全国名校高中考数学专题训练平面向量(解答题)
平面向量专题练习(带答案详解)
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
平面向量经典练习题(含答案)
高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。
2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。
3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。
5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。
6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。
7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。
8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。
9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。
二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。
A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。
A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。
高考数学压轴专题人教版备战高考《平面向量》专项训练答案
【高中数学】《平面向量》知识点汇总一、选择题 1.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v ,则( )A .1263BD OA OC =-u u u v u u u v u u u vB .5263BD OA OC =-u u u v u u u v u u u v C .5163BD OA OC =-u u u v u u u v u u u v D .1163BD OA OC =+u u u v u u u v u u u v 【答案】A【解析】【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v , ∴1263BD OA OC =-u u u v u u u v u u u v , 故选:A.【点睛】 本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力.2.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线 【答案】B【解析】【分析】利用平面向量共线定理进行判断即可.【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r rr 所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r,因为5MN a b =+u u u u r r r ,所以MN NQ =u u u u r u u u r 由平面向量共线定理可知,MN u u u u r 与NQ uuu r 为共线向量,又因为MN u u u u r 与NQ uuu r 有公共点N ,所以,,M N Q 三点共线. 故选: B【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.3.已知向量a v ,b v 满足a b a b +=-r r v v ,且||3a =v ,||1b =r ,则向量b v 与a b -v v 的夹角为( )A .3πB .23πC .6πD .56π 【答案】B【解析】【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b-v v 的夹角,并根据它补角的正切值求得对应的角的大小. 【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u v v ,AD b =u u u v v ,则向量b v 与a b -v v 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.4.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r 方向上的投影为4-,则向量BA u u u r 与AC u u u r 的夹角为( )A .45°B .60°C .120°D .150° 【答案】C【解析】【分析】设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u r方向上的投影为cos =4BD α-u u u r ,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==, 向量BD u u u r 在AC u u u r 方向上的投影为4-, 设BDA α∠=,向量BA u u u r 与AC u u u r 的夹角为θ, 则cos =4BD α-u u u r , ∴()cos ===BD DA AC BA AC BD AC DA AC BA AC BA AC BA ACθ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r ()()cos cos180444211===1242BD AC DA AC AB AC α⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u r u ur r u , 故夹角为120°,故选:C .【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.5.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r ,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则实数λ=( )A .3B .2C .3D .2【答案】D【解析】【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r 中计算即可.【详解】 由0OA OB OC ++=u u u r u u u r u u u r r ,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r , 所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u u r u u u r 2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC =u u u r u u u r,||||AB AC λ===u u u r u u u r . 故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.6.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r ,则PO 的最大值为( )A .7B .6C .5D .4【答案】C【解析】【分析】 设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r 可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值.【详解】 设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r .由3PB PA =u u u r u u u r 可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y =-⎧⎨=-⎩, 因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2, 故PO 的最大值为325+=,故选:C.【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.7.若向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r 满足(3)10a b c +⋅=r r r,则x =( ) A .1 B .2 C .3 D .4【答案】A【解析】【分析】 根据向量的坐标运算,求得(3)(2,6)a b +=r r ,再根据向量的数量积的坐标运算,即可求解,得到答案.【详解】 由题意,向量(1,1)a =r ,(1,3)b =-r ,(2,)c x =r ,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=r r ,所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=r r r ,解得1x =,故选A.【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.8.如图,在梯形ABCD 中, 2DC AB =u u u r u u u r, P 为线段CD 上一点,且12DP PC =,E 为BC 的中点, 若EP AB AD λμ=+u u u r u u u r u u u r (λ, R μ∈),则λμ+的值为( )A .13B .13- C .0 D .12 【答案】B【解析】【分析】直接利用向量的线性运算,化简求得1526EP AD AB =-u u u v u u u v u u u v ,求得,λμ的值,即可得到答案. 【详解】由题意,根据向量的运算法则,可得:()1214111232326EP EC CP BC CD AC AB AB AC AB u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v =+=+=--=- ()1111522626AD AB AB AD AB =+-=-u u u v u u u v u u u v u u u v u u u v 又因为EP AB AD λμ=+u u u v u u u v u u u v ,所以51,62λμ=-=, 所以511623λμ+=-+=-,故选B. 【点睛】 本题主要考查了向量的线性运算及其应用,其中解答中熟记向量的线性运算法则,合理应用向量的三角形法则化简向量EP u u u v是解答的关键,着重考查了运算与求解能力,属于基础题.9.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r ( )A .134-B .54C .5D .154 【答案】B【解析】【分析】 据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r ,再根据坐标形式下向量的数量积运算计算出结果.【详解】设AC 与BD 交于点O ,以O 为原点,BD u u u r 的方向为x 轴,CA u u u r的方向为y 轴,建立直角坐标系, 则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r , 所以95144DE DF ⋅=-=u u u r u u u r . 故选:B. 【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.10.在ABC V 中,D 、P 分别为BC 、AD 的中点,且BP AB AC λμ=+u u u r u u u r u u u r ,则λμ+=( )A .13-B .13C .12-D .12【答案】C【解析】【分析】 由向量的加减法运算,求得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r ,进而得出()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r ,列式分别求出λ和μ,即可求得λμ+.【详解】解:已知D 、P 分别为BC 、AD 的中点,由向量的加减法运算,得BP BD DP BD PD =+=-u u u r u u u r u u u r u u u r u u u r, 2AB AD DB BD PD =+=-+u u u r u u u r u u u r u u u r u u u r , 2AC AD DC BD PD =+=+u u u r u u u r u u u r u u u r u u u r , 又()()22BP AB AC BD PD λμμλλμ=+=-++u u u r u u u r u u u r u u u r u u u r Q ,则1221μλλμ-=⎧⎨+=-⎩, 则12λμ+=-. 故选:C.【点睛】本题考查平面向量的加减法运算以及向量的基本定理的应用.11.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v ,则AF u u u v =( )A 2B .2C 3D .3【答案】A【解析】【分析】 设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v ,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =, 即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v ,得()()001,31,n x y =-.所以()0131x =-,且03n y =.所以043x =,013y n =. 将x 0,y 0代入2212x y +=, 得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.12.已知向量m →,n →的夹角为60︒,且1m →=,3m n →→-=n →=( ) A .1B .2C .3D .4 【答案】B【解析】【分析】设||n x →=,利用数量积的运算法则、性质计算即可.【详解】设||n x →=, 因为1m →=,向量m →,n →的夹角为60︒,所以2213m n x x →→-=-+=,即220x x --=,解得2x =,或1x =-(舍去),所以2n →=.故选:B【点睛】本题主要考查了向量的模的性质,向量数量积的运算,属于中档题. 13.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r( )A .2136a b -r r B .1133a b +r r C .1124a b +r r D .1133a b -r r 【答案】A【解析】【分析】根据向量的运算法则计算得到答案.【详解】 1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u u r u u u r 2136a b =-r r . 故选:A .【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.14.下列命题为真命题的个数是( )①{x x x ∀∈是无理数},2x 是无理数;②若0a b ⋅=r r ,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题; ④函数()x xe ef x x--=是偶函数. A .1B .2C .3D .4【答案】B【解析】【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论.【详解】对于①中,当x =时,22x =为有理数,故①错误; 对于②中,若0a b ⋅=r ,可以有a b ⊥r r ,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题, 其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-, 且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称,所以函数()x xe ef x x--=是偶函数,故④正确. 综上,真命题的个数是2.故选:B.【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.15.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r ,所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.16.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u v u u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( ) A.8+B.8-C .12 D .4【答案】C【解析】【分析】【详解】 由题意1122OM OA OB =+u u u u r u u u r u u u r ,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.17.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( ) A .13 B.3- C.3- D .13- 【答案】D【解析】【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】//a b ∴r r1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.18.已知向量a v ,b v 满足a v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( )A B C D 【答案】D【解析】【分析】 根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】 由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,a b a b a b ⋅∴<>===r r r r r r 本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.19.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .D .【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,()2225552a b +=+-=r r ,故选C. 【点睛】 本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.20.在OAB ∆中,已知2OB =u u u v ,1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) A .35 B .25 C .6 D .6 【答案】A【解析】【分析】 根据2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知2OB =u u u r ,1AB =uu u r ,45AOB ∠=︒由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r 代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A坐标为⎝⎭所以22OA ⎛= ⎝⎭u u u r,)OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r则)22OP λμ⎛ =+ ⎝⎭u u ur ,22λλ⎛⎫ ⎪ ⎪⎝⎭=则OP =u u u r=因为23λμ+=,则32μλ=-代入上式可得==所以当95λ=时, min 5OP==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。
高考数学压轴专题最新备战高考《平面向量》解析含答案
新单元《平面向量》专题解析一、选择题1.已知菱形ABCD 的边长为4,60ABC ∠=︒,E 是BC 的中点2DF AF =-u u u r u u u r,则AE BF ⋅=u u u r u u u r( )A .24B .7-C .10-D .12-【答案】D 【解析】 【分析】根据平面向量的基本定理,将AE BF ⋅u u u r u u u r用基底,AB AD u u u r u u u r 表达,再根据平面向量的数量积公式求解即可. 【详解】由已知得13AF AD =u u u r u u u r ,12BE BC =u u u r u u u r ,AD BC =u u u r u u u r,所以1122AE AB BC AB AD =+=+u u u r u u u r u u u r u u u r u u u r ,13BF AF AB AD AB =-=-u u ur u u u r u u u r u u u r u u u r .因为在菱形ABCD 中,60ABC ∠=︒,所以120BAD ∠=︒.又因为菱形ABCD 的边长为4,所以1||||cos1204482AB AD AB AD ⎛⎫⋅=⋅︒=⨯⨯-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ,所以1123AE BF AB AD AB AD ⎛⎫⎛⎫⋅=+⋅-+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r221111||||16(8)16126666AB AB AD AD --⋅+=--⨯-+⨯=-u u u r u u u r u u u r u u u r .故选:D 【点睛】本题考查平面向量的线性运算及向量的数量积,考查推理论证能力以及数形结合思想.2.已知向量a v ,b v 满足a b a b +=-r rv v ,且||3a =v ||1b =r ,则向量b v 与a b -v v 的夹角为( ) A .3π B .23π C .6π D .56π 【答案】B 【解析】 【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b-v v 的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u v v ,AD b =u u u v v,则向量b v 与a b -v v 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.属于中档题.3.已知点M 在以1(,2)C a a -为圆心,以1为半径的圆上,距离为23,P Q 在圆222:8120C x y y +-+=上,则MP MQ ⋅u u u r u u u u r的最小值为( )A .18122-B .19122-C .18122+D .19122+【答案】B 【解析】 【分析】设PQ 中点D ,得到,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r ,求得23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,再利用圆与圆的位置关系,即可求解故()23223MP MQ ⋅≥-u u u r u u u u r ,得到答案.【详解】依题意,设PQ 中点D ,则,MP MD DP MQ MD DQ =+=+u u u r u u u u r u u u r u u u u r u u u u r u u u r,所以23MP MQ MD ⋅=-u u u r u u u u r u u u u r ,22222()12PQ C D QC =-=Q ,D ∴在以1为半径,以2C 为圆心的圆上, 22221[(2)4]2(3)1832C C a a a =+--=-+≥Q ,1221min min MD C C C D MC ∴=-- 故()23223192MP MQ ⋅≥-=-u u u r u u u u r【点睛】本题主要考查了圆的方程,圆与圆的位置关系的应用,以及平面向量的数量积的应用,着重考查了推理论证能力以及数形结合思想,转化与化归思想.4.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )A 3B 3C 6D 6【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u ur 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r 中计算即可. 【详解】 由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC=u u u r u u u r ,||3622||AB AC λ===u u u ru u u r . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.5.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.6.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r方向上的投影为( )A .165-B .165C .1613-D .1613【答案】C 【解析】 【分析】先计算出16a b r r⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b⋅r rr 可得【详解】()4,3a =r Q ,()5,12b =-r,4531216a b ⋅=⨯-⨯=-r r,则向量a r 在b r方向上的投影为1613a b b⋅-=r rr ,故选:C. 【点睛】本题考查平面向量的数量积投影的知识点. 若,a b r r的夹角为θ,向量a r 在b r方向上的投影为cos a θ⋅r 或a b b⋅r rr7.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC⋅u u u r u u u r的值为( ) A .83- B .1- C .1 D .3【答案】B 【解析】 【分析】由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】由已知可得:7 , 又23tan BED 33BD ED ∠===所以221tan 1cos 1tan 7BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ⎛⎫⋅=∠=-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ‖故选B . 【点睛】本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题.8.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( ) A .4 B .2C .2D 2【答案】A 【解析】 【分析】画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求221216y y -=,结合221244y y CD =-即可求解 【详解】如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,222212121212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,()222221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016y y y y ---= 解得221216y y -=(0舍去),所以222212124444y y y y CD -=-==故选:A 【点睛】本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题9.如图,已知1OA OB ==u u u v u u u v ,2OC =u u u v ,4tan 3AOB ∠=-,45BOC ∠=︒,OC mOA nOB u u u v u u u v u u u v =+,则mn等于( )7573【答案】A 【解析】 【分析】依题意建立直角坐标系,根据已知角,可得点B 、C 的坐标,利用向量相等建立关于m 、n 的方程,求解即可. 【详解】以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立直角坐标系如图所示:因为1OA OB ==u u u r u u u r ,且4tan 3AOB ∠=-,∴34cos sin 55AOB AOB ∠=-∠=,,∴A (1,0),B (3455-,),又令θAOC ∠=,则θ=AOB BOC ∠-∠,∴413tan θ413--=-=7,又如图点C 在∠AOB 内,∴cos θ2,sin θ72,又2OC u u u v =C (1755,), ∵OC mOA nOB =+u u u r u u u r u u u r ,(m ,n ∈R ),∴(1755,)=(m,0)+(3455n n -,)=(m 35n -,45n ) 即15= m 35n -,7455n =,解得n=74,m=54,∴57m n =, 故选A . 【点睛】本题考查了向量的坐标运算,建立直角坐标系,利用坐标解决问题是常用的处理向量运算的方法,涉及到三角函数的求值,属于中档题.10.已知平面向量a v ,b v 的夹角为3π,且||2a =v ,||1b =v ,则2a b -=v v ( )6【答案】B 【解析】 【分析】根据向量的数量积和向量的模的运算,即可求解. 【详解】由题意,可得222|2|||4||4444||||cos 43a b a b a b a b π-=+-⋅=+-⋅=r r r r r r r r ,所以|2|2a b -=r r,故选B.【点睛】本题主要考查了平面向量的数量积的运算及应用,其中解答中熟记平面向量的数量积的运算公式,以及向量的模的运算公式是解答的关键,着重考查了推理与运算能力,属于基础题.11.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v( ) A .13B .12C .23D .1【答案】C 【解析】 【分析】利用向量的加减法及数乘运算用,CA CB u u u r u u u r 表示CP u u u v,再利用数量积的定义得解.【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v .所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.12.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D 【解析】 【分析】 【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v ,而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u uv u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u uv u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u uv u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D13.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v的最小值是( )A .21-B .2C .0D .1【答案】D 【解析】试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D.考点:1.圆的性质;2.平面向量的数量积的运算.14.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( ) A .752B .732C 53-D .312【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得2212302x y x y +-+=,所以原问题等价于,圆2212302x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r, 因为()()21a c b c -⋅-=r r r r ,所以2212302x y x +-+=,又b c -= r r所以原问题等价于,圆221202x y x+-+=上一动点与点()20,之间距离的最小值,又圆221202x y x+-+=的圆心坐标为1⎛⎝⎭,所以点()20,与圆221202x y x+-+=上一动点距离的最小值为=.故选:A.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.15.已知A,B是圆224+=O: x y上的两个动点,||2AB=u u u r,1233OC OA OB=+u u u r u u u r u u u r,若M是线段AB的中点,则OC OM⋅u u u r u u u ur的值为().AB.C.2 D.3【答案】D【解析】【分析】判断出OAB∆是等边三角形,以,OA OBu u u r u u u r为基底表示出OMu u u u r,由此求得OC OM⋅u u u r u u u u r的值.【详解】圆O圆心为()0,0,半径为2,而||2AB=u u u r,所以OAB∆是等边三角形.由于M是线段AB的中点,所以1122OM OA OB=+u u u u r u u u r u u u r.所以OC OM⋅u u u r u u u u r12331122OA O O OB A B⎛⎫=+⋅⎛⎫+⎪⎝⎪⎭⎝⎭u u u u u u r u u u rr u u u r22111623OA OA OB OB=+⋅⋅+u u u r u u u r u u u r u u u r21422cos603323=+⨯⨯⨯+=o.故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.16.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.17.在四边形ABCD 中,//AD BC ,2AB =,5AD =,3BC =,60A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,点M 在边CD 所在直线上,则AM ME ⋅u u u u r u u u r的最大值为( )A .714-B .24-C .514-D .30-【答案】A【解析】【分析】依题意,如图以A 为坐标原点建立平面直角坐标系,表示出点的坐标,根据AE BE =求出E 的坐标,求出边CD 所在直线的方程,设(,M x +,利用坐标表示,AM ME u u u u r u u u r ,根据二次函数的性质求出最大值.【详解】解:依题意,如图以A 为坐标原点建立平面直角坐标系,由2AB =,5AD =,3BC =,60A ∠=︒,()0,0A ∴,(B ,(C ,()5,0D因为点E 在线段CB 的延长线上,设(0E x ,01x < AE BE =Q()222001x x +=-解得01x =-(E ∴-(C Q ,()5,0DCD ∴所在直线的方程为y =+因为点M 在边CD 所在直线上,故设(,M x + (,AM x ∴=+u u u u r(1E x M -=--u u u r()1AM ME x x -∴⋅=--++u u u u r u u u r 242660x x =-+-242660x x =-+-23714144x ⎛⎫= ⎪⎭---⎝当134x =时()max 714AM ME ⋅=-u u u u r u u u r 故选:A【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.18.已知向量a v ,b v 满足2a v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( )A .22B .23C .28D .24【答案】D【解析】【分析】 根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】 由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r r 2cos ,422a b a b a b ⋅∴<>===r r r r r r 本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.19.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( ) A .15,45B .43,13-C .45,15D .13-,43 【答案】C【解析】【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2OP xa yb x y =+=u u u r r r , 又由5(,5)2AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41x y x y =⎧⎨+=⎩,解得41,55x y ==. 故选:C .【点睛】本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.20.已知向量(),1a x =-r , (b =r ,若a b ⊥r r ,则a =r ( )AB C .2 D .4 【答案】C【解析】由a b r r ⊥,(),1a x =-r , (b r =,可得:x 0x ,==,即)1a =-r所以2a ==r 故选C。
提优专题(2.2)——平面向量和解三角形(解答题)(含答案)
平面向量与解三角形(解答题)1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC 的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米); (2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE ,设3S 为图③中DEF 的面积,求3S 的取值范围.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若u v u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式;(2)求证:()()()22222a b c d ac bd +++;(3)+的最大值,并求其取得最大值时x 的值.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ;(),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围.11.对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n 维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅=12.已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQ Q 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由; (2)用n t 表示1.n t +13.射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CA CB x DADB=叫做这四个有序点的交比,记作().ABCD (1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A14.如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O (1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S的取值范围.15.如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy 中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值.16.法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形; (2)若123O O O ABCSmS= ,求m 的最小值.平面向量与解三角形1. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且8a =,.3A π=(1)若2B π≠,求2cos c bB−的值; (2)求||AB AC AB AC +−⋅的最小值.【答案】(1)因为8a =,3A π=,所以sin sin sin b c a B C A ===所以b B =,)8cos c C A B B B =+=,则216.cos c b B −== (2)由222222cos a b c bc A b c bc =+−=+−, 得2264.b c bc +=+因为222b c bc +,所以22642b c bc bc +=+, 所以64bc ,当且仅当8b c ==时,取等号, 2||()AB AC AB AC +=+222AB AC AB AC ++⋅22b c bc =++=,12AB AC bc ⋅=,令t 883t <,则21322bc t =−,则2211||16(2)1744AB AC AB AC t tt +−⋅=−+=−−+,因为883t <,所以2132(2)1784t −−−+<,所以||AB AC AB AC +−⋅的最小值为32.【解析】本题考查利用正弦定理解三角形,利用余弦定理解决范围问题.(1)先利用正弦定理分别求出b ,c ,再根据三角形内角和定理将C 用B 表示,再将所求化简即可得解;(2)利用余弦定理结合可得2264b c bc +=+,结合基本不等式求出bc的范围,计算可得1||64.2AB AC AB AC bc +−⋅=令t =.2.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且1sin cos .1cos 2sin 2A AB B+=+(1)求证:2;2A B π+=(2)若2223a c b ac +−,试求sin a cB b+⋅的取值范围. 【答案】证明:(1)原式化简得:21sin cos sin sin sin cos cos 2cos 2sin cos A AB A B A B B B B+=⇔+=,即sin cos()B A B =+,cos()cos()2B A B π∴−=+,(0,)2A B π+∈,(0,)22B ππ−∈, 2B A B π∴−=+,即2.2A B π+=(2)由22222A B A B A B C C B ππππ⎧=−⎧⎪+=⎪⎪⇒⎨⎨⎪⎪++==+⎩⎪⎩且04B π<<,由余弦定理,2223a c b ac +−变为223cos 22a cb B ac+−=, 62B ππ∴<, 又04B π<<,;64B ππ∴<由正弦定理,sin sin sin sin sin a c A CB B b B++⋅=⋅ 2219sin sin cos 2cos 2cos cos 12(cos )48A C B B B B B =+=+==+−=+−,cos (2B ∈∴由二次函数值域,可得sina c B b+⋅的范围为【解析】本题考查利用正余弦定理解三角形,三角恒等变换的应用,余弦型函数的值域,二次函数的性质等知识点,属于较难题.3.如图,某公园改建一个三角形池塘,90C ︒∠=,2AB =百米,1BC =百米,现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造连廊供游客观赏,方案一如图①,使得点P 是等腰三角形PBC的顶点,且23CPB π∠=,求连廊AP PC PB ++的长(单位为百米);(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建造连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏:方案二如图②,使得DEF 为正三角形,设2S 为图②中DEF 的面积,求2S 的最小值;方案三如图③,使得EF 平行于AB ,且EF 垂直于DE,设3S 为图③中DEF 的面积,求3S 的取值范围.【答案】(1)解:因为点 P 是等腰三角形 PBC 的顶点,且 23CPB π∠= , 1BC = , 所以 6PCB π∠=,PC PB =,由余弦定理可得, 222cos C 2PB PC BC PB PB PC +−∠=⋅ ,解得PC = , 又因为 2ACB π∠=,故 3ACP π∠=, 在 Rt ACB 中, 2AB = , 1BC = ,所以AC == ,在 ACP 中,由余弦定理可得, 2222cos3AP AC PC AC PC π=+−⋅⋅ ,解得3AP =, 故AP PC PB ++=+=, 所以连廊 AP PC PB ++ 的长为百米. (2)解:设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<< ,则 sin CF a α= ,sin AF a α=− , 设 1EDB ∠=∠ , 则 213B DEB DEB ππ∠=−∠−∠=−∠ , 233DEB DEB ππαπ=−−∠=−∠ ,所以 2133ADF πππα∠=−−∠=− , 在 ADF 中,由正弦定理可得,sin sin DF AFA ADF=∠∠ ,即sin 2sinsin()63aa αππα−=− , 即21sin()sin 32a a παα−=−, 即32177a ===(其中 θ 为锐角,且tan θ= ,所以 222133sin 60247Sa =︒⨯=, 即 ()2min S = ; 图③中,设 BE x = , (0,1)x ∈ , 因为 //EF AB ,且 EF DE ⊥ ,所以 3FEC π∠= , 6DEB π∠= , 2EDB π∠= ,所以 cos 62DE x x π== ,222cos3CE EF CE xπ===− ,所以22111(22)))222DEFSEF DE x x x x =⋅⋅=⋅−=−+=−+, 所以当 12x = 时, DEF S 取得最大值8 ,无最小值,即DEF S ⎛∈ ⎝⎦, 故3.S ⎛∈ ⎝⎦【解析】本题考查利用正弦定理、余弦定理解决距离问题、利用正弦定理解决范围与最值问题,属于较难题.(1)先由 PBC 中的余弦定理求出 PC ,再由 APC 中的余弦定理求出 AP ,即可得到答案;(2)设图②中的正 DEF 的边长为 a , (0)2CEF παα∠=<<,图③中,设 BE x = , (0,1)x ∈ ,分别表示出方案②和方案③中的面积,利用三角函数的性质以及二次函数的性质求解最值即可.4.在ABC 中,点P 为ABC 内一点.(1)若点P 为ABC 的重心,用AB ,AC 表示AP ;(2)记PBC ,PAC ,PAB 的面积分别为A S ,B S ,C S ,求证:0A B C S PA S PB S PC ++=; (3)若点P 为ABC 的垂心,且230PA PB PC ++=,求cos .APB ∠【答案】解:(1)由题意,不妨设BC 边上的中点为点D ,所以23AP AD =,又1()2AD AB AC =+,所以,11.33AP AB AC =+(2)证明:令A B C S S S S =++,则B CS S AP AD S +=||||||||C B B C B C S S DC DB AD AB AC AB AC S S S S BC BC =+=+++()()C B S SAP AP PB AP PC S S=+++,则0B C A S PB S PC S AP +−=,所以0A B C S PA S PB S PC ++=;(3)因为P 是ABC 的垂心,230PA PB PC ++=, 所以由(2)易知,::1:2:3.A B C S S S =记ABC 的三个内角分别为A ,B ,C ,则1tan 2:1tan 2A B FC PC BFBF A AF S S FC AF B PC AF BF⋅====⋅,同理:tan :tan B C S S B C =,所以,tan :tan :tan 1:2:3A B C =,又tan tan tan tan()1tan tan A B C A B A B −−=−+=−,所以,2tan 2tan 3tan 12tan A AA A−−=−, 即tan 1A =或1−,又tan A ,tan B ,tan C 同号,所以tan 1A =,所以tan 3C = 又四边形CDPE 中,因为P 是ABC 的垂心,所以90CDP CEP ∠=∠=︒, 所以,180DPE C ∠+∠=︒,又DPE APB ∠=∠,所以,180APB C ∠+∠=︒,所以,tan tan 3APB C ∠=−=−,即cos 10APB ∠=−【解析】本题考查向量的线性运算,向量的几何应用,属于难题. (1)根据向量的线性运算化简即可;(2)利用面积与边长的比例关系化简整理即可;(3)利用(2)的结论得出A ,B ,C 的关系,结合正切的和差角公式计算即可. 5.已知向量(),u a b =,(),v c d =,其中(),,,0,.a b c d ∈+∞(1)若uv u v ⋅=,写出a ,b ,c ,d 之间应满足的关系式; (2)求证:()()()22222a b c d ac bd +++;(3)23x −的最大值,并求其取得最大值时x 的值. 【答案】解:(1)由向量(),u a b =,(),v c d =,得2222,,u v ac bd u a b v c d ⋅=+=+=+, 因为u v u v ⋅=,所以()()()22222ac bd a b c d +=++,即2222222222222a c abcd b d a c a d b c b d ++=+++,所以22222abcd a d b c =+,即()20ad bc −=, 所以0ad bc −=;(2)因为cos ,u v ac bd u v u v ⋅=+=, 而cos ,1u v,所以()222222,ac bd u v cos u vu v +=,当且仅当cos ,1u v =,即//u v 时取等号,所以()()()22222a b c d ac bd +++;(3)由413030x x +⎧⎨−⎩可得1334x −,当3x =5==,当134x =−5+==, 当1334x −<<时,由(2)可得,()11x=+=⎡⎣,,即18x =−时,取等号,+的最大值为1.8x =−【解析】本题考查向量数量积的坐标运算,向量模的坐标表示,利用向量的数量积证明等式. (1)根据数量积得坐标运算及平面向量的模的坐标公式计算即可得出结论; (2)根据cos ,u v ac bd u v u v ⋅=+=,结合余弦函数的值域即可得证;(3)利用(2)中的结论即可得出答案.6. 平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C −是否为一个定值?若是,求出这个定值;否则,说明理由.(2)记ABD 与BCD 的面积分别为1S 和2S ,请求出2212S S +的最大值.【答案】解:(1)法一:在ABD 中,由余弦定理得222cos 2AD AB BD A AD AB+−=⋅,即222cosA =2168BD A −=①,同理,在BCD 中,22222cos 222BD C +−=⨯⨯,即28cos 8BD C −=②,①-cos 1A C −=,所以当BD cos A C −为定值,定值为1;法二:在ABD 中,由余弦定理得2222cos BD AD AB AD AB A =+−⋅即222222cos BD A =+−⨯⨯,即216BD A =−, 同理,在BCD 中,2222cos 88cos BD CD CB CD CB C C =+−⋅=−,所以1688cos A C −=−,1cos A C −=,即cos 1A C −=,所以当BD cos A C −为定值,定值为1;222222221211(2)44S S AB AD sin A BC CD sin C +=⋅⋅+⋅⋅ 22221241244sin A sin C sin A cos C =+=+−221241)sin A A =+−−22412cos A A =−++, 令)cos ,1,1A t t =∈−,所以2224122414y t t ⎛=−++=−+ ⎝⎭,所以6t =,即cos A =时,2212S S +有最大值为14.【解析】本题考查余弦定理,考查三角形面积公式,属于较难题.(1)法一:在ABD 2168BD A −=,在BCD 中由余弦定理得28cos 8BD C −=,两式相减可得答案;法二:在ABD 中由余弦定理得216BD A =−,在BCD 中由余弦定理得288cos BD C =−,两式相减可得答案;(2)由三角形面积公式可得222122412S S cos A A +=−++,令()cos ,1,1A t t =∈−转化为二次函数配方求最值即可.7. 我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.而向量正是数与形“沟通的桥梁”.在ABC ∆中,试解决以下问题:(1)G 是三角形的重心(三条中线的交点),过点G 作一条直线分别交,AB AC 于点,.M N()i 记a,b AB AC ==,请用a,b 表示AG ; (),ii AM mAB AN nAC ==,求4m n +的最小值.(2)已知点O 是ABC ∆的外心,且1143AO AB AC =+,求cos .BAC ∠ 【答案】解:(1)()i 设D 是BC 中点,则1()2AD a b =+,重心是中线靠近边的三等分点,21()33AG AD a b ∴==+;1111()3333ii AG AB AC AM AN m n=+=+,M ,G ,N 三点共线,G 在线段MN 上,则111(0,0)33m n m n+=>>, 1111414(4)()(5)(523333m n m n m n m n n m ∴+=++=+++=,当且仅当21n m ==时取等号,4m n ∴+的最小值为3; (2)由1143AO AB AC =+可知点O 在ABC 的内部,如图所示,取AB 的中点P ,AC 的中点Q ,由外心性质可知OP AB ⊥,OQ AC ⊥,从而212AO AB AP AB c ⋅=⋅=,即2111()432AB AC AB c +⋅=,所以22111cos 432c bc BAC c +⋅∠=,故11cos 34b BACc ⋅∠=, 同理,由212AO AC AQ AC b ⋅=⋅=可得11cos 46c BAC b ⋅∠=,联立11cos ,3411cos ,46b BAC c c BAC b ⎧⋅∠=⎪⎪⎨⎪⋅∠=⎪⎩得cos 2BAC ∠=【解析】本题考查了平面向量基本定理,余弦定理,基本不等式的应用,属于综合题. (1)()i 根据重心的定义以及平面向量基本定理可表示AG ;()ii 平面向量基本定理结合基本不等式可得结果;(2)由外心性质可得关于cos BAC ∠的方程,解方程可得cos .BAC ∠8. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3.cos cos cos cos cos b c a aB C A B C+=+ (1)求tan tan B C ;(2)若3bc =,求ABC 面积S 的最小值.【答案】解:3(1)cos cos cos cos cos b c a aB C A B C+=+, ()()cos cos cos cos cos 3cos .b C c B A a B C A ∴+=+由正弦定理得(sin cos cos sin )cos sin (cos cos 3cos ).B C B C A A B C A +=+ ()()sin cos sin cos cos 3cos .B C A A B C A ∴+=+ 因为0A π<<,则sin 0A >,A B C π++=,()sin sin B C A ∴+=,则()cos cos sin sin cos cos A B C B C B C =−+=−,所以,cos cos cos 3cos A B C A =+,即2cos cos cos 0A B C +=, 所以,()2sin sin cos cos cos cos 0B C B C B C −+=,2sin sin cos cos B C B C ∴=,即1tan tan .2B C =(2)由(1)得1tan tan .2B C =若tan 0tan 0B C <⎧⎨<⎩,则B 、C 均为钝角,则B C π+>,矛盾, 所以,tan 0B >,tan 0C >,此时B 、C 均为锐角,合乎题意,tan tan tan tan ()2(tan tan )4tan tan tan1B CA B C B C B C +∴=−+==−+−−=−当且仅当tan tan 2B C ==时,等号成立,且A 为钝角. tan 22A −,则()tan 22A π−,且A π−为锐角,由()()()()()()()22sin tan 22cos 1cos 0sin 0A A A sin A cos A A A πππππππ−⎧−=⎪−⎪⎪−+−=⎨⎪−>⎪⎪−>⎩,解得()22sin 3A π−,即22sin 3A ,当且仅当tan tan 2B C ==时,等号成立, 3bc =,13322sin sin 2223S bc A A ∴==⨯=因此,ABC【解析】本题主要考查正弦定理,两角和与差的三角函数公式,三角形面积公式,属于较难题. (1)利用正弦定理结合两角和的余弦公式化简可得出2sin sin cos cos B C B C =,即可求得tan tan B C 的值;(2)分析可知B 、C 均为锐角,利用两角和的正切公式结合基本不等式可得出tan 22A −,求出sin A 的最小值,即可求得S 的最小值.9. 已知梯形ABCD 中,2AB DC =,AB BC 2,60ABC ︒==∠=,E 为BC 的中点,连接.AE(1)若4AF FE =,求证:B ,F ,D 三点共线; (2)求AE 与BD 所成角的余弦值;(3)若P 为以B 为圆心、BA 为半径的圆弧AC(包含A ,)C 上的任意一点,当点P 在圆弧AC(包含A ,)C 上运动时,求PA PC ⋅的的最小值.【答案】解:(1)如图1,12BD BC CD BC BA =+=+1111111()()2525252BF BE EF BC EA BC EB BA BC BC BA =+=+=++=+−+2155BC BA =+25BF BD ∴=又点B 是公共点,B ∴,F ,D 三点共线.(2)如图1,2222211||()422cos601724BD BD BC BA BC BC BA BA ︒==+=+⋅+=+⨯⨯+= ||7BD ∴=12AE AB BE BC BA =+=− 2222211||()122cos604324AE AE BC BA BC BC BA BA ︒∴==−=−⋅+=−⨯⨯+=||3AE ∴=2211113()()22224AE BD BC BA BC BA BC BA BC BA ⋅=−⋅+=−−⋅11334422cos602242︒=⨯−⨯−⨯⨯⨯=− cos AE ∴<,3||||37AE BD BD AE BD −⋅>===⋅⨯(3)如图2,PA BA BP =−,PC BC BP =−2()()()PA PC BA BP BC BP BA BC BP BA BP BC BP ∴⋅=−⋅−=⋅+−⋅+⋅ 设ABP θ∠=,[0,]3πθ∈,则3CBPπθ∠=−,22cos 422cos 22cos()33PA PC ππθθ⋅=⨯⨯+−⨯⨯−⨯⨯− 64cos 4(coscos sinsin )6)333πππθθθθ=−−+=−+[0,]3πθ∈,∴当6πθ=时,min ()6PA PC ⋅=−【解析】本题考查平面向量和三角函数的综合应用,属于拔高题.(1)利用平面向量的线性运算求得25BF BD =,即可求证三点共线;(2)求出||BD 、||AE 和AE BD ⋅,由夹角公式即可求解;(3)设ABP θ∠=,[0,]3πθ∈,求出6)3PA PC πθ⋅=−+,利用三角函数的性质即可求解.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且223.222()C B bc bsincsin b c a +=++ (1)求角A 的大小;(2)若c a >,求a bm c+=的取值范围. 【答案】解:(1)由22(1cos )(1cos )cos cos 222222C B b C c B b c b C c B bsincsin −−+++=+=− 22222212222222b c a b c a c b b c a b c aa a⎛⎫++−+−++−=−+=−= ⎪⎝⎭, 所以322()b c a bcb c a +−=++,可得22()3b c a bc +−=, 则222b c a bc +−=,由余弦定理得2221cos 222b c a bc A bc bc +−===,又(0,)A π∈,解得3A π=;(2)由正弦定理得21sin ()cos sin sin sin 23222sin sin sin C C C A B m C C Cπ+−+++===2cos )1111222sin 22222sin cos 2sin2tan 2222C C C C C C C C +=+=+=+=+,因为c a >,所以3C π>,又23B C π+=,所以233C ππ<<,所以623C ππ<<tan 2C<<1tan2C<<, 所以12m <<,则a bm c+=的取值范围为(1,2).【解析】本题,考查利用余弦定理解三角形,利用正弦定理解决范围问题,三角恒等变换,考查了运算能力,属于中档题.(1)利用降幂公式化简,再根据余弦定理即可求解;(2)根据正弦定理及三角恒等变换将a b m c +=可化为122tan 2m C =+,结合233C ππ<<即可求出m 的取值范围. 11.(本小题12分)对于给定的正整数n ,记集合123j {|(,,,,),,1,2,3,,}nn R x x x x x R j n αα==⋅⋅⋅∈=⋅⋅⋅,其中元素α称为一个n维向量.特别地,0(0,0,,0)=⋅⋅⋅称为零向量.设k R ∈,12(,,,)n n a a a R α=⋅⋅⋅∈,12(,,,)n n b b b R β=⋅⋅⋅∈,定义加法和数乘:1122(,,,)n n a b a b a b αβ+=++⋅⋅⋅+,12(,,,).n k ka ka ka α=⋅⋅⋅对一组向量1α,2α,…,(,2)s s N s α+∈,若存在一组不全为零的实数1k ,2k ,…,s k ,使得11220s s k k k ααα++⋅⋅⋅+=,则称这组向量线性相关.否则,称为线性无关. (Ⅰ)对3n =,判断下列各组向量是线性相关还是线性无关,并说明理由. ①(1,1,1)α=,(2,2,2)β=;②(1,1,1)α=,(2,2,2)β=,(5,1,4)γ=;③(1,1,0)α=,(1,0,1)β=,(0,1,1)γ=,(1,1,1).δ=(Ⅱ)已知向量α,β,γ线性无关,判断向量αβ+,βγ+,αγ+是线性相关还是线性无关,并说明理由.(Ⅲ)已知(2)m m 个向量1α,2α,…,m α线性相关,但其中任意1m −个都线性无关,证明下列结论:(ⅰ)如果存在等式11220(,1,2,3,,)m m i k k k k R i m ααα++⋅⋅⋅+=∈=⋅⋅⋅,则这些系数1k ,2k ,…,m k 或者全为零,或者全不为零;(ⅱ)如果两个等式11220m m k k k ααα++⋅⋅⋅+=,11220(,,1,2,3,,)m m i i l l l k R l R i m ααα++⋅⋅⋅+=∈∈=⋅⋅⋅同时成立,其中10l ≠,则1212.m m k k k l l l ==⋅⋅⋅= 【答案】(Ⅰ)解:对于①,设120k k αβ+=,则可得1220k k +=,所以,αβ线性相关; 对于②,设1230k k k αβγ++=,则可得{12312312325020240k k k k k k k k k ++=++=++=,所以1220k k +=,30k =,所以,,αβγ线性相关;对于③,设12340k k k k αβγδ+++=,则可得{124134234000k k k k k k k k k ++=++=++=,解得123412k k k k ===−,所以,,,αβγδ线性相关;(Ⅱ)解:设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,因为向量α,β,γ线性无关,所以{131223000k k k k k k +=+=+=,解得1230k k k ===, 所以向量αβ+,βγ+,αγ+线性无关,(Ⅲ)证明:(ⅰ1122)0m m k k k ααα++⋅⋅⋅+=,如果某个0i k =,1i =,2,⋯,m ,则112211110i i i i m m k k k k k ααααα−−+++++++⋅⋅⋅+=,因为任意1m −个都线性无关,所以1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0, 所以这些系数1k ,2k ,⋅⋅⋅,m k 或者全为零,或者全不为零,(ⅱ)因为10l ≠,所以1l ,2l ,⋅⋅⋅,m l 全不为零,所以由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l l l l ααα=−−⋅⋅⋅−,代入11220m m k k k ααα++⋅⋅⋅+=可得2122211()0m m m m l l k k k l l αααα−−⋅⋅⋅−++⋅⋅⋅+=,所以2122111()()0m m m l l k k k k l l αα−++⋅⋅⋅+−+=, 所以21210l k k l −+=,⋯,110m m l k k l −+=,所以1212.m mk k k l l l ==⋅⋅⋅= 【解析】本题主要考查平面向量的综合运用,新定义概念的理解与应用等知识,属于较难题. (Ⅰ)根据定义逐一判断即可;(Ⅱ)设123()()()0k k k αββγαγ+++++=,则131223()()()0k k k k k k αβγ+++++=,然后由条件得到1230k k k ===即可;(Ⅲ)(ⅰ)如果某个0i k =,1i =,2,⋯,m ,然后证明1k ,2k ,⋯1i k −,1i k +,⋅⋅⋅,m k 都等于0即可;(ⅱ)由11220m m l l l ααα++⋅⋅⋅+=可得21211m m l ll l ααα=−−⋅⋅⋅−,然后代入11220m m k k k ααα++⋅⋅⋅+=证明即可.12.(本小题12分)已知OAB ,OA a =,OB b =,||2a =,||3b =,1a b ⋅=,边AB 上一点1P ,这里1P 异于,.A B 由1P 引边OB 的垂线111,PQQ 是垂足,再由1Q 引边OA 的垂线111,Q R R 是垂足,又由1R 引边AB 的垂线122,R P P 是垂足.同样的操作连续进行,得到点n P ,n Q ,()*.n R n N ∈设()(01)n n n AP t b a t =−<<,如图所示.(1)某同学对上述已知条件的研究发现如下结论:112(1)3BQ t b =−−⋅,问该同学这个结论是否正确并说明理由;(2)用n t 表示1.n t +【答案】解:(1)该同学的结论正确,证明如下:由已知,得||3AB =,||3OB =,||2OA =,由余弦定理知222||||||2cos 32||||2OB AB OA ABO OB AB+−∠===, 又111||||3AP t b a t =−=,则111||||||33BP AB AP t =−=−,11112||||cos )(1)||3BQ BP ABO t t b ∴=⋅∠=−=−, 即112(1)3BQ tb =−−⋅;(2)由已知1cos ||||2a b AOB a b ⋅∠===⋅⨯,||||3OB AB ==,cos BAO ∴∠=1||||cos (2||)n n nAP AR BAO OR +∴=⋅∠=−|cosn OQ AOB =⋅∠1||)6n BQ =−⋅1||cos 66n BP ABO =+⋅∠1||)69n AP =+⋅ 1||9n AP =⋅, 即151||3||189n n t b at b a +−=−−1n +=, 115.918n n t t +∴=−+【解析】本题考查了向量的数量积、向量的夹角,涉及余弦定理及数列的递推关系,属于较难题. (1)由余弦定理结合向量条件求出cos ABO ∠即可证得.(2)由向量的夹角先求出cos AOB ∠,再求出151||3||189n n AP AP +=−⋅,即可解答.13.(本小题12分)射影几何学中,中心投影是指光从一点向四周散射而形成的投影,如图,O 为透视中心,平面内四个点E ,F ,G ,H 经过中心投影之后的投影点分别为A ,B ,C ,.D 对于四个有序点A ,B ,C ,D ,定义比值CACB x DA DB=叫做这四个有序点的交比,记作().ABCD(1)证明:()()EFGH ABCD =;(2)已知3()2EFGH =,点B 为线段AD 的中点,3AC =,sin 3sin 2ACO AOB ∠=∠,求cos .A【答案】解:(1)由题意,在AOC ,AOD ,BOC ,BOD 中,1sin sin 21sin sin 2AOC BOC OA OC AOCS CA OA AOCCB S OB BOCOB OC BOC ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2AOD BOD OA OD AODS DA OA AODDB S OB BODOB OD BOD ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠,则sin sin sin sin ()sin sin sin sin OA AOC OB BOD AOC BODCB ABCD DA OB BOC OA AOD BOC AOD DB⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠①又,在EOG ,EOH ,FOG ,FOH 中,1sin sin 21sin sin 2EOG FOG OE OG EOGS GE OE EOGGF S OF FOGOF OG FOG ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 1sin sin 21sin sin 2EOH FOH OE OH EOHS HE OE EOHHF S OF FOHOF OH FOH ⋅⋅⋅∠⋅∠===⋅∠⋅⋅⋅∠, 则sin sin sin sin ()sin sin sin sin GEOE EOG OF FOH EOG FOHGF EFGH HE OF FOG OE EOH FOG EOH HF⋅∠⋅∠∠⋅∠==⋅=⋅∠⋅∠∠⋅∠②,又EOG AOC ∠=∠,FOH BOD ∠=∠,FOG BOC ∠=∠,EOH AOD ∠=∠,由①②可得,sin sin sin sin sin sin sin sin AOC BOD EOG FOHBOC AOD FOG EOH∠⋅∠∠⋅∠=∠⋅∠∠⋅∠,即()()EFGH ABCD =(2)由题意3()2EFGH =,由(1)可知,3()2ABCD =,则32CACB DA DB =,即3.2CA DB CB DA =,又点B 为线段AD 的中点,即12DB DA =, 故3CACB=,又3AC =,则2AB =,1BC =, 设OA x =,OC y =,且OB =,由ABO CBO π∠=−∠可知,coscos 0ABO CBO ∠+∠=, 2222220=,解得22215x y +=③,又在AOB 中,利用正弦定理可知,sin sin AB xAOB ABO =∠∠④,在BOC 中,利用正弦定理可知,sin sin OByBCO CBO=∠∠⑤,且sin sin ABO CBO ∠=∠,则④⑤可得,sin 3sin 2x AB BCOy AOB OB ∠=⋅==∠,即x =⑥, 由③⑥解得,3x=,y =,即3OA =,OC =,则222222325cos .22326OA AB OB A OA AB +−+−===⋅⨯⨯【解析】本题考查新定义问题,正,余弦定理的综合应用,三角形面积公式,属于较难题.(1)由题意,结合新定义可得sin sin ()sin sin CAAOC BODCB ABCD DA BOC AOD DB∠⋅∠==∠⋅∠①,同理sin sin ()sin sin EOG FOHGF EFGH HE FOG EOH HF∠⋅∠==∠⋅∠②,再利用角相等,即可证明;(2)结合(1)中的结论,利用正余弦定理,逐步分析求解即可. 14.(本小题12分)如图1所示,在ABC 中,点D 在线段BC 上,满足2BD DC =,G 是线段AB 上的点,且满足32AG GB =,线段CG 与线段AD 交于点.O(1)若AO t AD =,求实数t ;(2)如图2所示,过点O 的直线与边AB ,AC 分别交于点E ,F ,设EB AE λ=,(0,0)FC AF μλμ=>>;()i 求λμ的最大值;()ii 设AEF 的面积为1S ,四边形BEFC 的面积为2S ,求21S S 的取值范围. 【答案】解:(1)依题意,因为2BD DC =,所以1121()3333AD AB BD AB BC AB BA AC AB AC =+=+=++=+,因为G 、O 、C 三点共线所以存在实数m 使得GO mOC =,所以111m AO AC AG m m=+++, 因为32AG GB =,所以11211115m m AO AC AG AC AB m m m m =+=+⨯++++, 又因为AO t AD =,所以22135(1)31mt t m m ⎧==⎨++⎩,解得:12t =,15m =综上所述,1.2t =(2)证明:()i 根据题意(1)AB AE EB AE AE AE λλ=+=+=+,同理可得:(1)AC AF μ=+,由(1)可知,111236AO AD AB AC ==+,所以1136AO AE AF λμ++=+, 因为E ,O ,F 三点共线,所以存在实数n ,使得EO nEF =所以(1)AO n AE nAF =−+ 所以11136n n λμ++⎧−==⎨⎩, 化简得23λμ+=, 又因为0λ>,0μ>所以21129(2)()2228λμλμλμ+==,当且仅当322λμ==,即34λ=,32μ=时等号成立. ()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以2111(1)||(1)||sin ||||sin 22(1)(1)11||||sin 2AE AF BAC AE AF BAC S S AE AF BAC λμλμ++∠−∠==++−∠, 由()i 可知23λμ+=,则320μλ=−>,所以302λ<<,所以2221172232()22S S λλλ=−++=−−+,易知,当12λ=时,21S S 有最大值7.2则2137(,].22S S ∈ 【解析】本题主要考查平面向量的基本定理,考查三角形的面积,考查二次函数的最值,利用基本不等式求最值,属于较难题.(1)由题知2133AD AB AC =+,12115m AO AC AB m m =+⨯++,根据AO t AD =,化简即可;(2)()i 根据题意(1)AB AE λ=+,(1)AC AF μ=+,根据E ,O ,F 三点共线,存在实数n ,使得EO nEF =,有(1)AO n AE nAF =−+,化简可得23λμ+=,利用基本不等式即可得解;()ii 根据题意,11||||sin 2S AE AF BAC =∠,211(1)||(1)||sin ||||sin 22S AE AF BAC AE AF BAC λμ=++∠−∠,所以221172()22S S λ=−−+,利用二次函数的最值即可得解. 15.(本小题12分)如图:在斜坐标系xOy 中,x 轴、y 轴相交成60︒角,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量,若向量12OP xe ye =+,则称有序实数对⟨,x y ⟩为向量OP 的坐标,记作OP =⟨,x y ⟩.在此斜坐标系xOy中,已知ABC 满足:OA =⟨0,2⟩、OB =⟨2,1−⟩.(1)求OA OB ⋅的值;(2)若坐标原点O 为ABC 的重心(注:在斜坐标系下,若G 为ABC 的重心,依然有0GA GB GC ++=成立).①求ABC 的面积;②求满足方程11tan tan tan mA B C+=的实数m 的值. 【答案】解:(1)由题知,22OA e =,122OB e e =−,则22121222(2)424cos6020;OAOB e e e e e e ︒⋅=⋅−=⋅−=−=(2)①由题知,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,由(1)知OA OB ⊥,又||2OA =,212||(2)4OB e e =−==则ABC 面积为1322ABCS=⨯⨯=②由①知,2,1OC OA OB =−−=<−−>,则2,3BA OA OB =−=<−>,4,0BC OC OB =−=<−>,2,3AC OC OA =−=<−−>,则212||(23)4BA e e =−+==||4BC =,212||(23)4AC e e =−−=设AB c =,AC b =,BC a =, 则由11tan tan tan mA B C+=,结合正弦、余弦定理化简得: 11sin cos cos tan ()()tan tan cos sin sin C A Bm C A B C A B=+=+ sin cos sin cos sin sin sin()cos sin sin cos sin sin C A B B A C A B C A B C A B ++=⋅=⋅ 22222sin 12sin sin cos C c ab A B C ab a b c =⋅=⋅+− 22222271161972c a b c ⨯===+−+−, 故1.2m =【解析】本题考查了余弦定理、三角形面积公式和向量的数量积,属于较难题.(1)先得出OA =⟨0,2⟩22e =,OB =⟨2,1−⟩122e e =−,由向量的数量积计算可得结果;(2)①OA =⟨0,2⟩,OB =⟨2,1−⟩,O 为ABC 的重心,则OAB 的面积为ABC 面积的13,计算面积即可;②易得11()tan tan tan m C A B=+⋅,由三角恒等变换和余弦定理化简可得结果. 16.(本小题12分)法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.如图,在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3.O(1)证明:123O O O 为等边三角形;(2)若123O O O ABCSmS= ,求m 的最小值.【答案】解:(1)如图,连接 1AO , 3AO ,则13AO =,33AO =, 133O AO A π∠=+在 13O AO 中,由余弦定理得: 222131313132cos O O AO AO AO AO O AO =+−⋅⋅∠ , 即22222132cos 32cos 33333b c bc A b c bc O O A ππ⎛⎫+−+ ⎪⎛⎫⎝⎭=+−⋅⋅+= ⎪⎝⎭2212cos 23b c bc A A ⎛⎫+−⨯ ⎪ ⎪⎝⎭==22222222sin 2sin 363b c a b c Aa b c A+−+−+++==+ 同理可得222212sin 6a b c O O B ++= ,sin sin a bA B= , sin sin a B b A ∴= , 1213O O O O ∴= .同理: 1223O O O O = ,即 123O O O为等边三角形.12322213cos sin (2)sin 4432O O O b c bc A A m SO O bc A +−+=⨯=⨯=)()21sin cos sin b c m A A A c bϕ∴+−+=+,(其中sin ϕ=,cos ϕ=,22b c b c c b cb+⨯= , )max21sin cos m A A ⎤−+=⎦, 12 ,解得: 1m当且仅当 3A π=, b c = 时 m 取到最小值1.【解析】本题考查利用正弦定理、余弦定理判定三角形的形状,考查三角形的面积公式,属于难题.(1)连接 1AO , 3AO ,在 13O AO 中,由余弦定理可求出 13O O,同理可得 12O O ,再结合正弦定理即可证明 1213O O O O = ,同理可得 1223OO O O = ;(2)由 123O O O ABCSmS= 化简可得 ()sin b c A c b ϕ+=+ ,再由基本不等式求出 b c c b+ 的最小值,即可求出m 的最小值.。
(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)
一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
平面向量及其应用专题(有答案)百度文库
一、多选题1.题目文件丢失!2.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( ) A .cos cos 0A B +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=4.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C6.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)7.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .32OA OB OC ++=D .ED 在BC 方向上的投影为768.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .9.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++B .AB BC CA ++C .OA OC BO CO +++D .AB AC BD CD -+-10.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=11.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ=12.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-B .(6,15)C .(2,3)-D .(2,3)13.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±14.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==二、平面向量及其应用选择题16.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形17.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形18.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m19.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S = A .310 B .38C .25D .421 20.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且27sin BAD ∠=,则CD 等于( )A 23B 3C 33D 4321.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-22.在ABC ∆中,601ABC A b S ∆∠=︒=,,则2sin 2sin sin a b cA B C-+-+的值等于( ) ABCD.23.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(2a b c a c b ac +++-=+,则cos sin A C +的取值范围为A.3)2B. C.3(2D.3(224.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭25.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰或直角三角形26.题目文件丢失!27.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心D .外心重心内心28.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-429.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1430.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆=,则2sin 2sin sin a b cA B C++=++( )A .2393B .2633C .833D .2331.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A .73B .273C .2D .21332.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .332C .33D .333.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )A .2133AB AD - B .1233AB AD - C .2133AB AD -+ D .1233AB AD -+ 34.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A B .2C D 1 35.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查 解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.3.ABD 【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.4.ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断.【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.5.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 6.ABC【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B.9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.7.BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可.【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),()3E A B C D -, 设123(0,),3),(1,),(,3O y y BO y DO y ∈==-,BO ∥DO , 所以2313y y =-,解得:3y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(3ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.8.AC【分析】利用余弦定理:即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:,即,解得.故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC【分析】利用余弦定理:2222cos b a c ac B =+-即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a =故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.9.BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项:,选项不正确;对于选项: ,选项正确;对于选项:,选项不正确;对于选项:选项正确.故选:解析:BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确;对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题. 10.ABD【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确,,所以D 正确.故选:ABD解析:ABD【分析】 首先理解a a表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】 a a 表示与向量a 同方向的单位向量,所以1a a =正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,a a a =不正确, cos 0a a a a a a a a a a⋅==⨯=,所以D 正确. 故选:ABD【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a表示与向量a 同方向的单位向量.11.AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当时,与不一定共线,故A 错误;对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确;对于选项C ,两个非零向量解析:AD【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.12.ABC【分析】设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解.【详解】第四个顶点为,当时,,解得,此时第四个顶点的坐标为;当时,,解得解析:ABC【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-;当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15);当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.故选:ABC .【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.13.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.14.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 15.AD【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B,由平面向量基本解析:AD【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的,所以不正确;对于C ,当两向量的系数均为零,即12120λλμμ====时,这样的λ有无数个,所以不正确.故选:AD .【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.二、平面向量及其应用选择题16.D由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =, 由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A AB B B B B B AB===, ∵sin sin B 0A ≠, ∴sin cos sin cos A B B A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形, 故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.17.D【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形. 故选:D.【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 18.D【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC 302sin 45203sin120BC 3tan 30203203ABBC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.19.A【解析】∵2350OA OB OC ++=,∴()()23OA OC OB OC +=-+.设AC 中点为M ,BC 中点为N ,则23OM ON =-,∵MN 为ABC 的中位线,且32OM ON =, ∴36132255410OAC OMC CMN ABC ABC S S S S S ⎛⎫==⨯=⨯= ⎪⎝⎭,即12310S S =.选A .20.A【分析】首先根据余弦定理求AB ,再判断ABC 的内角,并在ABD △和ADC 中,分别用正弦定理表示AD ,建立方程求DC 的值.【详解】AB =3==, 222cos 22AB BC AC B AB BC +-∴===⋅, 又因为角B是三角形的内角,所以6B π=,90BAC ∴∠=,sin 7BAD ∠=,cos 7BAD ∴∠==,21sin cos 7DAC BAD ∴∠=∠=, 在ABD △中,由正弦定理可得sin sin BD B AD BAD ⋅=∠, 在ADC 中,由正弦定理可得sin sin DC C AD DAC⋅=∠, ()1323222721DC DC -⨯⨯∴=,解得:23DC =. 故选:A【点睛】本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型.21.D【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =,M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.22.A【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中,利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =, 又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =,由正弦定理得2sin 2sin sin sin 3a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.23.A【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C+)3A π+,利用三角函数的图像和性质求其范围. 【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos )6623A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)262A π<+<,故cos sin A C +的取值范围为3)2.故选A . 【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.24.C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.25.A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=,0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形. 故选:A.【点睛】本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.26.无27.C 【详解】试题分析:因为OA OB OC==,所以O到定点,,A BC的距离相等,所以O 为ABC∆的外心,由0NA NB NC++=,则NA NB NC+=-,取AB的中点E,则2NA NB NE CN+=-=,所以2NE CN=,所以N是ABC∆的重心;由•••PA PB PB PC PC PA==,得()0PA PC PB-⋅=,即0AC PB⋅=,所以AC PB⊥,同理AB PC⊥,所以点P为ABC∆的垂心,故选C.考点:向量在几何中的应用.28.D【分析】将已知向量关系变为:12333mOA OB OC+=,可得到3mOC OD=且,,A B D共线;由AOBABCOSSDCD∆∆=和,OC OD反向共线,可构造关于m的方程,求解得到结果.【详解】由2OA OB mOC+=得:12333mOA OB OC+=设3mOC OD=,则1233OA OB OD+=,,A B D∴三点共线如下图所示:OC与OD反向共线3OD mmCD∴=-734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.29.D【分析】 由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+ 又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比 所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.30.A【分析】根据面积公式得到4c =,再利用余弦定理得到a=,再利用正弦定理得到答案.【详解】 1sin 424ABCS bc A c c ∆==== 利用余弦定理得到:2222cos 116413a b c bc A a =+-=+-=∴=正弦定理:sin sin sin a b c A B C==故2sin 2sin sin sin 32a b c a A B C A ++===++ 故选A【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 31.C【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】 ()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭ 故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立.故选:C .【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力.32.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a bab C a b ab =+-=+-,②所以由①②可知,62ab ab -=-,即6ab =,则ABC 的面积为11sin 622S ab C ==⨯=. 故选:B【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型.33.C【分析】根据平面向量的三角形法则和共线定理即可得答案.【详解】 解:111222BF BA AF BA AE AB AD AB CE ⎛⎫=+=+=-+++ ⎪⎝⎭ 111223AB AD AB CB ⎛⎫=-+++ ⎪⎝⎭ 111246AB AD AB CB =-+++ ()111246AB AD AB CD DA AB =-+++++ 11112462AB AD AB AB AD AB ⎛⎫=-+++--+ ⎪⎝⎭ 111124126AB AD AB AB AD =-+++- 2133AB AD =-+ 故选:C .【点睛】本题考查用基底表示向量,向量的线性运算,是中档题.34.C【分析】易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案.【详解】45CBD ∠=︒,30ACB ∴∠=︒,在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,解得BC =-,在BCD 中,由正弦定理,得sin sin BC CD BDC CBD =∠∠50sin 45=︒,sin BDC ∴∠=sin(90)θ+︒=cos θ∴= 故选:C .【点睛】该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键. 35.D【分析】先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.【详解】因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.【点睛】判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论.。
平面向量5类解题技巧(“爪子定理”、系数和等和线、极化恒等式、奔驰定理与三角形四心问题)试题含答案
平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC 条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB +yAC 。
则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD ,则()A.AD =-13AB +43ACB.AD =13AB -43ACC.AD =43AB +13ACD.AD =43AB -13AC 2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311 D.2111(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n ,则CB =()A.3m -2nB.-2m +3nC.3m +2nD.2m +3n2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =()A.23b +13c B.53c -23b C.23b -13c D.13b +23c 3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF 等于()A.12a +bB.12a -bC.12b -aD.12a +b 4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB -14AC B.14AB -34AC C.34AB +14AC D.14AB +34AC 5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值是技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +(1-λ)OB 所以OP =-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k 综合上面的讨论可知:图中OP 用OA ,OB 线性表示时,其系数和x +y 只与两三角形的相似比有关。
中考数学专题复习向量问题(一)
中考数学专题复习向量问题(一)学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.已知a 是非零向量,2b a =-,下列说法中错误的是( ) A .b 与a 平行 B .b 与a 互为相反向量C .||2||b a =D .12a b =-2.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ) A .a e a =B .e b b =C .1a e a =D .11a b ab=3.已知向量a 和b 都是单位向量,那么下列等式成立的是( ) A .a b =B .2a b +=C .0a b -=D .a b =4.已知a 和b 都是单位向量,那么下列结论中正确的是( ) A .a b =B .2a b +=C .0a b +=D .2a b +=5.已知一个单位向量e ,设a 、b 是非零向量,那么下列等式中正确的是( ). A .1a e a =;B .e a a =;C .b e b =;D .11a b ab=.6.已知向量a 与非零向量e 方向相同,且其模为e 的2倍:向量b 与e 方向相反,且其模为e 的3倍.则下列等式中成立的是( )A .23a b =B .23a b =-C .32a b =D .32a b =-7.如图,已知点D 、E 分别在ABC ∆的边AB 、AC 上,//DE BC ,2AD =,3BD =,BC a =,那么ED 等于( )A .23aB .23a -C .25aD .25a -8.下列命题中,正确的是( ) A .如果e 为单位向量,那么a a e = B .如果a 、b 都是单位向量,那么a b = C .如果a b =-,那么//a bD.如果a b =,那么a b =9.已知1e 、2e 是两个单位向量,向量13a e =,23b e =-,那么下列结论正确的是( ) A .12e e = B .a b =-C .a b =D .a b =-评卷人 得分二、填空题 10.在△ABC 中,AB BC CA ++=_____.11.已知向量关系式()260a b x +-=,那么向量x =______.(用向量a 与向量b 表示)12.计算:()13242a ab --=________. 13.计算:()()2232a b a b -++=________.14.如图,在梯形ABCD 中,AD △BC ,BD 与AC 相交于点O ,OB =2OD ,设AB a =,AD b =,那么AO =____.(用向量a 、b 的式子表示)15.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =,OB b =,那么向量AB 关于a 、b 的分解式为______.16.计算:322a a b ⎛⎫+-= ⎪⎝⎭______.17.如图,在梯形ABCD 中,//AD BC ,2BC AD =,设AB a =,AD b =,那么向量CD 用向量a 、b 表示为______.18.计算:()()322a b a b+--=______.19.计算:()122a b b-+=_______________.评卷人得分三、解答题20.如图,已知点B、E、C、F在同一条直线上,//AB DE,//AC DF,AC与DE 相交于点G,12AG DGGC GE==,2BE=.(1)求BF的长;(2)设EG a=,BE b=,那么BF=,DF=(用向量a、b表示).21.如图,在ABC中,点G是ABC的重心,联结AG,联结BG并延长交边AC于点D,过点G作//GE BC交边AC于点E.(1)如果AB a=,AC b=,用a、b表示向量BG;(2)当AG BD⊥,6BG=,45GAD∠=︒时,求AE的长.22.如图,已知ABC 中,//DE BC ,2AD =,4DB =,8AC =.(1)求线段AE 的长; (2)设BA a =,BC b =.△请直接写出向量AE 关于a 、b 的分解式,AE =________;△连接BE ,在图中作出向量BE 分别在a 、b 方向上的分向量.【可以不写作法,但必须写出结论】23.已知向量关系式()132a xb x -=+,试用向量a 、b 表示向量x .24.如图,一个33⨯的网格.其中点A 、B 、C 、D 、M 、N 、P 、Q 均为网格点.(1)在点M 、N 、P 、Q 中,哪个点和点A 、B 所构成的三角形与ABC 相似?请说明理由;(2)设AB a =a ,BC b =,写出向量AD 关于a 、b 的分解式.25.如图,在ABCD 中,AE 平分BAD ∠,AE 与BD 交于点F , 1.2AB =,1.8BC =.(1)求:BF DF 的值;(2)设AB a =,BC =b ,求向量DF (用向量a 、b 表示).26.如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,//DE BC ,点M 为边BC 上一点,13BM BC =,联结AM 交DE 于点N .(1)求DNNE的值; (2)设AB a =,AM b =,如果23AD DB =,请用向量a 、b 表示向量NE .27.如图,四边形ABCD 是平行四边形,点E 是边AD 的中点AC 、BE 相交于点O .设BA a =,CB b =.(1)试用a、b表示BO;(2)在图中作出CO在CB、CD上的分向量,并直接用a、b表示CO.(不要求写作法,但要保留作图痕迹,并写明结论)参考答案:1.B 【解析】 【分析】根据向量的有关定义和运算分别进行判断,即可得出结论. 【详解】解:A.因为2b a =-(a ≠0),则b 与a 平行,故此结论正确; B.若两个向量方向相反,大小相等,则为相反向量,故此结论错误; C. 因为2b a =-,则||2||b a =结论正确;D. 2b a =-两边同除以-2,则12a b =-,故此结论正确.故答案为:B . 【点睛】本题考查了向量的相关应用,解题的关键是熟练掌握基本知识及运算法则. 2.B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量. 3.D 【解析】 【分析】根据向量a 和b 都是单位向量,,可知|a |=|b |=1,由此即可判断. 【详解】解:A 、向量a 和b 都是单位向量,但方向不一定相同,则a b =不一定成立,故本选项错误.B 、向量a 和b 都是单位向量,但方向不一定相同,则2a b +=不一定成立,故本选项错误.C 、向量a 和b 都是单位向量,但方向不一定相同,则0a b -=不一定成立,故本选项错误.D 、向量a 和b 都是单位向量,则|a |=|b |=1,故本选项正确. 故选:D . 【点睛】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键 4.D 【解析】 【分析】根据单位向量的定义进行选择. 【详解】解:△a 和b 是两个单位向量,△它们的长度相等,但是方向不一定相同; △2a b +=正确; 故选:D . 【点睛】本题考查单位向量的含义;属于基础题. 5.B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A、左边得出的是a的方向不是单位向量,故错误;B、符合向量的长度及方向,正确;C、由于单位向量只限制长度,不确定方向,故错误;D、左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故选:B.【点睛】本题考查了向量的性质.6.B【解析】【分析】根据向量的方向和模的关系可得a=2e,b=-3e,从而可得e=13b-,即可求出结论.【详解】解:由题意可知:a=2e,b=-3e△e=1 3b -△a=2e=2 3b -故选:B.【点睛】此题考查的是向量的数乘运算,根据向量的方向和模的关系找出各向量关系是解题关键.7.D【解析】【分析】先根据相似三角形的判定与性质求出DE与BC的数量关系,再根据向量的定义即可求出ED的值.【详解】解:△//DE BC,△DE AD BC AB=,△2AD=,3BD=,△223 DEBC=+,△25DE BC =. △BC a =, △ED =25a -.故选D . 【点睛】本题考查了相似三角形的判定与性质,以及向量的定义,向量用有向线段来表示,有向线段长度表示向量的大小,有向线段的方向表示向量的方向. 8.C 【解析】 【分析】根据向量的定义和要素可直接进行排除选项. 【详解】A 、如果e 为单位向量,则有1e =,但e 不等于1,所以a a e ≠,故错误;B 、长度等于1的向量是单位向量,故错误;C 、如果a b =-,那么//a b ,故正确;D 、a b =表示这两个向量长度相等,而a b =表示的是长度相等,方向也相同的两个向量,故错误; 故选C . 【点睛】本题主要考查向量的定义,熟练掌握向量的定义是解题的关键. 9.C 【解析】 【分析】由1e 、2e 是两个单位向量的方向不确定,从而判定A 与B 错误;又由平面向量模的知识,即可判定选项C 正确,选项D 错误. 【详解】解:△1e 、2e 是两个单位向量,方向不一定相同,△1e 与2e 不一定相等,选项A 错误;△1e 、2e 是两个单位向量,方向不一定相同,△a 与b -不一定相等,选项B 错误; △133a e ==,233b e =-=,△a b =,选项C 正确,选项D 错误;故选:C【点睛】本题考查了单位向量的定义和向量的数量积,注意平面向量的模的求解方法与向量是有方向性的.10.0.【解析】【分析】由在△ABC 中,根据三角形法则即可求得AB +BC 的值,则可求得答案.【详解】△0AB BC CA AC CA ++=+=.故答案为:0.【点睛】本题考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化.11.13a b + 【解析】【分析】利用类似一元一次方程的求解方法,去括号、移项、系数化1,即可求得答案.【详解】解:△()260a b x +-=△2660a b x +-= 626x a b =+x =13a b + 故答案为:13a b + 【点睛】此题考查了平面向量的知识.此题难度不大,此向量方程的解法与一元一次方程的解法类似.12.22a b +【解析】【分析】根据向量的线性运算法则进行运算,从而可得答案.【详解】解:()13242a a b --=3222.a a b a b -+=+ 故答案为:22a b +.【点睛】本题考查的向量的线性运算,掌握向量的加,减,数乘运算是解题的关键.13.8a b -【解析】【分析】根据向量的线性运算以及实数与向量相乘的运算法则计算即可.【详解】解:()()2232a b a b -++=2463a b a b -++=8a b -.故答案为8a b -.【点睛】本题主要考查了向量的线性运算以及实数与向量相乘,掌握相关运算法则成为解答本题的关键.14.1233a+b【解析】【分析】先证明△AOD△△COB ,推出OA OC =12AD OD CB OB ==,求出2AD 2BC b ==,由三角形法则得出2AC AB BC a b =+=+即可根据13AO AC =求出答案.【详解】△OB=2OD,△12 ODOB=,△AD△BC,△△AOD△△COB,△OAOC=12AD ODCB OB==,△2AD2BC b==,△2 AC AB BC a b=+=+,△13AO AC==1233a+b,故答案为:1233a+b.【点睛】此题考查了平面向量的知识与相似三角形的判定及性质,解题时注意三角形法则的应用.15.b a-【解析】【分析】根据AB AO OB OA OB=+=-+计算即可.【详解】解:△OA a=,OB b=,△AB AO OB=+OA OB=-+a b=-+b a=-,故答案为:b a-.【点睛】此题考查了平面向量的知识.注意掌握三角形法则的应用是解决本题的关键.16.42a b-【解析】【分析】直接利用平面向量的加减运算法则求解即可求得答案.【详解】解:323-2=4-22⎛⎫+-=+ ⎪⎝⎭a ab a a b a b 故答案为:4-2a b【点睛】此题考查了平面向量的运算,注意去括号时的符号变化,熟练掌握法则是解题的关键,属于基础题17.a b --【解析】【分析】 根据题意得2BC b =,再求出2CA a b =--,由CD CA AD =+即可求出结果.【详解】解:△2BC AD =,AD b =,//AD BC ,△2BC b =,△()()22CA AC AB BC a b a b =-=-+=-+=--,△2CD CA AD a b b a b =+=--+=--.故答案是:a b --.【点睛】本题考查平面向量,解题的关键是掌握平面向量的计算方法.18.8a b +【解析】【分析】根据向量的线性运算可直接进行求解.【详解】解:()()32236228a b a b a b a b a b +--=+-+=+;故答案为8a b +.【点睛】本题主要考查向量的运算,熟练掌握向量的运算是解题的关键.19.12a b 【解析】【分析】去括号,合并同类向量即可解得.【详解】()1112222a b b a b b a b -+=-+=+ 【点睛】本题考查了向量的线性运算,属于基础题.20.(1)8BF =;(2)4b ,332b a - 【解析】【分析】(1)先证△CEG△△CBA ,再证△ECG△△EFD ,然后求解即可;(2)先证22EC BE b ==,CF b =,再证32ED EG CD a =+=,然后再由23EF EC CF b b b =+=+=得出结论即可.【详解】解:(1)△AB△GE ,△△B=△DEC ,△△ACB=△ACB ,△△CEG△△CBA ,△1=2AG BE GC CE =, △CE=2BE=4,同理△ECG△△EFD ,△1=2DG FC GE CE =, △CE=2FC=4,△FC=2,△BF=BE+EC+FC=2+4+2=8;(2)BE b =,由(1)可知BE=CF=12EC ,△22EC BE b ==,CF b =,△4BF BE EC CF b =++= ,△EG a = ,△1122GD EG a ==, △32ED EG CD a =+=, △23EF EC CF b b b =+=+=,△332DF EF ED b a =-=-. 【点睛】本题考查了相似三角形的性质与判定与向量,解题的关键是掌握相似三角形的性质与判定.21.(1)2133BG a b =-+;(2)42AE =. 【解析】【分析】(1)由G 是重心,可得12AD b →→=, 23BG BD →→=, 因为BD BA AD →→→=+,可得12BD a b →→→=-+, 进而求出BG →; (2)根据G 是重心,求出DG =3,因为△AGD 是等腰直角三角形,勾股定理计算出AD =32,由AD =DC ,DC =3DE 求出DE =2,相加即可.【详解】解:(1)△BD BA AD →→→=+,△点G 是Rt △ABC 的重心,△AD =12AC ,△→→=AB a ,→→=AC b ,△12AD a →→=, △12BD a b →→→=-+ △221()332BG BD a b →→→→==-+,21+33BG a b →→→=-. (2)△G 是三角形的重心,△BG =2GD ,AD =DC ,△BG =6,△GD =3,△AG BD ⊥,45GAD ︒∠=,△AG =GD =3,△223332AD =+=,△//GE BC ,△13DE GD DC BD ==, △DE =2,△AE =AD +DE =42【点睛】本题考查了三角形的重心、平面向量、勾股定理以及平行线分线段成比例定理;熟练掌握三角形重心的性质以及平行线分线段成比例定理,能够熟练运用向量的运算、勾股定理解题是关键.22.(1)83AE =;(2)△1133a b -+;△作图见解析. 【解析】【分析】(1)先求出AB ,再据平行线分线段成比例,写出关于AE 、AC 、AD 、AB 的等比式,问题可解.(2)△以AD ,DE 为边作平行四边形ADEF ,,先再求得11,33AD a AF b =-=,据AE AD AF =+问题可解;△以BD 、DE 为边作平行四边形即可.【详解】解:(1)△//DE BC ,△AD AE AB AC=, △83AE =.(2)△如下图△DE△BC△△ADE=△B,△AED=△C△△ADE△△ABC△2163AD DEAB BC===又BA a=,BC b=△11,33AD a DE b=-=△四边形ADEF是平行四边形△13AF DE b==△1133AE a b=-+,△如下图,BD和BM是BE分别在a、b方向上的分向量.23.1277x a b=-【解析】【分析】根据平面向量的定义,既有方向,又有大小计算即可.【详解】解:△()132a xb x-=+,△11322a xb x-=+,△7122x a b=-,△1277x a b=-.【点睛】本题考查平面向量,解题的关键是理解题意,灵活运用所学知识解决问题.24.(1)点N和点A、B所构成的三角形与ABC相似,理由见解析;(2)2a3b-【解析】【分析】(1)设网格中小正方形的边长为a,利用勾股定理求出各边的长度,然后分类讨论,根据三边对应成比例的两个三角形相似逐一判断即可;(2)延长AB至E,使BE=AB,根据向量加法的三角形法则计算即可.【详解】解:(1)点N和点A、B所构成的三角形与ABC相似,理由如下:设网格中小正方形的边长为a,则BC=a,AB=22a a2a+=,AC=()2225a a a+=,其中BC<AB<AC如下图所示,连接BM、AM则BM=()2225a a a+=,AM=()()223213a a a+=,其中AB<BM<AM△22AB aBC a==,51022BM aAB a==△ABBC≠BMAB△ABM和ABC不相似;如下图所示,连接AN则BN=2a,AN=()22310a a a +=,其中AB <BN <AN △22AB a BC a ==,222BN a AB a ==,1025AN a AC a==, △AB BC =BN AB =AN AC △NBA △△ABC ; 如下图所示,连接BP则BP=()2225a a a +=,AP=3,其中AB <BP <AP △22AB a BC a==,51022BP a AB a == △AB BC ≠BP AB△ABP △和ABC 不相似; 如下图所示,连接BQ 、AQ则BQ=()()222222a a a +=,AQ=()22310a a a +=,其中AB <BQ <AQ △22AB a BC a==,2222BQ a AB a == △AB BC ≠BQ AB△ABQ △和ABC 不相似;综上:点N 和点A、B 所构成的三角形与ABC 相似;(2)延长AB 至E ,使BE=AB ,根据正方形的性质可知,点E 正好落在格点上,如下图所示△22AE AB a ==,33ED BC b =-=-△AD =AE +ED=2a 3b -.【点睛】此题考查的是勾股定理与网格问题、相似三角形的判定和向量的加法,掌握相似三角形的判定定理和向量加法的三角形法则是解题关键.25.(1)BF :DF =2:3,(2)3355DF a b =-. 【解析】【分析】(1)先证∆BFE ∼∆DF A ,得出BE BF AD DF= ,在利用角平分线的性质进行等量代换,得到BE AB AD AD=再结合平行四边形的性质即可求得答案. (2)利用第(1)小问的结论,得到DF 与DB 的数量关系,进而得到DF 与DB 的关系,根据向量DB =AB AD -即可求解.【详解】(1)在ABCD 中,△BC △AD△△BEA =△DAE ,又△△BFE =△DF A ,△∆BFE ∼∆DF A ,△BE BF AD DF= , 又△AE 平分BAD ∠,△△BAE =△DAE ,△△BAE =△BEA ,△AB =BE ,△BE AB AD AD= 又△ 1.2AB =, 1.8AD BC ==.△ 1.221.83BF AB DF AD === △BF :DF =2:3(2)△BF :DF =2:3△DF =35DB △35DF DB ==3()5AB AD - △BC △ AD , BC =AD ,AB a =,BC =b ,△AD BC b ==△333()555DF a b a b =-=-. 【点睛】 本题主要考查了相似三角形的性质,平面向量的加减法等知识点,证明∆BFE ∼∆DF A 并且进行等量代换、理解平面向量的加减法是解决本题的关键.26.(1)12;(2)4455b a -. 【解析】【分析】(1)由平行线的性质得到△ADN△△ABM ,△ANE△△AMC ,可得DN NE BM MC,即DN BM NE MC =,根据13BM BC =可求出DN NE 的值; (2)根据23AD DB =可得25AD AD AB AD DB ==+,所以DN =()2255BM BA AM =+,根据DN NE =12,即可得出答案.【详解】解:(1)△//DE BC ,△△AND=△B ,△AND=△AMB ,△ANE=△AMC ,△AEN=△C ,△△ADN△△ABM ,△ANE△△AMC ,△DN AN BM AM =,AN NE AM MC =, △DN NE BM MC , △DN BM NE MC=, △13BM BC =, △12BM MC =, △DN NE =12; (2)△23AD DB =, △25AD AD AB AD DB ==+, △DN =()2255BM BA AM =+=()222555a b b a -+=-, △DN NE =12, △224422=5555NE DN b a b a ⎛⎫==-- ⎪⎝⎭. 【点睛】 本题考查了相似三角形的判定与性质,平行线的性质,向量等相关知识.熟练掌握定理并灵活运用是解题的关键.27.(1)2133BO a b =-;(2)见解析,2233CO b a =+ 【解析】【分析】(1)首先证明23BO BE =,求出BE 即可求解; (2)证明23CO CA =,求出CA 即可解决问题. 【详解】解(1)△//AD BC△12OE AE BO BC == △23BO BE =△()222121333233BO BE BA AE a b a b ⎛⎫==+=-=- ⎪⎝⎭; (2)△AE△BC ,△1=2AO AE CO CB =, △23CO CA =, △()()2222233333CO CA CB BA b a b a ==+=+=+ 如图所示,CO 在CB 、CD 上的分向量分别为CN 和CM .【点睛】本题考查作图—复杂作图,平行线的性质、平面向量等知识,解题的关键是正确理解题意,灵活运用所学知识点.。
(完整word版)平面向量(逐题详解)
2012年高考文科数学解析分类汇编:平面向量一、选择题1 .(2012年高考(重庆文))设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则||a b +=( )A .5B .10C .25D .102 .(2012年高考(浙江文))设a,b 是两个非零向量.( )A .若|a+b|=|a|-|b|,则a ⊥bB .若a ⊥b,则|a+b|=|a|-|b|C .若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD .若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3 .(2012年高考(天津文))在ABC ∆中,90A ∠=︒,1AB =,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )A .13B .23 C .43D .24 .(2012年高考(四川文))设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A .||||a b =且//a bB .a b =-C .//a bD . 2a b =5 .(2012年高考(辽宁文))已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =( )A .—1B .—12C .12D .16 .(2012年高考(广东文))(向量、创新)对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=ab ()A .12B .1C .32D .527 .(2012年高考(广东文))(向量)若向量()1,2AB =,()3,4BC =,则AC =( )A .()4,6B .()4,6--C .()2,2--D .()2,28 .(2012年高考(福建文))已知向量(1,2),(2,1)a x b =-=,则a b ⊥的充要条件是( )A .12x =-B .1x =-C .5x =D .0x =9 .(2012年高考(大纲文))ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =( )A .1133a b - B .2233a b - C .3355a b -D .4455a b -二、填空题10.(2012年高考(浙江文))在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.11.(2012年高考(上海文))在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .12.(2012年高考(课标文))已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 13.(2012年高考(江西文))设单位向量(,),(2,1)m x y b ==-。
(完整版)平面向量测试题及详解
平面向量第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(文)(2011·北京西城区期末)已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( )A .5B .6C .7D .8[答案] C[解析] AB →=(3,y -1),∵AB →∥a ,∴31=y -12,∴y =7.(理)(2011·福州期末)已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( )A .-2B .0C .1D .2[答案] D[解析] a +b =(3,x +1),4b -2a =(6,4x -2), ∵a +b 与4b -2a 平行,∴36=x +14x -2,∴x =2,故选D.2.(2011·蚌埠二中质检)已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB →⊥a ,则实数k 的值为( )A .-2B .-1C .1D .2[答案] B[解析] AB →=(2,3),∵AB →⊥a ,∴2(2k -1)+3×2=0,∴k =-1,∴选B.3.(2011·北京丰台期末)如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( )A .-3B .2C .-17D.17[答案] A[解析] 由条件知,存在实数λ<0,使a =λb ,∴(k,1)=(6λ,(k +1)λ),∴⎩⎪⎨⎪⎧k =6λ(k +1)λ=1,∴k =-3,故选A.4.(文)(2011·北京朝阳区期末)在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则P A →·(PB →+PC →)等于( )A .-49B .-43C.43D.49[答案] A[解析] 由条件知,P A →·(PB →+PC →)=P A →·(2PM →) =P A →·AP →=-|P A →|2=-⎝⎛⎭⎫23|MA →|2=-49.(理)(2011·黄冈期末)在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC →分别为a 、b ,则AH →=( )A.25a -45bB.25a +45b C .-25a +45bD .-25a -45b[答案] B[解析] AF →=b +12a ,DE →=a -12b ,设DH →=λDE →,则DH →=λa -12λb ,∴AH →=AD →+DH →=λa+⎝⎛⎭⎫1-12λb , ∵AH →与AF →共线且a 、b 不共线,∴λ12=1-12λ1,∴λ=25,∴AH →=25a +45b .5.(2011·山东潍坊一中期末)已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( ) A .-3 B .-1 C .1 D .3[答案] D[解析] ∵a +b =(3,1+n ),∴|a +b |=9+(n +1)2=n 2+2n +10, 又a ·b =2+n ,∵|a +b |=a ·b ,∴n 2+2n +10=n +2,解之得n =3,故选D.6.(2011·烟台调研)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .是定值6 C .最小值为2 D .与P 的位置有关[答案] B[解析] 设BC 边中点为D ,则 AP →·(AB →+AC →)=AP →·(2AD →)=2|AP →|·|AD →|·cos ∠P AD =2|AD →|2=6.7.(2011·河北冀州期末)设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件[答案] B[解析] |a +b |=|a |+|b |⇔a 与b 方向相同,或a 、b 至少有一个为0;而a 与b 共线包括a 与b 方向相反的情形,∵a 、b 都是非零向量,故选B.8.(2011·甘肃天水一中期末)已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150°[答案] C[解析] 由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°.∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.(文)(2011·福建厦门期末)在△ABC 中,∠C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB →等于( )A .2B .3C .4D .6[答案] B[解析] 解法1:如图以C 为原点,CA 、CB 为x 轴、y 轴建立平面直角坐标系,则A (3,0),B (0,3),设M (x 0,y 0),∵BM →=2MA →,∴⎩⎪⎨⎪⎧ x 0=2(3-x 0)y 0-3=2(-y 0),∴⎩⎪⎨⎪⎧x 0=2y 0=1,∴CM →·CB →=(2,1)·(0,3)=3,故选B. 解法2:∵BM →=2MA →,∴BM →=23BA →,∴CB →·CM →=CB →·(CB →+BM →)=|CB →|2+CB →·⎝⎛⎭⎫23BA → =9+23×3×32×⎝⎛⎭⎫-22=3.(理)(2011·安徽百校联考)设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最大值时,点B 的个数是( )A .1B .2C .3D .无数[答案] A[解析] x 2+y 2-2x -2y +1≥0,即(x -1)2+(y -1)2≥1,画出不等式组表示的平面区域如图,OA →·OB →=x +y ,设x +y =t ,则当直线y =-x 平移到经过点C 时,t 取最大值,故这样的点B 有1个,即C 点.10.(2011·宁夏银川一中检测)a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1·λ2+1=0D .λ1λ2-1=0[答案] D[分析] 由于向量AC →,AB →有公共起点,因此三点A 、B 、C 共线只要AC →,AB →共线即可,根据向量共线的条件可知存在实数λ使得AC →=λAB →,然后根据平面向量基本定理得到两个方程,消去λ即得结论.[解析] ∵A 、B 、C 共线,∴AC →,AB →共线,根据向量共线的条件知存在实数λ使得AC →=λAB →,即a +λ2b =λ(λ1a +b ),由于a ,b 不共线,根据平面向量基本定理得⎩⎪⎨⎪⎧1=λλ1λ2=λ,消去λ得λ1λ2=1.11.(文)(2011·北京学普教育中心)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量运算a ⊕b =(a 1,a 2)⊕(b 1,b 2)=(a 1b 1,a 2b 2).已知m =⎝⎛⎭⎫2,12,n =⎝⎛⎭⎫π3,0,点P (x ,y )在y =sin x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊕OP →+n (其中O 为坐标原点),则y =f (x )的最大值及最小正周期分别为( )A .2;πB .2;4π C.12;4π D.12;π [答案] C[解析] 设点Q (x ′,y ′),则OQ →=(x ′,y ′),由新定义的运算法则可得: (x ′,y ′)=⎝⎛⎭⎫2,12⊕(x ,y )+⎝⎛⎭⎫π3,0 =⎝⎛⎭⎫2x +π3,12y , 得⎩⎨⎧x ′=2x +π3y ′=12y,∴⎩⎪⎨⎪⎧x =12x ′-π6y =2y ′,代入y =sin x ,得y ′=12sin ⎝⎛⎭⎫12x ′-π6,则 f (x )=12sin ⎝⎛⎭⎫12x -π6,故选C. (理)(2011·华安、连城、永安、漳平一中、龙海二中、泉港一中六校联考)如图,在矩形OACB 中,E 和F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →其中λ,μ∈R ,则λ+μ是( )A.83B.32C.53 D .1[答案] B[解析] OF →=OB →+BF →=OB →+13OA →,OE →=OA →+AE →=OA →+13OB →,相加得OE →+OF →=43(OA →+OB →)=43OC →,∴OC →=34OE →+34OF →,∴λ+μ=34+34=32.12.(2011·辽宁沈阳二中阶段检测)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=-12,则△ABC 的形状为( )A .等腰非等边三角形B .等边三角形C .三边均不相等的三角形D .直角三角形 [答案] A[分析] 根据平面向量的概念与运算知,AB →|AB →|表示AB →方向上的单位向量,因此向量AB →|AB →|+AC→|AC →|平行于角A 的内角平分线.由⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0可知,角A 的内角平分线垂直于对边,再根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可求角A .[解析] 根据⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的内角平分线与BC 边垂直,说明三角形是等腰三角形,根据数量积的定义及AB →|AB →|·AC →|AC →|=-12可知A =120°.故三角形是等腰非等边的三角形.[点评] 解答本题的关键是注意到向量AB →|AB →|,AC →|AC →|分别是向量AB →,AC →方向上的单位向量,两个单位向量的和一定与角A 的内角平分线共线.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011·湖南长沙一中月考)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于________.[答案]5[解析] 3a +b =(3,6)+(-2,y )=(1,6+y ), ∵a ∥b ,∴-21=y2,∴y =-4,∴3a +b =(1,2),∴|3a +b |= 5.(理)(2011·北京朝阳区期末)平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________.[答案] 2 3[解析] a ·b =|a |·|b |cos60°=2×1×12=1,|a +2b |2=|a |2+4|b |2+4a ·b =4+4+4×1=12, ∴|a +2b |=2 3.14.(2011·华安、连城、永安、漳平、龙海、泉港六校联考)已知a =(2+λ,1),b =(3,λ),若〈a ,b 〉为钝角,则λ的取值范围是________.[答案] λ<-32且λ≠-3[解析] ∵〈a ,b 〉为钝角,∴a ·b =3(2+λ)+λ=4λ+6<0, ∴λ<-32,当a 与b 方向相反时,λ=-3,∴λ<-32且λ≠-3.15.(2011·黄冈市期末)已知二次函数y =f (x )的图像为开口向下的抛物线,且对任意x ∈R 都有f (1+x )=f (1-x ).若向量a =(m ,-1),b =(m ,-2),则满足不等式f (a ·b )>f (-1)的m 的取值范围为________.[答案] 0≤m <1[解析] 由条件知f (x )的图象关于直线x =1对称,∴f (-1)=f (3),∵m ≥0,∴a ·b =m +2≥2,由f (a ·b )>f (-1)得f (m +2)>f (3), ∵f (x )在[1,+∞)上为减函数,∴m +2<3,∴m <1,∵m ≥0,∴0≤m <1.16.(2011·河北冀州期末)已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________.[答案] ±522[解析] ∵a ⊥b ,∴sin θcos θ+14=0,∴sin2θ=-12,又∵a +b =⎝⎛⎭⎫sin θ+cos θ,54,(a +b )∥c , ∴m (sin θ+cos θ)-52=0,∴m =52(sin θ+cos θ),∵(sin θ+cos θ)2=1+sin2θ=12,∴sin θ+cos θ=±22,∴m =±522.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·甘肃天水期末)已知向量a =(-cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ·b ,x ∈[0,π].(1)求函数f (x )的最大值;(2)当函数f (x )取得最大值时,求向量a 与b 夹角的大小. [解析] (1)f (x )=a ·b =-cos 2x +3sin x cos x =32sin2x -12cos2x -12=sin ⎝⎛⎭⎫2x -π6-12. ∵x ∈[0,π],∴当x =π3时,f (x )max =1-12=12.(2)由(1)知x =π3,a =⎝⎛⎭⎫-12,32,b =⎝⎛⎭⎫12,32,设向量a 与b 夹角为α,则cos α=a ·b |a |·|b |=121×1=12, ∴α=π3.因此,两向量a 与b 的夹角为π3.18.(本小题满分12分)(2011·呼和浩特模拟)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证MF 1→·MF 2→=0.[解析] (1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ, ∵过(4,-10)点,∴16-10=λ,即λ=6, ∴双曲线方程为x 2-y 2=6.(2)证明:F 1(-23,0),F 2(23,0),MF 1→=(-3-23,-m ),MF 2→=(-3+23,-m ),∴MF 1→·MF 2→=-3+m 2,又∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0,即MF 1→⊥MF 2→.19.(本小题满分12分)(2011·宁夏银川一中月考,辽宁沈阳二中检测)△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(π4+B2),-1),m ⊥n .(1)求角B 的大小;(2)若a =3,b =1,求c 的值.[分析] 根据向量关系式得到角B 的三角函数的方程,解这个方程即可求出角B ,根据余弦定理列出关于c 的方程,解这个方程即可.[解析] (1)∵m ⊥n ,∴m ·n =0, ∴4sin B ·sin 2⎝⎛⎭⎫π4+B 2+cos2B -2=0, ∴2sin B [1-cos ⎝⎛⎭⎫π2+B ]+cos2B -2=0, ∴2sin B +2sin 2B +1-2sin 2B -2=0, ∴sin B =12,∵0<B <π,∴B =π6或56π.(2)∵a =3,b =1,∴a >b ,∴此时B =π6,方法一:由余弦定理得:b 2=a 2+c 2-2ac cos B , ∴c 2-3c +2=0,∴c =2或c =1. 方法二:由正弦定理得b sin B =asin A,∴112=3sin A ,∴sin A =32,∵0<A <π,∴A =π3或23π, 若A =π3,因为B =π6,所以角C =π2,∴边c =2;若A =23π,则角C =π-23π-π6=π6,∴边c =b ,∴c =1. 综上c =2或c =1.20.(本小题满分12分)(2011·山东济南一中期末)已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x2,b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈[π2,π].(1)求a ·b 及|a +b |;(2)求函数f (x )=a ·b +|a +b |的最大值,并求使函数取得最大值时x 的值. [解析] (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos2x ,|a +b |=⎝⎛⎭⎫cos 3x 2+cos x 22+⎝⎛⎭⎫sin 3x 2-sin x 22 =2+2⎝⎛⎭⎫cos 3x 2cos x 2-sin 3x 2sin x2 =2+2cos2x =2|cos x |, ∵x ∈[π2,π],∴cos x <0,∴|a +b |=-2cos x .(2)f (x )=a ·b +|a +b |=cos2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32 ∵x ∈[π2,π],∴-1≤cos x ≤0,∴当cos x =-1,即x =π时f max (x )=3.21.(本小题满分12分)(2011·河南豫南九校联考)已知OA →=(2a sin 2x ,a ),OB →=(-1,23sin x cos x +1),O 为坐标原点,a ≠0,设f (x )=OA →·OB →+b ,b >a .(1)若a >0,写出函数y =f (x )的单调递增区间;(2)若函数y =f (x )的定义域为[π2,π],值域为[2,5],求实数a 与b 的值.[解析] (1)f (x )=-2a sin 2x +23a sin x cos x +a +b =2a sin ⎝⎛⎭⎫2x +π6+b , ∵a >0,∴由2k π-π2≤2x +π6≤2k π+π2得,k π-π3≤x ≤k π+π6,k ∈Z .∴函数y =f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z )(2)x ∈[π2,π]时,2x +π6∈[7π6,13π6],sin ⎝⎛⎭⎫2x +π6∈[-1,12] 当a >0时,f (x )∈[-2a +b ,a +b ]∴⎩⎪⎨⎪⎧ -2a +b =2a +b =5,得⎩⎪⎨⎪⎧a =1b =4, 当a <0时,f (x )∈[a +b ,-2a +b ]∴⎩⎪⎨⎪⎧ a +b =2-2a +b =5,得⎩⎪⎨⎪⎧ a =-1b =3综上知,⎩⎪⎨⎪⎧ a =-1b =3或⎩⎪⎨⎪⎧a =1b =4 22.(本小题满分12分)(2011·北京朝阳区模拟)已知点M (4,0),N (1,0),若动点P 满足MN →·MP →=6|PN →|.(1)求动点P 的轨迹C 的方程;(2)设过点N 的直线l 交轨迹C 于A ,B 两点,若-187≤NA →·NB →≤-125,求直线l 的斜率的取值范围.[解析] 设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ).由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,得x 24+y 23=1. 所以点P 的轨迹C 是椭圆,C 的方程为x 24+y 23=1. (2)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为y =k (x -1),设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1 消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0.因为N 在椭圆内,所以Δ>0. 所以⎩⎪⎨⎪⎧ x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.因为NA →·NB →=(x 1-1)(x 2-1)+y 1y 2=(1+k 2)(x 1-1)(x 2-1)=(1+k 2)[x 1x 2-(x 1+x 2)+1]=(1+k 2)4k 2-12-8k 2+3+4k 23+4k 2=-9(1+k 2)3+4k 2, 所以-187≤-9(1+k 2)3+4k 2≤-125.解得1≤k 2≤3. 所以-3≤k ≤-1或1≤k ≤ 3.。
高考数学压轴专题人教版备战高考《平面向量》专项训练解析附答案
高中数学《平面向量》复习知识点一、选择题1.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪ ⎪⎝⎭D .,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得t <或t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.2.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r方向上的投影为4-,则向量BA u u u r 与AC u u u r的夹角为( ) A .45° B .60°C .120°D .150°【答案】C 【解析】 【分析】设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u ur 方向上的投影为cos =4BD α-u u u r,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==,向量BD u u u r 在AC u u ur 方向上的投影为4-,设BDA α∠=,向量BA u u u r 与AC u u ur 的夹角为θ, 则cos =4BD α-u u u r,∴()cos ===BD DA AC BA AC BD AC DA ACBA AC BA AC BA AC θ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r()()cos cos180444211===1242BD AC DA AC AB ACα⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u ru ur r u, 故夹角为120°, 故选:C . 【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.3.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )A .3B .2C .3D .2【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r中计算即可. 【详解】由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC=u u u r u u u r,||||AB AC λ===u u u ru u u r . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.4.若向量a b r r ,的夹角为3π,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( )A .12-B .12CD. 【答案】A 【解析】 【分析】由|2|||a b a b -=+r r r r 两边平方得22b a b =⋅r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r,可得20t a a b ⋅+⋅=r r r,即可得出答案.【详解】由|2|||a b a b -=+r r r r两边平方得2222442a a b b a a b b -⋅+=+⋅+r r r r r r r r .即22b a b =⋅r r r ,也即22cos 3b a b π=r r r ,所以b a =r r .又由()a ta b ⊥+r r r ,得()0a ta b ⋅+=r r r,即20t a a b ⋅+⋅=r r r . 所以2221122ba b t a b⋅=-=-=-r r r r r 故选:A 【点睛】本题考查数量积的运算性质和根据向量垂直求参数的值,属于中档题.5.已知,a r b r 是平面向量,满足||4a =r,||1b ≤r 且|3|2b a -≤rr,则cos ,a b 〈〉rr 的最小值是( ) A .1116B .78CD【答案】B 【解析】 【分析】设OA a =u u u r r ,3OB b =u u u r r,利用几何意义知B 既在以O 为圆心,半径为3的圆上及圆的内部,又在以A 为圆心,半径为2的圆上及圆的内部,结合图象即可得到答案. 【详解】 设OA a =u u u r r ,3OB b =u u u r r,由题意,知B 在以O 为圆心,半径为3的圆上及圆的内部,由|3|2b a -≤r r,知B 在以A 为圆心,半径为2的圆上及圆的内部,如图所示则B 只能在阴影部分区域,要cos ,a b 〈〉rr 最小,则,a b <>r r 应最大,此时()222222min4327cos ,cos 22438OA OB AB a b BOA OA OB +-+-〈〉=∠===⋅⨯⨯rr .故选:B. 【点睛】本题考查向量夹角的最值问题,本题采用数形结合的办法处理,更直观,是一道中档题.6.已知向量a r 与向量b r满足||2a =r ,||2b =r ||||5a b a b +⋅-=r r r r,则向量a r与向量b r的夹角为( )A .4π或34π B .6π或56πC .3π或23πD .2π 【答案】A 【解析】 【分析】设向量a r ,b r的夹角为θ,则2||1282a b θ+=+r r ,2||1282a b θ-=-r r ,即可求出2cos θ,从而得到向量的夹角; 【详解】解:设向量a r ,b r的夹角为θ,222||||||2||||cos 4882a b a b a b θθ+=++=++r r r r r r 1282θ=+,222||||||2||||cos 48821282a b a b a b θθθ-=+-=+-=-r r r r r r,所以2222||||144128cos (45)80a b a b θ+⋅-=-==r r r r ,21cos 2θ∴=,因为[0,)θπ∈,故4πθ=或34π,故选:A. 【点睛】本题考查平面向量的数量积的运算律,及夹角的计算,属于中档题.7.已知正ABC ∆的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r=,那么EB EC⋅u u u r u u u r的值为( ) A .83- B .1- C .1 D .3【答案】B 【解析】 【分析】由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】由已知可得:7 , 又23tan BED 33BD ED ∠===所以221tan 1cos 1tan 7BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ⎛⎫⋅=∠=-=- ⎪⎝⎭u u u r u u u r u u u r u u u r ‖故选B . 【点睛】本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题.8.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )A .1162DF AB AC =--u u u r u u u r u u u r B .1134DF AB AC =--u u u r u u u r u u u rC .3142DF AB AC =-+u u u r u u u r u u u rD .1126DF AB AC =--u u u r u u u r u u u r【答案】A 【解析】 【分析】设AB AF λ=u u u r u u u r,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r,即可得出答案. 【详解】设AB AF λ=u u u r u u u r ,111124444AE AB A A C A AC D F λ==+=+u u u r u u u u u ur u u u r r u u u r u u u r因为C E F 、、三点共线,则1=144λ+,=3λ 所以1111132262DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r故选:A【点睛】本题主要考查了用基底表示向量,属于中档题.9.设()1,a m =r ,()2,2b =r,若()2a mb b +⊥r r r ,则实数m 的值为( )A .12B .2C .13-D .-3【答案】C 【解析】 【分析】计算()222,4a mb m m +=+r r,根据向量垂直公式计算得到答案.【详解】()222,4a mb m m +=+r r,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-.故选:C . 【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.10.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( )A .4B .2C .2D 2【答案】A【解析】【分析】画出图像,设222112112 ,,,,, 444yy yA yB yC y⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y>,由90ACB∠=︒可求221216y y-=,结合221244y yCD=-即可求解【详解】如图:设222112112,,,,,444y y yA yB yC y⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y>,由90ACB∠=︒可得0CA CB⋅=u u u r u u u r,222212121212,,,44y y y yCA y y CB y y⎛⎫⎛⎫--=-=--⎪ ⎪⎝⎭⎝⎭u u u r u u u r,()222221212004y yCA CB y y⎛⎫-⋅=⇔--=⎪⎝⎭u u u r u u u r,即()()22212221216y yy y---=解得221216y y-=(0舍去),所以222212124444y y y yCD-=-==故选:A【点睛】本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题11.已知ABCV为直角三角形,,6,82C BC ACπ===,点P为ABCV所在平面内一点,则()PC PA PB⋅+u u u r u u u r u u u r的最小值为()A.252-B.8-C.172-D.1758-【答案】A【解析】【分析】根据,2C π=以C 点建系, 设(,)P x y ,则22325()=2(2)222PC PA PB x y ⎛⎫⋅+-+-- ⎪⎝⎭u u u r u u u r u u u r ,即当3=2=2x y ,时,取得最小值.【详解】如图建系,(0,0), (8,0), (0,6)C A B ,设(,)P x y ,(8,)PA x y =--u u u r ,(,6)PB x y =--u u u r, 则22()(,)(82,62)2826PC PA PB x y x y x x y y ⋅+=--⋅--=-+-u u u r u u u r u u u r22325252(2)2222x y ⎛⎫=-+--≥- ⎪⎝⎭.故选:A. 【点睛】本题考查平面向量数量积的坐标表示及其应用,根据所求关系式运用几何意义是解题的关键,属于中档题.12.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===.故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.13.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-.所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得22 1411 233n⎛⎫⎛⎫⨯+=⎪ ⎪⎝⎭⎝⎭.解得21n=,所以()2212112AF nu u u v=-+=+=.故选A【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.14.在ABC∆中,2AB=,3AC=,3BACπ∠=,若23BD BC=u u u v u u u v,则AD BD⋅=u u u v u u u v()A.229B.229-C.169D.89-【答案】A【解析】【分析】本题主要是找到两个基底向量ABu u u v,ACu u u v,然后用两个基底向量表示ADu u u v,BDu u u v,再通过向量的运算即可得出结果.【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC==-=-+u u u v u u u v u u u v u u u v u u u v u u u v,2233AD AB BD AB AB AC=+=-+u u u v u u u v u u u v u u u v u u u v u u u v1233AB AC=+u u u v u u u v.∴12223333AD BD AB AC AB AC⎛⎫⎛⎫⋅=+⋅-+⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v22242999AB AC AB AC=-⋅+⋅-⋅⋅u u u v u u u v u u u v u u u v24249cos999AB AC BAC=-⋅+⋅-⋅⋅⋅∠u u u v u u u v82423cos993π=-+-⋅⋅⋅229=. 故选A .【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.15.已知向量()()75751515a b ︒︒︒︒==r r cos ,sin ,cos ,sin ,则a b -r r 的值为 A .12 B .1 C .2 D .3【答案】B【解析】【分析】【详解】 因为11,1,cos75cos15sin 75sin15cos602a b a b ==⋅=︒︒+︒︒=︒=r r r r ,所以||1a b -===r r ,故选B. 点睛:在向量问题中,注意利用22||a a =r ,涉及向量模的计算基本考虑使用此公式,结合数量积的运算法则即可求出.16.已知单位向量a r ,b r 的夹角为3π,(),c a b R μλμ+=λ+∈r u u r u u r ,若2λμ+=,那么c r 的最小值为( )AB C D 【答案】D【解析】【分析】 利用向量的数量积的运算公式,求得12a b ⋅=r r ,再利用模的公式和题设条件,化简得到24c λμ=-u r ,最后结合基本不等式,求得1λμ≤,即可求解.【详解】由题意,向量,a b r r 为单位向量,且夹角为3π,所以11cos 11322a b a b π⋅=⋅=⨯⨯=r r r r , 又由(),c a b μλμ=λ+∈R r u u r u u r ,所以()22222222()4c a b a b λμλμλμλμλμλμλμλμ=+=++⋅=++=+-=-u r r r r r , 因为,R λμ+∈时,所以222()122λμλμ+⎛⎫≤== ⎪⎝⎭,当且仅当λμ=时取等号, 所以23c ≥u r,即c ≥u r 故选:D .【点睛】本题主要考查了平面向量的数量积的运算,以及向量的模的计算,其中解答中熟记向量的数量积和模的计算公式,以及合理应用基本不等式求解是解答的关键,着重考查了推理与运算能力.17.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r ,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r 的值为( ). AB.C .2 D .3 【答案】D【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】圆O 圆心为()0,0,半径为2,而||2AB =u u u r,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.18.已知向量OA u u u r 与OB uuu r 的夹角为θ,2OA =u u u r ,1OB =uu u r ,=u u u r u u u r OP tOA ,()1OQ t OB =-u u u r u u u r ,PQ u u u r 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫ ⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭【答案】C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r ,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=u u u r u u u r ,()1PQ OQ OP t OB tOA =-=--u u u r u u u r u u u r u u u r u u u r ,()()22254cos 24cos 1PQ PQ t t θθ==+-++u u u r u u u r , ∵PQ u u u r 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.19.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( ) ABCD【答案】A【解析】【分析】根据OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】 在OAB ∆中,已知OB =u u u r ,1AB =uu u r ,45AOB ∠=︒ 由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u rsin 2OAB =∠,解得sin 1OAB ∠= 即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛ ⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r 则)222,022OP λμ⎛ =+ ⎝⎭u u u r 222,22λμλ⎛⎫ ⎪ ⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r 2222λλμμ=++因为23λμ+=,则32μλ=-代入上式可得 ()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min 9355OP ==u u u r 故选:A【点睛】本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题. 20.在ABC V 中,AD 为BC 边上的中线,E 为AD 的中点,且||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒,则||EB =u u u r ( )A .4BC .2D .4【答案】A【解析】【分析】 根据向量的线性运算可得3144EB AB AC =-u u u r u u u r u u u r ,利用22||B EB E =u u r u u u r u 及||1,||2AB AC ==u u u r u u u r ,120BAC ∠=︒计算即可.【详解】 因为11131()22244EB EA AB AD AB AB AC AB AB AC =+=-+=-⨯++=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以22229311216441||6EB AB AB B AC AC E =-⨯=⨯⋅+u u u r u u u r u u u r u u u r u u r u u u r u 229311112()2168216=⨯-⨯⨯⨯-+⨯ 1916=,所以||4EB =u u u r , 故选:A【点睛】 本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.。
全国名校高考数学专题训练---平面向量---填空题
全国名校高考数学专题训练---平面向量 填空题1、(安徽省淮南市20XX 届高三第一次模拟考试)已知||=1,||=3,·=0, 点C 在∠AOB 内,且∠AOC=30°,设=m +n ( m , n ∈R), 则mn 等于 ;答案:32、(安徽省巢湖市20XX 届高三第二次教学质量检测)已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .答案:13、(北京市朝阳区20XX 年高三数学一模)已知,OA OB ==u u r u u u ra b ,且||||2==a b ,∠AOB=60°,则||+a b =____;+a b 与b 的夹角为_____.答案:23,π64、(北京市东城区20XX 年高三综合练习二)已知Rt △ABC 的斜边BC =5,则⋅+⋅+⋅的值等于 .答案:-255、(北京市海淀区20XX 年高三统一练习一)若向量a ,b 满足:()()2-⋅+a b a b =4-,且|a |=2,|b |=4,则a 与b 的夹角等于______________. 答案:120°6、(北京市十一学校20XX 届高三数学练习题)设m 、n 是两个单位向量,且m 、n 的夹角为60︒,则(2)-⋅=m n m .答案:134 7、(北京市西城区20XX 年4月高三抽样测试)已知点G 是ABC ∆的重心,()AG AB AC λμλμ=+∈R ,,那么λμ+=_____;若︒=∠120A ,2AB AC ⋅=-,__________ .338、(北京市西城区20XX 年5月高三抽样测试)设向量()(),1,2,1a b x x ==-,若0a b ⋅<,则实数x 的取值范围是 。
答案:(-∞,-1)∪(2,+∞)9、(山东省博兴二中高三第三次月考)已知向量a =(-1,3),向量b =(3,-1),则a 与b 的夹角等于 .答案:56π10、(福建省仙游一中20XX 届高三第二次高考模拟测试)已知平面上三点A 、B 、C 满足3=4=5=,则AB CA CA BC BC AB ⋅+⋅+⋅的值等于 。
高考数学压轴专题专题备战高考《平面向量》经典测试题及答案解析
【最新】单元《平面向量》专题解析一、选择题1.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( )A .125B .125-C .32D .32- 【答案】B【解析】【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可.【详解】 解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r ,由a b ⊥r r 得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭, ∴416122555m y x =-=-=-, 故选:B. 【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.2.在ABC V 中,312AB AC ==,D 是AC 的中点,BD u u u r 在AC u u u r 方向上的投影为4-,则向量BA u u u r 与AC u u u r 的夹角为( )A .45°B .60°C .120°D .150° 【答案】C【解析】【分析】 设BDC α∠=,向量BA u u u r 与AC u u u r 的夹角为θ,BD u u u r 在AC u u u r 方向上的投影为cos =4BD α-u u u r ,利用线性代换并结合向量夹角公式即可求出夹角.【详解】312AB AC ==,D 是AC 的中点,则4AC =,2AD DC ==, 向量BD u u u r 在AC u u u r 方向上的投影为4-, 设BDA α∠=,向量BA u u u r 与AC u u u r 的夹角为θ, 则cos =4BD α-u u u r , ∴()cos ===BD DA AC BA AC BD AC DA AC BA AC BA AC BA ACθ+⋅⋅⋅+⋅⋅⋅⋅u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u r u u u r u u u r u u u r u u u r ()()cos cos180444211===1242BD AC DA AC AB AC α⋅+⋅⨯+-⨯-⨯︒⨯⋅-u u u u u r u u u r u u u u r u u u r u ur r u , 故夹角为120°,故选:C .【点睛】本题考查向量的投影,利用数量积求两个向量的夹角,属于中等题.3.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v ,则( ) A .1263BD OA OC =-u u u v u u u v u u u v B .5263BD OA OC =-u u u v u u u v u u u v C .5163BD OA OC =-u u u v u u u v u u u v D .1163BD OA OC =+u u u v u u u v u u u v 【答案】A【解析】【分析】利用向量的加法、减法的几何意义,即可得答案;【详解】 Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v ,∴1263BD OA OC =-u u u v u u u v u u u v , 故选:A.【点睛】本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力. 4.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r ( )A .3144AB AC -u u u r u u u r B .1136AB AC -u u u r u u u r C .2133AB AC -u u u r u u u r D .3144AB AC +u u u r u u u r 【答案】A【解析】【分析】根据MD MA AB BD =++u u u r u u u u u u r u r u u u r,化简得到答案.【详解】 ()11312444MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u u r r u u u r . 故选:A .【点睛】本题考查了向量的运算,意在考查学生的计算能力.5.已知a =r 2b =r ,且()(2)b a a b -⊥+r r r r ,则向量a r 在向量b r 方向上的投影为( )A .-4B .-2C .2D .4 【答案】D【解析】【分析】 根据向量垂直,数量积为0,求出a b r r g ,即求向量a r 在向量b r 方向上的投影a b b ⋅r r r . 【详解】()(2),()(2)0b a a b b a a b -⊥+∴-+=r r r r r r r r Q g ,即2220b a a b -+=r r r r g .2,8a b a b ==∴=r r r r Q g ,所以a r 在b r 方向上的投影为4a b b ⋅=r r r .故选:D .【点睛】本题考查向量的投影,属于基础题.6.已知单位向量a r ,b r 的夹角为3π,(),c a b R μλμ+=λ+∈r u u r u u r ,若2λμ+=,那么c r 的最小值为( )AB C D 【答案】D【解析】【分析】 利用向量的数量积的运算公式,求得12a b ⋅=r r ,再利用模的公式和题设条件,化简得到24c λμ=-u r ,最后结合基本不等式,求得1λμ≤,即可求解.【详解】由题意,向量,a b r r 为单位向量,且夹角为3π,所以11cos 11322a b a b π⋅=⋅=⨯⨯=r r r r , 又由(),c a b μλμ=λ+∈R r u u r u u r , 所以()22222222()4c a b a b λμλμλμλμλμλμλμλμ=+=++⋅=++=+-=-u r r r r r , 因为,R λμ+∈时,所以222()122λμλμ+⎛⎫≤== ⎪⎝⎭,当且仅当λμ=时取等号,所以23c ≥u r ,即c ≥u r 故选:D .【点睛】本题主要考查了平面向量的数量积的运算,以及向量的模的计算,其中解答中熟记向量的数量积和模的计算公式,以及合理应用基本不等式求解是解答的关键,着重考查了推理与运算能力.7.在ABC V 中,D 为边AC 上的点,若2133BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v ,则λ=( )A .13B .12C .3D .2【答案】B【解析】【分析】根据2133BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()BA BC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解. 【详解】 因为2133BD BA BC =+u u u v u u u v u u u v , 所以1122,+3333AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 因为AD DC λ=u u u v u u u v , 所以λ=12, 故选:B【点睛】 本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题.8.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交AC 所在的直线于点F ,则向量AF u u u r 在向量BC uuu r 方向上的投影为( )A .2B .32C .1D .3 【答案】A【解析】【分析】 由1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , EF BC ⊥,得12AF BC ⋅=u u u r u u u r ,然后套用公式向量AF u u u r 在向量BC uuu r 方向上的投影||AF BC BC ⋅=u u u r u u u r u u u r ,即可得到本题答案. 【详解】因为点E 为BC 的中点,所以1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , 又因为EF BC ⊥, 所以()22111()()()12222AF BC AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 所以向量AF u u u r 在向量BC uuu r 方向上的投影为2||AF BC BC ⋅=u u u r u u u r u u u r . 故选:A.【点睛】本题主要考查向量的综合应用问题,其中涉及平面向量的线性运算及平面向量的数量积,主要考查学生的转化求解能力.9.已知ABC V 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u r u u u r( )A .1B .2-C .12D .12- 【答案】C 【解析】【分析】 以,BA BC u u u r u u u r 为基底,将,AD BE u u u r u u u r 用基底表示,根据向量数量积的运算律,即可求解.【详解】222,,33BD DC BD BC AD BD BA BC BA ===-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 11,22AE EC BE BC BA =∴=+u u u r u u u r u u u r , 211()()322AD BE BC BA BC BA ⋅=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r 22111362BC BC BA BA =-⋅-u u u r u u u r u u u r u u u r 111123622=-⨯⨯⨯=. 故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.10.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v的值是A .-8B .-1C .1D .8【答案】D【解析】【分析】【详解】因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v ,所以1()2AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v , 而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v ,所以1()2BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则 1()()4AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v2211(||)()42AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42AC AB AB BC BC BO =-+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)42AC AB AO BC =-+⋅u u u v u u u v u u u v u u u v 所以221(||)82AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D 11.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v 方向上的投影为AB.2 C .1 D.5【答案】C【解析】【分析】 根据a v 在b v方向上的投影定义求解.【详解】 a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-r r r , 选C.【点睛】本题考查a v 在b v方向上的投影定义,考查基本求解能力. 12.在ABC V 中,AD AB ⊥,3,BC BD =u u u r u u u r ||1AD =u u u r ,则AC AD ⋅u u u r u u u r 的值为( ) A .1B .2C .3D .4 【答案】C【解析】【分析】 由题意转化(3)AC AD AB BD AD ⋅=+⋅u u u r u u u r u u u r u u u r u u u r ,利用数量积的分配律即得解.【详解】AD AB ⊥Q ,3,BC BD =u u u r u u u r ||1AD =u u u r ,()(3)AC AD AB BC AD AB BD AD ∴⋅=+⋅=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r2333AB AD BD AD AD =⋅+⋅==u u u r u u u r u u u r u u u r u u u r故选:C【点睛】本题考查了平面向量基本定理和向量数量积综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题.13.如图,在ABC V 中,已知D 是BC 边延长线上一点,若2B C C D =u u u v u u u v,点E 为线段AD 的中点,34AE AB AC λ=+u u u v u u u v u u u v ,则λ=( )A .14B .14-C .13D .13- 【答案】B【解析】【分析】由12AE AD =u u u r u u u r ,AD BD BA =-u u u r u u u r u u u r ,AC BC BA =-u u u r u u u r u u u r ,32BD BC =u u u r u u u r ,代入化简即可得出. 【详解】13,,,22AE AD AD BD BA BD BC BC AC AB ==-==-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,带人可得()13132244AE AC AB AB AB AC ⎡⎤=-+=-+⎢⎥⎣⎦u u u v u u u v u u u v u u u v u u u v u u u v ,可得14λ=-,故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.14.在ABC ∆中,2AB =,3AC =,3BAC π∠=,若23BD BC =u u u v u u u v ,则AD BD ⋅=u u u v u u u v ( ) A .229 B .229- C .169 D .89- 【答案】A【解析】【分析】本题主要是找到两个基底向量AB u u u v ,AC u u u v ,然后用两个基底向量表示AD u u u v ,BD u u u v,再通过向量的运算即可得出结果.【详解】解:由题意,画图如下:则:()22223333BD BC AC AB AB AC ==-=-+u u u v u u u v u u u v u u u v u u u v u u u v , 2233AD AB BD AB AB AC =+=-+u u u v u u u v u u u v u u u v u u u v u u u v 1233AB AC =+u u u v u u u v . ∴12223333AD BD AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+ ⎪ ⎪⎝⎭⎝⎭u u u v u u u v u u u v u u u v u u u v u u u v 22242999AB AC AB AC =-⋅+⋅-⋅⋅u u u v u u u v u u u v u u u v 24249cos 999AB AC BAC =-⋅+⋅-⋅⋅⋅∠u u u v u u u v 82423cos 993π=-+-⋅⋅⋅ 229=. 故选A .【点睛】本题主要考查基底向量的建立以及用两个基底向量表示别的向量,考查平面向量的数量积的计算.本题属基础题.15.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB AC λμ=+u u u r u u u r u u u r ,则λμ+等于( )A .333-+B .333+ C 31D 31+【答案】B【解析】【分析】 建立坐标系,求出D 点坐标,从而得出λ,μ的值.【详解】解:1AC =Q ,3AB =30ABC ∴∠=︒,60ACB ∠=︒,以AB ,AC 为坐标轴建立坐标系,则13,12D ⎛+ ⎝⎭. )3,0AB =u u u r ,()0,1AC =uu u r , ∴13,12AD ⎛=+ ⎝⎭u u u r . Q AD AB AC λμ=+u u u r u u u r u u u r , ∴13231λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴3631λμ⎧=⎪⎪⎨⎪=⎪⎩231λμ∴+=+. 故选:B .【点睛】本题考查了平面向量的基本定理,属于中档题.16.已知点1F ,2F 分别是椭圆2222:1(0)x y C a b a b +=>>的左,右焦点,过原点O 且倾斜角为60°的直线l 与椭圆C 的一个交点为M ,且1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r ,则椭圆C 的离心率为( )A 31B .23C .12D .22 【答案】A【解析】【分析】 由1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r 两边平方,得120MF MF ⋅=u u u u r u u u u r ,在12Rt MF F V 中,求出2MF ,1MF ,,a c 的关系,求出离心率可得选项. 【详解】 将1212||||MF MF MF MF +=-u u u u r u u u u r u u u u r u u u u r 两边平方,得120MF MF ⋅=u u u u r u u u u r ,即12121||2MF MF OM F F c ⊥==,. 又60MOF ∠=︒,∴2MF c =,13MF c =,∴23a c c =+,∴31c e a==. 故选:A.【点睛】 考查了向量的数量积,椭圆的定义,离心率的求法,关键在于得出关于,a c 的关系,属于中档题.17.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α= C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 51 【答案】B【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r,则2sin cos αα=,即1tan 2α=,A 正确. B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确. C选项,si (n )2cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确. D 选项,由向量减法、模的几何意义可知||a b -r r1,此时5a =-r r ,,a b r r 反向.故选项D 正确.故选:B【点睛】本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.18.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r ,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( ) A .13 B. C.D .13- 【答案】D【解析】【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】//a b ∴r r1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.19.三角形ABC 中,5BC =,G ,O 分别为三角形ABC 的重心和外心,且5GO BC ⋅=u u u r u u u r ,则三角形ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述均不是 【答案】B【解析】【分析】 取BC 中点D ,利用GO GD DO =+u u u r u u u r u u u r 代入计算,再利用向量的线性运算求解.【详解】如图,取BC 中点D ,连接,OD AD ,则G 在AD 上,13GD AD =,OD BC ^, ()GO BC GD DO BC GD BC DO BC ⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r221111()()()53326GD BC AD BC AB AC AC AB AC AB =⋅=⋅=⨯+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ∴2223025AC AB BC -=>=,∴2220AB BC AC +-<,由余弦定理得cos 0B <,即B 为钝角,三角形为钝角三角形.故选:B .【点睛】本题考查平面向量的数量积,考查向量的线性表示,考查余弦定理.解题关键是取BC 中点D ,用,AB AC u u u r u u u r 表示出,GD BC u u u r u u u r .20.已知单位向量,a b r r 满足313a b +=r r ,则a r 与b r 的夹角为A .6πB .4πC .3πD .2π 【答案】C【解析】 由313a b +=r r 22236913a b a a b b +=+⋅+=r r r r r r ,又因为单位向量,a b r r ,所以1632a b a b ⋅=⇒⋅=r r r r , 所以向量,a b r r 的夹角为1cos ,2a b a b a b ⋅〈〉==⋅r r r r r r ,且,[0,]a b π〈〉∈r r ,所以,3a b π〈〉∈r r ,故选C.。
安徽省合肥市第九中学平面向量及其应用练习题(有答案)
一、多选题1.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( ) A .若a b →→=,则a b →→= B .若a c b c →→→→⋅=⋅,则a b →→= C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥2.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)5.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+6.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6πB .3π C .23π D .2π 7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .8.下列各式中,结果为零向量的是( )A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-9.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-10.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-12.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =13.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个 14.已知ABC ∆的面积为32,且2,3b c ==,则A =( ) A .30°B .60°C .150°D .120°15.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同二、平面向量及其应用选择题16.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7217.在ABC ∆中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ∆、PBC ∆、PCA ∆、PAB ∆的面积分别为S 、1S 、2S 、3S ,记ii S Sλ=(1,2,3i =),则23λλ⋅取到最大值时,2x y +的值为( ) A .-1B .1C .32-D .3218.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13- D .34-19.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:520.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定21.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-22.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形23.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( )A .B .C .12D .24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A .7 B .3C .11D .1926.题目文件丢失!27.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 28.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .529.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A 5B 10C .4D .530.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( ) (注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心31.三角形ABC 的三边分别是,,a b c ,若4c =,3C π∠=,且sin sin()2sin 2C B A A +-=,则有如下四个结论:①2a b = ②ABC ∆83③ABC ∆的周长为43+④ABC ∆外接圆半径R =这四个结论中一定成立的个数是( ) A .1个B .2个C .3个D .4个32.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A .3B .3C D .33.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( )A .(-∞B .)+∞C .(-∞D .)+∞34.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .435.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( )A .35 B .107C .57D .14【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同 解析:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD 【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.2.ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.3.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 4.ABC【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B.9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.5.AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.6.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即21322BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.7.AC 【分析】利用余弦定理:即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC 【分析】利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a = 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.8.BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项:,选项不正确; 对于选项: ,选项正确; 对于选项:,选项不正确; 对于选项: 选项正确. 故选:解析:BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确; 对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确. 故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题.9.BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确;对于C 选项:,故正确;对于D 选项:,而,故解析:BC【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项.【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错;对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确; 对于C 选项:cos 248BD BA BC BA BC B BA BC BA ⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC.【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.10.AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意; 对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意; 对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.11.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 12.ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等,解析:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确.故选:ABD【点睛】本小题主要考查向量数乘运算,属于基础题.13.BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,,设,若,所以解析:BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=(33m -,22n -,且m Z ∈,)n Z ∈,得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确. 若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈,得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.14.BD【分析】由三角形的面积公式求出即得解.【详解】因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出3sin A=即得解.【详解】因为13sin22 S bc A==,所以13 2322A⨯=,所以3sin2A=,因为0180A︒︒<<,所以60A=或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.15.ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.二、平面向量及其应用选择题16.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||222PC CA PC =-=-≥-52=.故选B.本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.17.D【分析】根据三角形中位线的性质,可得P 到BC 的距离等于△ABC 的BC 边上高的一半,从而得到12312SS S S ==+,由此结合基本不等式求最值,得到当23λλ⋅取到最大值时,P 为EF 的中点,再由平行四边形法则得出11022PA PB PC ++=,根据平面向量基本定理可求得12x y ==,从而可求得结果. 【详解】如图所示:因为EF 是△ABC 的中位线,所以P 到BC 的距离等于△ABC 的BC 边上高的一半,所以12312S S S S ==+, 由此可得22232322322()1216S S S S S S S S S S λλ+=⨯=≤=, 当且仅当23S S =时,即P 为EF 的中点时,等号成立,所以0PE PF +=, 由平行四边形法则可得2PA PB PE +=,2PA PC PF +=,将以上两式相加可得22()0PA PB PC PE PF ++=+=,所以11022PA PB PC ++=, 又已知0PA xPB yPC ++=,根据平面向量基本定理可得12x y ==, 从而132122x y +=+=. 故选:D本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.18.B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】 13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+, 56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.19.A 【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.20.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题.【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =, M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.22.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】 由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 23.A 【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 4812322ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值24.C【解析】【分析】取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得.【详解】解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心0DW BC ∴⋅= ()()22113323AG AD AB AC AB AC ∴==⨯+=+ ()12AW AD DW AB AC DW =+=++ ()()()115326AW AG AB AC AB AC DW AB AC DW +=++++=++ ()()()5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦ ()56AB A BC C =⋅+()()56C AC AB AB A =⋅+- ()()222242105566AC AB =-=-= 故选:C【点睛】本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题.25.A【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解.【详解】因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.故选:A.【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 26.无27.D【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n n n AB n n ==--+,再根据AM mAB =可得231n m n =-,整理可得213m n +=,最后选出正确答案即可.【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n =,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n n n AB n n ==--+,因为AM mAB =,所以231n m n =-, 整理可得213m n+=.故选:D .【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题.28.A【解析】 分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 29.B【分析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值. 【详解】()22224419||=1||3m m n m nn m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m n m m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+, 令()2(05),5x x f x x x n =<≤=-,则()2'125f x x =-,令()'0f x =,得102x =∴当1002x <<时, ()'0f x >,当1052x << ()'0f x <, ∴当102x =时, ()f x 取得最大值1010f =⎝⎭,故选B. 【点睛】向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 30.C【详解】 试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++=,则NA NB NC +=-,取AB 的中点E ,则2NA NB NE CN +=-=,所以2NE CN =,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.31.C【分析】由正弦定理可得三角形的外接圆的半径;由三角函数的恒等变换化简2A π=或sin 2sin B A =,即2b a =;分别讨论,结合余弦定理和三角形面积公式,计算可得所求值,从而可得结论.【详解】4c =,3C π∠=,可得4832sin 3sin 3c R C π===,可得ABC ∆外接圆半径433R =,④正确; ()sin sin 2sin2C B A A +-=,即为()()sin sin 2sin2A B B A A ++-=,即有sin cos cos sin sin cos cos sin 2sin cos 4sin cos A B A B B A B A B A A A ++-==, 则cos 0A =,即2A π=或sin 2sin B A =,即2b a =; 若2A π=,3C π=,6B π=,可得2a b =,①可能成立;由4c =可得83a =,43b =443+;面积为1832bc =; 则②③成立;若2b a =,由2222222cos 316c a b ab C a b ab a =+-=+-==,可得a =,b =则三角形的周长为4a b c ++=+11sin sin 223S ab C π=== 则②③成立①不成立;综上可得②③④一定成立,故选C .【点睛】本题考查三角形的正弦定理、余弦定理和面积公式,考查三角函数的恒等变换,属于中档题.以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.32.A【分析】根据面积公式得到4c =,再利用余弦定理得到a =,再利用正弦定理得到答案.【详解】1sin 42ABC S bc A c ∆====利用余弦定理得到:2222cos 116413a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b c A B C ==故2sin 2sin sin sin a b c a A B C A ++===++ 故选A【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 33.A【分析】 不等式a c b d T -+-≥恒成立,即求a c b d -+-最小值,利用三角不等式放缩+=+()a c b d a c b d a b c d -+-≥---+,转化即求+()a b c d -+最小值,再转化为等边三角形OAB 的边AB 的中点M 和一条直线上动点N 的距离最小值. 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值得解.【详解】1a b ==,12a b ⋅=,易得,3a b π<>= 设,,,OA a OB b OC c OD d ====,AB 中点为M ,CD 中点为N则,A B 在单位圆上运动,且三角形OAB 是等边三角形, (.1),(,1)1CD C m m D n n k ,CD 所在直线方程为10x y +-=因为a c b d T -+-≥恒成立,+=+()a c b d a c b d a b c d -+-≥---+,(当且仅当a c -与b d -共线同向,即a b +与c d +共线反向时等号成立)即求+()a b c d -+最小值.+()=()()a b c d OA OB OC OD -++-+=22=2OM ON NM -三角形OAB 是等边三角形,,A B 在单位圆上运动,M 是AB 中点,∴ M 的轨迹是以原点为圆心,半径为3的一个圆. 又N 在直线方程为10x y +-=上运动,∴ 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值此时M 到直线10x y +-=的距离32MN232T NM故选:A【点睛】本题考查平面向量与几何综合问题解决向量三角不等式恒成立.平面向量与几何综合问题的求解坐标法:把问题转化为几何图形的研究,再把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.34.C【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可.【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值,由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥, 令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =2(2)171788m --+==, 所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C.【点睛】 思路点睛:该题考查了平面向量的数量积的问题,解题思路如下:(1)先根据题意,设出向量的坐标;(2)根据向量数量积的运算律,将其展开;(3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题.35.C【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出.【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A =,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=--=.sin C ∴= 由正弦定理可得:sin sin b c B C =,∴1sin 5sin 7c B b C ===. 故选:C .【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.。
高考数学压轴专题宁波备战高考《平面向量》专项训练解析含答案
新《平面向量》专题一、选择题1.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r( )A .134-B .54C .5D .154【答案】B 【解析】 【分析】据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果. 【详解】 设AC 与BD 交于点O ,以O 为原点,BD u u u r 的方向为x 轴,CA u u u r的方向为y 轴,建立直角坐标系,则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,所以95144DE DF ⋅=-=u u u r u u u r .故选:B. 【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.2.已知5MN a b =+u u u u r r r ,28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r ,则( )A .,,M N P 三点共线B .,,M N Q 三点共线C .,,N P Q 三点共线D .,,M P Q 三点共线【解析】 【分析】利用平面向量共线定理进行判断即可. 【详解】因为28NP a b =-+u u u r r r ,3()PQ a b =-u u u r r r所以()2835NQ NP PQ a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r ,因为5MN a b =+u u u u r rr ,所以MN NQ =u u u u r u u u r由平面向量共线定理可知,MN u u u u r 与NQ uuur 为共线向量,又因为MN u u u u r 与NQ uuur 有公共点N ,所以,,M N Q 三点共线.故选: B 【点睛】本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.3.已知向量a v ,b v 满足a b a b +=-r rv v ,且||3a =v ,||1b =r ,则向量b v 与a b -v v 的夹角为( ) A .3πB .23π C .6π D .56π 【答案】B 【解析】 【分析】对a b a b +=-v v v v 两边平方,求得0a b ⋅=v v ,所以a b ⊥v v .画出图像,根据图像确定b v 与a b -vv 的夹角,并根据它补角的正切值求得对应的角的大小.【详解】因为a b a b +=-v v v v ,所以222222a a b b a a b b +⋅+=-⋅+v v v v v v v v ,即0a b ⋅=v v ,所以a b ⊥v v .如图,设AB a =u u u v v ,AD b =u u u v v,则向量b v 与a b -v v 的夹角为BDE ∠,因为tan 3BDA ∠=,所以3BDA π∠=,23BDE π∠=.故选B.【点睛】本题考查平面向量的模以及夹角问题,考查运算求解能力,考查数形结合的数学思想方法.4.在ABC ∆中,0OA OB OC ++=u u u r u u u r u u u r r ,2AE EB =u u u r u u u r,AB AC λ=u u u r u u u r ,若9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r,则实数λ=( )A .3 B .3 C .63D .62【答案】D 【解析】 【分析】将AO u u u r 、EC uuu r 用AB u u u r 、AC u u u r 表示,再代入9AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r中计算即可. 【详解】由0OA OB OC ++=u u u r u u u r u u u r r,知O 为ABC ∆的重心,所以211()323AO AB AC =⨯+=u u u r u u u r u u u r ()AB AC +u u u r u u u r ,又2AE EB =u u u r u u u r ,所以23EC AC AE AC AB =-=-u u u r u u u r u u u r u u u r u u u r ,93()AO EC AB AC ⋅=+⋅u u u r u u u r u u u r u u u r 2()3AC AB -u u ur u u u r2223AB AC AB AC AB AC =⋅-+=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,所以2223AB AC=u u u r u u u r ,||362||AB AC λ===u u u ru u u r . 故选:D 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.5.如图,在ABC ∆中,12AN NC =u u u r u u u r,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B 【解析】 【分析】根据题意,以AB u u u r ,AC u u ur 为基底表示出AP u u u r 即可得到结论. 【详解】由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r,所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r, 又15AP mAB AC =+u u u r u u u r u u u r ,所以,1135λ-=,且m λ=,解得25m λ==. 故选:B. 【点睛】本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.6.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.7.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )A .1162DF AB AC =--u u u r u u u r u u u r B .1134DF AB AC =--u u u r u u u r u u u rC .3142DF AB AC =-+u u u r u u u r u u u rD .1126DF AB AC =--u u u r u u u r u u u r【答案】A 【解析】 【分析】设AB AF λ=u u u r u u u r,由平行四边形法则得出144AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r,即可得出答案.【详解】设AB AF λ=u u u r u u u r ,111124444AE AB A A C A AC D F λ==+=+u u u r u u u u u ur u u u r r u u u r u u u r因为C E F 、、三点共线,则1=144λ+,=3λ 所以1111132262DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r故选:A【点睛】本题主要考查了用基底表示向量,属于中档题.8.在ABC ∆中,5,6,7AB BC AC ===,点E 为BC 的中点,过点E 作EF BC ⊥交AC 所在的直线于点F ,则向量AF u u u r在向量BC uuu r 方向上的投影为( )A .2B .32C .1D .3【答案】A 【解析】 【分析】 由1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r , EF BC ⊥,得12AF BC ⋅=u u u r u u u r,然后套用公式向量AF u u u r 在向量BC uuu r 方向上的投影||AF BCBC ⋅=u u u r u u u ru u u r ,即可得到本题答案. 【详解】因为点E 为BC 的中点,所以1()2AF AE EF AB AC EF =+=++u u u r u u u r u u u r u u u r u u u r u u u r,又因为EF BC ⊥,所以()22111()()()12222AF BC AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r , 所以向量AF u u u r 在向量BC uuu r 方向上的投影为2||AF BCBC ⋅=u u u r u u u ru u u r . 故选:A. 【点睛】本题主要考查向量的综合应用问题,其中涉及平面向量的线性运算及平面向量的数量积,主要考查学生的转化求解能力.9.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,33⎛⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪ ⎪⎝⎭D .,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得3t <-或3t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.10.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A 【解析】 【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-.故选:A . 【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.11.在平行四边形ABCD 中,4AB =,2AD =,3BAD π∠=,M 为DC 的中点,N为平面ABCD 内一点,若AB NB AM AN -=-u u u v u u u v u u u u v u u u v ,则AM AN ⋅=u u u u v u u u v ( )A .16B .12C .8D .6【答案】D 【解析】 【分析】根据条件及向量加减法的几何意义即可得出|AN u u u r |=|MN u u u u r|,再根据向量的数量积公式计算即可 【详解】由|AB NB -u u u r u u u r |=|AM AN -u u u u r u u u r |,可得|AN u u u r |=|NM u u u u r|, 取AM 的中点为O ,连接ON ,则ON ⊥AM ,又12AM AD AB =+u uu u r u u u r u u u r,所以AM u u u u r •21122AN AM ==u u u r u u u u r (12AD AB +u u u r u u u r )212=(2214AD AB AD ++u u u r u u u r u u u r •AB u u u r )12=(414+⨯16+2×412⨯)=6,故选:D .【点睛】本题主要考查了平面向量的几何表示,数量积的几何意义,运算求解能力,属于中档题12.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u v u u u v ( ) A .1 B .22C 3D 6【答案】C 【解析】 【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果. 【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C BC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以32AB BC=uu u v uu u v . 【点睛】本题主要考查平面向量的线性运算.13.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v的最小值是( )A .21-B .2C .0D .1【答案】D 【解析】试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D.考点:1.圆的性质;2.平面向量的数量积的运算.14.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( ) A 75- B 73-C .532-D .312【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=13a ,r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得2212302x y x y +-+=,所以原问题等价于,圆2212302x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r 的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为12⎛ ⎝⎭,,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为22=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.15.已知平面直角坐标系xOy 中有一凸四边形ABCD ,且AB 不平行于,CD AD 不平行于BC .设AD 中点(,),E a b BC 中点(,)F b a -,且222a b +=,求||||AB DC +u u u r u u u r的取值范围( ) A .(4,)+∞ B .[4,)+∞ C .(0,4) D .(2,4)【答案】A 【解析】 【分析】根据AD 中点(,),E a b BC 中点(,)F b a -,通过向量运算得到2EF AB DC =+u u u ru u u ru u u r,从而有2AB DC EF +=u u u r u u u r u u u r ,用两点间距离公式得到EF u u u r,再根据AB 不平行于CD ,由||||AB D AB DC C ++>u u u r u u u r u u u r u u u r求解. 【详解】因为,EF ED DC CF EF EA AB BF =++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以2EF AB DC =+u u u r u u u r u u u r ,又因为2EF ===u u u r ,所以24AB DC EF +==u u u r u u u r u u u r ,因为AB 不平行于CD , 所以||||AB D AB DC C ++>u u u r u u u r u u u r u u u r ,所以||||4AB DC +>u u u r u u u r .故选:A【点睛】本题主要考查平面向量在平面几何中的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.16.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数;②若0a b ⋅=r r ,则0a =r r 或0b =r r;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题; ④函数()x xe ef x x--=是偶函数. A .1B .2C .3D .4【答案】B【解析】【分析】利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论.【详解】对于①中,当x =时,22x =为有理数,故①错误; 对于②中,若0a b ⋅=r ,可以有a b ⊥r r ,不一定要0a =r r 或0b =r r ,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题, 其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-, 且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称,所以函数()x xe ef x x--=是偶函数,故④正确. 综上,真命题的个数是2.故选:B.【点睛】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.17.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r ,1233OC OA OB =+u u u r u u ur u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r 的值为( ). A .3 B .23 C .2 D .3【答案】D【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】 圆O 圆心为()0,0,半径为2,而||2AB =u u u r ,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA O O O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u u u u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.18.已知向量()1,3a =-v ,()3,b m =v ,若a b ⊥v v ,则2a b +v v 等于( )A .10B .16C .D .【答案】C【解析】【分析】 先利用向量垂直的坐标表示求出实数m 的值,得出向量b r 的坐标,并计算出向量2a b +r r ,最后利用向量模的坐标运算得出结果.【详解】 ()1,3a =-r Q ,()3,b m =r ,a b ⊥r r ,则1330a b m ⋅=⨯-=r r ,得1m =,()3,1b ∴=r ,则()()()221,33,15,5a b +=-+=-r r ,因此,2a b +==r r C.【点睛】本题考查向量垂直的坐标表示以及向量模的坐标运算,意在考查学生对这些公式的理解掌握情况,考查运算求解能力,属于中等题.19.已知向量(),1a x =-r , (b =r ,若a b ⊥r r ,则a =r ( )A B C .2 D .4 【答案】C【解析】由a b r r ⊥,(),1a x =-r , (b r =,可得:x 0x ,==,即)1a =-r所以2a ==r 故选C20.在OAB ∆中,已知OB =u u u v 1AB u u u v =,45AOB ∠=︒,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v 的最小值为( )A .5BC .3D .2【答案】A【解析】【分析】根据OB =u u u r ,1AB =uu u r ,45AOB ∠=︒,由正弦定理可得OAB ∆为等腰直角三角形,进而求得点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r.再由23λμ+=,将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r的最小值.【详解】在OAB ∆中,已知2OB =u u u r,1AB =uu u r ,45AOB ∠=︒ 由正弦定理可得sin sin AB OB AOB OAB=∠∠u u u r u u u r 代入2sin 22OAB =∠,解得sin 1OAB ∠=即2OAB π∠=所以OAB ∆为等腰直角三角形以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:则点A 坐标为22,22⎛ ⎝⎭所以2222OA ⎛= ⎝⎭u u u r ,)2,0OB =u u u r 因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r 则)222,0OP λμ=+⎝⎭u u u r 222μ⎫⎪⎪⎝⎭= 则2222222OP λμλ⎛⎫=++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r 2222λλμμ=++因为23λμ+=,则32μλ=-代入上式可得()()22322232λλλλ+-+-218518λλ-=+299555λ⎛⎫=-+ ⎪⎝⎭所以当95λ=时, min OP ==u u u r 故选:A【点睛】 本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国名校高考数学专题训练05平面向量(解答题)1、(江苏省启东中学2008年高三综合测试一)关于实数x 的不等式22211|(1)|(1)3(1)2(31)022x a a x a x a -+≤--+++≤与的解集依次为A 与B ,求使A B ⊆的a 的取值范围。
解:由2211|(1)|(1)22x a a -+≤-得 222111(1)(1)(1)222a x a a --≤-+≤- }{2|21A x a x a ∴=≤≤+由23(1)2(31)0x a x a -+++≤得 [](2)(31)0x x a --+≤当312a +≥即13a ≥时得}{|231B x x a =≤≤+ 当32a a +<即13a <时得}{|312B x a x =+≤≤ 综上解述:当13a ≥时若A B ≤则 222131a a a ≤⎧⎨+≤+⎩ 解得13a ≤≤ 当13a <时若A B ⊆则 231212a a a +≤≤+≤解得1a =-a 的范围是{|13a a ≤≤或}1a =-2、(江苏省启东中学高三综合测试四)某公司一年需要一种计算机元件8000个,每天需同样多的元件用于组装整机,该元件每年分n 次进货,每次购买元件的数量均为x ,购一次货需手续费500元.已购进而未使用的元件要付库存费,假设平均库存量为x 21件,每个元件的库存费为每年2元,如果不计其他费用,请你帮公司计算,每年进货几次花费最小? 解:设购进8000个元件的总费用为S ,一年总库存费用为E ,手续费为H . 则n x 8000=,nE 8000212⨯⨯=,n H 500= 所以S=E+H=x x 8000500212⨯+⨯C =n n5008000+ =4000)16(500≥+n n\ 当且仅当n n =16,即n=4时总费用最少,故以每年进货4次为宜.\ 3、(四川省巴蜀联盟2008届高三年级第二次联考)如图,公园有一块边长为2的等边△ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,D 在AB 上,E 在AC 上.(1)设AD =x (x≥0),ED =y ,求用x 表示y 的函数关系式;(2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE 是参观线路,则希望它最长,DE 解:(1)在△ADE 中,y 2=x 2+AE 2-2x·AE·cos60°⇒y 2=x 2+AE 2x·AE,①又S △ADE =21 S △ABC =23a 2=21x·AE·sin60°⇒x·AE =2.② ②代入①得y 2=x 2+22()x -2(y >0), ∴y 1≤x≤2). (2)如果DE是水管y=当且仅当x 2=24x,即x =2时“=”成立,故DE ∥BC ,且DE =2. 如果DE 是参观线路,记f (x )=x 2+24x ,可知 函数在[1,2]上递减,在[2,2]上递增,故f (x ) max =f (1)=f (2)=5. ∴y max=即DE 为AB 中线或AC 中线时,DE 最长.4、(四川省乐山市2008届第一次调研考试)已知()f x 是R 上的单调函数,且对任意的实数a R ∈,有()()0f a f a -+=恒成立,若(3)2f -=①求证:()f x 是R 上的减函数;②解关于x 的不等式:()()0,0m x f f m m R m x-+<∈>其中且 解:①()()sin x f x π=+;②12原式=; 18.①由()f x 是R 上的奇函数,(0)0f ∴=,又因()f x 是R 上的单调函数,由(3)2,(0)(3)f f f -=<-,所以()f x 为R 上的减函数。
②当1m >时,{}0,1mx x x m ><-或; 当1m =时,{}0x x >当01m <<时,{}01m x x m <<-。
5、(山东省博兴二中高三第三次月考)为了立一块广告牌,要制造一个三角形的支架. 三角形支架形状如图,要求060=∠ACB ,BC 的长度大于1米,且AC 比AB 长0.5米. 为了广告牌稳固,要求AC 的长度越短越好,求AC 最短为多少米?且当AC 最短时,BC 长度为多少米?解:如图,设BC 的长度为x 米,AC 的长度为y 米,则AB 的长度为(y -0.5)米. 在△ABC 中,依余弦定理得:ACB BC AC BC AC AB ∠∙-+=cos 2222 -------(4分) 即212)5.0(222⨯-+=-yx x y y 化简,得41)1(2-=-x x y ∵1>x ,∴01>-x 因此1412--=x x y ------------------(6分) 方法一:232)1(43)1(1412+≥+-+-=--=x x x x y . --------------------(10分) 当且仅当)1(431-=-x x 时,取“=”号,即231+=x 时,y 有最小值32+.方法二:2222/)1(412)1()41()1(2-+-=----=x x x x x x x y x -----------------(9分) 解⎪⎩⎪⎨⎧=+->041212x x x ,得231+=x -------------------(11分) ∵当2311+<<x 时,0/<x y ;当231+>x 时,0/>x y . ∴当231+=x 时,y 有最小值32+. 6、(福建省厦门市2008学年高三质量检查)某化工集团在靠近某河流修建两个化工厂,流经第一化工厂的河流流量为500万立方米/天,在两个化工厂之间还有一条流量为200万立方米/天的支流并入大河(如图)。
第一化工厂每天排放含有某种有害物质的工业废水2万立方米;第二化工厂每天排放这种工业废水1.4万立方米,从第一化工厂排出的工业废水在流到第二化工厂之前,有20%可自然净化。
环保要求:河流中工业废水的含量应不大于0.2%,因此,这两个工厂都需各自处理部分的工业废水,第一化工厂处理工业废水的成本是1000元/万立方米,第二化工厂处理工业废水的成本是800元/万立方米。
试问:在满足环保要求的条件下,两个化工厂应各自处理多少工业废水,才能使这两个工厂总的工业废水处理费用最小?解:设第一化工厂每天处理工业废水x 万立方米, 需满足:.20%,2.05002≤≤≤-x x …………2分 设第二化工厂每天处理工业废水y 万立方米, 需满足:.4.10%,2.0700)4.1()2(8.0≤≤≤-+-y y x …………4分两个化工厂每天处理工业废水总的费用为1000x +800y 元。
问题即为:在约束条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤-+-≤-4.1020,%2.0700)4.1()2(8.0%2.05002y x y x x 下 求目标函数)45(200y x z +=的最小值。
7、(广东省揭阳市2008年高中毕业班高考调研测试)如C DN P图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,已知|AB |=3米,|AD |=2米,(1) 要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2) 若|AN| [3,4)∈(单位:米),则当AM 、AN 的长度是多少时,矩形花坛AMPN 的面积最大?并求出最大面积.解:设AN 的长为x 米(x >2)∵|DN||DC||AN||AM|=,∴|AM |=32x x - ∴S AMPN =|AN |•|AM |=232x x - ------------------------------------- 4分 (1)由S AMPN > 32 得 232x x - > 32 ,∵x >2,∴2332640x x -+>,即(3x -8)(x -8)> 0 ∴8283x x <<> 或 即AN 长的取值范围是8(2)(8)3∞,,+----------- 8分(2)令y =232x x -,则y ′=2226(2)334)(2)(2)x x x x x x x ---=--( -------------- 10分 ∵当[3,4)x ∈,y ′< 0,∴函数y =232x x -在[3,4)上为单调递减函数, ∴当x =3时y =232x x -取得最大值,即max ()27AMPN S =(平方米) 此时|AN |=3米,|AM |=33932⨯=-米 8、(广东省深圳外国语学校2008届第三次质检)据调查,某地区100万从事传统农业的农民,人均收入3000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进企业工作,那么剩下从事传统农业的农民的人均收入有望提高2x %,而进入企业工作的农民的人均收入为3000a 元(a >0)。
(I )在建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x 的取值范围;(II )在(I )的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农民的人均年收入达到最大。
解:(I )由题意得(100-x )·3000·(1+2x%)≥100×3000,即x 2-50x ≤0,解得0≤x ≤50, ……………………4分又∵x >0 ∴0<x ≤50; ……………………6分 (II )设这100万农民的人均年收入为y 元,则y= (100-x )×3000×(1+2x %)+3000ax 100 = -60x 2+3000(a +1)x +300000100=-35[x -25(a +1)]2+3000+475(a +1)2 (0<x ≤50) ………………9分 (i )当0<25(a +1)≤50,即0<a ≤1,当x=25(a +1)时,y 最大; ………………11分 (ii )当25(a +1)>50,即a >1,函数y 在(0,50]单调递增,∴当x=50时,y 取最大值。
…………13分答:在0<a ≤1时,安排25(a +1)万人进入企业工作,在a >1时安排50万人进入企业工作,才能使这100万人的人均年收入最大 ………………14分9、(河北衡水中学2008年第四次调考)已知函数()log (1)a f x x =+,点P 是函数()y f x =图像上任意一点,点P 关于原点的对称点Q 的轨迹是函数()y g x =的图像(1)当01a <<时,解关于x 的不等式2()()0f x g x +≥;(2)当1a >,且[0,1)x ∈时,总有2()()f x g x m +≥恒成立,求m 的取值范围. 解:由题意知:P 、Q 关于原点对称,设Q (x,y )是函数y=g(x)图像上任一点,则P (-x,-y )是f(x)=log a (x+1)上的点,所以-y=log a (-x+1),于是g(x)=-log a (1-x).(1)0<a<1,2()()0f x g x +≥ 2101010(1)1x x x x x ⎧+>⎪⇔->⇔-<≤⎨⎪+≤-⎩{}01a ∴<<≥≤时,不等式2f(x)+g(x)0解集为:x -1<x 0(2)[)2()()2log (1)log (1) 1.0,1a a y f x g x x x a x =+=+-->∈当时[)2(1)2()()1x f x g x m m x++≥∈≥-a 恒成立,即在x 0,1时,log 恒成立 22(1)(1):log log 11m m a a x x a a x x++≥∴≤--即恒成立 设2(1)4()(1)4,0110,11x x x x x x xϕ+==-+-≤<∴->-- (][)(]4(1)2,011()1x x x x ϕ-++∞<-≤∴-可证在0,2且在在0,1 0min ()1,1,0m x a a m ϕ∴=∴≤=∴≤10、设有关于x 的不等式()a x x >-++73lg (1)时,解此不等式当1=a (2)当a 为何值时,此不等式的解集为R (本题满分12分)解:()11a =时,不等式可化为3710x x ++->…………………………… 2分 由371037x x x x ++->⇒<->或……………………………………………..4分 {}37x x x ∴<->解集为或…………………………………………………………5分 ()23710,x x ++-≥…………………………………………………………….7分欲使()a x x >-++73lg 恒成立,即3710ax x ++->恒成立,只须1010a <即可⇒1a <……………………………………………………….. 10分11、为贯彻落实党的十七大精神,加快新农村建设步伐,红星镇政府投资c 万元生产甲乙两种商品,据测算,投资甲商品x 万元,可获得利润P=x 万元,投资乙商品x 万元可获得利润Q=40x 万元,如果镇政府聘请你当投资顾问,试问对甲乙两种商品的资金投入分别是多少万元?才能获得最大利润,获得最大利润是多少万元?解:设对甲厂投入x 万元(0≤x ≤c ),则对乙厂投入为c —x 万元.所得利润为y=x+40x c -(0≤x ≤c ) ……………………(3分)令x c -=t (0≤t ≤c ),则x=c -t 2 ∴y=f (t )=-t 2+40t+c=-(t —20)2+c+400……………………(6分)当c ≥20,即c ≥400时,则t=20, 即x=c —400时, y max =c+400… (8分)当0<c <20, 即0<c<400时,则t=c ,即x=0时,y max =40 c .…(10分)答:若政府投资c 不少于400万元时,应对甲投入c —400万元, 乙对投入400万元,可获得最大利润c+400万元.政府投资c 小于400万元时,应对甲不投入,的把全部资金c 都投入乙商品可获得最大利润40c 万元.…(12分)12、(黑龙江省哈尔滨三中2008年高三上期末)某小型自来水厂的蓄水池中存有400吨水,水厂每小时可向蓄水池中注入自来水60吨,若蓄水池向居民不断的供水,且t 小时内供水总量为210·)240(63≤≤t t 吨。