初三二次函数复习教案.doc

合集下载

九年级数学上册22二次函数复习教案

九年级数学上册22二次函数复习教案

第22章二次函数一、复习目标1.理解二次函数的观点;2.会把二次函数的一般式化为极点式,确立图象的极点坐标、对称轴和张口方向,会用描点法画二次函数的图象;3.会平移二次函数y =ax 2(a ≠0)的图象获得二次函数y =a(ax +m)2+k 的图象,认识特别与一般互相联系和转变的思想;4.会用待定系数法求二次函数的分析式;5.利用二次函数的图象,认识二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,认识二次函数与一元二次方程和不等式之间的联系。

6.二次函数的综合应用 二、课时安排 2三、复习重难点掌握二次函数的性质,利用二次函数的图象,认识二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,认识二次函数与一元二次方程和不等式之间的联系,并能和其余知识点进行综合应用。

四、教课过程 (一)知识梳理 二次函数知识点:1. 二次函数的观点:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

2. 二次函数的基本形式(1)二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质:3. ()2y a x h =-的性质: 4. ()2y a x h k =-+的性质: 3.二次函数图象的平移 1. 平移步骤:(1) 将抛物线分析式转变成极点式()2y a x h k =-+,确立其极点坐标()h k ,;(2)保持抛物线2y ax =的形状不变,将其极点平移各处()h k ,,详细平移方法以下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位(3) 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.归纳成八个字“左加右减,上加下减”.4.二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为极点式2()y a x h k =-+,确立其张口方向、对称轴及极点坐标,而后在对称轴双侧,左右对称地描点绘图.一般我们选用的五点为:极点、与y 轴的交点()0c ,、以及()0c ,对于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组对于对称轴对称的点). 画草图时应抓住以下几点:张口方向,对称轴,极点,与x 轴的交点,与y 轴的交点. 5.二次函数2y ax bx c =++的性质(1) 当0a >时,抛物线张口向上,对称轴为2bx a =-,极点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.(2) 当0a <时,抛物线张口向下,对称轴为2bx a=-,极点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.6.二次函数分析式的表示方法(1) 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);(2) 极点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);(3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 7.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点状况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特别状况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,此中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点. 7.二次函数的应用: (二)题型、方法归纳 种类一: 二次函数的平移【主题训练1】(枣庄中考)将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么获得的抛物线的分析式为( )A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3D.y=3(x-2)2-3【自主解答】选A.由“上加下减”的平移规律可知,将抛物线y=3x 2向上平移3个单位所得抛物线的分析式为:y=3x 2+3;由“左加右减”的平移规律可知,将抛物线y=3x 2+3向左平移2个单位所得抛物线的分析式为:y=3(x+2)2+3.归纳:二次函数平移的两种方法1.确立极点坐标平移:依据两抛物线前后极点坐标的地点确立平移的方向与距离.2.利用规律平移:y=a(x+h)2+k 是由y=ax 2经过适合的平移获得的,其平移规律是“h 左加右减,k 上加下减”.即自变量加减左右移,函数值加减上下移.种类二:二次函数的图象及性质【主题训练2】(十堰中考)如图,二次函数y=ax 2+bx+c (a≠0)的图象的极点在第一象限,且过点(0,1)和(-1,0),以下结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.此中正确结论的个数是( )A.5个B.4个C.3个D.2个【自主解答】选B.①∵对称轴在y轴右边,∴- >0,∴ <0,∴a,b异号,∴ab<0,①正确;②把x=0,y=1代入y=ax2+bx+c得c=1,因此二次函数为y=ax2+bx+1; 又∵图象与x轴有两个交点,∴b2-4ac>0,∴b2>4a,②正确;③∵当x=1时,图象在x轴上方,∴a+b+c>0;把x=-1,y=0代入y=ax2+bx+1,得b=a+1,∵图象的张口向下,∴a<0,∴a+b+c= a+a+1+1=2a+2<2,∴0<a+b+c<2,③正确;④∵b=a+1,∴a=b-1,∵0<a+b+c<2,c=1,∴0<b-1+b+1<2,即0<2b<2,∴0<b<1,④正确;⑤当x>-1时,函数图象有部分在x轴上方,与x轴有交点,有部分在x轴下方,因此y>0,y=0,y<0都有可能.因此正确的共有4个,选B.归纳:种类三:二次函数与方程、不等式【主题训练3】(贺州中考)已知二次函数y=ax2+bx+c(a≠0)的图象以下图,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,此中结论正确的选项是.(填入正确结论的序号)【自主解答】∵抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,∴一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,∴b2-4ac>0,即b2>4ac,①是正确的.∵抛物线的张b- =1>0,口方向向上,∴a>0;∵抛物线与y轴的交点在y轴的负半轴,∴c<0;∵对称轴x=2ab-=1,∴b=-2a,∴∴a与b异号,则b<0.∴abc>0,②是正确的.∵抛物线的对称轴x=2a2a+b=0,③是错误的.∵当x=-2时,y=4a-2b+c>0,又∵b=-2a,∴4a-2b+c=4a-2(-2a)+c=8a+c>0,④是错误的.∵抛物线的对称轴为直线x=1,∴在x=-1与x=3时函数值相等,由函数图象可知x=-1的函数值为负数,∴x=3时的函数值y=9a+3b+c<0,⑤是正确的.答案:①②⑤归纳:二次函数与方程、不等式的关系1.二次函数与方程:抛物线y=ax2+bx+c与x轴交点的横坐标知足ax2+bx+c=0.2.二次函数与不等式:抛物线y=ax2+bx+c在x轴上方部分的横坐标知足ax2+bx+c>0;抛物线y=ax2+bx+c在x轴下方部分的横坐标知足ax2+bx+c<0.种类四:二次函数的应用【主题训练4】(武汉中考)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍异的植物分别放在不一样温度的环境中,经过一天后,测试出这栽种物高度的增加状况(如表).由这些数据,科学家推断出植物每日高度增加量y 是温度x 的函数,且这类函数是一次函数和二次函数中的一种.(1)请你选择一种适合的函数,求出它的函数关系式,并简要说明不选择此外两种函数的原因.(2)温度为多少时,这栽种物每日高度增加量最大?(3)假如实验室温度保持不变,在10天内要使该植物高度增加量的总和超出250mm,那么实验室的温度x 应当在哪个范围内选择?直接写出结果.【自主解答】(1)选择二次函数.设抛物线的分析式为y=ax 2+bx+c, 依据题意,得4a 2b c 49,a 1,4a 2b c 41,b 2,c 49,c 49-+==-⎧⎧⎪⎪++==-⎨⎨⎪⎪==⎩⎩解得, ∴y 对于x 的函数分析式为y=-x 2-2x+49.不选此外两个函数的原因:点(0,49)不行能在任何反比率函数图象上,因此y 不是x 的反比率函数;点(-4,41),(-2,49),(2,41)不在同向来线上,因此y 不是x 的一次函数.(2)由(1)得y=-x 2-2x+49,∴y=-(x+1)2+50. ∵a=-1<0,∴当x=-1时y 的最大值为50.即当温度为-1℃时,这栽种物每日高度增加量最大. (3)-6<x<4.归纳:解决二次函数应用题的两步骤1.建模:依据数目关系列二次函数关系建模或许依据图象的形状建模.2.应用:利用二次函数的性质解决问题.(三)典例精讲例题1:(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,假如制作窗框的资料总长为6m,怎样设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们假如改变这个窗户的形状,上部改为由两个正方形构成的矩形,如图2,资料总长仍为6m,利用图3,解答以下问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请经过计算说明.【剖析】(1)依据矩形和正方形的周进步行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,此刻窗户透光面积的最大值变大.【评论】此题考察待定系数法确立二次函数分析式、二次函数性质等知识,解题的重点是求出对称轴与直线BC交点H坐标,学会利用鉴别式确立两个函数图象的交点问题,属于中考常考题型.(四)归纳小结1.指引学生整理掌握本章知识点并娴熟掌握。

最新整理初三数学二次函数复习教案.docx

最新整理初三数学二次函数复习教案.docx

最新整理初三数学教案二次函数复习教案第三十四章《二次函数》复习教案(冀教版九年级下)教学设计思想:这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。

教学目标:1.知识与技能初步认识二次函数;掌握二次函数的表达式,体会二次函数的意义;会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化;会画二次函数,能利用二次函数求一元二次方程的近似解;利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。

2.过程与方法通过利用二次函数的图像解决问题,体会数形结合的数学方法;在学习探索的过程中逐步体会和认识二次函数。

3.情感、态度与价值观体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别;树立主动参与积极探索尝试、猜想和发现的精神;注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。

教学重点:二次函数的图像和性质。

教学难点:二次函数y=的图像及性质;二次函数的应用。

教学方法:讨论法、引导式。

教学安排:1课时。

教学媒体:幻灯片。

教学过程:Ⅰ.知识复习师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片)观看这章的知识整体框架,思考下面的问题:1.你能用二次函数的知识解决哪些问题?2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子?3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题?同学们,想想你们学习本章的收获是__________。

同学们相互讨论,然后师生互动共同探讨上面的问题。

Ⅱ.典型例题例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?要求:(1)请提供四条信息;(2)不必求函数的解析式。

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案第一章:二次函数的基本概念1.1 二次函数的定义解释二次函数的一般形式:y = ax^2 + bx + c强调a、b、c系数的含义和作用1.2 二次函数的图像介绍二次函数图像的特点:开口方向、顶点、对称轴、与y轴的交点等利用图形软件绘制几个典型二次函数的图像,让学生观察和分析1.3 二次函数的性质讨论二次函数的增减性、对称性、周期性等性质引导学生通过图像理解二次函数的性质第二章:二次函数的顶点式2.1 顶点式的定义解释顶点式:y = a(x h)^2 + k强调顶点(h, k)对二次函数图像的影响2.2 利用顶点式求解二次函数的图像和性质引导学生通过顶点式确定二次函数的图像和性质举例说明如何利用顶点式求解最值问题2.3 顶点式的应用讨论顶点式在实际问题中的应用,如抛物线运动、几何问题等给出几个实际问题,让学生运用顶点式解决第三章:二次函数的解析式3.1 解析式的定义解释二次函数的解析式:y = ax^2 + bx + c强调解析式与顶点式的关系3.2 利用解析式求解二次函数的图像和性质引导学生通过解析式确定二次函数的图像和性质举例说明如何利用解析式求解最值问题3.3 解析式的应用讨论解析式在实际问题中的应用,如物理、化学等领域的方程求解给出几个实际问题,让学生运用解析式解决第四章:二次函数的图像与性质4.1 图像与性质的关系讨论二次函数图像与性质之间的关系引导学生通过图像判断二次函数的性质4.2 开口方向与a的关系解释开口方向与a的关系:a > 0时开口向上,a < 0时开口向下举例说明如何通过开口方向判断二次函数的性质4.3 对称轴与顶点的关系解释对称轴与顶点的关系:对称轴为x = h举例说明如何通过对称轴判断二次函数的性质第五章:二次函数的实际应用5.1 实际应用的基本形式讨论二次函数在实际应用中的基本形式举例说明如何将实际问题转化为二次函数问题5.2 利用二次函数解决实际问题引导学生运用二次函数解决实际问题,如最值问题、优化问题等给出几个实际问题,让学生运用二次函数解决5.3 实际应用的拓展讨论二次函数在其他领域的应用,如经济学、生物学等引导学生思考如何将二次函数应用于解决其他实际问题第六章:二次函数的综合应用6.1 二次函数与线性函数的组合解释二次函数与线性函数组合的形式,如y = ax^2 + bx + c 与y = dx + e 的组合强调组合函数的图像和性质6.2 利用综合应用解决实际问题引导学生运用综合应用解决实际问题,如函数交点问题、不等式问题等给出几个实际问题,让学生运用综合应用解决6.3 综合应用的拓展讨论综合应用在其他领域的应用,如物理学、工程学等引导学生思考如何将综合应用应用于解决其他实际问题第七章:二次函数与不等式7.1 二次不等式的定义解释二次不等式的形式,如ax^2 + bx + c > 0强调解二次不等式的方法和步骤7.2 利用图像解决二次不等式问题引导学生通过图像解决二次不等式问题,如找出不等式的解集举例说明如何利用图像解决实际问题7.3 二次不等式的拓展讨论二次不等式在其他领域的应用,如经济学、工程学等引导学生思考如何将二次不等式应用于解决其他实际问题第八章:二次函数的最值问题8.1 二次函数最值的概念解释二次函数最值的概念,如最大值、最小值强调最值与对称轴、顶点的关系8.2 利用顶点式求解最值问题引导学生通过顶点式求解二次函数的最值问题举例说明如何利用顶点式求解实际问题中的最值8.3 最值问题的拓展讨论最值问题在其他领域的应用,如物理学、工程学等引导学生思考如何将最值问题应用于解决其他实际问题第九章:二次函数与几何问题9.1 二次函数与几何图形的关系解释二次函数与几何图形的关系,如圆、椭圆、抛物线等强调二次函数在几何问题中的应用9.2 利用二次函数解决几何问题引导学生运用二次函数解决几何问题,如求解三角形面积、距离问题等举例说明如何利用二次函数解决实际问题中的几何问题9.3 几何问题的拓展讨论几何问题在其他领域的应用,如物理学、工程学等引导学生思考如何将几何问题应用于解决其他实际问题第十章:二次函数的综合训练10.1 综合训练的目的强调综合训练的重要性,提高学生对二次函数知识的综合运用能力引导学生通过综合训练巩固所学知识10.2 综合训练的内容设计几个综合训练题目,包括不同类型的二次函数问题,如图像分析、性质判断、实际应用等让学生在规定时间内完成综合训练题目给予学生综合训练的反馈,指出错误和不足之处重点和难点解析1. 第一章中二次函数的基本概念:理解二次函数的一般形式和系数含义是学习二次函数的基础,对于图像的特点和性质的理解也是解决复杂问题的关键。

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。

2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。

3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。

4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。

5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。

三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。

五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。

二次函数复习教案.doc

二次函数复习教案.doc

二次函数基础知识复习课(教案)一、复习目标1、理解二次函数的概念;2、会把二次函数的一般式转化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象。

3、会用平移二次函数“启(心o)图象得到二次函数y =心_ /疔+ £的图象,了解特殊到一般相互联系和转化的思想。

4、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与X轴的交点坐标和函数的最值。

二、复习重难点:二次函数的图象和特征;二次函数图象及其性质的应用。

三、复习过程:(1)重温二次函数的定义,判断二次函数的方法,并且加以训练。

1、若y =(加—是二次函数,则m二。

2、对于任意实数m,是二次函数。

Ay二(m-1) 2x2B> y二(m+1) x2、Cy= (m2+l) x2D^ y= (m2-l) x2、3、下列函数中,哪些是二次函数?是二次函数,说出它的二次项系数、一次项系数和常数项(1 ) y = S 厂—39 1(2)------------------------------------------- y = — " + 3x函数y = a x 2+ b x c (其中a>b、C为常数)当3、b、C满足什么条件时,(1)它是二次函数;当。

工0时,是二次函数;(2)它是一次函数;当d = o;/?HO 时,是一次函数;(3)它是正比例函数;当° = 0;方工0;(? = 0时,是正比例函数(2)通过几何画板演示,再次总结归纳二次函数各类图象的性质特征。

分别说出特殊的二次函数①y=ax2(2工0)(2)y=ax2 +c (aHO,c 丰 0)③y二a(x-h)2(2工0)④y=a(x-h)2+k (aHO)图象的开口方向、对称轴、顶点坐标、函数的增减性及最值。

(3)通过几何画板体会和理解二次函数图象之间的平移,增进对图形的理解,加以训练。

(4) 训练二次函数一般式转化为顶点式,计算二次函数的对称 轴,顶点坐标,以及与坐标轴的交点坐标。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

九年级数学 第二章二次函数复习课教案 (1)

九年级数学 第二章二次函数复习课教案 (1)

yx OyxO第二章 二次函数复习姓名 【复习目标】1.定义:形如 ( )(一般式)的函数叫做二次函数,其图象是 . 2.图象画法:用描点法,先确定顶点、对称轴、开口方向,再对称地描点(一般取5点). 3、二次函数c bx ax y ++=2的图像和性质a >0a <0图 象开 口 对 称 轴 顶点坐标最 值当x = 时,y 有最值 当x = 时,y 有最 值在对称轴右侧 y 随x 的增大而y 随x 的增大而4. 二次函数c bx ax y ++=2可化成()k h x a y +-=2的形式,其中h = ,k = . 5. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系. 6. 二次函数c bx ax y ++=2中c b a ,,的符号的确定.7、二次函数解析式的二种形式:⑴一般式,⑵顶点式:k m x a y ++=2)(,【课前热身】1.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 2.如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 . 3.二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.1OyxBA4.二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)5、有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),则此抛物线的解析式为 . 6. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( ) A .y =x 2+a B .y = a (x -1)2C .y =a (1-x )2D .y =a (l +x )27. 把一段长1.6米的铁丝围长方形ABCD ,设宽为x ,面积为y .则当y 最大时,x 所取的值是( )A .0.5B .0.4C .0.3D .0.6 【典例精析】例1 已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =++ (其中a 、h 、k 都是常数且a ≠0)形式,并画出这个函数的图像,根据图象指出函数的对称轴和顶点坐标.(2) 求函数的图象与x 轴的交点坐标.例2 直线和抛物线都经过点A(1,0)B(3, 2). ⑴ 求m 的值和抛物线的解析式;⑵ 求不等式的解集.(直接写出答案)m x y +=c bx x y ++=2m x c bx x +>++2例3如图平面直角坐标系中,圆M 经过原点O 且与x 轴、y 轴分别交于()()8006A B --,、,两点.(1)求出直线AB 的函数解析式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交x 轴于D 、E 两点,在抛物线上是否存在点P ,使得ABC PDE S S ∆∆=101?若存在,请求出点P 的坐标;若不存在,请说明理由.例4如图,在矩形ABCD 中,AB=6米,BC=8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2.(1)求面积S 与时间t 的关系式;(2)在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等?若能,求出此时点P 的位置;若不能,请说明理由。

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。

主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。

在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明本节课主要渗透类比、化归数学思想。

对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

九年级数学二次函数教案(优秀9篇)

九年级数学二次函数教案(优秀9篇)

九年级数学二次函数教案(优秀9篇)二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3.通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.具有初步的创新精神和实践能力。

教学重点1.体会方程与函数之间的联系。

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1.探索方程与函数之间的联系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法讨论探索法。

教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

初三复习二次函数教案(九)

初三复习二次函数教案(九)

初三复习二次函数教案(九)第一篇:初三复习二次函数教案(九)(10)初三复习二次函数教案教学目的:1.掌握二次函数式的应用,理解并掌握二次函数的应用。

2、体会并理解掌握数形结合思想在解题中的作用;教学分析:重点:理解并掌握二次函数的定义以及应用。

难点:数形结合思想在解题中的作用;教学方法: 讲练结合,以练为主.教学过程:一、概念复习:1、2、3、二、例题分析:例1、选择与填空:1、下列函数关系中,可以看作二次函数y=ax+bx+c(a≠0)模型的是().(A)在一定的距离内汽车的行驶速度与行驶时间的关系(B)我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系(C)竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)(D)圆的周长与圆的半径之间的关系2、抛物线y=-1x2-x+5的顶点坐标是。

222 A:(1,3)B:(1,-3)C:(-1,3)D:(-1,-3)3、二次函数y=-2(x+1)2+2的图像大致是。

A: B: C: D:2、若二次函数y=x2+bx+c的图像经过点(-4,0),(2,6),则这个二次函数的解析式是________。

例2、已知抛物线y=2x12-3x+m(m为常数)与x轴交于A,B两点,且线段AB的长为2(1)求m的值;(2)若该抛物线的顶点为P,(3)求∆APB的面积。

(天津市2002考)例3、已知二次函数y=x+ax+a-2.(1)证明:不论a取何值,抛物线y=x+ax+a-2的顶点Q总在x 轴的下方;(2)设抛物线y=x+ax+a-2与y轴交于点C,如果过点C 且平行于x轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D,问:△QCD能否是等边三角形?若能,请求出相应的二次函数解析式;若不能,请说明理由;(3)在第(2)题的已知条件下,又设抛物线与x轴的交点之一为点A,2221则能使△ACD的面积等于4的抛物线有几条?请证明你的结论.例4、已知抛物线y=14x2和直线y=ax+1(1)求证:不论a取何值,抛物线与直线必有两个不同的交点;(2)设A(x1,y1)、B(x2,y2)是抛物线与直线的两个交点,点P为线段AB的中点,且点P的横坐标为P的纵坐标;(3)函数A、B两点的距离d2x1+x22,试用a表示点a表示d。

中考复习二次函数教案

中考复习二次函数教案

中考复习二次函数教案教案一:二次函数的概念和性质教学目标:1.了解二次函数的定义和性质;2.掌握寻找二次函数的顶点、对称轴以及开口方向;3.理解二次函数与图像的关系。

教学重点:1.二次函数的定义和性质;2.二次函数的图像与函数解析式的关系。

教学难点:1.理解寻找二次函数的顶点和对称轴的方法;2.分析二次函数图像与函数解析式的关系。

教学准备:1.PPT;2.笔记本和书写工具;3.教学板书。

教学过程:Step 1 引入新课1.引入:通过一个具体的问题引入。

如:小明在高空抛物运动中,发现物体的高度与时间之间的关系可以用一个函数来表示,这个函数为什么是二次函数呢?2.提问:大家知道什么是二次函数吗?3.学生回答。

4. 教师解释:二次函数是指形如y=ax²+bx+c(其中a≠0)的函数。

Step 2 二次函数的性质1.介绍二次函数的性质:(1)首先解释二次函数的各个参数的含义:a、b、c。

(2)探讨二次函数的开口方向与a的关系:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

(3)引导学生思考:二次函数的最高点或最低点在哪里?(4)解释二次函数的最值和顶点的定位。

2.案例分析:(1)通过一个具体的问题案例分析二次函数的性质。

(2)分析二次函数的解析式与图像的关系。

Step 3 寻找二次函数的顶点和对称轴1.引导学生思考:如何寻找二次函数的顶点和对称轴?2.解释顶点和对称轴的含义。

3.示范寻找顶点和对称轴的方法步骤。

4.练习:让学生通过一组二次函数的解析式寻找对应的顶点和对称轴。

Step 4 总结与拓展1.总结二次函数的概念和性质。

2.教师讲解二次函数的应用领域。

3.引导学生思考:如何利用二次函数的性质解决问题?教学反思:通过讲解二次函数的概念和性质,学生能够理解二次函数与图像的关系,并掌握寻找顶点和对称轴的方法。

但是,学生在理解二次函数与高空抛物运动等实际问题的应用过程中,可能会遇到一定的困难。

九年级数学《二次函数》总复习教案

九年级数学《二次函数》总复习教案

一、教学目标:1.复习二次函数的定义、性质和图像;2.复习二次函数的解析式的推导和应用;3.复习二次函数与一次函数的关系;4.加强学生对二次函数的理解和运用能力。

二、教学内容及教学步骤:1.复习二次函数的定义和性质。

(1)复习二次函数的定义:二次函数定义为:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

(2)复习二次函数的性质:①函数的对称轴:二次函数的对称轴是x轴的垂直平分线,方程为x=-b/2a。

②函数图像的开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

③ 函数的顶点:二次函数的图像的最高点或最低点即为函数的顶点,顶点的横坐标为-x_0 = -b/2a,纵坐标为y_0 = f(x_0) = -(b^2 -4ac)/4a。

④ 函数的零点:二次函数与x轴交点的横坐标即为函数的零点,方程为ax^2 + bx + c = 0,解方程得到的根为x_1 和 x_2(x_1≤ x_2)。

2.复习二次函数的图像与性质。

(1)通过例题让学生绘制各种不同开口方向、对称轴位置的二次函数的图像,并让学生总结不同性质之间的关系。

(2)使用计算机软件或网站上的图像工具辅助显示二次函数的图像,让学生在电脑屏幕上直观地观察二次函数的图像特点。

3.复习二次函数的解析式推导和应用。

(1)复习二次函数的解析式推导的基本步骤:已知二次函数的顶点坐标(x_0,y_0)和过另一点(x_1,y_1)的条件,推导二次函数的解析式。

(2)举例说明二次函数解析式推导的具体过程,并让学生进行练习。

(3)通过应用题,让学生理解二次函数的解析式在实际问题中的应用。

4.复习二次函数与一次函数的关系。

(1)复习二次函数与一次函数的关系:当二次函数的a=0时,二次函数退化成一次函数。

(2)通过例题让学生理解二次函数与一次函数的关系,以及在一次函数的基础上加上二次函数的图像特点后的整个函数图像的变化。

二次函数复习课教案精选全文完整版

二次函数复习课教案精选全文完整版

可编辑修改精选全文完整版《二次函数》复习课教案一、课标要求二、命题分析三、复习目标:知识目标:1、了解二次函数解析式的三种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、掌握二次函数的图像和性质以及抛物线的平移规律技能目标:培养学生运用函数知识解决数学综合题和实际问题的能力。

情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。

复习重、难点:函数综合题型复习方法:自主探究、合作交流四、复习过程:(一)、二次函数的定义•定义: y=ax²+ bx + c ( a 、 b 、 c 是常数, a ≠ 0 )•定义要点:①a ≠ 0 ②最高次数为2•③代数式一定是整式•练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,•y=3 x²-2x³+5,其中是二次函数的有____个。

2.当m_______时,函数y=(m+1)χm^2-m - 2χ+1是二次函数?(二)、二次函数的图像及性质1、填表:2、二次函数y=ax+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而 , 在对称轴左侧,y随x的增大而3、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值4、巩固练习:已知二次函数y=x2+2x-3 的图象是一条,它的开口方向,顶点坐标是,对称轴是,它与x 轴有个交点,交点坐标是;在对称轴的左侧,y 随着x 的增大而;在对称轴的右侧,y随着x的增大而;当x= 时,函数y 有最值,是.(三)、二次函数解析式的三种表示方法:1、(1)顶点式:(2)交点式:(3)一般式:2、求抛物线解析式的三种方法:(1)、一般式:已知抛物线上的三点,通常设解析式为________________(2)、顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________ 求出表达式后化为一般形式.(3)、交点式:已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________求出表达式后化为一般形式.3、例1、已知二次函数y=ax 2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。

二次函数的复习课教案

二次函数的复习课教案

二次函数复习课(1)复习目标:1、通过复习使学生对二次函数知识的理解系统化;2、通过复习进一步强化对二次函数概念的理解;2、熟练运用二次函数的图像、性质,借助数形结合解决有关问题;4、灵活掌握二次函数解析式的求法。

复习重点:1、二次函数的图像与性质。

2、二次函数解析式的确定。

复习难点:如何正确利用图像信息解决二次函数的相关问题。

复习方法:讲练结合教学用具:多媒体辅助教学复习过程小结:①知识点考察:二次函数的概念②出题的两种题型③再次强调次数与系数三、二次函数的图像与性质1.(1)已知二次函数图象如图,你能直观从图中得到哪些信息?答:a<0,b>0,c>0,△>0小结:复习a、b、c、△的作用:a——开口方向a、b——对称轴c——与y轴交点△——与x轴交点个数1.已知二次函数图象如图,函数图象与x轴的两个交点(-1,0)和(3,0),你还能从此函数图像中得到哪些信息?答:对称轴:x=1增减性:当x<1时,y随x的增大而增大当x≥1时,y随x的增大而减小当-1<x<3时,y>0当x<-1或x>3时,y<02.刚才通过图像得到了a、b、c、△的范围,下面如果给出a、b、c能否得到函数的图像?学生独立完成,然后回答问题,教师小结学生看图回答问题复习a、b、c、△的作用回答问题两道题分别是考题中经常出现的类型,再次总结关键在于二次项的次数与系数,时间关系不再展开。

通过二次函数的大致图像得到a、b、c、△的范围,这是第一层次的要求通过具体的题来复习a、b、c、△的作用通过增加条件来复习二次函数的性质-1 3练习:二次函数y=x 2+2x-1图象的大致位置是( )A B C D 小结:由a 、b 、c 的符号确定图像 四、解析式的确定刚才我们由函数图像得到了开口方向、对称轴,增减性等,那么如果我们再增加一个条件,能否得到它的解析式。

1.(3)你能否根据此函数图像求出函数的解析式? 答案:复习:解析式的三种形式:一般式、顶点式、两根式 此题分组分别采取三种方法解答。

二次函数复习课教案

二次函数复习课教案

二次函数复习课(一)
一、教学目标:
1.梳理二次函数知识,加深对二次函数概念和二次函数图像及其性质的理解;
2.能从二次函数图像上获取正确、有用的信息,并能用合理的方法求函数解析式,提高观察、分析、归纳和概括的能力.
3.在综合运用二次函数知识的过程中领会图形运动、数形结合以及分类、化归等数学思想方法.
二、教学重点与难点:
重点:二次函数概念和从二次函数图像上获取正确有用的信息.
难点:二次函数知识综合运用中的分类讨论.
-43
2
问:从图像上得到什么信息?你如何求?。

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)第一篇:(教案)二次函数图象和性质复习教案《二次函数的图象和性质》复习课教案海洲初级中学初三数学备课组内容来源:初中九年级《数学(上册)》教科书教学内容:二次函数图像与性质复习课时:两课时教学目标:1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。

2.会利用二次函数的图象判断a、b、c的取值情况。

3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。

教材分析:二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。

本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。

学情分析学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。

本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。

通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。

教学过程一、旧知回顾1、已知关于x的函数y=2、已知函数y=-2x-2,化为y=a+3x-4是二次函数,则a的取值范围是.+k的形式:此抛物线的开口向,对称轴为,顶点坐标;当x= 时,抛物线有最值,最值为;当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。

3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到抛物线的解析式为4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名师精编优秀教案
龙文教育个性化辅导授课
教师:学生:时间:__2012_年__月日
内容二次函数
教学目的
1、理解二次函数及抛物线的有关概念
2、会根据图像上三点坐标或由图像的顶点坐标及另外一点的坐标确定二次函数解析式,会观察
图像,确定 a,b,c,的符号,能从图像上认识二次函数的性质
3、会求二次函数图像的顶点坐标、对称轴方程及其与x 轴的交点坐标,会借助平移理论知识来研究二次函数的最值问题
4、会构建二次函数模型解决以二次函数为基础的综合型题
重难点
二次函数图象及其性质,能把相关应用问题转化为数学问题,灵活运用二次函数分析和解决简单的
实际问题
教学过程
①一般地,如果 y=ax2+bx+c( a, b, c 是常数且 a≠0),那么 y 叫做 x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.
②当 b=c=0 时,二次函数 y=ax2是最简单的二次函数.
③二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)的三种表达形式分别为:
一般式: y=ax2+bx+c,通常要知道图像上的三个点的坐标才能得出此解析式;
顶点式: y=a(x-h)2+k,通常要知道顶点坐标或对称轴才能求出此解析式;
交点式: y=a( x- x1)( x- x2),通常要知道图像与x 轴的两个交点坐标 x1,x2才能求出此解析式;
2
b
,4ac b2 2
对于 y=ax +bx+c 而言,其顶点坐标为(-2a 4a ).对于 y=a( x- h) +k 而言其顶点坐标为( h,k)
由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.
2
b
,最值为4ac b 2
④二次函数 y=ax +bx+c 的对称轴为 x=-2a 4a ,( k>0 时为最小值, k<0 时为最大值).由此可知 y=ax2的顶点在坐标原点上,且y 轴为对称轴即 x=0.
⑤抛物线的平移主要是移动顶点的位置:
将 y=ax2沿着 y 轴(上“+”,下“-”)平移 k( k>0)个单位得到函数 y=ax2±k
将 y=ax2沿着 x 轴(右“-”,左“+”)平移 h( h>0)个单位得到 y(x±h)2.
在平移之前先将函数解析式化为顶点式,再来平移,若沿y 轴平移则直接在解析式的常数项后
进行加减(上加下减),若沿 x 轴平移则直接在含x 的括号内进行加减(右减左加).
⑥在画二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x 轴的交点,与 y 轴的交点.
⑦抛物线 y=ax2+bx+c 的图像位置及性质与a,b,c 的作用:
a 的正负决定了开口方向 :
当 a>0 时,开口向上,在对称轴 x=-b
的左侧, y 随 x 的增大而减小;在对称轴x=-
b
的右2a 2a
侧, y 随 x 的增大而增大,此时y 有最小值为 y= 4ac
b2 ,顶点(-
b

4ac
b2 )为最低点;
4a 2a 4a
当 a<0 时,开口向下,在对称轴 x=-b
的左侧, y 随 x 的增大而增大,在对称轴x=-
b
的右2a 2a
侧, y 随 x 的增大而增大,此时y 有最大值为 y= 4ac
b2 ,顶点(-,
4ac
b2 )为最高点.4a 4a
a│的大小决定了开口的宽窄,│ a│越大,开口越小,图像两边越靠近y 轴,│ a│越小,开口越大, ?图像两边越靠近x轴
a,b 的符号共同决定了对称轴的位置,当b=0 时,对称轴 x=0,即对称轴为 y 轴,当 a,b 同
号时,对称轴 x=-b
<0,即对称轴在 y 轴左侧,垂直于 x 轴负半轴,当 a, b 异号时,对称轴x= 2a
-b
>0,即对称轴在 y 轴右侧,垂直于 x 轴正半轴;
2a
c 的符号决定了抛物线与y 轴交点的位置, c=0 时,抛物线经过原点, c>0 时,与 y 轴交于正半
轴; c<0 时,与 y?轴交于负半轴,以上a,b,c 的符号与图像的位置是共同作用的,也可以互相推出.
经典例题:
例 1、要修建一个圆形喷水池 ,在池中心竖直安装一根水管 .在水管的顶端安装一个喷水头 ,使喷出的抛物线形水柱在与池中心的水平距离为 1m 处达到最高 ,高度为 3m,水柱落地处离池中心 3m,水管应多长 ?
例 2、( 2011 浙江温州, 9,4 分)已知二次函数的图象 (0 ≤x≤3) 如图所示.关于该函数在所给自变量取值范围内,
下列说法正确的是 ( )
A .有最小值 0,有最大值 3 B.有最小值-1,有最大值0
C .有最小值- 1,有最大值 3 D.有最小值-1,无最大值
例 3、(2011 四川重庆, 7,4 分)已知抛物线y= ax2+bx+ c( a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )
A.a>0 B. b<0 C. c<0 D. a+b+ c>0
例 4、2011 台湾全区, 28)图 ( 十二 ) 为坐标平面上二次函数y ax2 bx c 的图形,且此图形通过(-1, 1)、(2, -1)两点.下列关于此二次函数的叙述,何者正确?
A .y的最大值小于 0
B .当 x=0时, y 的值大于 1
C.当x= 1 时,y的值大于 1 D .当 x=3时, y 的值小于0
例 5、( 2011 甘肃兰州,9,4 分)如图所示的二次函数y ax2 bx c 的图象中,刘星同学观察得出了下面四条
信息:( 1)b 2 4ac 0 2 >1 3 2 <0 4 ++<0 的有
;() c ;()a- b ;()a b c 。

你认为其中错误y
A.2 个B.3 个C.4 个D.1 个
1
-1 O1x
例 6、( 2011 山东济宁, 8,3 分)已知二次函数y ax2bx c 中,其函数y 与自变量 x 之间的部分对应值如下表所示:
x 0 1 2 3 4
y 4 1 0 1 4
点(y1 B x2 y2 1 x1 2, 3 x2 4 y1 y2
A ,,)在函数的图象上,则当时,与的大小关系正确的是
)、(
A.y y
2 B.y y
2
C . y y
2
D . y y
2
1 1 1 1
例 7、( 2011 四川凉山州,12, 4 分)二次函数y ax2 bx c 的图像如图所示,反比列函数y
a
与正比列函
x
数 y bx 在同一坐标系内的大致图像是()
y y y y y
O x
Ox O x O x O x
第12题
A B C D
例 8、( 2011 安徽芜湖, 10,4 分)二次函数 y ax2 bx c 的图象如图所示,则反比例函数y a
与一次函数x
y bx c 在同一坐标系中的大致图象是() .
x 2
1 例 9、(2011 湖北黄冈, 15,3 分)已知函数y 2
x 5 值为()
A.0 B. 1 C.2 D. 3 1 x≤3
,则使 y=k 成立的 x 值恰好有三个,则k 的1 x>3
例 10、( 2011 湖北襄阳, 12, 3 分)已知函数y (k 3)x 22x 1的图象与x 轴有交点,则k 的取值范围是
A. k4
B. k4
C. k 4 且 k 3
D. k 4 且 k 3
例 11、 (20011 江苏镇江 ,8,2 分 ) 已知二次函数y x2 x 1 , 当自变量 x 取 m时 , 对应的函数值大于0, 当自变
5
量 x 分别取 m-1,m+1 时对应的函数值y1、 y2,则必值 y1, y2 满足()
A. y1>0, y2>0
B. y1<0, y2<0
C. y1 <0, y2 >0
D. y1>0, y2<0
例 12 、( 2011 重庆江津,18 ,4 分)将抛物线 y=x2- 2x 向上平移 3 个单位 , 再向右平移 4 个单位等到的抛物线是_______.
例 13 、 (2011 江苏南京,24, 7 分) ( 7 分)已知函数y=mx2- 6x +1( m是常数).
⑴求证:不论 m为何值,该函数的图象都经过y 轴上的一个定点;
⑵若该函数的图象与 x 轴只有一个交点,求m的值.
例 14、( 2011 广东省, 15, 6 分)已知抛物线y 1 x2x c与x轴有交点.
2
(1)求 c 的取值范围;
(2)试确定直线 y= cx+l经过的象限,并说明理由.
1 2 3
例 15、 2011 江苏盐城, 23, 10 分)已知二次函数 y = - 2 x - x +2.
( 1)在给定的直角坐标系中,画出这个函数的图象;
( 2)根据图象,写出当y < 0 时,x的取值范围;
( 3)若将此图象沿x 轴向右平移 3 个单位,请写出平移后图象所对应的函数关系式.
二次函数图象性质总结
学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字: ________ 教学总结:
主任审核批复
教导主任签字:________
龙文教育教务处制作业:。

相关文档
最新文档