历年山东青岛中考数学试题及知识点答案解析
山东省青岛市年中考数学真题试题含解析
山东省青岛市2017年中考数学真题试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.的相反数是().A.8B.C.D.【答案】C【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:的相反数是.故选:C考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是().【答案】A考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A、众数是6吨B、平均数是5吨C、中位数是5吨D、方差是【答案】C考点:1、方差;2、平均数;3、中位数;4、众数4.计算的结果为().A. B. C. D.【答案】D【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算5. 如图,若将△ABC绕点O逆时针旋转90°则顶点B的对应点B1的坐标为()A. B. C. D.【答案】B【解析】试题分析:将△ABC绕点O逆时针旋转90°后,图形如下图所以B1的坐标为故选:B考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD,根据同弧所对的圆周角相等,可知∠ABD=∠AED=20°,然后根据直径所对的圆周角为直角得到∠ADB=90°,从而由三角形的内角和求得∠BAD=70°,因此可求得∠BCD=110°. 故选:B考点:圆的性质与计算7. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,,AC=2,BD=4,则AE 的长为()A. B.C. D.【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. 一次函数的图像经过点A(),B(2,2)两点,P为反比例函数图像上的一个动点,O为坐标原点,过P 作y轴的垂线,垂足为C,则△PCO的面积为()A、2B、4C、8D、不确定【答案】试题分析:如下图,考点: 1、一次函数,2、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。
山东省青岛市中考数学试卷含答案解析
山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×1054.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含 B.内切C.相交 D.外切6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=27.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.58.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=__________.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/坐标是.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,si n31°≈,tan39°≈,sin39°≈)21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t (s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106 B.6.09×104 C.609×104 D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人 C.1.5万人 D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内 B.内切C.相交 D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF 中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD 中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,。
山东省青岛市中考数学试题含答案
山东省青岛市初级中学学业水平考试数 学 试 题一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上. (10山东青岛)1.下列各数中,相反数等于5的数是( ).A .-5B .5C .-15D .15(10山东青岛)2.如图所示的几何体的俯视图是( ). A .B .C .D . (10山东青岛)3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ). A .精确到十分位,有2个有效数字 B .精确到个位,有2个有效数字 C .精确到百位,有2个有效数字 D .精确到千位,有4个有效数字(10山东青岛)4.下列图形中,中心对称图形有( ).A .1个B .2个C .3个D .4个(10山东青岛)5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大(10山东青岛)6.如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交 D .相切或相交个数 平均 质量(g )质量的方差 甲厂 50 150 2.6 乙厂 50 150 3.1 第2题图7O-2 -4 -3 -5 y C-1 6 A2 1345 12 Bx3 4 5 第7题图BCA第6题图(10山东青岛)7.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)(10山东青岛)8.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.(10山东青岛)9-= .(10山东青岛)10.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °. (10山东青岛)11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 .(10山东青岛)12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.(10山东青岛)13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.(10山东青岛)14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. (10山东青岛)15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:结论:x OABC第10题图· …第14题图A BCFE 'A 第13题图('B ) D ABC四、解答题(本题满分74分,共有9道小题) (10山东青岛)16.(本小题满分8分,每题4分)(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)化简:22142a a a +--. 解: 解:原式=(10山东青岛)17.(本小题满分6分)配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B 餐每份的利润大约是 元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3)(10山东青岛)18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率;(2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由. 解:(1)(2)以往销售量与平均每份利润之间的关系统计图一周销售量(份) 300~800 (不含800) 800~1200(不含1200)1200及 1200以上该校上周购买情况统计表 第18题图(10山东青岛)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o337sin37tan37sin 48tan485410≈≈≈≈,,,解:(10山东青岛)20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)(2) (10山东青岛)21.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)(2)(10山东青岛)22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于A DB E FO CM第21题图 第19题图2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) 解:(1)(2)(3)(10山东青岛)23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正多边形....的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+ =,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: .O上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3: .验证3:结论3: .(10山东青岛)24.(本小题满分12分)已知:把Rt△ABC 和Rt△DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)(2)(3)二○一○年山东省青岛市初级中学学业水平考试A D BF E ) 图(1) 图(2) A B C 图(3) (用圆珠笔或钢笔画图)数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心; ······· 2分确定半径; ······· 3分 正确画出圆并写出结论. ······· 4分四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分) (1)34194x y x y +=⎧⎨-=⎩解:②×4得:4416x y -=,③①+③得:7x = 35, 解得:x = 5.把x = 5代入②得,y = 1.② ①∴原方程组的解为51x y =⎧⎨=⎩.········ 4分(2)解:原式 =()()21222a a a a -+-- ()()()()222222a a a a a a +=-+-+- ()()()()()2222222a a a a a a a -+=+--=+-12a =+. ······· 4分17.(本小题满分6分)解:(1)6元; ······· 2分 (2)3元;······· 4分 (3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元. ······· 6分18.(本小题满分6分)解:(1)P (获得45元购书券) = 112; ······· 2分(2)12345302515121212⨯+⨯+⨯=(元). ∵15元>10元,∴转转盘对读者更合算.······· 6分19.(本小题满分6分) 解:设CD = x . 在Rt △ACD 中,tan37ADCD ︒=, 则34AD x =, ∴34AD x =.在Rt△BCD 中,tan48° = BDCD, 则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB , ∴31180410x x +=.第19题图解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分 20.(本小题满分8分)解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········ 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分 解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ······· 8分21.(本小题满分8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF . ······· 4分 (2)四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =.∴OE OF =.∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形. ······· 8分22.(本小题满分10分)解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+-352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润. ······· 3分(2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. ····· 6分(3)法一:∵10a =-<0,A DB E F O CM 第21题图 法二:∵10a =-<0, ∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000. ∵x ≤32,∴30≤x ≤32时,w ≥2000.∴抛物线开口向下.∴当30≤x≤40时,w≥2000.∵x≤32,∴当30≤x≤32时,w≥2000.设成本为P(元),由题意,得:20(10500)P x=-+20010000x=-+∵200k=-<0,∴P随x的增大而减小.∴当x = 32时,P最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.··········10分23.(本小题满分10分)解:3个;·······1分验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b+=.整理得:26a b+=,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩.······3分结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.···5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?·······6分验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c++=,整理得:23412m n c++=,可以找到惟一一组适合方程的正整数解为121mnc=⎧⎪=⎨⎪=⎩. ·······8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.)······· 10分24.(本小题满分12分)解:(1)∵点A在线段PQ的垂直平分线上,∴AP = AQ.∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC.∴CE = CQ.由题意知:CE = t,BP =2 t,∴CQ = t.∴AQ = 8-t.在Rt△ABC中,由勾股定理得:AB = 10 cm .则AP = 10-2 t .∴10-2 t = 8-t .解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ····· 4分(2)过P 作PM BE ⊥,交BE 于M ,∴90BMP ∠=︒.在Rt△ABC 和Rt△BPM 中,sin AC PM B AB BP==, ∴8210PM t = . ∴PM = 85t . ∵BC = 6 cm ,CE = t , ∴ BE = 6-t . ∴y = S △ABC -S △BPE =12BC AC ⋅-12BE PM ⋅= 1682⨯⨯-()186t t 25⨯-⨯ =24242455t t -+ = ()2484355t -+. ∵405a =>,∴抛物线开口向上. ∴当t = 3时,y 最小=845. 答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2. ··· 8分 (3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N ,∴90ANP ACB PNQ ∠=∠=∠=︒.∵PAN BAC ∠=∠,∴△PAN ∽△BAC . ∴PN AP AN BC AB AC==. ∴1026108PN t AN -==. ∴665PN t =-,885AN t =-. ∵NQ = AQ -AN ,∴NQ = 8-t -(885t -) = 35t . ∵∠ACB = 90°,B 、C (E )、F 在同一条直线上,∴∠QCF = 90°,∠QCF = ∠PNQ .∵∠FQC = ∠PQN ,∴△QCF ∽△QNP . ∴PN NQ FC CQ= . ∴636559t t t t -=- . ∵0t <<4.5 ∴663595t t -=- 解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上. 12分图(2)图(3)。
山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.列代数式(共1小题)1.(2023•青岛)如图①,正方形ABCD的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D 的面积为 ;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D 的面积为 ;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为 .二.分式的混合运算(共2小题)2.(2023•青岛)(1)解不等式组:;(2)计算:(m﹣)•.3.(2021•青岛)(1)计算:(x+)÷;(2)解不等式组:并写出它的整数解.三.解一元一次不等式组(共1小题)4.(2022•青岛)(1)计算:÷(1+);(2)解不等式组:四.一次函数的应用(共2小题)5.(2023•青岛)某服装店经销A,B两种T恤衫,进价和售价如下表所示:品名A B进价(元/件)4560售价(元/件)6690(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m 件,两种T恤衫全部售完可获利W元.①请求出W与m的函数关系式;②服装店第二次获利能否超过第一次获利?请说明理由.6.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?五.反比例函数与一次函数的交点问题(共1小题)7.(2022•青岛)如图,一次函数y=kx+b的图象与x轴正半轴相交于点C,与反比例函数y =﹣的图象在第二象限相交于点A(﹣1,m),过点A作AD⊥x轴,垂足为D,AD=CD.(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值.六.二次函数的应用(共1小题)8.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?七.作图—复杂作图(共3小题)9.(2023•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:△ABC.求作:点P,使PA=PC,且点P在△ABC边AB的高上.10.(2022•青岛)已知:Rt△ABC,∠B=90°.求作:点P,使点P在△ABC内部.且PB=PC,∠PBC=45°.11.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.八.解直角三角形的应用-方向角问题(共1小题)12.(2022•青岛)如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活•绿色出行”健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)九.扇形统计图(共1小题)13.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n 名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:90,92,93,95,95,96,96,96,97,100.竞赛成绩分组统计表组别竞赛成绩分组频数平均分160≤x<70865270≤x<80a75380≤x<90b88490≤x≤1001095请根据以上信息,解答下列问题:(1)a= ;(2)“90≤x≤100”这组数据的众数是 分;(3)随机抽取的这n名学生竞赛成绩的平均分是 分;(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.一十.列表法与树状图法(共1小题)14.(2023•青岛)为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A、B、C表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.一十一.游戏公平性(共1小题)15.(2022•青岛)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.山东省青岛市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.列代数式(共1小题)1.(2023•青岛)如图①,正方形ABCD的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D 的面积为 2.5 ;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D 的面积为 5 ;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为 (n2+2n+2) .【答案】(1)2.5;(2)5;(3)(n2+2n+2).【解答】解:(1)∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A1B=BA,B1C=CB,∴BB1=BC+CB1=2,A1B=1,∵A1B⊥BB1,∴S△ABB1=A1B×BB1=×1×2=1,∵AD⊥AB,∴S梯形ABB1D=(BB1+AD)×AB=(2+1)×1=,∵S四边形AA1B1D=S△ABB1+S梯形ABB2D,∴S四边形AA1B1D=1+=2.5,故答案为:2.5;(2))∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A2B=2BA=2,B2C=2CB=2,∴BB2=BC+CB2=2+1=3,A2B=2,∵A2B⊥BB2,∴=A 2B×BB2=×2×(2+1)=×2×(2+1)=3,∵AD⊥AB,∴=(BB 2+AD)×AB=(2+1+1)×1=2,∵=+,∴=3+2=5,故答案为:5;(3)∵正方形ABCD的面积为1,∴AB=BC=CD=AD=1,∵A n B=nBA=n,B n C=nCB=n,∴BB n=BC+CB n=n+1,A n B=n,∵A n B⊥BB n,∴=An B×BB n=×n×(n+1)=n(n+1),∵AD⊥AB,∴=(BB n+AD)×AB=(n+1+1)×1=(n+2),∵=+,∴=n(n+1)+(n+2)=(n2+2n+2),故答案为:(n2+2n+2).二.分式的混合运算(共2小题)2.(2023•青岛)(1)解不等式组:;(2)计算:(m﹣)•.【答案】(1)1≤x<3;(2)m+1.【解答】解:(1)解第一个不等式得:x<3,解第二个不等式得:x≥1,故原不等式组的解集为:1≤x<3;(2)原式=•=•=m+1.3.(2021•青岛)(1)计算:(x+)÷;(2)解不等式组:并写出它的整数解.【答案】(1);(2)﹣1,0,1.【解答】解:(1)(x+)÷===;(2)解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,∴不等式组的整数解为:﹣1,0,1.三.解一元一次不等式组(共1小题)4.(2022•青岛)(1)计算:÷(1+);(2)解不等式组:【答案】(1);(2)2<x≤3.【解答】解:(1)原式=÷=•=;(2),解不等式①得:x≤3,解不等式②得:x>2,∴不等式组的解集为:2<x≤3.四.一次函数的应用(共2小题)5.(2023•青岛)某服装店经销A,B两种T恤衫,进价和售价如下表所示:品名A B进价(元/件)4560售价(元/件)6690(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m 件,两种T恤衫全部售完可获利W元.①请求出W与m的函数关系式;②服装店第二次获利能否超过第一次获利?请说明理由.【答案】(1)2880元;(2)①W=﹣4m+3000(150≥m≥50),②服装店第二次获利不能超过第一次获利,理由见详解.【解答】解:(1)设购进AT恤衫x件,购进BT恤衫y件,根据题意列出方程组为:,解得,∴全部售完获利=(66﹣45)×80+(90﹣60)×40=1680+1200=2880(元).(2)①设第二次购进A种T恤衫m件,则购进B种T恤衫(150﹣m)件,根据题意150﹣m≤2m,即m≥50,∴W=(66﹣45﹣5)m+(90﹣60﹣10)(150﹣m)=﹣4m+3000(150≥m≥50),②服装店第二次获利不能超过第一次获利,理由如下:由①可知,W=﹣4m+3000(150≥m≥50),∵﹣4<0,一次函数W随m的增大而减小,∴当m=50时,W取最大值,W大=﹣4×50+3000=2800(元),∵2800<2880,∴服装店第二次获利不能超过第一次获利.6.(2021•青岛)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲品牌洗衣液每瓶的进价是30元,乙品牌洗衣液每瓶的进价是24元;(2)超市应购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶,才能在两种洗衣液完全售出后所获利润最大,最大利润是560元.【解答】解:(1)设甲品牌洗衣液每瓶的进价是x元,则乙品牌洗衣液每瓶的进价是(x ﹣6)元,依题意得:,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴x﹣6=24(元).答:甲品牌洗衣液每瓶的进价是30元,乙品牌洗衣液每瓶的进价是24元;(2)设可以购买甲品牌洗衣液m瓶,则可以购买(120﹣m)瓶乙品牌洗衣液,依题意得:30m+24(120﹣m)≤3120,解得:m≤40.依题意得:y=(36﹣30)m+(28﹣24)(120﹣m)=2m+480,∵k=2>0,∴y随m的增大而增大,∴m=40时,y取最大值,y最大值=2×40+480=560.120﹣40=80(瓶),答:超市应购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶,才能在两种洗衣液完全售出后所获利润最大,最大利润是560元.五.反比例函数与一次函数的交点问题(共1小题)7.(2022•青岛)如图,一次函数y=kx+b的图象与x轴正半轴相交于点C,与反比例函数y =﹣的图象在第二象限相交于点A(﹣1,m),过点A作AD⊥x轴,垂足为D,AD=CD.(1)求一次函数的表达式;(2)已知点E(a,0)满足CE=CA,求a的值.【答案】见试题解答内容【解答】解:(1)∵点A(﹣1,m)在反比例函数y=﹣的图象上,∴﹣m=﹣2,解得:m=2,∴A(﹣1,2),∵AD⊥x轴,∴AD=2,OD=1,∴CD=AD=2,∴OC=CD﹣OD=1,∴C(1,0),把点A(﹣1,2),C(1,0)代入y=kx+b中,,∴一次函数的表达式为y=﹣x+1;(2)在Rt△ADC中,AC==2,∴AC=CE=2,当点E在点C的左侧时,a=1﹣2,当点E在点C的右侧时,a=1+2,∴a的值为1±2.六.二次函数的应用(共1小题)8.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?【答案】(1)y=﹣0.2x+8.4(1≤x≤10,x为整数);(2)李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.【解答】解:(1)根据题意得:y=8.2﹣0.2(x﹣1)=﹣0.2x+8.4(1≤x≤10,x为整数),答:这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式为y=﹣0.2x+8.4(1≤x≤10,x为整数);(2)设李大爷每天所获利润是w元,由题意得:w=[12﹣0.5(x﹣1)﹣(﹣0.2x+8.4)]×10x=﹣3x2+41x=﹣3(x﹣)2+,∵﹣3<0,x为正整数,且|6﹣|>|7﹣|,∴x=7时,w取最大值,最大值为﹣3×(7﹣)2+=140(元),答:李大爷每天应购进这种水果7箱,才能使每天所获利润最大,最大利润140元.七.作图—复杂作图(共3小题)9.(2023•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:△ABC.求作:点P,使PA=PC,且点P在△ABC边AB的高上.【答案】见解答.【解答】解:如图,点P为所作.10.(2022•青岛)已知:Rt△ABC,∠B=90°.求作:点P,使点P在△ABC内部.且PB=PC,∠PBC=45°.【答案】见试题解答内容【解答】解:①先作出线段BC的垂直平分线EF;②再作出∠ABC的角平分线BM,EF与BM的交点为P;则P即为所求作的点.11.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.【答案】见解答.【解答】解:如图,Rt△ABC为所作.八.解直角三角形的应用-方向角问题(共1小题)12.(2022•青岛)如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活•绿色出行”健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C 处,观光船到滨海大道的距离CB为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40°的方向航行至点D处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)【答案】见试题解答内容【解答】解:过点C作CF⊥DE于F,由题意得,∠D=40°,∠ACB=68°,在Rt△ABC中,∠CBA=90°,∵tan∠ACB=,∴AB=CB×tan68°≈200×2.48=496(m),∴BE=AB﹣AE=496﹣200=296(m),∵∠CFE=∠FEB=∠CBE=90°,∴四边形FEBC为矩形,∴CF=BE=296m,在Rt△CDF中,∠DFC=90°,∵sin∠D=,∴CD≈=462.5(m),答:观光船从C处航行到D处的距离约为462.5m.九.扇形统计图(共1小题)13.(2021•青岛)在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取n名学生的竞赛成绩进行整理和分析(成绩得分用x表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“90≤x≤100”这组的数据如下:90,92,93,95,95,96,96,96,97,100.竞赛成绩分组统计表组别竞赛成绩分组频数平均分160≤x<70865270≤x<80a75380≤x<90b88490≤x≤1001095请根据以上信息,解答下列问题:(1)a= 12 ;(2)“90≤x≤100”这组数据的众数是 96 分;(3)随机抽取的这n名学生竞赛成绩的平均分是 82.6 分;(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.【答案】(1)12;(2)96;(3)82.6;(4)120人.【解答】解:(1)8÷16%=50(名),50×24%=12(名),因此a=12,故答案为:12;(2)“90≤x≤100”这组的数据中出现最多的是96,∴“90≤x≤100”这组数据的众数是96分,故答案为:96;(3)第3组的频数b=50﹣8﹣12﹣10=20,随机抽取的这n名学生竞赛成绩的平均分是:×(65×8+75×12+88×20+95×10)=82.6(分),故答案为:82.6;(4)1200×=120(人),答:估计全校1200名学生中获奖的人数有120人.一十.列表法与树状图法(共1小题)14.(2023•青岛)为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A、B、C表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.【答案】.【解答】解:画树状图为:共有6种等可能的结果,其中抽取两本书中有《九章算术》的结果数为4种,所以抽取两本书中有《九章算术》的概率==.一十一.游戏公平性(共1小题)15.(2022•青岛)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.【答案】游戏对双方都公平.【解答】解:所有可能的结果如下:∴共有10种等可能的结果,其中两球编号之和为奇数的有5种结果,两球编号之和为偶数的有5种结果,∴P(小冰获胜)==,P(小雪获胜)==,∵P(小冰获胜)=P(小雪获胜),∴游戏对双方都公平.。
山东省青岛市中考数学试卷(解析版)
青岛市中考数学试卷 (考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.81-的相反数是( ). A .8 B .8- C .81 D .81- 【答案】C【解析】试题分析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数,知:81-是81 考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).【答案】A【解析】试题分析:利用知识点:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,知:选项A 是轴对称图形,但不是中心对称图形;选项B 和C,既是轴对称图形又是中心对称图形;选项D 是中心对称图形,但不是轴对称图形.考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A 、众数是6吨B 、平均数是5吨C 、中位数是5吨D 、方差是34 【答案】C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:方差;平均数;中位数;众数4.计算326)2(6m m -÷的结果为( ).A .m -B .1-C .43D .43- 【答案】D【解析】试题分析:()4386)2(666326-=-÷=-÷m m m m 考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A.)2,4(-B.)4,2(-C. )2,4(-D.)4,2(-【答案】B【解析】试题分析:将△ABC 绕点O 逆时针旋转90°后,图形如下图(所以B1的坐标为)4,2考点:(1)、同底数幂的乘除法运算法则;(2)、积的乘方运算法则;(3)、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD 的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD∵∠AED=20°∴∠ABD=∠AED=20°∵AB 是⊙O 的直径∴∠ADB=90°∴∠BAD=70°∴∠BCD=110°考点:圆的性质与计算7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23 C .721 D .7212 【答案】D【解析】试题分析:∵平行四边形ABCD ,AC =2,BD =4∴AO=1,BO=2∵3=AB∴△ABO 是直角三角形,∠BAO=90°∴BC=()7232222=+=+AC AB在直角△ABC 中 AE BC AC AB S ABC ⋅=⋅=∆2121 AE ⋅=⨯7212321 AE=7212 考点:平行四边形的性质,勾股定理,面积法求线段长度8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkb y = 图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C , 则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定【答案】A【解析】试题分析:如下图,把点A (4,1--),B (2,2)代入)0(≠+=k b kx y 得22--=x y ,即k=-2,b=-2所以反比例函数表达式为xy 4= 设P (m ,n ),则nm 4=,即mn=4 △PCO 的面积为21OCPC=21mn=2 考点: 一次函数、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫. 65 000 000用科学计数法可表示为______________________.【答案】7105.6⨯【解析】试题分析:科学记数法的表示形式为a ×n 10的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.所以,65 000 000用科学计数法可表示为7105.6⨯考点:科学记数法的表示方法10.计算.__________6)6124(=⨯+【答案】13 【解析】131********16246)6124(=+=+=⨯+⨯=⨯+考点:无理数运算11. 若抛物线m x x y +-=62与x 轴没有交点,则m 的取值范围是_____________°【答案】9>m【解析】二次函数m x x y +-=62,a=1,b= -6,c = m ∵若抛物线m x x y +-=62与x 轴没有交点∴△<0即()01462<⨯⨯--m 解得9>m考点:△=0抛物线与x 轴有1交点;△>0抛物线与x 轴有2交点;△<0抛物线与x 轴有0交点;12.如图,直线AB 与CD 分别与⊙O 相切于B 、D 两点,且AB ⊥CD ,垂足为P ,连接BD.若BD =4,则阴影部分的面积为___________________.【答案】42-π【解析】如下图连接OB ,OD∵直线AB 与CD 分别与⊙O 相切于B 、D 两点∴AB ⊥OB ,PC ⊥OD∵AB ⊥CD∴BOPD 是正方形∴2222==BD r∴()42222221224121r 4122-=⨯-=⋅-=-=∆πππOD OB S S S BODBOD 扇形阴考点:弓形面积13,如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32【解析】如下图∵∠ABC =∠ADC =90°,E 为对角线AC 的中点∴A ,B ,C ,D 四点共圆,圆心是E ,直径AC∵∠BAD =58°∴∠BED =116°∴∠EBD=32°考点:圆心角性质定理,等腰三角形性质14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为____.【答案】48+123【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.利用知识点:主府长对正,主左高平齐,府左宽相等,得该几何体底面正六边形,AB=4,正六边形被分成6个全等的等边三角形,边长AC=236322166=⨯⨯⨯==∆AOD S S 底 842=⨯=侧S该几何体的表面积为2底S +6侧S =48+123考点:三视图,等边三角形,正六边形三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:四边形ABCD .求作:点P .使∠PCB =∠B ,且点P 到AD 和CD 的距离相等.结论:考点:尺规作图,角平分线性质定理 【解析】利用基本尺规作图:“画一个角等于已知角”,∠PCB =∠B ;要使点P 到AD 和CD 的距离相等,需作∠ADC 的角平分线.【解答】作图过程略四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)解不等式组⎪⎩⎪⎨⎧-+≥-23221<x x x (2)化简:b b a a b a 222)(-÷-; (1)考点:解不等式组【解析】解得1-<x ,解得x <10-,利用知识点:同小取小,得不等式组的解集为:10-<x【解答】 由①得:1-<x ;由②得:x <10-.所以不等式组的解集为:10-<x(2)考点:分式的化简【解析】先对每个分式的分子、分母分解因式,在约分化简计算【解答】原式ba ab a b a b b b a a +=+-⨯-=))(()(17.(本小题满分6分)小华和小军做摸球游戏,A 袋中装有编号为1,2,3的三个小球,B 袋中装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若B 袋摸出的小球的编号与A 袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由. 考点:列表或画树状图求概率【解析】通过列表,共有9种等可能结果,偶数有4种等可能结果,94)(=小华胜P ,95)(=小军胜P ∴不公平 【解答】列表如下 B 袋 A 袋4 5 6 1 3 4 52 23 43 1 2 3共有94种等可能结果94)(=小华胜P ;则小军胜的概率为95941=- ∵9594≠,∴不公平.18.(本小题满分6分)某中学开展了“手机伴我健康行”主题活动.他们随机抽取部分学生进行“手机使用目的”和“每周使用手机时间”的问卷调查,并绘制成如图①②的统计图.已知“查资料”人人数是40人.请你根据以上信息解答以下问题(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_______________.(2)补全条形统计图(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数 考点:统计图【解析】(1)1—40%-18%-5%=35%,360×35%=126°(2)利用“查资料”人人数是40人,查资料”人占总人数40%求出总人数100,再求出32人(3)用部分估计整体【解答】(1)126° (2)40÷40%-2-16-18-32=32人 (3)1200×1003232+=768人 19.(本小题满分6分)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长(结果保留整数)(参考数据:73.1351267tan 13567cos 131267sin ≈≈︒≈︒≈︒;;;)考点:三角函数的应用 【解析】作BD ⊥AC 于点D ,利用和AB=520,求AD=480;利用和AB=520,求BD=200; 利用和BD=200,求CD=116;∴AC=596【解答】解:如图,作BD ⊥AC 于点D ,在Rt △ABD 中,∠ABD=67°131267sin ==︒AB AD ,∴)(4801312km AB AD ==13567cos ≈=︒AB BD ,∴)(200135km AB BD ==在Rt △BCD 中,∠CBD=30°3330tan ==︒BD CD ,∴)(11633km BD CD ≈=∴)(596km DA CD AC ≈+= 答:AC 之间的距离约为596km. 20.(本小题满分8分)A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中21,l l 表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题: (1)表示乙离开A 地的距离与时间关系的图像是________(填21l l 或); 甲的速度是__________km/h ;乙的速度是________km/h. (2)甲出发后多少时间两人恰好相距5km ?考点:一次函数的应用【解析】(1)乙离开A 地的距离越来越远,图像是2l ; 甲的速度60÷2=30;乙的速度60÷(3.5-0.5)=20(2)分类讨论:①相遇前:521=-y y 得h x 3.1=;②相遇后:由512=-y y 得h x 5.1= 【解答】解:(1)2l ; 30; 20;(2)由图可求出60301+-=x y ,10202-=x y由521=-y y 得h x 3.1=;由512=-y y 得h x 5.1= 答:甲出发后1.3h 或者1.5h 时,甲乙相距5km.21.(本小题满分8分)已知:如图,在菱形ABCD 中,点E ,O ,F 分别是边AB ,AC ,AD 的中点,连接CE 、CF 、OF . (1)求证:△ BCE ≌△DCF ;(2)当AB 与BC 满足什么条件时,四边形AEOF 正方形?请说明理由.考点:菱形,全等三角形,正方形【解析】(1)利用SAS 证明△ BCE ≌△DCF(2)先证明AEOF 为菱形,当BC ⊥AB ,得∠BAD =90°,再利用知识点:有一个角是90°的菱形是正方形.【解答】(1)证明:∵四边形ABCD 为菱形∴AB=BC=CD=DA ,∠B=∠D又E 、F 分别是AB 、AD 中点,∴BE=DF∴△ABE ≌△CDF (SAS )(2)若AB ⊥AD ,则AEOF 为正方形,理由如下 ∵E 、O 分别是AB 、AC 中点,∴EO ∥BC , 又BC ∥AD ,∴OE ∥AD ,即:OE ∥AF同理可证OF ∥AE ,所以四边形AEOF 为平行四边形 由(1)可得AE =AF所以平行四边AEOF 为菱形因为BC ⊥AB ,所以∠BAD =90°,所以菱形AEOF 为正方形. 22.(本小题满分10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨31,下表是去年该酒店豪华间某两天的相关记录: 旺季淡季 未入住房间数10日总收入(元) 24 00040 000 (1(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?考点:列分式方程解应用题,二次函数最值问题 【解析】(1)∵旺季每间比淡季上涨31,∴旺季每间是淡季131,根据此等量关系列分式方程解应用题(2)设上涨m 元,利润为w .价格每增加25元,每天入住房间数减少1间,∴入住房间数,得利润表达式,再求最值!【解答】解:(1)设有x 间豪华间,由题可得xx 40000)311(1024000=+- 解得50=x ,经检验50=x 是原方程的根则:)/(8005040000间元=答:该酒店豪华间有50间,旺季每间价格为800元.(2)设上涨m 元,利润为w ,则4000018251)2550)(800(2++-=-+=m m m m w因为0251<-=a ,所以抛物线开口向下所以当2252=-=abm 时,42025=最大w 23.(本小题满分10分)数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究一:求不等式2|1|<-x 的解集 (1)探究|1|-x 的几何意义如图①,在以O 为原点的数轴上,设点A '对应点的数为1-x , 由绝对值的定义可知,点A '与O 的距离为|1|-x , 可记为:A 'O=|1|-x .将线段A 'O 向右平移一个单位, 得到线段AB ,,此时点A 对应的数为x ,点B 的对应数是1, 因为AB= A 'O ,所以AB=|1|-x .因此,|1|-x 的几何意义可以理解为数轴上x 所对应的点A 与1所对应的点B 之间的距离AB.(2)求方程|1|-x =2的解因为数轴上3与1-所对应的点与1所对应的点之间的距离都为2,所以方程的解为1,3-(3)求不等式2|1|<-x 的解集因为|1|-x 表示数轴上x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数x 的范围.请在图②的数轴上表示2|1|<-x 的解集,并写出这个解集探究二:探究22)()(b y a x -+-的几何意义 (1)探究22y x +的几何意义如图③,在直角坐标系中,设点M 的坐标为),(y x ,过M 作MP ⊥x 轴于P ,作MQ ⊥y 轴于Q ,则点P 点坐标(0,x ),Q 点坐标(y ,0),|OP|=x ,|OQ|=y ,在Rt △OPM 中,PM =OQ =y ,则222222||||y x y x PM OP MO +=+=+=因此22y x +的几何意义可以理解为点M ),(y x 与原点O (0,0)之间的距离OM(2)探究22)5()1(-+-y x 的几何意义如图④,在直角坐标系中,设点 A '的坐标为)5,1(--y x ,由探究(二)(1)可知,A 'O=22)5()1(-+-y x ,将线段 A 'O 先向右平移1个单位,再向上平移5个单位,得到线段AB ,此时A 的坐标为(y x ,),点B 的坐标为(1,5).因为AB= A 'O ,所以 AB =22)5()1(-+-y x ,因此22)5()1(-+-y x 的几何意义可以理解为点A (y x ,)与点B (1,5)之间的距离.(3)探究22)4()3(+++y x 的几何意义请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程. (4)22)()(b y a x -+-的几何意义可以理解为:_________________________. 拓展应用:(1)22)1()2(++-y x +22)5()1(+++y x 的几何意义可以理解为:点A ),(y x 与点E )1,2(-的距离与点AA ),(y x 与点F____________(填写坐标)的距离之和. (2)22)1()2(++-y x +22)5()1(+++y x 的最小值为____________(直接写出结果)考点:信息题 【解析】探究一(3):2|1|<-x 的解集就是数轴上x 所对应的点与1所对应的点之间的距离小于2的点所对应的数,利用数轴可知31<<x -探究二(3):根据题目信息,22)4()3(+++y x 的几何意义可以理解为点A (y x ,)与点B (4,3--)之间的距离.拓展应用:根据题目信息知是与点F (5,1--)的距离之和.22)1()2(++-y x +22)5()1(+++y x 表示点A ),(y x 与点E )1,2(-的距离与点A ),(y x 与点F (5,1--)的距离之和.∴最小值为E )1,2(-与点F (5,1--)的距离5【解答】解:探究一(3)解集为:31<<x -探究二(3)如图⑤,在直角坐标系中,设点 A '的坐标为)4,3(++y x , 由探究(二)(1)可知, A 'O=22)4()3(+++y x ,将线段 A 'O 先向左平移3个单位,再向下平移4个单位, 得到线段AB ,此时A 的坐标为(y x ,),点B 的坐标为(4,3--). 因为AB= A 'O ,所以 AB =22)4()3(+++y x ,因此22)4()3(+++y x 的几何意义可以理解为点A (y x ,)与点B (4,3--)之间的距离. 拓展应用 (1)(5,1--) (2)5 24.(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°.如图②,△EFP 从图①的位置出发,沿BC 方向匀速运动,速度为1cm/s ;EP 与AB 交于点G .同时,点Q 从点C 出发,沿CD 方向匀速运动,速度为1cm/s.过Q 作QM ⊥BD ,垂足为H ,交AD 于M ,连接AF ,PQ ,当点Q 停止运动时,△EFP 也停止运动.设运动时间为t (s )(0<t <6),解答下列问题: (1)当 t 为何值时,PQ ∥BD ?(2)设五边形 AFPQM 的面积为 y (cm 2),求 y 与 t 之间的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使8:9:=ABCD AFPQM S S 矩形五边形? 若存在,求出 t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻 t ,使点M 在PG 的垂直平分线上? 若存在,求出 t 的值;若不存在,请说明理由.(3)假使存在t ,使8:9:=ABCD AFPQM S S 矩形五边形则5498ABCD ==矩形S y ,即54211725812=+-t t 整理得036202=+-t t ,解得(舍去)>618,221==t t答:当t=2,8:9:=ABCD AFPQM S S 矩形五边形(4)易证△PBG ∽△PEF ,∴FE FP BG BP =,即68=BG t ,∴t BG 43=则t AG 436-=2743)6(438+=--=-=t t MD AD AM作MN ⊥BC 于N 点,则四边形MNCD 为矩形所以MN=CD=6,CN=)6(43t MD -=,故:PN=427)6(43)8(tt t -=---若M 在PG 的垂直平分线上,则GM=PM ,所以22PM GM =,所以2222MN PN AM AG +=+即:22226)427()2743()436(+-=++-tt t整理得:032172=-t t ,解得(舍去)0,173221==t t .。
往年山东省青岛市中考数学真题及答案
往年山东省青岛市中考数学真题及答案一. 选择题(本题满分24分,共有8小题,每小题3分)1.( 3分)(往年•青岛)﹣2的绝对值是()B.﹣2 C.D.2A.﹣2.( 3分)(往年•青岛)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.( 3分)(往年•青岛)如图,正方体表面上画有一圈黑色线条,则它的左视图是()A.B.C.D.4.( 3分)(往年•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离5.( 3分)(往年•青岛)某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(人) 1 1 5 2 1则下列说法正确的是()A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.( 3分)(往年•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.( 6,1)B.( 0,1)C.( 0,﹣3)D.( 6,﹣3)7.( 3分)(往年•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.B.C.D.8.( 3分)(往年•青岛)点A( x1,y1),B( x2,y2),C( x3,y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3二. 填空题(本题满分18分,共有6道小题,每小题3分)9.( 3分)(往年•青岛)计算:(﹣3)0+= _________ .10.( 3分)(往年•青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为_ 元.11.( 3分)(往年•青岛)如图,点A. B. C在⊙O上,∠AOC=60°,则∠ABC的度数是_________ .12.( 3分)(往年•青岛)如图,在一块长为22米. 宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________ .13.( 3分)(往年•青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_________ .14.( 3分)(往年•青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_________ cm.三. 作图题(本题满分4分)用圆规. 直尺作图,不写作法,但要保留作图痕迹.15.( 4分)(往年•青岛)已知:线段a,c,∠α.求作:△ABC.使BC=a,AB=c,∠ABC=∠α.结论:四. 解答题(本题满分74分,共有9道小题)16.( 8分)(往年•青岛)( 1)化简:( 2)解不等式组:.17.( 6分)(往年•青岛)某校为开展每天一小时阳光体育活动,准备组建篮球. 排球. 足球. 乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进行了抽样调查,并将所得数据制成如下两幅统计图:根据图中的信息解答下列问题:( 1)补全条形统计图;( 2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;( 3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.(字数不超过30字)18.( 6分)(往年•青岛)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”. “花开富贵”. “吉星高照”,就可以分别获得100元. 50元. 20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张) 500 1000 2000 6500( 1)求“紫气东来”奖券出现的频率;( 2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.19.( 6分)(往年•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.( 8分)(往年•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离( B. F. C在一条直线上)( 1)求教学楼AB的高度;( 2)学校要在A. E之间挂一些彩旗,请你求出A. E之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)21.( 8分)(往年•青岛)已知:如图,四边形ABCD的对角线AC. BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.( 1)求证:△BOE≌△DOF;( 2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.22.( 10分)(往年•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:( 1)试判断y与x之间的函数关系,并求出函数关系式;( 2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;( 3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.( 10分)(往年•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共( m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它内部的2个点P. Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P. Q. R,共6个点为顶点可把△ABC分割成_________ 个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共( m+3)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共( m+4)个顶点可把四边形分割成_________ 个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共( m+n)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的往年个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)24.( 12分)(往年•青岛)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D. E分别是AC. AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t( s)( 0<t<4).解答下列问题:( 1)当t为何值时,PQ⊥AB?( 2)当点Q在BE之间运动时,设五边形PQBCD的面积为y( cm2),求y与t之间的函数关系式;( 3)在( 2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S △PQE:S四边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.往年年山东省青岛市中考数学试卷参考答案与试题解析一. 选择题1.D 2.C 3.B 4.A 5.C 6.B 7. D 8. A二. 填空题(本题满分18分,共有6道小题,每小题3分)请将9--14各小题的答案填写在第14小题后面给出的表格相应位置上.9.7.10.1.6×1010.11.150°.12.( 22﹣x)( 17﹣x)=300.13..14.5.四. 解答题(本题满分74分,共有9道小题)16.解:( 1)原式==…4分解:( 2)解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:( 1)∵从统计图知报名参加丙小组的有15人,占总数的30%∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:( 2)报名参加2个兴趣小组的有400×=160人( 3)合理即可:如:利用课余时间多参加几个兴趣小组.18.解:( 1)或5%;( 2)平均每张奖券获得的购物券金额为+0×=14(元)∵14>10∴选择抽奖更合算.19.解:设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时.20.解:( 1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2, tan22°=,则=,解得:x=12.即教学楼的高12m.( 2)由( 1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A. E之间的距离约为27m.21.( 1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF( ASA);( 2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.22.解:( 1)y是x的一次函数,设y=kx+b,图象过点( 10,300),( 12,240),,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点( 14,180),( 16,120)均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;( 2)w=( x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;( 3)由题意得:6(﹣30x+600)≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.23.解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分, 故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2( 1﹣1),三角形内部2个点时,共分割成5部分,5=3+2( 2﹣1),三角形内部3个点时,共分割成7部分,7=3+2( 3﹣1),…,所以,三角形内部有m个点时,3+2( m﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2( m﹣1)或2m+2;…6分问题解决:n+2( m﹣1)或2m+n﹣2;…8分实际应用:把n=8,m=往年代入上述代数式,得2m+n﹣2,=2×往年+8﹣2,=4024+8﹣2,=4030.…10分24.解:( 1)如图①,在Rt△ABC中,AC=6,BC=8∴AB=.∵D. E分别是AC. AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.( 2)如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=( 4﹣t).S△PQE=EQ•PM=( 5﹣2t)•( 4﹣t)=t2﹣t+6, S梯形DCBE=×( 4+8)×3=18,∴y=18﹣(t2﹣t+6)=t2+t+12.( 3)假设存在时刻t,使S△PQE:S四边形PQBCD=1:29, 则此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=(舍去).当t=2时,PM=×( 4﹣2)=,ME=×( 4﹣2)=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=(或).。
青岛中考数学试题与答案(初中数学)
青岛市中考数学真题一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006B .2007C .2008D .20095.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23-- B .13--C .23-+D .13+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩32左视图4俯视图(第5题图)CA O B(第6题图)标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是() A .73cmB .74cmC .75cmD .76cm第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .①②(第12题图)A DCPB(第10题图)60°x x x x x14.设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)化简:0293618(32)(12)23+--+-+-.20.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.序号 1 2 3 …图形…(第15题图)A E DB FC (第18题图) (第20题图)21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).4天 3天 2天 7天 6天 5天 30% 15% 10% 5%15% a 60 50 4030 20 102天 3天 4天 5天 6天 7天 (第21题图)时间人数DCB A②①(第22题图)23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.25.(本题满分14分)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG.. 求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.(第24题图) A D GE C B (第25题图)26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分.一、选择题(本题共12个小题,每小题4分,满分48分)二、填空题(本题共6个小题,每小题4分,满分24分)13.1414.15.1716.1 17.20 18.①,③,④三、解答题(本题共8个小题,满分78分)19.(本题满分6分)2)+(11|1=++. ····························································2分111 =.·································································4分1 =····································································································6分20.(本题满分8分)解:(1)12···································································································1分(2)13········································································································3分(3)根据题意,画树状图: ·············································································6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.·····································································8分或根据题意,画表格: ····················································································6分1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始P (4的倍数)41164==. ·············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ···································· 1分 初一学生总数:2010%200÷=(人). ····························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ················································ 3分 频数分布直方图(如图)···················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ··························· 5分 (4)众数是4天,中位数是4天. ···································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································· 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ························· 3分 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==°, ··············· 4分5cos 5cos3032CE AC ACE =∠==° ·············5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分DB BA(第22题图)C(第21题图)551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ·········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=.····································································· 4分 解这个方程,得12100200x x ==,. ································································ 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ···························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ·········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ··········· 2分 12OB OC =∴∠=∠,, ······································ 3分 3HGC ∠=∠,2390∴∠+∠=°.······················· 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································· 6分BED BME ∴∠=∠. ····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ··········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······························ 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)证明:(1)延长DE 交BC 于F .(第24题图)AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ···························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································· 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················· 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ····································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ····································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ······················································· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ···························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ······································· 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································ 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,··············2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ······························································ 5分容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2AN ∴=. ··············································································· 6分 A D G E C B (第25题图)FP(第26题图)第 11 页 共 11 页 在223y x x =--中,令3y =-,得1202x x ==,. 2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ····························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ······································································ 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ······················· 14分。
2022年山东省青岛市中考数学真题(解析版)
2
22
2
2 6,
故选:B. 【点睛】此题考查了正方形的性质,勾股定理,等边三角形的性质,掌握以上知识点是解题的关键.
8. 已知二次函数 y ax2 bx c 的图象开口向下,对称轴为直线 x 1 ,且经过点 (3,0) ,则下列结论
正确的是( )
A. b 0
B. c 0
C. a b c 0
7. 如图,O 为正方形 ABCD 对角线 AC 的中点,ACE 为等边三角形.若 AB 2 ,则 OE 的长度为( )
A. 6 2
B. 6
C. 2 2
D. 2 3
【答案】B
【解析】
【分析】利用勾股定理求出 AC 的长度,再利用等边三角形的性质即可解决问题.
【详解】在正方形 ABCD 中: AB BC 2, ABC 90 ,
【答案】C 【解析】 【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解. 【详解】解:先画出△ABC 平移后的△DEF,再利用旋转得到△A'B'C', 由图像可知 A'(-1,-3), 故选:C.
【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵 坐标都互为相反数.
A. 30°
B. 36
C. 45
【答案】D
【解析】
【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.
【详解】解:连接 OC、OD、OE,如图所示:
D. 60
∵正六边形 ABCDEF 内接于 O ,
∴∠COD= 360 =60°,则∠COE=120°, 6
∴∠CME=
1 2
∠COE=60°,
故选:D.
青岛市中考数学试卷含答案解析(Word版)
山东省青岛市中考数学试卷一.选择题:本大题共8个小题,每小题3分,共24分.在每小题给出四个选项中,只有一项是符合题目要求.1.(3分)观察下列四个图形,中心对称图形是()A. B. C. D.2.(3分)斑叶兰被列为国家二级保护植物,它一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣63.(3分)如图,点A所表示数绝对值是()A.3B.﹣3C.D.4.(3分)计算(a2)3﹣5a3•a3结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a65.(3分)如图,点A.B.C.D在⊙O上,∠AOC=140°,点B是中点,则∠D度数是()A.70°B.55°C.35.5°D.35°6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC长是()A. B. C.3 D.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A.B对应点分别是点A'.B',则点A'坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)8.(3分)已知一次函数y=x+c图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中图象可能是()A. B. C. D.二.填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲.乙两组数据折线图如图,设甲.乙两组数据方差分别为S甲2.S乙2,则S甲2S乙2(填“>”.“=”.“<”)10.(3分)计算:2﹣1×+2cos30°=.11.(3分)5月份,甲.乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y方程组为.12.(3分)如图,已知正方形ABCD边长为5,点E.F分别在AD.DC上,AE=DF=2,BE与AF相交于点G,点H为BF中点,连接GH,则GH长为.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径圆与CB相切于点E,与AB相交于点F,连接OE.OF,则图中阴影部分面积是.14.(3分)一个由16个完全相同小立方块搭成几何体,其最下面一层摆放了9个小立方块,它主视图和左视图如图所示,那么这个几何体搭法共有种.三.作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD底边,点P在∠ABC内部,且点P 到∠ABC两边距离相等.四.解答题(本大题共9小题,共74分.解答应写出文字说明.证明过程或演算步骤.)16.(8分)(1)解不等式组:(2)化简:(﹣2)•.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同卡片上分别标记4.5.6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出两张卡片标记数字之和为偶数,则按照小明想法参加敬老服务活动,若抽出两张卡片标记数字之和为奇数,则按照小亮想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书人数约为多少.19.(6分)某区域平面示意图如图,点O在河一侧,AC和BC表示两条互相垂直公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈20.(8分)已知反比例函数图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m值;(2)如图,过点B.C分别作x轴.y轴垂线,两垂线相交于点D,点P在x轴上,若三角形PBD面积是8,请写出点P坐标(不需要写解答过程).21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G 为AD中点,连接CG,CG延长线交BA延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF形状,并证明你结论.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年利润W1(万元)与售价x(元/件)满足函数关系式;(2)该产品第一年利润为20万元,那么该产品第一年售价是多少?(3)第二年,该公司将第一年利润20万元(20万元只计入第二年成本)再次投入研发,使产品生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年利润W2至少为多少万元.23.(10分)问题提出:用若干相同一个单位长度细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数规律.问题探究:我们先从简单问题开始探究,从中找出解决问题方法.探究一用若干木棒来搭建横长是m,纵长是n矩形框架(m.n是正整数),需要木棒条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒条.问题(二):当矩形框架横长是m,纵长是n时,横放木棒为条,纵放木棒为条.探究二用若干木棒来搭建横长是m,纵长是n,高是s长方体框架(m.n.s是正整数),需要木棒条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为条,竖放木棒条数为条.实际应用:现在按探究二搭建方式搭建一个纵长是2.高是4长方体框架,总共使用了170条木棒,则这个长方体框架横长是.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5正三棱柱框架,需要木棒条.24.(12分)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们运动速度均为2cm/s.点P和点Q同时出发,以QA.QP为边作平行四边形AQPE,设运动时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t代数式表示AP;(2)设四边形CPQB面积为S(cm2),求S与t函数关系式;(3)当QP⊥BD时,求t值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD平分线上?若存在,求出t值;若不存在,请说明理由.参考答案与试题解析一.选择题:本大题共8个小题,每小题3分,共24分.在每小题给出四个选项中,只有一项是符合题目要求.1.(3分)观察下列四个图形,中心对称图形是()A. B. C. D.【分析】根据中心对称图形概念对各选项分析判断即可得解.【解答】解:A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.是中心对称图形,故本选项正确;D.不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)斑叶兰被列为国家二级保护植物,它一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数科学记数法不同是其所使用是负指数幂,指数由原数左边起第一个不为零数字前面0个数所决定.【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零数字前面0个数所决定.3.(3分)如图,点A所表示数绝对值是()A.3B.﹣3C.D.【分析】根据负数绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.【点评】此题考查绝对值问题,关键是根据负数绝对值是其相反数解答.4.(3分)计算(a2)3﹣5a3•a3结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a6【分析】直接利用幂乘方运算法则化简,再利用单项式乘以单项式.合并同类项法则计算得出答案.【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.【点评】此题主要考查了幂乘方运算.单项式乘以单项式,正确掌握运算法则是解题关键.5.(3分)如图,点A.B.C.D在⊙O上,∠AOC=140°,点B是中点,则∠D度数是()A.70°B.55°C.35.5°D.35°【分析】根据圆心角.弧.弦关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查是圆心角.弧.弦关系定理.圆周角定理,掌握在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对圆心角一半是解题关键.6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC长是()A. B. C.3 D.【分析】由折叠性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形性质可知EF=AB,所以AB=AC长可求,再利用勾股定理即可求出BC长.【解答】解:∵沿过点E直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.【点评】本题考查了折叠性质.等腰直角三角形判断和性质以及勾股定理运用,求出∠AFB=90°是解题关键.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A.B对应点分别是点A'.B',则点A'坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.【解答】解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转性质,熟练掌握顺时针或逆时针旋转某个点或某直线位置关系.8.(3分)已知一次函数y=x+c图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中图象可能是()A. B. C. D.【分析】根据反比例函数图象一次函数图象经过象限,即可得出<0.c>0,由此即可得出:二次函数y=ax2+bx+c图象对称轴x=﹣>0,与y轴交点在y轴负正半轴,再对照四个选项中图象即可得出结论.【解答】解:观察函数图象可知:<0.c>0,∴二次函数y=ax2+bx+c图象对称轴x=﹣>0,与y轴交点在y轴负正半轴.故选:A.【点评】本题考查了一次函数图象以及二次函数图象,根据一次函数图象经过象限,找出<0.c>0是解题关键.二.填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲.乙两组数据折线图如图,设甲.乙两组数据方差分别为S甲2.S乙2,则S甲2<S乙2(填“>”.“=”.“<”)【分析】结合图形,根据数据波动较大方差较大即可求解.【解答】解:从图看出:乙组数据波动较小,故乙方差较小,即S甲2<S乙2.故答案为:<.【点评】本题考查了方差意义.方差是用来衡量一组数据波动大小量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.(3分)计算:2﹣1×+2cos30°=2.【分析】根据特殊角三角函数值和有理数乘法和加法可以解答本题.【解答】解:2﹣1×+2cos30°===2,故答案为:2.【点评】本题考查实数运算.负整数指数幂.特殊角三角函数值,解答本题关键是明确它们各自计算方法.11.(3分)5月份,甲.乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y方程组为.【分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份用水量及6月份用水量,即可得出关于x.y二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:.故答案为:.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题关键.12.(3分)如图,已知正方形ABCD边长为5,点E.F分别在AD.DC上,AE=DF=2,BE与AF相交于点G,点H为BF中点,连接GH,则GH长为.【分析】根据正方形四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF中点,∴GH=BF,∵BC=5.CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.【点评】本题考查了正方形性质,全等三角形判定与性质,直角三角形两锐角互余等知识,掌握三角形全等判定方法与正方形性质是解题关键.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径圆与CB相切于点E,与AB相交于点F,连接OE.OF,则图中阴影部分面积是﹣π.【分析】根据扇形面积公式以及三角形面积公式即可求出答案.【解答】解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF面积为:=∵OA为半径圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC面积为:×3×3=∵△OAF面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π【点评】本题考查扇形面积公式,涉及含30度角直角三角形性质,勾股定理,切线性质,扇形面积公式等知识,综合程度较高.14.(3分)一个由16个完全相同小立方块搭成几何体,其最下面一层摆放了9个小立方块,它主视图和左视图如图所示,那么这个几何体搭法共有4种.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:这个几何体搭法共有4种:如下图所示:故答案为:4.【点评】本题考查几何体三视图.由几何体主视图.左视图及小立方块个数,可知俯视图列数和行数中最大数字.三.作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD底边,点P在∠ABC内部,且点P 到∠ABC两边距离相等.【分析】根据角平分线性质.线段垂直平分线性质即可解决问题.【解答】解:∵点P在∠ABC平分线上,∴点P到∠ABC两边距离相等(角平分线上点到角两边距离相等),∵点P在线段BD垂直平分线上,∴PB=PD(线段垂直平分线上点到线段两个端点距离相等),如图所示:【点评】本题考查作图﹣复杂作图.角平分线性质.线段垂直平分线性质等知识,解题关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.四.解答题(本大题共9小题,共74分.解答应写出文字说明.证明过程或演算步骤.)16.(8分)(1)解不等式组:(2)化简:(﹣2)•.【分析】(1)先求出各不等式解集,再求出其公共解集即可.(2)根据分式混合运算顺序和运算法则计算可得.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组解集为﹣1<x<5;(2)原式=(﹣)•=•=.【点评】本题主要考查分式混合运算和解一元一次不等式组,解题关键是掌握解一元一次不等式组步骤和分式混合运算顺序和运算法则.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同卡片上分别标记4.5.6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出两张卡片标记数字之和为偶数,则按照小明想法参加敬老服务活动,若抽出两张卡片标记数字之和为奇数,则按照小亮想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【分析】首先根据题意列表,然后根据表求得所有等可能结果与和为奇数.偶数情况,再利用概率公式求解即可.【解答】解:不公平,列表如下:456489105910116101112由表可知,共有9种等可能结果,其中和为偶数有5种结果,和为奇数有4种结果,所以按照小明想法参加敬老服务活动概率为,按照小亮想法参加文明礼仪宣传活动概率为,由≠知这个游戏不公平;【点评】此题考查了列表法求概率.注意树状图与列表法可以不重不漏表示出所有等可能情况.用到知识点为:概率=所求情况数与总情况数之比.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书人数约为多少.【分析】(1)由读书1本人数及其所占百分比可得总人数;(2)总人数乘以读4本百分比求得其人数,减去男生人数即可得出女生人数,用读2本人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书人数约为1500×38%=570人.【点评】本题考查是条形统计图和扇形统计图综合运用,读懂统计图,从不同统计图中得到必要信息是解决问题关键.条形统计图能清楚地表示出每个项目数据;扇形统计图直接反映部分占总体百分比大小.19.(6分)某区域平面示意图如图,点O在河一侧,AC和BC表示两条互相垂直公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形性质用x表示出OM.MC,根据正切定义用x表示出BM,根据题意列式计算即可.【解答】解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC距离为480m.【点评】本题考查是解直角三角形应用,掌握锐角三角函数定义.正确标注方向角是解题关键.20.(8分)已知反比例函数图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m值;(2)如图,过点B.C分别作x轴.y轴垂线,两垂线相交于点D,点P在x轴上,若三角形PBD面积是8,请写出点P坐标(不需要写解答过程).【分析】(1)先根据反比例函数图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数解析式为y=,再由反比例函数图象上点坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m值;(2)设BD与x轴交于点E.根据三角形PBD面积是8列出方程••PE=8,求出PE=4m,再由E(2m,0),点P在x轴上,即可求出点P坐标.【解答】解:(1)设反比例函数解析式为y=,∵反比例函数图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数解析式为y=,∵反比例函数图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B.C分别作x轴.y轴垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点坐标特征以及三角形面积,正确求出双曲线解析式是解题关键.21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G 为AD中点,连接CG,CG延长线交BA延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF形状,并证明你结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形判定和性质.矩形判定.全等三角形判定和性质等知识,解题关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年利润W1(万元)与售价x(元/件)满足函数关系式;(2)该产品第一年利润为20万元,那么该产品第一年售价是多少?(3)第二年,该公司将第一年利润20万元(20万元只计入第二年成本)再次投入研发,使产品生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年利润W2至少为多少万元.【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量取值范围,再根据二次函数,利用而学会设性质即可解决问题;【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年利润W2至少为18万元.【点评】本题考查二次函数应用.一元二次方程应用等知识,解题关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.23.(10分)问题提出:用若干相同一个单位长度细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数规律.问题探究:我们先从简单问题开始探究,从中找出解决问题方法.探究一用若干木棒来搭建横长是m,纵长是n矩形框架(m.n是正整数),需要木棒条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22条.问题(二):当矩形框架横长是m,纵长是n时,横放木棒为m(n+1)条,纵放木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s长方体框架(m.n.s是正整数),需要木棒条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:现在按探究二搭建方式搭建一个纵长是2.高是4长方体框架,总共使用了170条木棒,则这个长方体框架横长是4.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5正三棱柱框架,需要木棒1320条.【分析】从特殊到一般探究规律后利用规律即可解决问题;【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放木棒为m(n+1)条,纵放木棒为n(m+1)条;问题(三):当长方体框架横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m (n +1)+n (m +1)](s +1)条,竖放木棒条数为(m +1)(n +1)s 条.实际应用:这个长方体框架横长是 s ,则:[3m +2(m +1)]×5+(m +1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5正三棱柱框架,横放与纵放木棒条数之和为165×6=990条,竖放木棒条数为60×5=330条需要木棒1320条.故答案为22,m (n +1),n (m +1),[m (n +1)+n (m +1)](s +1),(m +1)(n +1)s ,4,1320;【点评】本题考查规律型﹣图形变化类问题,解题关键是理解题意,学会用分类讨论思想解决问题,属于中考填空题中压轴题.24.(12分)已知:如图,四边形ABCD ,AB ∥DC ,CB ⊥AB ,AB=16cm ,BC=6cm ,CD=8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们运动速度均为2cm/s.点P 和点Q 同时出发,以QA.QP 为边作平行四边形AQPE ,设运动时间为t (s ),0<t <5.根据题意解答下列问题:(1)用含t 代数式表示AP ;(2)设四边形CPQB 面积为S (cm 2),求S 与t 函数关系式;(3)当QP ⊥BD 时,求t 值;(4)在运动过程中,是否存在某一时刻t ,使点E 在∠ABD 平分线上?若存在,求出t 值;若不存在,请说明理由.【分析】(1)如图作DH ⊥AB 于H 则四边形DHBC 是矩形,利用勾股定理求出AD 长即可解决问题;(2)作PN ⊥AB 于N.连接PB ,根据S=S △PQB +S △BCP ,计算即可;。
2013-2019年山东省青岛市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年山东省青岛市中考数学试题汇编(含参考答案与解析)1、2013年山东省青岛市中考数学试题及参考答案与解析 (2)2、2014年山东省青岛市中考数学试题及参考答案与解析 (26)3、2015年山东省青岛市中考数学试题及参考答案与解析 (51)4、2016年山东省青岛市中考数学试题及参考答案与解析 (75)5、2017年山东省青岛市中考数学试题及参考答案与解析 (98)6、2018年山东省青岛市中考数学试题及参考答案与解析 (121)7、2019年山东省青岛市中考数学试题及参考答案与解析 (146)2013年山东省青岛市中考数学试题及参考答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.﹣6的相反数是()A.﹣6 B.6 C.16D.162.下列四个图形中,是中心对称图形的是()A.B.C.D.3.如图所示的几何体的俯视图是()A.B.C.D.4.“十二五”以来,我国积极推进国家创新体系建设.国家统计局《2012年国民经济和社会发展统计公报》指出:截止2012年底,国内有效专利达8750000件,将8750000件用科学记数法表示为()件.A.8.75×104B.8.75×105C.8.75×106D.8.75×1075.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.556.已知矩形的面积为36cm2,相邻的两条边长分别为xcm和ycm,则y与x之间的函数图象大致是()A.B.C.D.7.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥68.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A .,2m n ⎛⎫ ⎪⎝⎭B .(m ,n )C .,2n m ⎛⎫ ⎪⎝⎭D .,22m n ⎛⎫ ⎪⎝⎭ 二、填空题(本题满分18分共有6道题,每小题3分)9.计算:12-+= .10.某校对甲、乙两名跳高运动员的近期调高成绩进行统计分析,结果如下:=1.69m ,=1.69m ,S 2甲=0.0006,S 2乙=0.00315,则这两名运动员中 的成绩更稳定.11.某企业2010年底缴税40万元,2012年底缴税48.4万元.设这两年该企业交税的年平均增长率为x ,根据题意,可得方程 .12.如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于点P ,则这个正比例函数的表达式是 .13.如图,AB 是⊙O 的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是 .14.要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切 次;分割成64个小正方体,至少需要用刀切 次.三、作图题(本题满分4分)用圆规、直尺作图,不写做法,但要保留作图痕迹。
(中考精品卷)山东省青岛市中考数学真题(解析版)
2022年青岛市初中学业水平考试数学试题(考试时间:120分钟 满分:120分)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共25题.第Ⅰ卷为选择题,共8小题,24分;第Ⅱ卷为填空题,作图题、解答题,共17小题,96分. 2.所有题目均在答题卡上作答,在试题上作答无效.第Ⅰ卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1. 我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A. 7310-⨯B. 60.310-⨯C. 6310-⨯D. 7310⨯【答案】A【解析】【分析】绝对值较小的数的科学记数法的一般形式为:a ×10-n ,在本题中a 应为3,10的指数为-7.【详解】解:0.00000037310-=´故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.2. 北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【详解】解:A、既不轴对称图形,又不是中心对称图形,该选项不符合题意;B、不是轴对称图形,是中心对称图形,该选项不符合题意;C、既是轴对称图形,又是中心对称图形,该选项符合题意;D、是轴对称图形,不是中心对称图形,该选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.计算-的结果是()B. 1D. 3【答案】B【解析】再合并即可.【详解】解:321-=-=故选:B.【点睛】本题考查是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.4. 如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是()是的A. B. C. D.【答案】C【解析】【分析】根据几何体的俯视图是从上面看进行判断解答即可.【详解】解:由图可知,该“堑堵”的俯视图是,故选:C .【点睛】本题考查几何体的俯视图,理解俯视图的概念是解答的关键.5. 如图,正六边形ABCDEF 内接于O ,点M 在 AB 上,则CME ∠的度数为( )A. 30°B. 36︒C. 45︒D. 60︒【答案】D【解析】 【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.【详解】解:连接OC 、OD 、OE ,如图所示:∵正六边形ABCDEF 内接于O ,∴∠COD = 3606=60°,则∠COE =120°,∴∠CME =12∠COE =60°,故选:D . 【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正n 多边形的中心角为360n是解答的关键. 6. 如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C '''V ,则点A 的对应点A '的坐标是( )A. (2,0)B. (2,3)--C. (1,3)--D. (3,1)--【答案】C【解析】【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出△ABC 平移后的△DEF ,再利用旋转得到△A 'B 'C ',由图像可知A '(-1,-3),故选:C .【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.7. 如图,O 为正方形ABCD 对角线AC 的中点,ACE 为等边三角形.若2AB =,则OE 的长度为( )A. B. C. D.【答案】B【解析】【分析】利用勾股定理求出AC 的长度,再利用等边三角形的性质即可解决问题.【详解】在正方形ABCD 中:2,90AB BC ABC ==∠=︒,∴AC ===,∵O 为正方形ABCD 对角线AC 的中点,∴12OC AC == ∵ACE 为等边三角形, O 为AC 的中点,∴EC AC ==,EO AC ⊥,∴90EOC ∠=︒,∴OE ===,故选:B .【点睛】此题考查了正方形的性质,勾股定理,等边三角形的性质,掌握以上知识点是解题的关键.8. 已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(30)-,,则下列结论正确的是( )A. 0b >B. 0c <C. 0a b c ++>D. 30a c +=【答案】D【解析】【分析】图象开口向下,得a <0, 对称轴为直线12b x a=-=-,得b =2a ,则b <0,图象经过(30)-,,根据对称性可知,图象经过点(1)0,,故c >0,当x =1时,a +b +c =0,将b =2a 代入,可知3a +c =0.【详解】解:∵图象开口向下,∴a <0,∵对称轴为直线12b x a=-=-, ∴b =2a ,∴b <0,故A 不符合题意; 根据对称性可知,图象经过(30)-,, ∴图象经过点(1)0,, ∴c >0,故B 不符合题意;当x =1时,a +b +c =0,故C 不符合题意;将将b =2a 代入,可知3a +c =0,故D 符合题意.故选:D .【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.第Ⅱ卷(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9. ﹣12的绝对值是_____.【答案】12【解析】【分析】绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示.|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】﹣12的绝对值是|﹣12|=12【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.10. 小明参加“建团百年,我为团旗添光彩”主题演进比赛,其演讲形象、内容、效果三项得分分别是9分,8分,8分.若将三项得分依次按3∶4∶3的比例确定最终成绩,则小明的最终比赛成绩为__________分.【答案】8.3【解析】【分析】按三项得分的比例列代数式930%840%830%,´+´+´再计算即可.【详解】解:由题意得:930%840%830%=8.3,´+´+´故答案为:8.3【点睛】本题考查的是加权平均数的含义,掌握“求解加权平均数的方法”是解本题的关键.11. 为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.【答案】300030003(125%)x x-=+【解析】【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x米/分,根据比赛时所用时间比训练前少用3分钟列出方程.【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x 米/分,∴比赛时小亮平均速度为(1+25%)x米/分,根据题意可得300030003(125%)x x-=+,故答案为:300030003(125%)x x-=+.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12. 图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中ABC ∠的度数是__________︒.【答案】60【解析】【分析】先确定∠BAD 的度数,再利用菱形的对边平行,利用平行线的性质即可求出∠ABC 的度数.【详解】如图,∵∠BAD =∠BAE =∠DAE ,∠BAD +∠BAE +∠DAE =360°,∴∠BAD =∠BAE =∠DAE =120°,∵BC ∥AD ,∴∠ABC =180°-120°=60°,故答案为:60.【点睛】本题考查了菱形的性质与学生读题审题的能力,解题关键是理解题意,求出∠BAD 的度数.13. 如图,AB 是O 的切线,B 为切点,OA 与O 交于点C ,以点A 为圆心、以OC 的长为半径作 E F ,分别交,AB AC 于点E ,F .若2,4OC AB ==,则图中阴影部分的面积为__________.【答案】4π-【解析】【分析】先证明90,90,ABO O A Ð=°Ð+Ð=°再利用阴影部分的面积等于三角形面积减去扇形面积即可得到答案.【详解】解:如图,连接OB ,AB 是O 的切线,90,90,ABO O A \Ð=°Ð+Ð=°设12,,O n A n Ð=Ð=2,4OC AB ==12,244,2ABO OB AE S \===´´=V 2212360360BOC AEF n OB n AE S S p p \+=+扇形扇形 ()212904,360360n n OB p p p +´=== 4.S p \=-阴影故答案为:4π-【点睛】本题考查的是圆的切线的性质,扇形面积的计算,掌握“整体求解扇形的面积”是解本题的关键.14. 如图,已知,,16,,ABC AB AC BC AD BC ABC ==⊥∠△的平分线交AD 于点E ,且4DE =.将C ∠沿GM 折叠使点C 与点E 恰好重合.下列结论正确的有:__________(填写序号)①8BD =②点E 到AC 的距离为3③103=EM ④EM AC ∥【答案】①④##④①【解析】【分析】根据等腰三角形的性质即可判断①,根据角平分线的性质即可判断②,设DM x =,则8EM x =-,Rt EDM △中,222EM DM DE =+,4DE =.继而求得EM ,设AE a =,则4,8AD AE ED a BD =+=+=,根据AE AB ED BD=,进而求得a 的值,根据20443tan 83AD C DC +===,4tan 3ED EMD DM ∠==,可得C EMD ∠=∠,即可判断④【详解】解:∵,,16,,ABC AB AC BC AD BC ==⊥△ ∴182BD DC BC ===,故①正确; 如图,过点E 作EF AB ⊥于F ,EH AC ⊥于H ,,AD BC AB AC ⊥=,AE ∴平分BAC ∠,EH EF ∴=,BE 是ABD ∠角平分线,,ED BC EF AB ⊥⊥ ,EF ED ∴=,的4EH ED ∴==,故②不正确,. 将C ∠沿GM 折叠使点C 与点E 恰好重合,,8EM MC DM MC DM EM CD ∴=+=+==,设DM x =,则8EM x =-,Rt EDM △中,222EM DM DE =+,4DE =.()22284x x -=+,解得3x =,5EM MC ∴==故③不正确,设AE a =,则4,8AD AE ED a BD =+=+=,()22248AB a =++,11221122ABEBDE AB EF AE BD S S BD ED ED BD ⨯⨯==⨯⨯ , AE AB ED BD∴=, 48a AB =, 2AB a =,∴()2248a ++()22a =, 解得203a =或4a =-(舍去) 20443tan 83AD C DC +∴===, 4tan 3ED EMD DM ∠== , C EMD ∴∠=∠,EM AC ∴∥,故④正确,故答案为:①④【点睛】本题考查了解直角三角形,三线合一,角平分线的性质,掌握以上知识是解题的关键.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15. 已知:Rt ABC ,90B ∠=︒.求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.【答案】见解析【解析】【分析】分别以点B 、C 为圆心,大于BC 长的一半为半径画弧,交于两点,连接这两点,然后再以点B 为圆心,适当长为半径画弧,交AB 、BC 于点M 、N ,以点M 、N 为圆心,大于MN 长一半为半径画弧,交于一点Q ,连接BQ ,进而问题可求解.【详解】解:如图,点P 即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.四、解答题(本大题共10小题,共74分)16. (1)计算:2111442a a a a -⎛⎫÷+ ⎪-+-⎝⎭; (2)解不等式组:()231212x x x ⎧≥-⎪⎨-<⎪⎩【答案】(1)12a -;(2)23x <≤ 【解析】【分析】(1)先计算括号内的分式的减法,再把除法转化为乘法,约分后可得答案; (2)分别解不等式组中的两个不等式,再确定不等式解集的公共部分即可.【详解】(1)解:原式2121442a a a a a --+=÷-+- 212(2)1a a a a --=⋅-- 12a =-. (2)解:解不等式23(1)x x ≥-得:3x ≤ 解不等式212x -<得:2x > ∴原不等式组的解集是23x <≤.【点睛】本题考查的是分式的化简,一元一次不等式组的解法,掌握“分式混合运算的运算顺序与解一元一次不等式组的步骤”是解本题的关键.17. 2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.【答案】游戏对双方都公平【解析】【分析】根据题意列表求得双方的概率即可求解.【详解】解:所有可能的结果如下:乙 甲1 2 3 4 5 1()1,1 ()1,2 ()1,3 ()1,4 ()1,5 2 ()2,1 ()2,2 ()2,3 ()2,4 ()2,5∴共有10种等可能的结果,其中两球编号之和为奇数的有5种结果,两球编号之和为偶数的有5种结果.∴P (小冰获胜)51102== P (小雪获胜)51102== ∵P (小冰获胜)=P (小雪获胜)∴游戏对双方都公平.【点睛】本题考查了游戏的公平性,列表法求概率,掌握求概率的方法是解题的关键. 18. 已知二次函数y =x 2+mx +m 2−3(m 为常数,m >0)的图象经过点P (2,4).(1)求m 的值;(2)判断二次函数y =x 2+mx +m 2−3的图象与x 轴交点的个数,并说明理由.【答案】(1)m =1 (2)二次函数22y x x =+-图象与x 轴有两个交点,理由见解析.【解析】【分析】(1)把P (2,4)代入y =x 2+mx +m 2−3即可求得m 的值;(2)首先求出Δ=b 2-4ac 的值,进而得出答案.【小问1详解】解:∵二次函数y = x 2+mx +m 2−3图象经过点P (2,4) ,∴4=4+2m +m 2−3,即m 2+2m −3=0,解得:m 1=1,m 2=−3,又∵m >0,∴m =1;【小问2详解】解:由(1)知二次函数y =x 2+x −2,∵Δ=b 2−4ac =12+8=9>0, 的∴二次函数y =x 2+x −2的图象与x 轴有两个交点.【点睛】此题主要考查了抛物线与x 轴的交点以及一元二次方程的解法,得出△的值是解题关键.19. 如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68︒的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40︒的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C 处航行到D 处的距离.(参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 680.93︒≈,cos 680.37︒≈,tan 68 2.48︒≈)【答案】观光船从C 处航行到D 处的距离为462.5米【解析】【分析】过点C 作CF DE ⊥于点F ,根据题意利用正切函数可得496AB =,由矩形的判定和性质得出296CF BE ==,结合图形利用锐角三角函数解三角形即可.【详解】解:过点C 作CF DE ⊥于点F ,由题意得,40,68D ACB ∠=︒∠=︒,在Rt ABC 中,90CBA ∠=︒, ∵tan AB ACB CB∠= ∴tan 68200 2.48496AB CB =⨯︒=⨯=∴496200296BE AB AE =-=-=∵90CFE FEB CBE ∠=∠=∠=︒∴四边形FEBC 为矩形∴296CF BE ==.在Rt CDF 中,90DFC ∠=︒ ∵sin CF D CD∠=∴296462.5sin 400.64CF CD =≈=︒ 答:观光船从C 处航行到D 处的距离为462.5米.【点睛】题目主要考查解三角形的应用,理解题意,找准各角之间的关系,利用锐角三角函数解三角形是解题关键.20. 孔子曾说:“知之者不如好之者,好之者不如乐之者.”兴趣是最好的老师,阅读、书法、绘画、手工、烹饪、运动、音乐……各种兴趣爱好是打并创新之门的金钥匙.某校为了解学生兴趣爱好情况,组织了问卷调查活动,从全校2200名学生中随机抽取了200人进行调查,其中一项调查内容是学生每周自主发展兴趣爱好的时长.对这项调查结果使用画“正”字的方法进行初步统计,得到下表:学生每周自主发展兴趣爱好时长分布统计表 组别时长t (单位:h ) 人数累计 人数 第一组12t ≤< 正正正正正正 30 第二组23t ≤< 正正正正正正正正正正正正 60 第三组34t ≤< 正正正正正正正正正正正正正正 70 第四组 45t ≤<正正正正正正正正 40根据以上信息,解答下列问题:(1)补全频数直方图;(2)这200名学生每周自主发展兴趣爱好时长的中位数落在第__________组;(3)若将上述调查结果绘制成扇形统计图,则第二组的学生人数占调查总人数的百分比为__________,对应的扇形圆心角的度数为__________︒;(4)学校倡议学生每周自主发展兴趣爱好时长应不少于2h,请你估计,该校学生中有多少人需要增加自主发展兴趣爱好时间?【答案】(1)图见解析(2)三(3)30%,108(4)330人【解析】【分析】(1)根据频数分布表补全图形即可;(2)根据中位数的定义,中间的一个数或两个数的平均数求出中位数;⨯︒,即可得出答案;(3)根据百分比=该组频数÷总数,圆心角=百分比360(4)用2200乘以第一组所占百分比即可得出答案.【小问1详解】解:学生每周自主发展兴趣爱好时长频数直方图:【小问2详解】∵总人数为200人,∴中位数落在第100、101个学生每周自主发展兴趣爱好的时长的平均数,又∵30+60=90<100,30+60+70=160>101,∴中位数落在第三组,故答案为:三;【小问3详解】 第二组的学生人数占调查总人数的百分比为:60100%30%200⨯= 第二组的学生人数对应的扇形圆心角的度数为:30%360108⨯︒=︒故答案为:30%,108;【小问4详解】 估计该校需要增加自主发展兴趣爱好时间的人数为:302200330200⨯=(人) 答:估计该校有330人需要增加自主发展兴趣爱好时间.【点睛】本题考查频数及频率的应用,熟练掌握频数及频率的意义及应用、频数分布直方图的画法及一定的数据分析方法是解题关键.21. 【图形定义】有一条高线相等的两个三角形称为等高三角形.例如:如图①.在ABC 和A B C '''V 中,,AD A D ''分别是BC 和B C ''边上的高线,且AD A D ''=,则ABC 和A B C '''V 是等高三角形.【性质探究】如图①,用ABC S ,A B C S ''' 分别表示ABC 和A B C '''V 的面积. 则11,22ABC A B C S BC AD S B C A D '''=⋅=''⋅''△△, ∵AD A D ''=∴::ABC A B C S S BC B C ''=''△△.【性质应用】(1)如图②,D 是ABC 的边BC 上的一点.若3,4BD DC ==,则:ABD ADC S S =△△__________;(2)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点.若:1:2BE AB =,:1:3CD BC =,1ABC S =△,则BEC S =△__________,CDE S =△_________;(3)如图③,在ABC 中,D ,E 分别是BC 和AB 边上的点,若:1:BE AB m =,:1:CD BC n =,ABC S a = ,则CDE S =△__________.【答案】(1)3:4(2)12;16(3)a mn 【解析】【分析】(1)由图可知ABD △和ADC 是等高三角形,然后根据等高三角形的性质即可得到答案;(2)根据:1:2BE AB =,1ABC S =△和等高三角形的性质可求得BEC S ,然后根据:1:3CD BC =和等高三角形的性质可求得CDE S △;(3)根据:1:BE AB m =,ABC S a = 和等高三角形的性质可求得S BEC ,然后根据:1:CD BC n =,和等高三角形的性质可求得CDE S △.【小问1详解】解:如图,过点A 作AE ⊥BC ,则12ABD S BD AE =⋅ ,12ADC S DC AE =⋅V ∵AE =AE ,∴::3:4ABD ADC S S BD DC ==△△.【小问2详解】解:∵BEC △和ABC 是等高三角形,∴::1:2BEC ABC S S BE AB == △, ∴1111222BEC ABC S S ==⨯= △; ∵CDE △和BEC △是等高三角形,∴::1:3CDE BEC S S CD BC == △, ∴11113326CDE BEC S S ==⨯= . 【小问3详解】解:∵BEC △和ABC 是等高三角形,∴::1:BEC ABC S S BE AB m == △, ∴11BEC ABC a S S a m m m==⨯= △; ∵CDE △和BEC △是等高三角形,∴::1:CDE BEC S S CD BC n == △, ∴11CDE BEC a a S S n n m mn==⨯= . 【点睛】本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.22. 如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x =-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.【答案】(1)1y x =-+(2)1-1+【解析】【分析】(1)将点A 坐标代入反比例函数解析式求出m ,得(1,2)A -,由AD x ⊥轴可得2,1AD OD ==,进一步求出点(1,0)C ,将A ,C 点坐标代入一次函数解析式,用待定系数法即可求出一次函数的解析式;(2)由勾股定理求出AC 的长,再根据CE CA =且E 在x 轴上,分类讨论得a 的值.【小问1详解】解:(1)∵点(1,)A m -在反比例函数2y x =-的图象上, ∴221m =-=- ∴(1,2)A -∵AD x ⊥轴∴2,1AD OD ==∴2CD AD ==∴211OC CD OD =-=-=∴(1,0)C∵点(1,2),(1,0)A C -在一次函数y kx b =+的图象上∴20k b k b -+=⎧⎨+=⎩解得11k b =-⎧⎨=⎩∴一次函数的表达式为1y x =-+.【小问2详解】中,由勾股定理得,AC===在Rt ADC==∴AC CE当点E在点C的左侧时,1a=-当点E在点C的右侧时,1a=+∴a的值为1-或1+【点睛】本题考查反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式、勾股定理,熟练掌握反比例函数与一次函数的关系是解答本题的关键.23. 如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知__________(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件2:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)【答案】(1)证明见解析(2)见解析【解析】【分析】(1)利用AAS即可证明△ABF≌△CDE;(2)若选择条件①:先证明四边形AECF是平行四边形,利用直角三角形斜边上的中线性质以及含30度角的直角三角形的性质证得AE=AF,即可证明平行四边形AECF是菱形.若选择条件②:先证明四边形AECF是平行四边形,得到AO=CO,再根据等腰三角形的性质即可证明平行四边形AECF是菱形.【小问1详解】证明:∵BE=FD,∴BE+EF=FD+EF,即BF=DE,∵AB∥CD,∴∠ABF=∠CDE,又∵∠BAF=∠DCE=90°,∴△ABF≌△CDE(AAS);【小问2详解】解:若选择条件①:四边形AECF是菱形, 由(1)得,△ABF≌△CDE,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形,∵∠BAF=90°,BE=EF,∴AE=12 BF,∵∠BAF=90°,∠ABD=30°,∴AF=12 BF,∴AE=AF,∴平行四边形AECF是菱形.若选择条件②:四边形AECF是菱形,连接AC交BD于点O,由(1)得,△ABF ≌△CDE ,∴AF =CE ,∠AFB =∠CED ,∴AF ∥CE ,∴四边形AECF 是平行四边形,∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,即EF ⊥AC ,∴平行四边形AECF 是菱形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,菱形的判定,平行四边形的判定和性质,解题的关键是灵活运用所学知识解决问题. 24. 李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y (元/千克)与购进数量x (箱)之间的函数关系式;(2)若每天购进这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?【答案】(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.【解析】【分析】本题是通过构建函数模型解答销售利润的问题(1)根据题意列出8.20.2(1)y x =--,得到结果.(2)根据销售利润=销售量⨯(售价-进价),利用(1)结果,列出销售利润w 与x 的函数关系式,即可求出最大利润.【小问1详解】解:由题意得8.20.2(1)y x =--的0.28.4x =-+∴批发价y 与购进数量x 之间的函数关系式是0.28.4y x =-+(110x ≤≤,且x 为整数).【小问2详解】解:设李大爷销售这种水果每天获得的利润为w 元则[120.5(1)]10w x y x =---⋅[120.5(1)(0.28.4)]10x x x =----+⋅2341x x =-+∵30a =-<∴抛物线开口向下∵对称轴是直线416x =∴当4116x ≤≤时,w 的值随x 值的增大而增大 ∵x 为正整数,∴此时,当6x =时,138w =最大 当41106x ≤≤时,w 的值随x 值的增大而减小 ∵x 为正整数,∴此时,当7x =时,140w =最大∵140138>∴李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.【点睛】本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利用二次函数的增减性来解答,解题关键是理解题意,确定变量,建立函数模型,然后结合实际选择最优方案进行解决.25. 如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5 (2)213714210S t t =-+ (3)存在,65s 29t = 【解析】 【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解; (2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.【小问1详解】解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE∴5349090AD DE AE AED BAD ︒===∠=∠=︒,,,,∵EQ AD ⊥∴90AQE AED ∠=∠=︒又EAQ DAE ∠=∠∴AQE AED △∽△ ∴AQ AE AE AD=∴445t = ∴165t = 答:当EQ AD ⊥时,t 的值为16s 5.【小问2详解】解:分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N∵90,90B BAC CAM BAC ∠+∠=∠+∠=︒︒∴B CAM ∠=∠又90BCA AMC ∠=∠=︒∴ABC CAM △∽△ ∴AB BC AC CA AM CM== ∴5344AM CM == ∴121655AM CM == ∵90B B BNP BCA ∠∠︒=∠∠==,∴BPN BAC △∽△ ∴BP PN BA AC= ∴54t PN = ∴45PN t = ∴111116346,5822225ABC ACD S BC AC S AD CM =⋅⋅=⨯⨯==⋅⋅=⨯⨯=△△ 1146113,(5)225522PBC APQ S BC PN t t S AQ AP t t =⋅⋅=⨯⨯==⋅⋅=-△△ ∴ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形1668(5)25t t t =+--- 213714210t t =-+∴213714210S t t =-+ 【小问3详解】解:假设存在某一时刻t ,使PQ CD ∥∵125,5AD AM == ∴1213555DM AD AM =-=-= ∵PQ CD ∥∴AQP ADC ∠=∠又90PAQ CMD ∠=∠=︒∴APQ MCD △∽△ ∴AP AQ MC MD= ∴5161355t t -= ∴6529t = ∴存在时刻65s 29t =,使PQ CD ∥.【点睛】本题考查了旋转与相似,利用勾股定理求线段长,平行线的性质,根据旋转的性质,找到相似图形是解决问题的关键,是中考中的常考题。
2023年山东省青岛市中考数学试卷含答案解析
绝密★启用前2023年山东省青岛市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是( )A. B.C. D.2.17的相反数是( )A. −17B. 17C. −7D. 73.一个正方体截去四分之一,得到如图所示的几何体,其左视图是( )A.B.C.D.4.中欧班列是共建“一带一路”的旗舰项目和明星品牌,是亚欧各国深化务实合作的重要载体.中欧班列“青岛号”自胶州开往哈萨克斯坦,全程7900公里.将7900用科学记数法表示为( )A. 0.79×103B. 7.9×102C. 7.9×103D. 79×1025.如图,将线段AB先向左平移,使点B与原点O重合,再将所得线段绕原点旋转180°得到线段A′B′,则点A的对应点A′的坐标是( )A. (2,−3)B. (−2,3)C. (3,−2)D. (−3,2)6.如图,直线a//b,∠1=63°,∠B=45°,则∠2的度数为( )A. 105°B. 108°C. 117°D. 135°7.下列计算正确的是( )A. √ 2+√ 3=√ 5B. 2√ 3−√ 3=2C. √ 2×√ 3=√ 6D. √ 12÷3=28.如图,四边形ABCD是⊙O的内接四边形,∠B=58°,∠ACD=40°.若⊙O的半径为5,则DC⏜的长为( )A. 133πB. 109πC. πD. 12π9.如图,在正方形ABCD中,点E,F分别是AB,CD的中点,AF,DE相交于点M,G为BC上一点,N为EG的中点.若BG=3,CG=1,则线段MN的长度为( )A. √ 5B. √ 172C. 2D. √ 13210.一个不透明小立方块的六个面上分别标有数字1,2,3,4,5,6,其展开图如图①所示.在一张不透明的桌子上,按图②方式将三个这样的小立方块搭成一个几何体,则该几何体能看得到的面上数字之和最小是( )A. 31B. 32C. 33D. 34第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11.计算:8x3y÷(2x)2=______ .12.小颖参加“歌唱祖国”歌咏比赛,六位评委对小颖的打分(单位:分)如下:7,8,7,9,8,10.这六个分数的极差是______ 分.13.反比例函数y=mx 的图象经过点A(m,m8),则反比例函数的表达式为______ .14.某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x元,则x满足的分式方程为______ .15.如图,在平面直角坐标系中,已知点A(1,0),P(−1,0),⊙P过原点O,且与x轴交于另一点D,AB为⊙P 的切线,B为切点,BC是⊙P的直径,则∠BCD的度数为______ °.16.如图,二次函数y=ax2+bx+c的图象与正比例函数y=kx的图象相交于A,B两点,已知点A的横坐标为−3,点B的横坐标为2,二次函数图象的对称轴是直线x=−1.下列结论:①abc<0;②3b+2c>0;③关于x的方程ax2+bx+c=kx的两根为x1=−3,x2=2;④k=1a.其中正确的是______2.(只填写序号)三、解答题(本大题共10小题,共72.0分。
【高频真题解析】2022年山东省青岛市南区中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)
2022年山东省青岛市南区中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将一副三角板平放在一平面上(点D 在BC 上),则1∠的度数为( ) A .60︒B .75︒C .90︒D .105︒2、如图,平行四边形ABCD 的边BC 上有一动点E ,连接DE ,以DE 为边作矩形DEGF 且边FG 过点A .在点E 从点B 移动到点C 的过程中,矩形DEGF 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变 3、下列图形是全等图形的是( )·线○封○密○外A .B .C .D .4、如图,已知点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,那么添加下列一个条件后,仍无法判定ABC DEF ≌△△的是( )A .BF CE =B .A D ∠=∠C .AC DF ∥D .AC DF =5、下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6、如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为( )A .10B .11C .12D .13 7、若23m a b +和()31n a b -是同类项,且它们的和为0,则mn 的值是( )A .-4B .-2C .2D .48、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )A .冬B .奥C .运D .会 9、如图是我国某市12月份连续4天的天气预报数据,其中日温差最大的一天是( ) A .12月13日 B .12月14日 C .12月15日 D .12月16日 10、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )A .16B .19C .24D .36 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、已知点A (x 1,y 1)、B (x 2,y 2)为函数y =﹣2(x ﹣1)2+3的图象上的两点,若x 1<x 2<0,则y 1_____y 2(填“>”、“=”或“<”),2、 “a 与b 的2倍的和大于1”用不等式可表示为________.3、如图,在ABC 中,90ACB ∠=︒,20A ∠=︒,CD 与CE 分别是斜边AB 上的高和中线,那么DCE ∠=_______度. ·线○封○密○外4、农机厂计划用两年时间把产量提高44%,如果每年比上一年提高的百分数相同,这个百分数为______.5、在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在44的网格中,ABC是一个格点三角形,如果DEF也是该网格中的一个格点三角形,它与ABC相似且面积最大,那么DEF与ABC相似比的值是______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,锐角∠AOB.求作:射线OP,使OP平分∠AOB.作法:①在射线OB上任取一点M;②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;③分别以点C ,D 为圆心,大于12CD 的长为半径画弧,在∠AOB 内部两弧交于点H ; ④作射线MH ,交⊙M 于点P ; ⑤作射线OP . 射线OP 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接CD .由作法可知MH 垂直平分弦CD . ∴CP DP =( )(填推理依据). ∴∠COP = . 即射线OP 平分∠AOB . 2、如图,直线3y x =-+与反比例函数()20=>y x x 的图象交于A ,B 两点. (1)求点A ,B 的坐标; (2)如图1,点E 是线段AC 上一点,连接OE ,OA ,若45AOE ∠=︒,求AE EC 的值;(3)如图2,将直线AB 沿x 轴向右平移m 个单位长度后,交反比例函数()20=>y x x 的图象于点P ,·线○封○密·○外Q ,连接AP ,BQ ,若四边形ABQP 的面积恰好等于2m ,求m 的值.3、已知:如图,在四边形ABCD 中,AB CD ∥,过点D 作DF BC ∥,分别交AC 、AB 点E 、F ,且满足AB AF DF BC ⋅=⋅.(1)求证:AEF DAF ∠∠=(2)求证:22AF DE AB CD = 4、如图:已知线段16cm AB =,点N 在线段AB 上,3cm NB =,M 是AB 的中点.(1)求线段MN 的长度;(2)若在线段..AB 上有一点C ,满足10cm BC =,求线段MC 的长度.5、已知△ABC 与△DEF ,现给出四个条件:①AC =DF ;②AB =DE ;③AC 边上中线与DF 边上中线相等;④△ABC 的面积与△DEF 的面积相等.(1)请你以其中的三个条件作为命题的已知条件,以“△ABC ≌△DEF ”作为命题的结论,将一个真命题写在横线上 .(2)请你以其中的三个条件(其中一个必须是条件④,另两个自选)作为命题的已知条件,以“△ABC ≌△DEF ”作为命题的结论,将一个假命题写在横线上 并举一反例说明. -参考答案-一、单选题 1、B 【分析】 根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠ 【详解】 解:45,30EDB ABC ∠=︒∠=︒ 175EDB ABC ∴∠=∠+∠=︒ 故选B 【点睛】 本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键. 2、D 【分析】连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】 解:连接AE , ∵11,22ADE ADE ABCD DEGF S S S S ==矩形, ∴ABCD DEGF S S=矩形, ·线○封○密·○外故选:D ..【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键.3、D【详解】解:A 、不是全等图形,故本选项不符合题意;B 、不是全等图形,故本选项不符合题意;C 、不是全等图形,故本选项不符合题意;D 、全等图形,故本选项符合题意;故选:D【点睛】本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.4、D【分析】结合选项中的条件,是否能够构成,,AAS ASA SAS 的形式,若不满足全等条件即为所求;【详解】解:由AB DE 可得B E ∠=∠,判定两三角形全等已有一边和一角;A 中由BF CE =可得BC EF =,进而可由SAS 证明三角形全等,不符合要求;B 中A D ∠=∠,可由ASA 证明三角形全等,不符合要求;C 中由AC DF 可得ACB DFC ∠=∠,进而可由AAS 证明三角形全等,不符合要求;D 中无法判定,符合要求;故选D .【点睛】本题考查了三角形全等.解题的关键在于找出能判定三角形全等的条件.5、C 【分析】 根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解. 【详解】 解: A 、不是中心对称图形,是轴对称图形,故此选项错误; B 、是中心对称图形,不是轴对称图形,故此选项错误; C 、是中心对称图形,也是轴对称图形,故此选项正确; D 、不是中心对称图形,是轴对称图形,故此选项错误; 故选:C . 【点睛】 本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、A 【分析】 作正多边形的外接圆,连接 AO ,BO ,根据圆周角定理得到∠AOB =36°,根据中心角的定义即可求解. 【详解】 ·线○封○密○外解:如图,作正多边形的外接圆,连接AO ,BO ,∴∠AOB =2∠ADB =36°, ∴这个正多边形的边数为36036=10. 故选:A .【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.7、B【分析】根据同类项的定义得到2+m =3,n -1=-3, 求出m 、n 的值代入计算即可.【详解】解:∵23m a b +和()31n a b -是同类项,且它们的和为0, ∴2+m =3,n -1=-3,解得m =1,n =-2,∴mn =-2,故选:B .【点睛】此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.8、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“京”与“奥”是相对面,“冬”与“运”是相对面, “北”与“会”是相对面. 故选:D . 【点睛】 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题. 9、A 【分析】 根据“日温差=当日的最高气温-当日的最低气温”求出这4天的日温差,由此即可得. 【详解】 解:12月13日的日温差为2(8)10()C --=︒, 12月14日的日温差为2(9)7()C ---=︒, 12月15日的日温差为0(9)9()C --=︒, 12月16日的日温差为3(11)8()C ---=︒, 则日温差最大的一天是12月13日, 故选:A . 【点睛】 本题考查了有理数减法的应用,掌握日温差的计算方法是解题关键.·线○封○密·○外10、C【分析】分别求出各视图的面积,故可求出表面积.【详解】由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5故表面积为2×(4+3+5)=24故选C.【点睛】此题主要考查三视图的求解与表面积。
2024年山东省青岛市中考数学试卷正式版含答案解析
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共9小题,每小题3分,共27分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“海葵一号”是完全由我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60000立方米.将60000用科学记数法表示为( )A. 6×103B. 60×103C. 0.6×105D. 6×1042.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.实数a,b,c,d在数轴上对应点的位置如图所示,这四个实数中绝对值最小的是( )A. aB. bC. cD. d4.如图所示的正六棱柱,其俯视图是( )A. B. C. D.5.下列计算正确的是( )A. a+2a=3a2B. a5÷a2=a3C. (−a)2⋅a3=−a5D. (2a3)2=2a66.如图,将正方形ABCD先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转90°,得到四边形A′B′C′D′,则点A的对应点A′的坐标是( )A. (−1,−2)B. (−2,−1)C. (2,1)D. (1,2)7.为筹备运动会,小松制作了如图所示的宣传牌,在正五边形ABCDE 和正方形CDFG 中,CF ,DG 的延长线分别交AE ,AB 于点M ,N ,则∠FME 的度数是( ) A. 90° B. 99° C. 108° D. 135°8.如图,A ,B ,C ,D 是⊙O 上的点,半径OA =3,AB ⏜=CD ⏜,∠DBC =25°,连接AD ,则扇形AOB 的面积为( ) A. 54π B. 58π C. 52π D.512π9.二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =−1,则过点M(c,2a −b)和点N(b 2−4ac,a −b +c)的直线一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限二、填空题:本题共6小题,每小题3分,共18分。
山东省青岛市2021年中考数学经典真题及答案(含解析)
山东省青岛市2021年中考数学经典真题及答案(含解析)一、单选题1、甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.2、已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.3、根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.4、某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将221000用科学记数法表示为:2.21×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.6、已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min【分析】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.【解答】解:从图中可知:体育场离文具店的距离是:2.5﹣1.5=1km=1000m,所用时间是(45﹣30)=15分钟,∴体育场出发到文具店的平均速度==m/min故选:C.【点评】本题运用函数图象解决问题,看懂图象是解决问题的关键.7、下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2 D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.8、现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是,故选:D.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.9、下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2 D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.10、如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9 cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.【点评】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.2、如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD =∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.3、命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b互为相反数,那么a+b=0 .【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.4、在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是a>1或a<﹣1 .【分析】由y=x﹣a+1与x轴的交点为(a﹣1,0),可知当P,Q都在x轴的下方时,直线l与x轴的交点要在(a﹣1,0)的左侧,即可求解;【解答】解:y=x﹣a+1与x轴的交点为(a﹣1,0),∵平移直线l,可以使P,Q都在x轴的下方,∴当x=a﹣1时,y=(1﹣a)2﹣2a(a﹣1)<0,∴a2﹣1>0,∴a>1或a<﹣1;故答案为a>1或a<﹣1;【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键.5、一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为15°或60°.【分析】分情况讨论:①DE⊥BC;②AD⊥BC.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=180°﹣60°﹣45°=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,α=90°﹣∠C=90°﹣30°=60°.故答案为:15°或60°【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.三、解答题(难度:中等)1、某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.2、为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得:﹣=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.3、为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.【分析】设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,根据时间=路程÷速度结合九(1)班比其他班提前10分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设其他班步行的平均速度为x米/分,则九(1)班步行的平均速度为1.25x米/分,依题意,得:﹣=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴1.25x=100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.4、计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.5、为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:sin65°≈0.906,cos65°≈0.423)【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可求得BM和DM的长,然后计算出该中学楼梯踏步的宽度和高度,再与规定的比较大小,即可解答本题.【解答】解:连接BD,作DM⊥AB于点M,∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴∠C=∠ABD,AC=BD,∵∠C=65°,AC=900,∴∠ABD=65°,BD=900,∴BM=BD•cos65°=900×0.423≈381,DM=BD•sin65°=900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.6、某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取200 名学生进行调查,扇形统计图中的x=15% ;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是36 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有900 名.【分析】(1)依据喜爱古筝的人数数据,即可得到调查的学生人数,根据喜欢竹笛的学生数占总人数的百分比即可得到结论;(2)求二胡的学生数,即可将条形统计图补充完整;(3)依据“扬琴”的百分比,即可得到“扬琴”所占圆心角的度数;(4)依据喜爱“二胡”的学生所占的百分比,即可得到该校最喜爱“二胡”的学生数量.【解答】解:(1)80÷40%=200,x=×100%=15%,故答案为:200;15%;(2)喜欢二胡的学生数为200﹣80﹣30﹣20﹣10=60,补全统计图如图所示,(3)扇形统计图中“扬琴”所对扇形的圆心角是:360°×=36°,故答案为:36;(4)3000×=900,答:该校喜爱“二胡”的学生约有有900名.故答案为:900.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.7、如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.8、观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年山东省青岛市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019山东省青岛市,1,3分) -3的相反数是 【答案】D【解析】本题考查相反数的概念,数a 的相反数为-a ,所以-3的相反数3,故选D 。
【知识点】相反数的概念 2.(2019山东省青岛市,2,3分)下列四个图形中,既是轴对称图形,又是中心对称圄彤的是A .B .C .D .【答案】D 【解析】本题考查轴对称图形与中心对称图形的概念,轴对称图形是指沿图形内某直线折叠直线两旁的部分能完全重合的图形,能确定出对称轴的图形为轴对称图形,判断轴对称图形的关键是寻找对称轴,除了直接观察判断外,还可采用折叠法判断,看该图形按照某条直线折叠后直线两旁的部分能否重合即可. 另要注意有的轴对称图形只有一条对称轴,有的轴对称图形有多条对称轴.中心对称图形是指绕图形内某点旋转180°后能与自身完全重合的图形。
能确定出对称中心的图形为中心对称图形。
A 、C 只是轴对称图形,B 只是中心对称图形,D 既是轴对称图形,又是中心对称图形,故选D 。
【知识点】轴对称图形 中心对称图形3.(2019山东省青岛市,3,3分) 2019年1月3日,我国”媳娥四号”月球探测器在月球首醋凭着陆,实现人类有史以来首次登陆月球背面.已知月球与地球之间的平均距离约为384000km ,把384000km 用科学计数法可以表示为A .438.410km ⨯B .53.8410km ⨯C .60.38410km ⨯D .63.8410km ⨯【答案】B【解析】本题考查用科学记数法表示较大的数,384000=3.84×105,故选B 。
【知识点】科学记数法4.(2019山东省青岛市,4,3分)计算223(2)(3)m m m m --+的结果是( )A . 8m 5B . -8m 5C . 8 m 5D . -4m 5+ 12m 5【答案】A【解析】本题考查整式的乘法运算,根据运算法则进行计算,原式=4m 2·(-m 3+3m 3)= 4m 2·2m 3=8m 5,故选A 。
【知识点】整式乘法 5.(2019山东省青岛市,5,3分) 如圈, 结段AB 经过⊙O 的圆心,AC BD 分别与⊙O 相切于点D .若AC = BD= 4,∠A=45°,则圆弧CD 的长度为A.πB. 2πC. 2πD.4π【答案】B【解析】连接CO,DO,因为AC,BD分别与⊙O相切于C,D,所以∠ACO=∠DBO=90°,所以∠AOC=∠A=45°,所以CO=AC=4,因为AC=BD,CO=DO,所以△ACO≌△BDO,所以∠DOB=∠AOC=45°,所以∠DOC=180°-∠DOB-∠AOC=180°-45°-45°=90°,CD=904180π⨯=2π,故选B。
【知识点】切线的性质全等三角形的判定和性质弧长的计算6.(2019山东省青岛市,6,3分)如图,将结段AB先向右平移5个单位,再将所得线段绕原点按颐时针方向旋转90°,得到钱段A′B′,则点B的对应点B′的坐标是xy–5–4–3–2–112345–5–4–3–2–112345OABA.(-4,1)B.(-1,2)C.(4,-1)D.(1,-2) 【答案】D【解析】本题考查图形变换,根据题意画出图形xy–5–4–3–2–112345–5–4–3–2–112345A'B'OABAB,可知点B的对应点B′的坐标是(1,-2),故选D。
【知识点】平移旋转网格作图7.(2019山东省青岛市,7,3分)如图,BD是△ABC的角平分钱,AE⊥BD,垂足为F. 若∠ABC=35°,∠C=50°,则∠CDE的度数为A.35︒B.40︒C.45︒D.50︒【答案】C【解析】本题考查角平分线的性质,因为BD平分∠ABC,AE⊥BD,所以△ABF≌△EBF,所以BD是线段AE的垂直平分线,所以AD=ED,所以∠BAD=∠BED=180°-35°-50°=95°, 所以∠CDE=180°-∠C=95°-50°=45°,故选C。
【知识点】三角形角平分线线段垂直平分线全等三角形三角形外角的性质8.(2019山东省青岛市,8,3分)已知反比例函数y=abx的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是A.B.C.D.【答案】C【思路分析】先判断a,b的符号,再根据一次函数与二次函数的特征确定一次函数与二次函数所经过的象限或点.【解题过程】观察反比例函数可知a,b同号,若a,b同为正,则-22a->0,所以二次函数y=ax2-2x开口向上,与x轴交于原点,对称轴在x轴正半轴,一次函数经过第一、二、三象限;若a,b同为负,则-22a-<0,所以二次函数y=ax2-2x开口向上,与x轴交于原点,开口向下,对称轴在x轴负半轴,一次函数经过第二、三、四象限,根据以上规则判定只有C正确,故选C.【知识点】一次函数的图象和性质二次函数的图象和性质分类讨论二、填空题:本大题共6小题,每小题3分,共18分.9.(2019山东省青岛市,9,3分)计算: 248(3)2+-︒= .【答案】1【解析】本题考查二次根式的化简,原式=4342+-1=23+2-1=23+1.【知识点】二次根式的化简零指数幂10.(2019山东省青岛市,10,3分)若关于x的一元二欠方程2x2-x+m=0有两个相等的实数根,则m的值为 .【答案】1 8【解析】本题考查一元二次方程根的判别式,因为一元二次方程有两个相等的实数根,所以△=(-1)2-4×2m=1-8m=0,解得m=18.【知识点】一元二次方程根的判别式11.(2019山东省青岛市,11,3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环【答案】8.5【解析】根据条形图读出各次成绩,计算平均数,因为(6+7+8×2+9×4+10×2)÷10=8.5,所以该队员的平均成绩是8.5环.【知识点】统计平均数12.(2019山东省青岛市,12,3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF 的度数是 .【答案】54【解析】连接OB,CO,因为ABCDE为正五边形,AF为外接圆直径,所以∠BOA=360°÷5=72°,所以弧BF为180°-72°=108°,所以∠BDF=54°.【知识点】正五边形的性质圆周角圆心角13.(2019山东省青岛市,13,3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在统段AE上的点G处,折痕为AF. 若AD=4cm,则CF的长是为cm。
【答案】【解析】由勾股定理得AE=25,根据题意得GE=2-45,设BF=xcm,则FC=(4-x)cm,所以(25-4)2+x2=22+(4-x)2,解得x=25-2,所以CF=6-25.【知识点】正方形的性质轴对称勾股定理14.(2019山东省青岛市,14,3分)如圈,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块。
【答案】【思路分析】移动后要保证视图与原来相同且要保证形状物体形状能保持正常.【解题过程】若要保持该几何体的形状需要保留层9个正方体,在此基础上若要保证其他视图相同,可以移去四个角上的上面的两个正方体,再可以移去最中间的两个正方体, 新几何体的府视图如下:,所以最多可以取走10个小正方体,故答案为10.【知识点】正方体三视图最值分类讨论15.(2019山东省青岛市,15,4分)已知:∠α,直线l及l上两点A, B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC= 90° , ∠BAC=∠α.【思路分析】过点B在直线AB上方作CB⊥AB于B,在直线AB上方作∠CAB=∠α,此射线与射线BC交于点C.【解题过程】如国所示:则Rt△ABC即为所求。
【知识点】尺规作图16.(2019山东省青岛市,16(1),4分)化简:m nm-÷(22m nm+-2n)【思路分析】根据分式的运算法则化简分式.【解题过程】解:原式=m nm-·2()mm n-=1m n-【知识点】分式化简(2019山东省青岛市,16(2),4分)解不等式组16155318xx⎧-≤-<⎪⎨⎪⎩,并写出它的正整数解。
【思路分析】解不等式组确定不等式组的解集,在解集中确定正整数解.【解题过程】解不等式①得≥-1,解不等式②得x<3,所以不等式组的解集是-1≤x<3,其中的正整数解为1,2.【知识点】不等式组的解法正整数解17.(2019山东省青岛市,17,6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1, 2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由。
【思路分析】画树状图确定两次摸出的数字的所有情况数,计算两次数字之差,确定数字之差小于2的情况数,计算概率,根据概率确定游戏是否公平.【解题过程】根据题意画树状图如下:两者之差绝对值第二次摸球第一次摸球10123210123210143214321432112344321根据树状图分析,两次摸球之差的绝对值有16种情况,其中两次数字差的绝对值小于2的有10种情况,所以两次数字差的绝对值小于2的概率是1016=58,所以小明获胜的概率是58,小明获胜的概率是38,∵58>38,∴这个游戏对两人不公平.【知识点】概率的计算 游戏公平性判定 18.(2019山东省青岛市,18,6分) 为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生, 调查了他们平均每天的睡眠时间(单位:h ),统计结果如下:9 , 8 , 10.5 , 7 , 9 , 8 , 10 , 9.5 , 8 , 9 , 9.5 , 7.5 , 9.5 , 9 , 8.5 , 7.5 , 10 , 9.5 , 8 , 9 , 7 , 9.5 , 8.5 , 9 , 7 , 9 , 9 , 7.5 , 8.5 , 8.5 , 9 , 8 , 7.5 , 9.5 , 10 , 9.5 , 8.5 , 9 , 8 , 9. 在对这些数据整理后, 绘制了如下的统计图表:睡眠时间分组统计表 组别 睡眠时间分组人数(频数)1 78t < m2 89t < 113 910t < n41011t <4睡眠时间分布情况请根据以上信息,解答下列问题: (1)m =,n =,a =,b = ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h ,请估计该校学生中睡眠时间符合要求的人数. 【思路分析】(1)通过数数法确定m ,n 的值,根据频数与数据总数的比确定a ,b 的值; (2)根据各组频数确定中位数的范围; (3)根据样本数据估计总体. 【解题过程】(1)由题可知,睡眠时间7≤t <8有7,7.5,7.5,7,7,7.5,7.5共7个,睡眠时间9≤t <10的共有18个,所以m =7,n =18;a =740×100%=17.5%,b =1840×100%=45% (2)由题意知调查对象共40人,将睡眠时间按从小到大的顺序排列,第一组有7人,第二组11人,因此中位数落在第三组内(3)油题意得:800×18440+=440(名) 答:估计该校学生中睡眠时间符合要求的有440名。