原码、反码、补码课件
4. 第2章-原码反码补码ppt课件
![4. 第2章-原码反码补码ppt课件](https://img.taocdn.com/s3/m/bb9e07feed630b1c58eeb54d.png)
如果数字部分不足(n 1)位,则高位补0,补足 至(n 1)位
大学计算机基础
5
.
原码
❖ 原码举例 8位二进制编码 真值:X = + 101
Y = 1010 [ Y ]原 = 10001010
原码:[ X ]原 = 00000101
若真值中数字个数(不含高位0)多于(n-1),则不能 用n位原码编码
补码加法运算中不区分数符和数字,即符号位也
参与加法计算
大学计算机基础
16
补码
❖ 补码运算举例(用5位二进制补码表示数) A=+1011, B= - 0010, 求A-B [A-B]补= [A]补 + [-B]补 [A]补=01001110,1[1-B]补=00010,
+) 00010 01101
A-B=+1101
大学计算机基础
13
补码
❖ 补码举例—— 给出下列数的原码、反码、补码(8位)
X = + 1101 [ X ]原 = 00001101 [ X ]反 = 00001101 [ X ]补 = 00001101
Y = 1110
[ Y ]原 = 10001110
[ Y ]反 = 11110001
大学计算机基础
反码如何转换成原大码学计?算机基础
9
❖正数:相同;负数:数值按位取反
❖ 反码的性质
反码
反码表示
❖若x = + x1x2 ⋯ xn-1 ,则[x]反= 0x1x2 ⋯ xn-1
反❖码若的x =表-示x1范x2围⋯与x原n-1码,相则同—[x—]—反= 1x1x2 ⋯ xn-1
❖0有两种表示形式
[ + 00 ⋯0 ]反= 000 ⋯0 [ - 00 ⋯0 ]反= 111 ⋯1 ❖表示范围:-(2n-1-1) ≤ X ≤ (2n-1-1)
计算机原理(原码、反码、补码)
![计算机原理(原码、反码、补码)](https://img.taocdn.com/s3/m/aca5d9585f0e7cd185253606.png)
计算机原理- 整数的补码,原码, 反码解释一:对于整数来讲其二进制表示没有符号位.一个字节的表示范围为00000000-11111111,由此可见一个字节的整数表示范围为[0,255=2^8 - 1]。
对于整数来讲,其二进制表示中存在一个符号位.先来看一下下面几个定义:1:在计算机中,负数以其正值的补码形式表达。
正数即在符号位补0.2:原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。
3:反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。
4:补码: 反码+1由以上可以得到.计算机储存有符号的整数时,是用该整数的补码进行储存的,0的原码、补码都是0;正数的原码、补码可以特殊理解为相同;负数的补码是它的反码加1。
范围: 正数[00000000 - 01111111] 即[0, 2^7 - 1]。
负数[10000000 - 11111111] 。
范围说明. 11111111 - 1 = 11111110,取反=00000001 即是-1. 10000000 -1 = 01111111,取反=10000000, 即是-128. 因此有一个有符号二进制表示范围是从[-128-127].解释二:大家都知道数据在计算机中都是按字节来储存了,1个字节等于8位(1Byte=8bit),而计算机只能识别0和1这两个数,所以根据排列,1个字节能代表256种不同的信息,即2^8(0和1两种可能,8位排列),比如定义一个字节大小的无符号整数(unsigned char),那么它能表示的是0~255(0~2^8 -1)这些数,一共是256个数,因为,前面说了,一个字节只能表示256种不同的信息。
别停下,还是一个字节的无符号整数,我们来进一步剖析它,0是这些数中最小的一个,我们先假设它在计算机内部就用8位二进制表示为00000000(从理论上来说也可以表示成其他不同的二进制码,只要这256个数每个数对应的二进制码都不相同就可以了),再假设1表示为00000001,2表示为00000010,3表示为00000011,依次类推,那么最大的那个数255在8位二进制中就表示为最大的数11111111,然后,我们把这些二进制码换算成十进制看看,会发现刚好和我们假设的数是相同的,而事实上,在计算机中,无符号的整数就是按这个原理来储存的,所以告诉你一个无符号的整数的二进制码,你就可以知道这个数是多少,而且知道在计算机中,这个数本身就是以这个二进制码来储存的。
原码、反码、补码
![原码、反码、补码](https://img.taocdn.com/s3/m/d6ca63d48ad63186bceb19e8b8f67c1cfad6ee70.png)
原码、反码、补码⼀、什么是原码、反码、补码原码:将⼀个整数,转换成⼆进制,就是其原码。
如单字节的5的原码为:0000 0101;-5的原码为1000 0101。
反码:正数的反码就是其原码;负数的反码是将原码中,除符号位以外,每⼀位取反。
如单字节的5的反码为:0000 0101;-5的反码为1111 1010。
补码:正数的补码就是其原码;负数的反码+1就是补码。
如单字节的5的补码为:0000 0101;-5的补码为1111 1011。
⼆、为什么要有这三类码计算机只能识别0和1,使⽤的是⼆进制。
⽽在⽇常⽣活中⼈们使⽤的是⼗进制,并且我们⽤的数值有正负之分。
于是在计算机中就⽤⼀个数的最⾼位存放符号(0为正,1为负)。
这就是机器数的原码了。
有了数值的表⽰⽅法就可以对数进⾏算术运算,但是很快就发现⽤带符号位的原码进⾏乘除运算时结果正确,⽽在加减运算的时候就出现了问题,如下:假设字长为8bits(1) 10 - (1)10 = (1)10 + (-1)10 = (0)10(0 0000001)原 + (1 0000001)原 = (1 0000010)原 = ( -2 ) 显然不正确。
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数⾝上。
对除符号位外的其余各位逐位取反就产⽣了反码。
反码的取值空间和原码相同且⼀⼀对应。
下⾯是反码的减法运算:(1)10 - (1)10 = (1)10 + (-1)10= (0)10(0 0000001)反 + (1 1111110)反 = (1 1111111)反 = ( -0 ) 有问题。
(1)10 - (2)10 = (1)10 + (-2)10 = (-1)10(0 0000001)反 + (1 1111101)反 = (11111110)反 = (-1) 正确。
问题出现在(+0)和(-0)上,在⼈们的计算概念中零是没有正负之分的。
(印度⼈⾸先将零作为标记并放⼊运算之中,包含有零号的印度数学和⼗进制计数对⼈类⽂明的贡献极⼤)。
原码补码反码ppt课件
![原码补码反码ppt课件](https://img.taocdn.com/s3/m/da1775f9dc3383c4bb4cf7ec4afe04a1b071b09c.png)
3. 定点整数补码的定义
x
当2n x0
[x]补=
2n+1+x
当 0x -2n
例:完成下列数的真值到补码的转换
X1= +1011011
[X1]补= 0,1011011
X2= -1011011
[X2]补= 27+1+x = 1,0100101
● 机器字长为8位,定点整数补码表示范围: -27≤ x ≤ 27-1
— 1011011
10100100
0的补码表示是: [+0]反=00000000; [-0]反 =11111111
结论: 正数:反码与原码相同, 负数:对原码,符号位不变,其余各位取反
为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
原码--补码
正数 [X]补=[X]原 负数 符号位除外,每位取反,末位加1
例:X= -1001001 求[X]补 [X]原=1,1001001, [X]补=1,0110110+1=1,0110111 [X]补= 27+1 +X=100000000-01001001= 1,0110111
由此可见, “-1”既可以在整数范围内表示,也能在小数范 围内表示,在计算机中有两种不同的补码表示。
(2) 再看负数-2n的补码表示 {-2n}补=2n+1-2n=2n-1=1,0...0(n个0)
因此,“-1”的补码小数表示与“-2n”的补码表示结构 相同,都是:符号位为1,数值部分为n个0。
原码,反码,补码
![原码,反码,补码](https://img.taocdn.com/s3/m/4d0abb5d804d2b160b4ec021.png)
原码,反码,补码数在计算机中是以二进制形式表示的。
数分为有符号数和无符号数。
原码、反码、补码都是有符号定点数的表示方法。
一个有符号定点数的最高位为符号位,0是正,1是副。
以下都以8位整数为例,原码就是这个数本身的二进制形式。
例如0000001 就是+11000001 就是-1正数的反码和补码都是和原码相同。
负数在计算机中,负数以其正值的补码形式表达。
什么叫补码呢?这得从原码,反码说起。
原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。
比如00000000 00000000 00000000 00000101 是5的原码。
反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。
取反操作指:原为1,得0;原为0,得1。
(1变0; 0变1)比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。
称:11111111 11111111 11111111 11111010 是00000000 00000000 00000000 00000101 的反码。
反码是相互的,所以也可称:11111111 11111111 11111111 11111010 和00000000 00000000 00000000 00000101 互为反码的反码是将其原码除符号位之外的各位求反[-3]反=[10000011]反=11111100负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
[-3]补=[10000011]补=11111101一个数和它的补码是可逆的。
为什么要设立补码呢?第一是为了能让计算机执行减法:[a-b]补=a补+(-b)补第二个原因是为了统一正0和负0正零:00000000负零:10000000这两个数其实都是0,但他们的原码却有不同的表示。
但是他们的补码是一样的,都是00000000特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)[10000000]补=[10000000]反+1=11111111+1=(1)00000000=00000000(最高位溢出了,符号位变成了0)有人会问10000000这个补码表示的哪个数的补码呢?其实这是一个规定,这个数表示的是-128所以n位补码能表示的范围是-2^(n-1)到2^(n-1)-1比n位原码能表示的数多一个又例:1011原码:01011反码:01011 //正数时,反码=原码补码:01011 //正数时,补码=原码-1011原码:11011反码:10100 //负数时,反码为原码取反补码:10101 //负数时,补码为原码取反+10.1101原码:0.1101反码:0.1101 //正数时,反码=原码补码:0.1101 //正数时,补码=原码-0.1101原码:1.1101反码:1.0010 //负数时,反码为原码取反补码:1.0011 //负数时,补码为原码取反+1总结:在计算机内,定点数有3种表示法:原码、反码和补码所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
原码反码补码讲课课件.ppt
![原码反码补码讲课课件.ppt](https://img.taocdn.com/s3/m/3ff47606a45177232e60a24b.png)
https:///html/2018/1019/5240102232001322.shtm
6
定义 符号位:0表示正,1表示负; 数值位:真值的绝对值。
https:///html/2018/1019/524
0102232001322.shtm
4、机器数是怎样表示的?
https:///html/2018/1019/5240102232001322.shtm
2
计算机中数的主要类型
无符号整数
整数 计 (定点数) 算 机
带符号整数
正数
中
的
负数
数 实数
(浮点数)
原码=反码=补码
原码 反码 补码
符号位不变 数值位取反
https:///html/2018/1019/5240102232001322.shtm
讲课完毕 请老师多提宝贵意见!
https:///html/2018/1019/5240102232001322.shtm
https:///html/2018/1019/5240102232001322.shtm
16
原码、补码的优缺点分析
原码表示法
优点:与日常使用的十进制表示方法一致,简单直观 缺点:加法与减法运算规则不统一,增加了成本;整
数0 有“00000000”和“10000000”两种表示形式,不 方便
(数电知识)原码、反码与补码知识
![(数电知识)原码、反码与补码知识](https://img.taocdn.com/s3/m/f37fc7ed647d27284a7351bc.png)
2.1 原码、反码与补码在计算机内的数(称之为“机器数”)值有3种表示法:原码、反码和补码。
所谓原码就是带正、负号的二进制数,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
由此可见,这三种表示法中,关键是负数的表示方式不一样。
2.2.1 正负数表示、定点数与浮点数在计算机内,通常把1个二进制数的最高位定义为符号位,用“0”表示正数,“1”表示负数;其余位表示数值。
规定小数点位置固定不变的数称为“定点数”;小数点的位置不固定,可以浮动的数称为“浮点数”。
2.2.2 原码原码表示法是定点数的一种简单的表示法。
用原码表示带符号二进制数时,符号位用0表示正,1表示负;数值位保持不变。
原码表示法又称为符号-数值表示法。
1. 小数原码表示法设有一数为x,则原码表示可记作[x]原(下标表示)。
例如,X1= +1010110 ;X2= -1001010原码表示数的范围与二进制位数有关。
设二进制小数X=±0.X1X2…Xm,则小数原码的定义如下:例如:X=+0.1011时,根据以上公式可得[X]原=0.1011;X=-0.1011时,根据以上公式可得[X]原= 1-(-0.1011)=1.1011=1.1011当用8位二进制来表示小数原码时,其表示范围为:最大值为0.1111111,其真值约为(0.99)10 ;最小值为1.1111111,其真值约为(-0.99)10。
根据定义,小数“0”的原码可以表示成0.0…0或1.0…0。
2. 整数原码表示法整数原码的定义如下:例如:X=+1101时,根据以上公式可得[X]原=01101;X=-1101时,根据以上公式可得[X]原=24-(-1101)=10000+1101=11101当用8位二进制来表示整数原码时,其表示范围为:最大值为01111111,其真值为(127)10 ;最小值为11111111,其真值为(-127)10 。
原码,反码,补码及运算
![原码,反码,补码及运算](https://img.taocdn.com/s3/m/84603df46394dd88d0d233d4b14e852458fb3982.png)
原码,反码,补码及运算一、定义1.原码正数的符号位为0,负数的符号位为1,其它位按照一般的方法来表示数的绝对值。
用这样的表示方法得到的就是数的原码。
【基准2.13】当机器字长为8十一位二进制数时:x=+1011011[x]原码=01011011y=+1011011[y]原码=11011011[+1]原码=00000001[-1]原码=10000001[+127]原码=01111111[-127]原码=11111111原码则表示的整数范围就是:-(2n-1-1)~+(2n-1-1),其中n为机器字长。
则:8十一位二进制原码则表示的整数范围就是-127~+12716十一位二进制原码则表示的整数范围就是-32767~+327672.反码对于一个带符号的数来说,正数的反码与其原码相同,负数的反码为其原码除符号位以外的各位按位取反。
【基准2.14】当机器字长为8十一位二进制数时:x=+1011011[x]原码=01011011[x]反码=01011011y=-1011011[y]原码=11011011[y]反码=10100100[+1]反码=00000001[-1]反码=11111110[+127]反码=01111111[-127]反码=10000000负数的反码与负数的原码存有非常大的区别,反码通常用做谋补码过程中的中间形式。
反码则表示的整数范围与原码相同。
3.补码正数的补码与其原码相同,负数的补码为其反码在最低位加1。
导入补码以后,计算机中的以此类推运算都可以统一化成补码的乘法运算,其符号位也参予运算。
【例2.15】(1)x=+1011011(2)y=-1011011(1)根据定义存有:[x]原码=01011011[x]补码=01011011(2)根据定义存有:[y]原码=11011011[y]反码=10100100[y]补码=10100101补码表示的整数范围是-2n-1~+(2n-1-1),其中n为机器字长。
原码,补码和反码
![原码,补码和反码](https://img.taocdn.com/s3/m/29704e0da200a6c30c22590102020740be1ecd78.png)
原码,补码和反码⼀. 机器数和真值在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.1、机器数⼀个数在计算机中的⼆进制表⽰形式, 叫做这个数的机器数。
机器数是带符号的,在计算机⽤⼀个数的最⾼位存放符号, 正数为0, 负数为1.⽐如,⼗进制中的数 +3 ,计算机字长为8位,转换成⼆进制就是00000011。
如果是 -3 ,就是 10000011 。
那么,这⾥的 00000011 和 10000011 就是机器数。
2、真值因为第⼀位是符号位,所以机器数的形式值就不等于真正的数值。
例如上⾯的有符号数 10000011,其最⾼位1代表负,其真正数值是 -3 ⽽不是形式值131(10000011转换成⼗进制等于131)。
所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。
例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值= –000 0001 = –1⼆. 原码, 反码, 补码的基础概念和计算⽅法.在探求为何机器要使⽤补码之前, 让我们先了解原码, 反码和补码的概念.对于⼀个数, 计算机要使⽤⼀定的编码⽅式进⾏存储. 原码, 反码, 补码是机器存储⼀个具体数字的编码⽅式.1. 原码原码就是符号位加上真值的绝对值, 即⽤第⼀位表⽰符号, 其余位表⽰值. ⽐如如果是8位⼆进制:[+1]原 = 00000001[-1]原 = 10000001第⼀位是符号位. 因为第⼀位是符号位, 所以8位⼆进制数的取值范围就是:[11111111 , 01111111]==>[-127 , 127]2. 反码反码的表⽰⽅法是:正数的反码是其本⾝负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.[+1] = [00000001]原 = [00000001]反[-1] = [10000001]原 = [11111110]反3. 补码补码的表⽰⽅法是:正数的补码就是其本⾝负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)[+1] = [00000001]原 = [00000001]反 = [00000001]补[-1] = [10000001]原 = [11111110]反 = [11111111]补三. 为何要使⽤原码, 反码和补码计算机可以有三种编码⽅式表⽰⼀个数. 对于正数因为三种编码⽅式的结果都相同:[+1] = [00000001]原 = [00000001]反 = [00000001]补所以不需要过多解释. 但是对于负数:[-1] = [10000001]原 = [11111110]反 = [11111111]补可见原码, 反码和补码是完全不同的. 为何还会有反码和补码呢?⾸先, 因为⼈脑可以知道第⼀位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本⽂最开头).但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得⼗分复杂! 于是⼈们想出了将符号位也参与运算的⽅法.根据运算法则减去⼀个正数等于加上⼀个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法⽽没有减法, 这样计算机运算的设计就更简单了.于是⼈们开始探索将符号位参与运算, 并且只保留加法的⽅法. ⾸先来看原码:计算⼗进制的表达式: 1-1=0为了解决原码做减法的问题, 出现了反码:1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0发现⽤反码计算减法, 结果的真值部分是正确的. ⽽唯⼀的问题其实就出现在"0"这个特殊的数值上. 虽然⼈们理解上+0和-0是⼀样的, 但是0带符号是没有任何意义的. ⽽且会有[0000 0000]原和[1000 0000]原两个编码表⽰0.于是补码的出现, 解决了0的符号以及两个编码的问题:1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原这样0⽤[0000 0000]表⽰, ⽽以前出现问题的-0则不存在了.⽽且可以⽤[1000 0000]表⽰-128:(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补-1-127的结果应该是-128, 在⽤补码运算的结果中, [1000 0000]补就是-128. 但是注意因为实际上是使⽤以前的-0的补码来表⽰-128, 所以-128并没有原码和反码表⽰.(对-128的补码表⽰[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)使⽤补码, 不仅仅修复了0的符号以及存在两个编码的问题, ⽽且还能够多表⽰⼀个最低数. 这就是为什么8位⼆进制, 使⽤原码或反码表⽰的范围为[-127, +127], ⽽使⽤补码表⽰的范围为[-128, 127].因为机器使⽤补码, 所以对于编程中常⽤到的32位int类型, 可以表⽰范围是: [-231, 231-1] 因为第⼀位表⽰的是符号位.⽽使⽤补码表⽰时⼜可以多保存⼀个最⼩值.四原码, 反码, 补码再深⼊计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?将钟表想象成是⼀个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:1. 往回拨2个⼩时: 6 - 2 = 42. 往前拨10个⼩时: (6 + 10) mod 12 = 43. 往前拨10+12=22个⼩时: (6+22) mod 12 =42,3⽅法中的mod是指取模操作, 16 mod 12 =4 即⽤16除以12后的余数是4.所以钟表往回拨(减法)的结果可以⽤往前拨(加法)替代!现在的焦点就落在了如何⽤⼀个正数, 来替代⼀个负数. 上⾯的例⼦我们能感觉出来⼀些端倪, 发现⼀些规律. 但是数学是严谨的. 不能靠感觉.⾸先介绍⼀个数学中相关的概念: 同余同余的概念两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余记作 a ≡ b (mod m)读作 a 与 b 关于模 m 同余。
原码、反码、补码、移码、阶码、BCD码、余3码
![原码、反码、补码、移码、阶码、BCD码、余3码](https://img.taocdn.com/s3/m/d7b5f2010a4e767f5acfa1c7aa00b52acec79c41.png)
原码、反码、补码、移码、阶码、BCD码、余3码原码:原码(true form)是一种计算机中对数字的二进制定点表示方法。
源码表示法在数值前面增加了一位符号位(即最高位为符号位),该位为0表示正数,该位为1表示负数。
反码:反码表示法规定:正数的反码于原码相同;负数的反码是其原码除符号位外逐位取反。
补码:补码(two’s complement) 1、在计算机中,数值一律用补码表示(存储)。
主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法处理。
另外,两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。
2、补码与原码的转换过程几乎是相同的。
==补码的概述==求给定数值的补码表示分以下两种情况:(1)正数的补码:与原码相同。
【例1】+9的补码是00001001。
(这个+9的补码说的是用8位的2进制来表示补码的,补码表示表示方式很多,还有16位2进制补码表示形式,以及32位2进制补码表示形式等。
)(2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后加1。
同一数字在不同的补码表示形式里头是不同的。
【例2】求-7的补码。
因为给定数是负数,则符号位为“1”。
后七位:+7的原码(0000111)→按位取反(1111000)→加1(1111001),所以-7的补码为1111001。
已知一个数的补码,求原码的操作分两种情况:(1)如果补码的符号位为“0”,表示是一个正数,其原码就是补码。
(2)如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。
另一种方法求负数的补码,如下:例如:求-15的补码第一步:+15:00001111第二步:逐位取反,然后在末位加1。
11110001【例3】已知一个补码11111001则原码是10000111(-7)。
(补码的补码)“模”的概念“模”是指一个计量系统的计数范围。
如时钟等。
计算机也可以看成一个计量机器,它也有一个计量范围,即都存在一个“模”。
二进制数的原码补码和反码PPT课件
![二进制数的原码补码和反码PPT课件](https://img.taocdn.com/s3/m/9d2f1e6519e8b8f67d1cb93d.png)
不发生位与位之间的关系。
.
Nanjing Normal Univ. Dept. of Computer Science
5
2.2.3不同进制间的转换
二进制
八进制
十六进制
十进制
.
Nanjing Normal Univ. Dept. of Computer Science
十进制整数化为二进制整数
规则:除二取余,直到商为零为止,倒排
例:将十进制数86转化为二进制
2|
86…… 0
2|
43…… 1
2|
21…… 1
2|
10…… 0
2|
5…… 1
2 | 2…… 0
2 | 1…… 1
所以,(86)10=(1010110)2
0
.
Nanjing Normal Univ. Dept. of Computer Science
一般的数字、文字、图画、声音、活动图像 都是数据,计算机通过二进制编码形式对其 进行处理。
计算机内部把数据区分为数值型和非数值型。
.
Nanjing Normal Univ. Dept. of Computer Science
1
2.1.2 信息 P8
信息是有用的数据。
计算机信息处理的本质就是进行数据处理。
规则:每四位二进制数改写成等值的一 位十六进制数,次序不变
例: (11001111.01111)2 = (1100 1111 .0111 1000)2 = (CF.78)16
.
Nanjing Normal Univ. Dept. of Computer Science
原码反码补码PPT课件
![原码反码补码PPT课件](https://img.taocdn.com/s3/m/c4ad11af951ea76e58fafab069dc5022aaea46fa.png)
X
2n1 X ≥0
X (2n 1) X 0≥ X -2n1
6
[例]:
X= - 52 = -0110100 [X]原 = 10110100 [X]反 = 11001011
7
反码的例子
符号
真值
X=+18=+0010010 X=-18=-0010010
反码
符号位
[X]反 =0 0010010 [X]反 =1 1101101
[例]:
真值
机器数
+52 = +0110100 = 0 0110100
符号位 数值位
-52 = -0110100 = 1 0110100
1
1. 符号数的表示
对于符号数,机器数常用的表示 方法有原码、反码和补码三种。 数X的原码记作[X]原,反码记作 [X]反,补码记作[X]补。
注意:对正数,三种表示法均相同。 它们的差别在于对负数的表示。
11
0的补码:
[+0]补= [+0]原=00000000 [-0]补= [-0]反+1=11111111+1
=1 00000000
对8位字长,进位被舍掉
∴[+0]补= [-0]补= 00000000
12
•特殊数10000000
该数在原码中定义为: -0 在反码中定义为: -127 在补码中定义为: -128 对无符号数:(10000000)2 = 128
X X 2n - X
2n1 X ≥ 0 0>X ≥ -2n1
10
[例]:
X= –52= – 0110100 [X]原 = 10110100 [X]反 = 11001011 [X]补 = [X]反+1=11001100
计算机基础理论:原码、反码、补码、移码
![计算机基础理论:原码、反码、补码、移码](https://img.taocdn.com/s3/m/959c52f76e1aff00bed5b9f3f90f76c661374ceb.png)
计算机基础理论:原码、反码、补码、移码计算机基础理论:原码、反码、补码、移码(2009-04-23 00:02:36)一、标准理论1、原码的定义①小数原码的定义[X]原=X 0≤X <1 1- X -1 <X ≤ 0例如: X=+0.1011 , [X]原= 01011 X=-0.1011 [X]原= 11011②整数原码的定义[X]原=X 0≤X <2n 2n-X - 2n <X ≤ 02、补码的定义①小数补码的定义[X]补=X 0≤X <1 2+ X-1 ≤ X <例如: X=+0.1011, [X]补= 01011 X=-0.1011, [X]补= 10101②整数补码的定义[X]补=X 0≤X <2n 2n+1+X- 2n≤ X< 03、反码的定义①小数反码的定义[X]反=X 0≤X <1 2-2n-1-X-1 <X ≤例如: X=+0.1011 [X]反= 01011X=-0.1011 [X]反= 10100 ②整数反码的定义[X]反=X 0≤X <2n 2n+1-1-X- 2n< X≤ 04.移码:移码只用于表示浮点数的阶码,所以只用于整数。
①移码的定义:设由1位符号位和n位数值位组成的阶码,则 [X]移=2n + X -2n≤X ≤ 2n例如: X=+1011 [X]移=11011 符号位“1”表示正号X=-1011 [X]移=00101 符号位“0”表示负号②移码与补码的关系: [X]移与[X]补的关系是符号位互为反码,例如: X=+1011 [X]移=11011 [X]补=01011X=-1011 [X]移=00101 [X]补=10101③移码运算应注意的问题:◎对移码运算的结果需要加以修正,修正量为2n,即对结果的符号位取反后才是移码形式的正确结果。
◎移码表示中,0有唯一的编码——1000...00,当出现000 (00)时(表示-2n),属于浮点数下溢。
二、补码加、减运算规则1、运算规则[X+Y]补= [X]补+ [Y]补[X-Y]补= [X]补+ [-Y]补若已知[Y]补,求[-Y]补的方法是:将[Y]补的各位(包括符号位)逐位取反再在最低位加1即可。
原码、反码、补码
![原码、反码、补码](https://img.taocdn.com/s3/m/6074a075aaea998fcc220efa.png)
原码、补码、反码原码,反码,补码的产生就是为了解决计算机做减法和引入符号位(正号和负号)的问题。
【原码】机器数的最高位表示符号位,‘1’表示负号,‘0’表示正号。
其他位存放该数的二进制的绝对值。
例:(5)10=00000101(-5)10=10000101部分正负数的二进制原码表示法符号位正数:0 负数:1 二进制的绝对值使用二进制进行简单运算:00000001+00000010=00000011(1+2=3)正确00000000+10000000=10000000(+0+(-0)=-0)正确00000001+10000001=10000010(1+(-1)=-2)错误发现:正数加法不会出错,但正数与负数相加,负数与负数相加会引起出错。
【反码】原码的问题:一个数加上他的相反数不等于零。
为此:利用反码(按位取反表示负数)。
[计算规则]正数的反码还是等于原码负数的反码就是他的原码除符号位外,按位取反。
例:+3的反码:00000011(与+3原码相同)-3的反码:11111100(符号位与-3原码相同,剩余按位取反)计算:00000011+11111100=11111111(3+(-3)= - 0)正确11111110(-1)+11111101(-2)=11111011(-4)错误发现:相反数相加=0的问题解决了,但是两个负数相加出错了思路:例如(-4)+(-3),先进行4+3计算,最后结果直接加上负号。
解决办法:将两个负数反码包括符号位全部按位取反相加【将负数补码转换成正数原码】,然后再给他的符号位强行置‘1’【最后结果统一变为负数】。
【补码】[计算规则]正数的补码等于原码负数的补码等于反码+1。
(负数的补码等于他的原码自低位向高位,尾数的第一个‘1’及其右边的‘0’保持不变,左边的各位按位取反,符号位不变。
)。
补充内容-原码、反码、补码PPT课件
![补充内容-原码、反码、补码PPT课件](https://img.taocdn.com/s3/m/e5496f477dd184254b35eefdc8d376eeaeaa17f6.png)
符号位
数值位
符号位之后的其他位表示数值的大小。
在补码表示法中,最高位(符号位) 表示数的符号,正数为0,负数为1。
补码的表示方法
正数的补码
正数的补码与其原码相同,即符号位 为0,其余位为该数的二进制形式。
负数的补码
负数的补码是其绝对值的二进制形式 取反加1。
补码的优缺点
优点 解决了计算机内部运算的问题,使得加法和减法可以用同样的方式进行。
原码的表示方法
正数的原码表示是其二进制形式,例 如:+7 的原码就是 0000 0111。
负数的原码表示是在其二进制形式前 面加一位符号位(0为正,1为负), 例如:-7 的原码就是 1000 0111。
原码的优缺点
优点
简单易懂,易于实现加法和减法 运算。
缺点
编码不唯一,无法进行乘法和除 法运算,且溢出难以处理。
反码的优缺点
优点
在反码运算中,加法和减法可以统一处理,简化计算机中的运算电路设计。
缺点
使用反码表示负数时,会出现一个特殊的符号位,这会增加存储空间的开销, 同时也会影响运算的精度。此外,反码的加法和减法运算规则较为复杂,容易 出错。
03
补码
补码的定义
补码
在计算机中,补码表示法是一种二进 制编码方式,用于表示整数和实数。 补码表示法采用一个二进制位来表示 符号,其余位表示数值。
反码到补码的转换
总结词
反码转换为补码的过程
详细描述
反码转换为补码的过程相对简单,只需要在反码的基础上加1即可。例如,给定一个8位二进制数,如10101010, 加1后得到10101011,这就是该数的补码表示。
补码到原码、反码的转换
总结词
原码反码和补码PPT课件
![原码反码和补码PPT课件](https://img.taocdn.com/s3/m/34bb07c0c5da50e2534d7fce.png)
正数:补码与原码相同 负数:符号位不变,数值位按位取反末位加1。
小结:
➢正数的补码与原码相同。 ➢+0的补码为00000000,-0的补码为00000000(8位字长) ➢补码的表示范围为-2n-1~-+(2n-1-1),若n=8,则为-128~+127
第7页/共11页
课堂小结
原码反码和补码
练习 X=+1011011 [X]原码= 01011011 Y=-1011011 [Y]原码= 11011011
第2页/共11页
原码反码和补码
知原求真(已知原码求真值)
例:X原码=01011,则X= +1011
Y原码=11011,则Y= -1011 规律: 用+代替“0”,用-代替“1”,其余二
进制数值位不变。 练习 X原=01011011 [X]真值= +1011011
Y原=11011011 [Y]真值= -1011011
小结:
➢原码符号位后的代码为真值的绝对值。 ➢+0的原码为00000000,-0的原码为10000000(8位字长) ➢正数的原码等于它本身,即X原=X ➢原码的表示范围为+(2n-1-1)~- (2n-1-1),若n=8,则为+127~-127
第1页/共11页
定义:
原码
原码反码和补码
符号位为0表示正数,为1表示负数;其余各 位等同于真值的绝对值。即一个数的原码,是数 值部分保持不变,而仅用0或1表示符号“+”或 “-”。
知真求原(已知真值求原码)
例:X=+1011,则X原码= 01011
Y=-1011,则Y原码= 11011
规律: 用0代替“+”,用1代替“-”,其余二 进制数值位不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
160
二进制数相加
10000110 + 00011010
10100000
看成补码
-122
+
26
-96
出现问题
• 错误的结果:
11001011 10010001
01011100
-0110101 + -1101111
+1011100
-53 + -111
-+19624
思考:为什么出现了错误?
补码 • 溢出
补码 •补码的求法(1)
• 正数:与原码相同;
• 负数:“求反加一”
例:
x=+1001100B,则[x]补=01001100B=[x]原
x=-1001100B,则[x]补=10110100B
x=-1001100时, [x]补=28-1001100B
11111111 01001100
=256 -1001100B =255 -1001100B +1
溢出
图d 有进无出
补码 • 溢出的判别(3)
• 课堂练习
1、请判断下列8位补码的运算是否会产生溢出?
11001001 11100111
10110000
有进有出,无溢出
01100011 01001010
10101101
有进无出,溢出
补码小结
真值 机器数
无符号数 有符号数
原码 反码
真值的方法 已知[x]补,求[-x]补的方法 溢出
• 拨针方法小结: 8- 2=6
8 + 10 = 6 • 思考:为什么会出现这种现象?计算机中是否
也有这种现象? (表盘是圆的,可循环计时。)
补码 • 引入的思路(3)
• 计算机储存一个数也有与钟表相同的特 点:
循环计数
• 因此对于计算机,要计算像 8-2
这样的减法式子,也可以化为加法形式来 进行。
END
10110011 1
10110100
求反 =11111111B -1001100B+1
加1
= 10110100B
补码 •补码的求法(2)
• 对于负数的补码求法,还有另一个更快速的办 法:
符号位为1,真值中最后一个1以前的各位 按位求反,而最后一个1及其后的0保持不变。
11111111 01001100
10110011 1
10110100
符号位为1
按位求反
最后一个1及 其后的0不变
补码 •补码的求法(3)
• 课堂练习
1、求出下列各数的补码(8位)
(1) – 67
10111101
(2) +1011001B
01011001
(3) – 45
11010011
补码 •补码的作用与效果
• 用补码表示计算机中的数后,加减运算均可统 一为加法。
0100011
(00100011)
8位
(0000000000100011)
16位
三、有符号数的表示
• 原码 • 反码 • 补码
1、原码
• 真值用二进制表示后,数的数值部分不 变,在符号位上用“0”和“1”分别表示数的 符号“+”和“-”。
• X的原码一般表示为 [X]原
• 如:
x
[x]原
+1001001 -1100100
01001001 11100100
2、反码
• 正数的反码:与原码相同;
• 负数的反码:符号位为“1”,数值位按位 取反。
• X的反码一般表示为 [X]反 • 如:
x
[x]反
+1001001 -1100100
01001001 10011011
3、补码
• 引入补码的目的 • 引入的思路 • 补码的求法 • 补码的作用与效果 • 几点说明 • 溢出
– 溢出:“有进无出”或“无进有出” – 正常:“有进有出”或“无进无出”
补码 • 溢出的判别(2)
10010011 +/- 11101101
正常
图a 有进有出
10010011 +/- 01001101
正常
图b 无进无出
10010011 +/- 10101101
溢出
图c 无进有出
+/-
00010011 01101101
0000011 x-y
自然丢失
补码 •几点补充说明(1)
• 微机内部,带符号数均用补码表示。 • 采用补码进行运算后,结果也是补码,
欲得真值,需作转换。
转换方法
0开头:将0换成“+”号,其余数位不变。 方法1: 减 1求反
1开头:1换成“-”号,其余 方法2: 求反加1
补码 •几点补充说明(2)
补码 • 引入的思路(5)
• 观察钟表拨针的两种方法: 8- 2=6 8 + 10 = 6
我们可以看出,减去一个数 a 相当于加上(模 -a)一样,而在计算机中也有相同情况。 • 在8位字长的计算机中,减去一个数a相当于加 上(28-a)一样。 • 我们称(28-a)为a的补数,其二进制表示形式 称为补码。
• 如果已知x的补码[x]补,则求[-x]补的方法 是: 对[x]补连同符号位一起求反加1 例:
已知 [+35]的补码是00100011, 则 [-35]补=11011101
补码 •几点补充说明(3)
• 用补码运算时符号位也参与运算,有符 号数与无符号数的运算是兼容的。
例:
看成无符号数
134
+
26
10000111,11001001,01100011
二、无符号数与有符号数
• 无符号数:
– 全部二进制均代表数值,没有符号位。
• 有符号数:
– 用最高位作为符号位,“0”代表“+”,“1”代表 “-”;其余数位用作数值位,代表数值。
– 如: +35 化为有符号机器数
转换为
化成有
二进制
符号数
+35
+100011B
• 刚才出现的问题叫做“溢出”; • 溢出的原因:运算结果超出了可表示的有
符号数的范围。 • 溢出只会出现在两个同号数相加或两个异
号数相减的情况下。
思考:如何判别溢出与正常进位?
补码 • 溢出的判别(1)
• 方法一:转换为真值,判断是否超出数值 表示范围。
• 方法二:根据最高位的进、借位情况进行 判断。
补码 • 引入补码的目的
• 将加、减运算简化为单纯的相加运算, 以便于在计算机中实现各种运算。
补码 • 引入的思路(1)
• 由钟表拨表针的方法得到启示; • 例如:把表上的8点钟改为6点钟
方法一:
反时针 拨2格
方法二:
顺时针 拨10格
补码 • 引入的思路(2)
方法一:
反时针 拨2格
方法二:
顺时针 拨10格
例: 设 x=+0000111 , y=+0000100, 计算式子:x―y
(先算出[x]补=00000111, [-y]补=11111100 , x―y=x+(-y) )
补码运算:
手工验算:
00000111 [x]补 + 11111100 [-y]补
0000111 x - 0000100 y
1 00000011 [x-y]补
第三讲 计算机中的数制和码制
Ⅱ 码制
原码、反码与补码
一、机器数与真值(1)
• 真值:
– 实际的数值(包括正负号)叫做真值。 – 如:
+35,-1001110B,-100101B
一、机器数与真值(2)
• 机器数:
– 机器数:数在计算机中的表示; – 在计算机中,数只能用二进制表示,符号也
用二进制数位表示; – 是存放在寄存器或储存单元中的。 – 例如:
思考: 在计算机中, 8-2是否也可以化为8+10? 如果不行,那么应化为什么样的式子?
补码 • 引入的思路(4)
• 不同之处:
– 表计时的最大数是12 – 计算机计数的最大数不是12
(思考:那么是多少呢?)
– 我们把这个数称为 模 – 计算机的模与字长有关。8位机的模是28=256
n位
模=12
…… 模=2n