. 可供选择的函数类型有)ln(,,ax e x ax a等等.三、比例的应用之一: 几何相似定义: 两个物体称为是几何相似的, 如果在这两个物体的各点之间有一个一一对应, 使得两个物体上所有对应点对距离之比恒为常数.这个常数称为这两个几何相似物体间的比例因子. 若两个物体相似, 其比例因子为k , 则这两个物体的表面积之比为k 2, 体积之比为k 3. 对相似的几何体, 可选取一个所谓特征量纲, 例如, 对圆柱体, 可用其高h , 或底半径r , 直径d , 或底面积S d , 侧面积S c , 表面积S , 或体积V 作为特征量纲. 两个相似几何体的比例因子k 确定后, 不但它们的表面积之比, 体积之比也可得到, 而且所有(不限于两个, 甚至可以是无穷多个)相似几何体的表面积或体积与特征量纲的某次幂的比也为常数. 例如, 若取某个长度l 为特征量纲, 则222'','l l k S S k l l ===, 故有22''l S l S =.由传递性, 对所有相似的几何体, 有常数≡2lS, 2l S ∝.同理有常数≡3lV, 3l V ∝.于是, 如果要考查一个依赖于物体长度, 表面积和体积的函数, 比如),,(V S l f y =,则可通过选择特征量纲, 例如l , 把此函数表为),,(32l l l g y =.例2 从静止的云上落下的雨滴. 假设雨滴从具有足够高度的静止的云上落下, 雨滴在下落过程中受到两个力的作用: 竖直向下的重力F g 和竪直向上的空气阻力F d . 由流体力学的原理知, 可设空气阻力F d 与雨滴的表面积S 和下落速度v 的平方的乘积成正比; 而重力F g 与雨滴的质量m 成正比(假设在涉及的高度内重力加速度为常数), 因此也与其体积V 成正比. 雨滴下落过程中, 随着下落速度v 的增加, 阻力F d 也在增加, 但重力F g 保持不变. 因此下落一段时间后, 阻力F d 与重力F g 达到平衡, 雨滴受到的合力为零, 保持匀速下落. 这时,d g F F =. 再假设所有的雨滴都是几何相似的, 有23,l S l V ∝∝, 从而3/23/2m V S ∝∝. 由于m F ∝g ,23/22v m Sv F ∝∝d , 且d g F F =, 得23/2v m m ∝,化简得6/1m v ∝, 或6/1km v =,即雨滴最终保持匀速下落的速度与其质量的六次方根成正比. 又一解法:0,023/2=-=-==t d g v v km mg F F dtdv, .)2(,0)1(23/2v kmmg k ≥>其中分离变量解得vk m g v k m g m kg t -+=6/16/16/5ln 21, 上式左端趋于无穷大, 并由条件(1), (2)有)(06/1∞→+→-t v k m g ,即在极限状态下,6/1m v ∝.。

数学建模与数学实验的比较

数学建模与数学实验的比较
观点:“所谓高科技就是一种数学技术”
数学建模其实并不是什么新东西,可以说有了 数学并需要用数学去解决实际问题,就一定要用数学 的语言、方法去近似地刻划该实际问题,这种刻划的 数学表述的就是一个数学模型,其过程就是数学建模 的过程。数学模型一经提出,就要用一定的技术手段 (计算、证明等)来求解并验证,其中大量的计算往 往是必不可少的,高性能的计算机的出现使数学建模 这一方法如虎添翼似的得到了飞速的发展,掀起一个 高潮。
建模过程示意图
三、数学模型及其分类
模型
具体模型
直观模型 物理模型 思维模型
抽象模型
符号模型
数学模型的分类:
数学模型
数式模型 图形模型
◆ 按研究方法和对象的数学特征分:初等模型、几何模型
、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模
型、扩散模型等。
◆ 按研究对象的实际领域(或所属学科)分人口模型、
交通模型、环境模型、生态模型、生理模型、城镇规划模型、
水资源模型、污染模型、经济模型、社会模型等。
数学建模实例
1、如何预报人口? 要预报未来若干年(如2005)的人口数,
最重要的影响因素是今年的人口数和今后这 些年的增长率(即人口出身率减死亡率), 根据这两个数据进行人口预报是很容易的。 记今年人口为 ,k年后人口为 xk ,年增长 率为r,则预报公式为:
数学建模 VS
数学实验
什么是数学建模?
数学建模简介
1.关于数学建模
2.数学建模实例
A.人口预报问题 B. 椅子能在不平的地面上放稳吗? C.双层玻璃的功效
3.数学建模论文的撰写方法
一、名词解释
1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。

经比较可得,最后一席位应分给 A 宿舍。

所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。

点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。

数学实验与数学建模课程介绍

数学实验与数学建模课程介绍
目的
数学实验旨在培养学生的动手能 力、创新思维和解决问题的能力 ,加深对数学理论的理解和应用 。
数学实验的方法与步骤
方法
数学实验通常采用观察、猜想、验证 和归纳等方法,通过实验数据的分析 和处理,得出结论和规律。
步骤
数学实验的步骤包括问题分析、建立 数学模型、选择实验方法、进行实验 操作、记录实验数据、分析和解释实 验结果等。
数学实验的应用与案例
应用
数学实验在各个领域都有广泛的应用,如物理、化学、生物 、经济、工程等,可用于解决实际问题、探索未知领域和验 证科学假设。
案例
例如,在物理学中,通过数学实验模拟物体运动轨迹和力学 规律;在经济学中,通过数学实验模拟市场交易和价格形成 机制;在工程学中,通过数学实验优化设计方案和预测结构 稳定性等。
THANKS FOR WATCHING
感谢您的观看
讨论和项目实践等环节。
考核方式
采用平时成绩和期末考试相结合 的方式进行考核,平时成绩包括 实验报告、小组讨论和课堂表现 等方面,期末考试以闭卷形式进
行。
02 数学实验
数学实验的定义与目的
定义
数学实验是一种基于计算机技术 和数学软件,通过实际操作和观 察来探索和验证数学理论、解决 数学问题的方法。
03 数学建模
数学建模的定义与目的
定义
数学建模是指通过数学语言和工具,对实际问题进行抽象、简化,并建立数学 模型的过程。
目的
数学建模旨在利用数学方法解决实际问题,为决策提供科学依据,预测现象, 优化资源配置等。
数学建模的方法与步骤
方法
常用的数学建模方法包括解析法、几何法、图论法、概率统计法等。
对学生的期望与建议
01

论数学建模与数学实验

论数学建模与数学实验
理论广 角
2 0 1 3年 3期 ( 中)
郭佳
( 新 乡职业技术学院;河南 新 乡 4 53 0 0 0 )
摘 要 :本 文l 辋 速 了数 学建模的 内涵及过程 .论述了数 学实验的本质和 内容,讨论分析 了数学建模和数 学实验在教学 中的作用。笔者认 为数学建模与数学 实验
的结合对培养 学生的创新能力 、提 高学生的实践能力、培养 学生的综合素质 意义重大。
一 一

环 。
生学 习基础课程的兴趣 , 也促进 了教师方法 和知识 的更新改造 , 实现了教学内容 、教学 过程 、教学空间的开放 , 完全 打破 了以问题 为起点 ,以结论为终点的封 闭式教学模式 , 构建 了开放式的教学模式 , 促进课堂 向社会 延伸 、向实践延伸、向网络延伸 。m 第 二 ,数 学建模 的着 眼于解决 实 际问 题, 而实际问题往往又成为一个新 的科研课 题, 可通多种数学方法和过 多种途径来进行 解决。在教学活动的过程 中,教师 只要能够 把问题 背景讲述清晰 , 引导学生弄清楚一种 解决问题 的方法和途径 ,学生则可 以继续去 探讨新 的方法和新的途径去构建数学模型 , 也可 以把两种 或两种 以上 的实际问题 归纳 为一类数学模型 。 这样 ,不单在教学活动 中 充分发 挥 了学 生的主体 作用 和教师 的主导 作用 , 活跃了各个教学环节 ,而且更为非常 重要 的是充分挖掘了学生创造 的潜能 , 培养 了他们 的创新精神 , 提高 了其创新能力 , 从 而彻底 改变 了以教材 为 中心 的传统教 学模 式, 真正意义上实现 了以实际问题为 中心的 教学模式 。 第三 , 数学建模过程中强化了实践教学 这一环节。学生通过接触面对实际问题 ,自 己动手亲身设计数学模型 , 就必然要深入了 解实际背景 ,翻阅查 找文献资料 , 使收集各 项数据和计算机模拟及计算结合起来 , 从而 能够真正拓宽 了亲身参与科研项 目的路子 , 并能够把他们 的各项教学、实践活动 ,比如 将毕业实习和毕业设计衔 接起来 ,给学生的 创新能力、创新人格 、创新精神提供 了一个 自我个性展 现的舞 台和机会 。

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

数学建模与数学实验ppt课件

数学建模与数学实验ppt课件

02
通过数学实验,可以发现和解决数学理论中的问题,推动数学
理论的发展和完善。
数学实验在科学、工程、经济等领域有广泛应用,为解决实际
03
问题提供有效的工具和方法。
数学实验的常用工具
MATLAB
一种常用的数学计算软件,具有强大的数值 计算、矩阵运算和图形绘制等功能。
Python
一种通用编程语言,广泛用于科学计算、数 据分析和机器学习等领域。
02
03
相互促进
两者都是为了解决实际问题或探 究数学问题而进行的方法和工具。
数学建模为数学实验提供理论指 导,而数学实验可以验证数学建 模的正确性和有效性。
区别
目的
数学建模的主要目的是建立数学模型,描述实际问题中变 量之间的关系;而数学实验则是通过实验手段来探究数学 规律或验证数学结论。
应用领域
数学建模广泛应用于各个领域,如物理、工程、经济等; 而数学实验则更多应用于数学教育和研究领域。
简化模型
在保证模型精度的基础上,对模型进行必要 的简化。
求解模型
求解方法选择
根据模型的特点选择合适的数值计算方法或解 析解法。
编程实现
利用编程语言实现模型的求解过程。
误差分析和收敛性判断
对求解过程进行误差分析,判断求解方法的收敛性和稳定性。
模型验证与优化
数据拟合与检验
将模型结果与实际数据进行对比,检验模型的准确性和适用性。
问题分析
明确问题定义
对问题进行深入理解,明确问题的目标、约束条件和 相关参数。
收集数据和信息
收集与问题相关的数据和背景信息,为建立模型提供 依据。
确定主要影响因素
分析问题中起决定性作用的关键因素,忽略次要因素。

数学建模与数学实验

数学建模与数学实验

数学建模与数学实验数学建模是指利用一定的数学方法和技巧,对实际问题进行描述、分析和解决的过程。

数学建模是将数学与实际问题相结合的一门学科,在理论研究和实际应用中都具有重要的意义。

而数学实验则是通过实际的实验操作,观测数据,验证数学模型的准确性和可靠性。

一、数学建模数学建模是将实际问题抽象化,建立数学模型,通过数学工具求解问题。

数学建模的基本步骤包括:问题描述,建立数学模型,选择方法解决问题,模型分析和结果验证。

数学建模需要综合运用数学分析、概率统计、优化理论等数学学科知识,对问题进行全面深入的研究。

数学建模在科学研究、工程技术、金融经济等领域有着广泛的应用。

例如,在气象预报中,可以利用数学建模对气象系统进行模拟,预测未来的气象变化;在医学领域,可以通过建立数学模型研究疾病的传播规律,提出有效的防控措施。

二、数学实验数学实验是对数学理论进行验证和实际应用的过程,通过实际操作和数据观测,检验数学模型的有效性和可行性。

数学实验可以帮助研究者理解数学问题的本质,加深对数学知识的理解和掌握。

数学实验通常包括设计实验方案、收集数据、进行数据处理和分析等步骤。

通过数学实验,可以验证数学定理和推论的正确性,检验数学模型的准确性和可靠性。

数学实验是数学研究中重要的一环,可以促进数学理论的发展和应用。

三、数学建模与数学实验的关系数学建模和数学实验是相辅相成的。

数学建模是将实际问题转化为数学问题进行求解,而数学实验则是对数学模型进行检验和验证,使得模型更加符合实际情况。

数学建模离不开数学实验的支持,数学实验则需要数学建模的指导和支持。

在现代科学研究和工程实践中,数学建模与数学实验密切结合,共同推动科学技术的发展。

通过数学建模和数学实验,人们可以更好地理解和解决实际问题,促进科学知识的传播和应用。

总之,数学建模与数学实验是数学研究中不可或缺的两个环节,它们相互交融、相互促进,共同推动数学学科的发展和应用。

数学建模和数学实验的重要性在于将数学理论与实际问题相结合,提高数学研究的实用性和应用价值,为人类社会的发展进步做出贡献。

数学建模与数学实验

数学建模与数学实验

数学建模与数学实验机械工程学院机械设计制造及其自动化1106班刘鹏1105040617实验目的:1,了解数学建模与数学实验的区别:数学建模与数学实验都要用到计算机,但数学建模课是让学生学会利用数学知识和计算机来解决实际问题,而数学实验课侧重于在计算机的帮助下学习数学知识。

一个用数学,一个学数学,两者目标不同。

从内容选材上两者都是从实际出发,而不是从概念出发,但数学建模强调问题的实用,而不是强调普遍性,解决问题本身就是目的,数学实验可以从理论问题出发,也可以由实际问题出发,也可以由实际问题引入,但这个问题一般是比较经典,有较普遍意义。

2,了解数学实验的含义:数学实验是计算机技术和数学软件引用教学后出现的新兴事物,是数学教学体系,内容和方法改革的一项创造性尝试,在国家教育部关于“高等教育面向21世纪教学内容和课程体系改革”计划中,已把数学实验列为高校非数学类专业的数学基础课之一。

数学实验概括的讲包括两部分内容,即“数学的实验”“数学实验应用”。

数学的实验实用计算机及有关的工作软件解决数学问题,数学的实验应用实用计算机及有关的工作软件及数学知识和方法求解其他科学领域的实际问题3,了解数学实验的意义:数学实验是将数学知识,数学建模知识和计算机应用能力三者融为一体,他可以使我们深入的了解数学的基本概念,数字常用数学软件,培养我们应用知识建立数学模型和计算机解决实际问题的能力,使我们对数学软件进行初步的了解,使我们对sin、Cos、tan、cot、sec、csc、fix、ceil、exp、log、conj、imag、real、limit、diff、int、desolve、ezplotfminban 等一些键功能的了解。

实验能容2 编写函数M文件SQRT.M;函数在x=567.889与0.0368处的近似值(保留有效数四位)在指令窗口输入指令edit,打开空白的M文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M即可6 用matlab计算函数在x=-2.1处的值.>> 2-3^x*log(abs(x))ans =1.92618 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.>>syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>>plot(x,y,'mx-')9 用红色.加号连线虚线绘制函数在[-10,10]上步长为0.2的图像.>>syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>>plot(x,y,'r+--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加各种标注.>>syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像>>syms x y t z>> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)15 求极限>>syms x y>> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right')ans =22 求函数y=的导数>>syms x y>> y=(2*x-1)^5+atan(x);>>diff(y)ans =28在区间()内求函数的最值. >> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN30 求不定积分>>syms x y>> y=log(3*x)-2*sin(x);>>int(y)ans =2*cos(x) - x + x*log(3) + x*log(x)31求不定积分>>syms x y>> y=exp(x)*sin(x)^2;>>int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分>>syms x y>> y=x*atan(x)/(1+x)^0.5;>>int(y)Warning: Explicit integral could not be found.ans =int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分>>syms x y>> y=1/exp(x^2)*(2*x-cos(x));>>int(y)Warning: Explicit integral could not be found. ans =int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分>>syms x y>> y=exp(-x)*(3*x+2);>>int(y,0,1)ans =5 - 8*exp(-1)35.计算定积分>>syms y x>> y=(x^2+1)*acos(x);>>int(y,0,1)ans =11/936.计算定积分>>syms x y>> y=(cos(x)*log(x+1));>>int(y,0,1)Warning: Explicit integral could not be found. ans =int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;>>syms y x>> y=(1/(x^2+2*x+2));>>int(y,-inf,inf)ans =pi38.计算广义积分;>>syms x y>> y=x^2*exp(-x);>>int(y,0,+inf)ans =y =NaN>> f='3*x^4-4*x^3+1'>> [x,y]=fminbnd(f,-inf,inf)x = NaNy =NaN>>syms x>> x=-2.1;数学实验学院:机械工程学院专业班级:机设1106姓名:刘鹏学号:1105040617日期:2013年1月6日星期日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模与数学实验实验报告班级: 数学师范153 姓名:付爽学号:1502012060 实验名称: 数列极限与函数极限基础实验基础实验一数列极限与函数极限第一部分实验指导书解读一、实验目的从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。

二、实验使用软件Mathematic 5.0三.实验的基本理论即方法1割圆术中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。

刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。

“割之弥细,所失弥少。

割之又割以至不可割,则与圆合体而无所失矣。

”这几句话明确地表明了刘徽的极限思想。

以nS 表示单位圆的圆内接正123-⨯n 多边形面积,则其极限为圆周率π。

用下列Mathematica 程序可以从量和形两个角度考察数列{nS }的收敛情况:m=2;n=15;k=10;For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正123-⨯n 多边形边长)s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正123-⨯n 多边形面积)r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1];Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ]t=Table[{i,s[i]},{i,m,n}] (数组)ListPlot[t] (散点图)2裴波那奇数列和黄金分割由2110;1;0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。

如果令nn n F F R 11--=,由nF 递推公式可得出11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[5111++⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+=n n n F ; 215limlim 1-==+∞→∞→n nn n n F F R 。

用下列Mathematica 程序可以从量和形两个角度考察数列{nR }的收敛情况:n=14,k=10;For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2; f[i_]:=N[(t1^(i+1)-t2^(i+1))/Sqrt[5],k]; (定义裴波那奇数列通项)rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1];Print[i," ",rn," ",Rn," ",dn]; ]t=Table[{i,f[i-1]/f[i]},{i,3,n}] ListPlot[t] 3收敛与发散的数列数列}{1∑=-n i p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。

4函数极限与数列极限的关系用Mathematica 程序m=0;r=10^m;x0=0; f[x_]=x*Sin[1/x] Plot[f[x],{x,-r,r}] Limit[f[x],x->x0]观察的1sin )(-=x x x f 图象可以发现,函数在0=x 点处不连续,且函数值不存在,但在0=x 点处有极限。

令100,,2,1,/1 ===n n ax n,作函数的取值表,画散点图看其子列的趋向情况k=10;p=25; a[n_]=1/n;tf=Table[{n,N[f[a[n]],k]},{n,1,p}]ListPlot[tf]Limit[f[a[n]],n→Infinity,Direction→1] 分别取不同的数列na (要求0→na),重做上述过程,并将各次所得图形的分析结果比较,可知各子列的极限值均为上述函数的极限值。

对于1sin )(-=x x g ,类似地考察在0=x 点处的极限。

三、实验准备认真阅读实验目的与实验材料后要正确地解读实验,在此基础上制定实验计划(修改、补充或编写程序,提出实验思路,明确实验步骤),为上机实验做好准备。

四、实验思路提示 3.1考察数列敛散性改变或增大n ,观察更多的项(量、形),例如,n 分别取50,100,200,…;扩展有效数字k ,观察随n 增大数列的变化趋势,例如,k 分别取20,30,50;或固定50;或随n 增大而适当增加。

对实验要思考,例如,定义中的指标与柯西准则中的指标间的差异;数列收敛方式;又例如,如何估计极限近似值的误差。

3.2考察函数极限与数列极限的关系改变函数及极限类型,例如,考虑六种函数极限,既选取极限存在也选取极限不存在的例子;改变数列,改变参数观察更多的量,考察形的变化趋势;扩展有效数字k ,提高计算精度。

要对实验思考,归纳数列敛散与函数敛散的关系。

第二部分 实验计划实验主要是从观察数列的敛散性,观察函数值的变化趋势来理解极限的概念,进一步体会实验的准则1.割圆术中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。

“割之弥细,所失弥少。

割之又割以至不可割,则与圆合体而无所失矣。

”这几句话明确地表明了刘徽的极限思想。

以nS 表示单位圆的圆内接正 1 2 3n 多边形面积,则其极限Mathematica 程序可以从量和形两个角度考察数列{nS}的收敛情况:m=2;n=15;k=10;For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正1 23n 多边形边长)s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正1 23n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1];Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图2裴波那奇数列和黄金分割由2110;1;0--+===n n n F F F F F有著名的裴波那奇数列}{n F 。

如果令nn n F F R 11--=,由nF 递推公式可得出11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[5111++⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+=n n n F ; 215limlim 1-==+∞→∞→n nn n n F F R 。

用下列Mathematica 程序可以从量和形两个角度考察数列{nR }的收敛情况: n=14,k=10;For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2; f[i_]:=N[(t1^(i+1)-t2^(i+1))/Sqrt[5],k]; (定义裴波那奇数列通项)rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1]; Print[i," ",rn," ",Rn," ",dn]; ]t=Table[{i,f[i-1]/f[i]},{i,3,n}] ListPlot[t],]251251[5111++⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛+=n n n F ; 215limlim 1-==+∞→∞→n nn n n F F R 。

3.收敛与发散的数列数列}{1∑=-ni p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。

4.函数极限与数列极限的关系用Mathematica程序m=0;r=10^m;x0=0;f[x_]=x*Sin[1/x]Plot[f[x],{x,-r,r}]Limit[f[x],x->x0]观察1xxf的图象可以发现,函数在0=x点处不连续,(-)sin=x且函数值不存在,但在0=x点处有极限。

令100,,2,1=nxan,/1==n,作函数的取值表,画散点图看其子列的趋向情况k=10;p=25;a[n_]=1/n;tf=Table[{n,N[f[a[n]],k]},{n,1,p}]ListPlot[tf]Limit[f[a[n]],n→Infinity,Direction →1]分别取不同的数列n a(要求0→n a),重做上述过程,并将各次所得图形的分析结果比较,可知各子列的极限值均为上述函数的极限值。

对于1x=xg,类似地考察在0=x点处的sin)(-三实验过程与结果设{xn}为实数列,a 为定数,若对任给的正数b,总存在正整数N,使得当n > N 时,有|xn - a|<b,则称数列收敛与a 定数a 称为数列的极限,程序如下:程序结果运行如下:裴波那奇数列和黄金分割1.考察数列敛散性改变或增大n,观察更多的项(量、形),例如,n分别取50,100,200,…;扩展有效数字k,观察随n增大数列的变化趋势,例如,k分别取20,30,50;或固定50;或随n增大而适当增加。

对实验要思考,例如,定义中的指标与柯西准则中的指标间的差异;数列收敛方式;又例如,如何估计极限近似值的误差。

2.考察函数极限与数列极限的关系改变函数及极限类型,例如,考虑六种函数极限,既选取极限存在也选取极限不存在的例子;改变数列,改变参数观察更多的量,考察形的变化趋势;扩展有效数字k,提高计算精度。

要对实验思考,归纳数列敛散与函数敛散的关系。

例:用Mathematica程序m=0;r=10^m;x0=0;f[x_]=x*Sin[1/x]Plot[f[x],{x,-r,r}]Limit[f[x],x->x0]观察1x=xf的图象可以发现,函数在0=x点x)sin(-处不连续,且函数值不存在,但在0=x点处有极限。

令100,,2,1,/1,作函数的取值表,画散点ax=nn==n图看其子列的趋向情况k=10;p=25;a[n_]=1/n;tf=Table[{n,N[f[a[n]],k]},{n,1,p}] ListPlot[tf]Limit[f[a[n]],n→Infinity,Directio n→1]分别取不同的数列a(要求0→n a),重做n上述过程,并将各次所得图形的分析结果比较,可知各子列的极限值均为上述函数的极限值。

相关文档
最新文档