第三章离散傅里叶变换(DFT)
数字信号第三章 离散傅里叶变换

第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。
这两个问题都是为了使计算机能够实时处理信号。
Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。
−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。
对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。
注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。
……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。
第三章_DFT定义及性质2016S

e j e
j
N
2 j
N
2 j
X (k )
N 1 k 0
e
j j
N
2 N j
k
N
2
e
e
N
2
j
k
N
2
X ( )
( 1)k e e
j
1 2 k j 2 N
e 2 N k ( 1) sin( ) 2 1 2 k sin( ( )) 2 N
1 ( N 1) WN
( N 1) ( N 1) WN
( N 1) 0 WN ( N 1)1 WN
T X Wx W x 则: 1 1 * 1 x W X W X N N
10
频域内插公式:由频域取样 DFT X(k) 表示 DTFT X(ejw)
1 X (e ) N
j
1 zN X (k ) k 1 1 WN z k 0
N 1 N 1 k 0
z e j
1 N 1 N 1 N
X (k )
N 1 k 0
1 e j N 1 e e e
从 Z 变换的角度看:
DFT结果包含了 z 平面上 N 个离散点处的 Z 变换结 果,这 N 个离散点均匀地 分布在单位圆上,由此也
e
j 2 k N
Im
Z平面
2 k N
e
j
2 N
2 N
Re
称DFT为单位圆上的取样
Z 变换。
Z 1
14
3.3.2 DFT 与 Z 变换的关系:频域内插
离散傅里叶变换(DFT)

~
将 x(n)以N为周期进行周期延拓得到 x(n) = x(( n)) N 将
~
x(n) = x((n)) N 左移m位得到 x(n + m)
(3.2.4)
例: ( n) = 3e n , o ≤ n ≤ 15 ,求 f ( n) = x(( n + 5))15 R15 (n) x
的16点离散傅立叶变换DFT。
N=16; n=0:N-1; xn=3*exp(n); m=5; fn=xn(mod((n+m),N)+1); XK=fft(xn, N); subplot(2, 2, 1); stem(n,xn); subplot(2, 2, 2); stem(n,abs(XK)); FK=fft(fn,N); subplot(2, 2, 3); stem(n,fn); subplot(2, 2, 4); stem(n,abs(FK));
x(n)为长度为N的有限长序列
x(n) 是长度为N的有限长序列x(n)的周期延拓序列
x (n ) =
~
~
m =∞
∑
∞
x ( n + mN )
(3.1.5) (3.1.6)
x (n ) = x ( n ) RN (n )
~
~
主值区间:周期序列 x( n) 从n=0到N-1的第一个周期。
~
主值序列:而主值区间上的序列称为 x( n) 的主值序列。
m
~2 m )) N) R x 2 (( (( m )) N ( n ) x (m x
2
第三章离散傅里叶变换及其快速计算方法(DFT、FFT)

X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n
x( n)e jnw
X (z)
n
x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n
x ( n) z n
n
x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T
时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t
时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )
T T
X (e jT )e jnT d
取样定理
n
x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8
第3章 离散傅里叶变换(DFT)C

(3.4.9)
def 1 ' 1 ' X (k ) X a f k k X a kF f = T T NT T
p
k 0,1, 2,, N 1
由此可得: ' kF =TX (k ) T DFT[ x(n)] X a N
k 0,1, 2,, N 1
解:
1 1 Tp 0.1 s F 10
因此Tp min=0.1 s。因为要求Fs≥2fc,所以
Tmax
N min
1 1 0.2 103 s 2 f c 2 2500 2 f c 2 2500 500 F 10
第3章 离散傅里叶变换(DFT)
为使用DFT的快速算法FFT,希望N符合2的整数幂,为此 选用N =512点。 为使频率分辨率提高1倍,即F=5 Hz,要求:
说明了X(k)与Xa(jΩ)的关系. 为了符合一般的频谱描述习惯,以频率f为自变量
第3章 离散傅里叶变换(DFT)
令:
X a' ( f ) X a j X a j2πf 2 πf ' 2πf Xa ( f ) X X a a 2 πf
第3章 离散傅里叶变换(DFT)
x ( n) 如果 ~ 的周期预先不知道,可先截取M点进行DFT,即
(n) RM (n) xM (n) x X M (k ) DFT[ xM (n)]
再将截取长度扩大1倍,截取
0 k M 1
(3.4.18)
x (n)的频谱结构,只是在k=im 由此可见,XM(k)也能表示 ~ (i) ,表示 ~ x (n) 的i次谐波谱线,其幅度扩 时,X (im) mX
《离散傅里叶变换-第三章》

n0 0 = kn 8 7
3
3
2π − j kn 8
3 − j kπ 8
(2) 设变换区间N=16, 则
X(k) = ∑ x(n)W
n= 0
3π k −j 16
π
N= 0 = n0 0
2 = ∑ e, k = 0,1, ⋅ ⋅ ⋅, 7 π N =0 sin( k ) 8
2. 时域循环移位定理 设x(n)是长度为N的有限长序列,y(n)为x(n)的循环移位,即: y(n)=x((n+m))NRN(n) 则: Y(k)=DFT[y(n)]=W-kmNX(k) 其中:X(k)=DFT[x(n)], 0≤k≤N-1
kn 证明: Y ( k ) = DFT [ y (n )] = x (( n + m )) N RN (n )WN ∑ N− 令n+m=n′,则有1 n =0 N −1
~
~ ∞
x (n ) =
m =−∞
∑
x ( n + mN )
(3.1.5)
(3.1.6) ••
~
x (n ) ••
0
••
N-1
•
n
x (n ) = x ( n ) ⋅ RN (n )
~
~
••
••
~(n ) x
•• •
0
••
•
••
•• •
~
••
N-1
•
n
一般定义周期序列 x(n) 中从n=0到N-1的第一个周期为 x(n)的主 n) x(n) (3.1.7) x( 值区间,而主值区间上的序列称为x(n) 的主值序列。(3.1.7) x(n)
离散傅里叶变换

第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。
离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。
有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。
为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。
而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。
(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。
)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。
二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为n F ,f(t)和n F 组成变换对,表示为:tjn n n e F t f 1)(Ω∞-∞=∑=(112Ω=πT )dte tf T F TT t jn n ⎰-Ω-=221111)(1注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。
采样脉冲信号的频率为Ts π2=Ω可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换正变换:DTFT[x(n)]=()()j nj n X e x n eωω∞-=-∞=∑反变换:DTFT-11[()]()()2j n j j X e x n X e e d πωωωπωπ-==⎰)(ωj e X 级数收敛条件为|()j nn x n eω∞-=-∞∑|=∞<∑∞-∞=n n x )(可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。
第三章离散傅里叶变换DFT(一)

F2
1 2
e j 4
3.1连续时间信号的傅里叶变换
非周期连续信号傅里叶变换
F j f (t)e j t dt
f (t)
1
F je j t d
2
该变换存在的充分条件: f t dt
频谱密度函数
周期信号的傅氏级数:
f (t)
F en
n
jn0t
(0
2 T
)
(1)
周期信号的频谱:
3.3连续时间信号的抽样
抽样原理(采样、sample)
周期 序列
3.3连续时间信号的抽样
需要解决的问题
fs (t) f (t) s(t)
1
Fs ( j) 2 F( j) * S( j)
由f sf(st
)
t
Fs j与F 能否恢复f t
j的关系
理想冲激序列抽样
s(t) Ts (t) (t nTs )
2
f (t) 1 sin t 2 cos t cos 2t
Fne jnt
4
n 2
1 2
e
j
4e
j 2t
[1
1 2j
]e
jt
1 [1 1 ]e jt 2j
1 e j 4e j2t 2
F2
1 2
e
j
4
F1
1
1 2j
1.12e
j 0.15
F0 1
F1
1
1 2j
1.12e
j 0.15
周期连续信号傅里叶级数展开
周期信号f(t)=f(t+nT) ,满足狄氏条件(有限区间逐 段光滑)时,可展成:
f (t)
数字信号处理第3章 离散傅里叶变换(DFT)

Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1(3.2.1)
其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
3.2.2 循环移位性质
1. 序列的循环移位 设x(n)为有限长序列,长度为N,则x(n)的循环移 位定义为 y(n)=x((n+m))NRN(N) (3.2.2)
其中 XR(k)=Re[X(k)]=DFT[xep(n)]
(3.2.17)
X(k)=DFT[x(n)]=XR(k)+jXI(k) (3.2.18)
jXI(k)=jIm[X(k)]=DFT[xop(n)]
设x(n)是长度为N的实序列,且X(k)=DFT[x(n)],则
(1) X(k)=X*(N-k),0≤k≤N-1 (2) 如果 x(n)=x(N-m) 则X(k)实偶对称,即X(k)=X(N-k) (3.2.20) (3.2.19)
如果序列x(n)的长度为M, 则只有当频域采样点
数N≥M时, 才有
xN(n)=IDFT[X(k)]=x(n) 即可由频域采样X(k)恢复原序列x(n),否则产生时 域混叠现象。 这就是频域采样定理。
下面推导用频域采样X(k)表示X(z)的内插公式和内
插函数。设序列x(n)长度为M,在频域0~2π之间等间隔 采样N点,N≥M,则有
的值。
图 3.2.3 共轭对称与共轭反对称序列示意图
如同任何实函数都可以分解成偶对称分量和奇对
称分量一样,任何有限长序列x(n)都可以表示成共轭对 称分量和共轭反对称分量之和,即
x(n)=xep(n)+xop(n)
0≤n≤N-1
(3.2.11)
(3.2.13) (3.2.14)
信号与系统复习资料第3章离散傅立叶变换(DFT)

1 2
1 e 12
j 2 ( k 11)
1 e 12
B
Ak
6, 6,
1k 21 k 6 101
…11…22…rr…
10 0
11 0
B 0, 0其 0它 的…k… x(n) Xc(oks)6 n 6 0 ……
0 0
6 6, k 112r 6X~(k) 6, k 1112r
NT
T0
1 f0
T0 2 f0
N
1
fs
时域离散化==>频域周期化
时域周期化==>频域离散化
N NΩ0
NT0 fs s T f0 0
-7-
§3.3 离散傅里叶级数DFS
( Discrete Fourier Series )
连续周期信号:
~xa(t) ~xa(t kT0) 基频:0 2/T0
x2 m … 5 4 3 2 1 0 5 4 3 2 1 0 … 10
x2 1m … 0 5 4 3 2 1 0 5 4 3 2 1 … 8 x2 2m … 1 0 5 4 3 2 1 0 5 4 3 2 … 6 x2 3m … 2 1 0 5 4 3 2 1 0 5 4 3 … 10
n 0
n 0
x ( n ) I D F S [ X ( k ) ] N 1 N k 0 1 X ( k ) e j2 N n k N 1 N k 0 1 X ( k ) W N n k
其中:
WN
j 2
e N
-9-
X k 与 z 变 换 的 关 系 :
x (n ) x (n )R N (n )
x(n) x(nrN)
第3章离散傅里叶变换(DFT)09-10-1

§3.2 离散傅里叶变换的基本性质
一. 线性性质
x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2
y(n)=ax1(n)+bx2(n)
式中a、 b为常数, 即N≥max[N1, N2], 则y(n)的N
点DFT为:
(补零问题!)
Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1
➢再 反 转 形 成 x2((-m))N , 取 主 值 序 列 则 得 到 x2((m))NRN(m),通常称之为x2(m)的圆周反转; ➢对x2(m)的圆周反转序列圆周右移n,形成
x2((n-m))NRN(m); ➢当n=0,1,2,…,N-1时,分别将x1(m)与x2((n-m))NRN(m)相 乘,并在m=0到N-1区间内求和,便得到其循环卷积y(n)。
y(n) x((n m))N RN (n)
则循环移位后的DFT为
Y (k) DFT [ y(n)] DFT [x((n m))N RN (n)] WNmk X (k)
证:利用周期序列的移位性质加以证明
DFS [x((n m)) N ] DFS [~x (n m)] WNmk X~(k)
x1(n)
0
N-1
~x2 (n)
0
N-1
n n
~x2 (m)
x2 0 mN RN (m)
0
m
x2 1 mN RN (m)
0
x2
2
mN
RN
(m)
m
0
m
x2 3 mN RN (m)
0
m
y(n) x1(n) N x2 (n) ➢两个长度
离散傅里叶变换(DFT)

X (k) X (e j ) 2 k , N
0 k N-1
(3.1.4)
序列x(n)的N点DFT是 x(n)的DTFT在[0,2π]上的N点等间隔采样
第3章 离散傅里叶变换(DFT)
2 N
m
-1 单位圆
jIm(z)
j
z平面
2 N
0
1
Re(z)
2 ( N 1) N
-j
图 3.1.1 X(k)与X(z),X(e jω)的关系
x((n))N 表示先对n进行模N运算,然后对所得结果进行函数运算
n 25, N 9, 25 7 9
第3章 离散傅里叶变换(DFT) x(n)
n
0 ~x (n) N-1
...
...
n
0
N-1
定义从n=0 到(N-1)的第一个周期为主值序列或区间。
第3章 离散傅里叶变换(DFT) (2)从DFS到离散傅里叶变换
(4) 周期为N 的离散周期信号
DFS
N 1
j 2 nk
X (k) x(n)e N
n0
x(n)
1
N 1
j 2 nk
X (k)e N
N k0
k ~ n ~
时域离散周期频域周期离散。频谱特点:周期为N的离散谱
第3章 离散傅里叶变换(DFT)
四种傅立叶变换:
1. 连续非周期 2. 连续周期 3. 离散非周期 4. 离散周期
1
N 1
j 2 kn
X (k)e N
N k0
X (e j ) 2 X (k) ( 2 k)
N k
N
其中 :
X
(k)
N 1
x(n)e
第3章--离散傅里叶变换(DFT)

设x(n)是一种长度为M旳有限长序列, 则定义x(n)旳N点
离散傅里叶正变换为
N 1
j 2 nk
X (k ) DFT[x(n)] x(n)e N
N 1
x(n)WNnk
n0
n0
离散傅里叶逆变换为
离散傅里叶变换对
x(n)
IDFT[ X (k )]
1 N
N 1
j 2 nk
X (k )e N
3.2 离散傅里叶变换旳基本性质
1 线性性质 假如x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2。 y(n)=ax1(n)+bx2(n) 式中a、 b为常数, 即N=max[N1, N2],
则y(n)旳N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2[k], 0≤k≤N-1(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)旳N点DFT。 若N1<N2,则N=N2,那么需将x1(n)补上N2-N1个零值点后变
k 2 k f f s k
N
N
以上所讨论旳三种频率变量之间旳关系,在对模 拟信号进行数字处理以及利用模拟滤波器设计数 字滤波器乃至整个数字信号处理中十分主要,望 同学们高度注重。
第三章 离散傅里叶变换DFT
3.1.2 DFT旳隐含周期性------ DFT与 DFS旳关系
DFT变换对中,x(n)与X(k)均为有限长序列,但因为WknN旳周
第三章 离散傅里叶变换DFT
例2 : x(n) R8 (n),分别计算x(n)旳8点、16点DFT。
解: x(n)旳8点DFT为
X (k)
7 n0
R8 (n)W8k n
7 j2k n
第三章 离散傅里叶变换(DFT)

− N
n
)*
W
n N
=
W
n N
+iN
3. 可约性 4. 正交性
W i⋅n N
= WNn / i
∑ ∑ 1
N
N −1
W
nk N
(WNmk
)
*
k =0
=
1 N
N −1
W (n−m)k N
k =0
=
⎧1, ⎩⎨0,
n − m = iN n − m ≠ iN
3.3 周期序列的离散傅里叶级数
z 可以看出,当0≤k≤N-1 时,X~(k) 是对X(z)在Z平面单 位圆上的N点等间隔采样,在此区间之外随着k的变 化,X~ (k ) 的值呈周期变化。
了。所以这种无穷长序列实际上只有N个序列值的信息是 有用的,因此周期序列与有限长序列有着本质的联系。
3.3 周期序列的离散傅里叶级数
z X~(k) ↔ ~x (n) 是一个周期序列的离散傅里叶 级数(DFS)变换对,这种对称关系可表示为:
∑ X
(k )
=
D F S [ x (n)]
=
N −1
x
10
X (k) =
|X(ejω)|
X (e jω ) ω= 2π k 10
=
− j 4π k
e 10
sin(π k / 2) sin(π k /10)
5
…
o
π
…
2π
3π
4π
ω
3.3 周期序列的离散傅里叶级数
例2 已知周期序列x (n),求X (k )。并讨论 X~ (k)与 X (e jω ) 的关系
将n和k互换,有 ∑ Nx (-k ) = N-1 X (n)WNkn n=0
第三章 离散傅里叶变换(DFT)

~ X ( k ) N k ( r pn)
k 0
N 1
~ NX ( r pN ) ~ NX ( r )
j 2 nr N
1 ~ 因此, X (r ) N
~ ( n )e x
n 0
N 1
将r换成k则有 1 ~ X (k ) N
n 0
则有
~ ~ ~ (n) b~ (n) aX (k ) bX (k ) DFSax1 x2 1 2
其中,a,b为任意常数。
二.序列的移位
~ ~(n) X (k ) 如果 DFSx
则有:
~ ~(n m) W mk X (k ) DFSx N e
2 j mk N
即:
N 1 n 0 j 2 kn N
~ ~( n )e X (k ) x ~( n ) 1 x N
N 1 k 0
~ X ( k )e
2 j kn N
~ X (k ) 的周期性 2 N 1 j ( k mN ) n ~ 周期性: ( k m N) ~( n )e N X x
) X (k )
0
0 20
N 0 N
k
四.离散时间、离散频率的傅氏变换--DFT
x(nT)=x(n)
1 2 T0 F0 0
T0 NT
0
x (e
j k 0T
T 2T
1 2
( N 1) ( N 1)
NT N
0
)
2 T s 1 T 2
x(k )
n 0 N 1 j 2 nk N
~ ( n )W nk x N
N 1 n 0
第三章离散傅里叶变换

不变,F减小N增加,又因增加 因此,和N可按下面两式选择 例1 有一频谱分析用FFT处理器,抽样点数为2的幂,假定没有采用 任何 特殊的数据处理,已给条件为 ①频率分辨率 ②信号的最高频率 求:①最小记录长度 ②抽样点的最大间隔T ③在一个记录中最小点数N 解: ① ② ③ 取 (2)频域泄露(截短产生误差)
●任何有限长序列都可以表示成共轭对称分量和共轭反对称分量 之和,即 ………… ……….(3-2) 对(3-2)式n换成N-n,并取复共轭得 (3-3) 联立(3-2),(3-3)可得:
●任何序列也可以表示实部和虚部 (3-4) 其中 (3-5) (3-6) (3)DFT的共轭对称性 ●对(3-4)进行DFT得: (3-7) ① 对(3-5)进行DFT得: .(3-8) ② 对(3-6)进行DFT得 (3-9) 结论:由(3-7),(3-8),(3-9)可得 其中 ● 任何序列可以表示为共轭对称和共轭反对称分量: (3-10) (3-11) (3-12) ① 对(3-10)进行DFT得 ② 对(3-11)进行DFT得 ③ 对(3-12)进行DFT得 结论: 其中 ●是长度为N的实序列,且,则 ① 共轭对称,即
2 (a) n,m 3 1 0
(b) 1 2 3 n,m
-2 6 5
2 1 -3 N=4 (c) m
m 3 2 n=0 (d)
ቤተ መጻሕፍቲ ባይዱ
m 3 0 n=1 (e)
m 1 0 n=2 (f)
2 m 1 n=3 (g)
2 3 2 m 1 (h) 1
图4
4、复共轭序列的DFT
设是的复共轭序列,长度为N,则 (3-1) 且。 证明:根据DFT的唯一性,只要证明(3-1)式右边等于左边即可。 又由的隐含周期性有 。 同理可证 。
离散傅里叶变换(DFT)

k=floor((-Nw/2+0.5):(Nw/2+0.5)); %建立关于纵轴对称的频率相量
for r=0:3;
K=3*r+1;
% 1,4,7,10
nx=0:(K*Nx-1); x=xn(mod(nx,Nx)+1);
%周期延拓后的时间向量 %周期延拓后的时间信号x
Xk=x*(exp(-j*dw*nx'*k))/K; %DFS
0
DFT的提出:
离散傅里叶变换不仅具有明确的物理意义,相对于DTFT, 它更便于用计算机处理。但是,直至上个世纪六十年代,由 于数字计算机的处理速度较低以及离散傅里叶变换的计算量 较大,离散傅里叶变换长期得不到真正的应用,快速离散傅 里叶变换算法的提出,才得以显现出离散傅里叶变换的强大 功能,并被广泛地应用于各种数字信号处理系统中。近年来, 计算机的处理速率有了惊人的发展,同时在数字信号处理领 域出现了许多新的方法,但在许多应用中始终无法替代离散 傅里叶变换及其快速算法。
X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
2
其中ω为数字角频率,单位为弧度。 注意:非周期序列,包含了各种频率的信号。
局限性:离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分 析中具有重要的理论意义。但在用计算机实现运算方面比较困难。这是因为, 在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在数字角
§1、傅里叶级数
周期为N的序列 ~x(n) ~x(n rN), (r为整数)
j( 2 )n
基频序列为 e1(n) e N
k次谐波序列为
ek (n)
j( 2 )nk
e N
第3章 离散傅里叶变换(DFT)

时域循环移位定理表明:有限长序列的循环移位,在离散 频域中相当于引入一个和频率成正比的线性相移WN-mk 频域循环移位定理表明:时域序列的调制(相移)等效于频域 的循环移位
(3.1.7)
注:若x(n)实际长度为M,延拓周期为N,则当N<M时,(3.1.5) 式仍表示以N为周期的周期序列,但(3.1.6)和 (3.1.7)式仅对 N≥M时成立。
第3章 离散傅里叶变换(DFT)
图3.1.2(a)中x(n)实际长度M=6,
x (n) 如图 当延拓周期N=8时,~
3.1.2(b)所示。
DTFT:X(e )= x( n)e
M 1 n0
N (n) RN (n) xN ( n) x
(k ) x N (n)WNkn DFS : X
DFT与ZT关系:
k
z e
j k N
X (k ) X ( z )
k ,, ,..., N k ,, ,..., N
第3章 离散傅里叶变换(DFT)
(2)时/频域循)] X (k )
k 0,1,..., N 1
则
且
mk DFT [ x(( n m)) N RN (n)] WN X (k )
nl IDFT [ X (( k l )) N RN (k )] WN x ( n)
n 0 N 1
WN e
j
2 N
k 0,1,..., N 1 n 0,1,..., N 1
1 N 1 IDFT [ X (k )] x(n) X (k )WN kn N k 0
1 IDFT[ X (k )]N N
N 1
mk kn [ x ( m ) W ] W N N k 0 m 0 k ( mn ) W N k 0 N 1
第3章 3.1-3.2离散傅里叶变换(DFT)

n0
WNkm X (k)
第3章 离散傅立叶变换(DFT)
对比记忆:
循环时移:
x((n
m))
N
RN
(n)
W mkm N
X(k
)
线性时移:
x(n n0 ) e jn0 X(e j )
29
时域移位,频域相移
2020/4/5
第3章 离散傅立叶变换(DFT)
3. 频域循环移位定理 如果: X (k) DFT[x(n)], 0 k N 1 则 : Y (k) X ((k l))N RN (k)
e8
n0
n0
j 3k
e8
sin(
2
sin(
k) k)
,k
0,1,, 7
8
17 2020/4/5
第3章 离散傅立叶变换(DFT)
提高谱密度
18
图3.1.1 R4(n)的FT和DFT的幅度特性关系
2020/4/5
第3章 离散傅立叶变换(DFT)
3.3.2 DFT和DTFT、ZT的关系
设序列x(n)的长度为N, 其ZT、DTFT和
对任意整数m, 总有:
WNk WN(kmN) , k, m, N均为整数
所以(3.3.6)式中, X(k)满足:
N 1
X (k mN ) x(n)WN(kmN )n
n0
N 1
x(n)WNkn X (k)
n0
同理可证明(3.3.7)式中:
14 2020/4/5
x(n mN) x(n)
1.
设序列h(n)和x(n)的长度分别为N和M。h(n)与x(n)的
L点循环卷积定义为:L1
kn
e4
n0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
3
x(n)W8nk W8nk
n0
n0
j 2 k
j 2 2k
j 2 3k
1e 8 e 8 e 8
X (0) 4 X (1) 1 j 2 1 X (2) 0 X (3) 1 j 2 1
X (4) 0 X (5) 1 j 2 1 X (6) 0 X (7) 1 j 2 1
X (0) 60 X (1) 9 j3 3 X (2) 3 j 3
X (3) 0 X (4) 3 j 3 X (5) 9 j3 3
例:已知序列x(n) R4 (n), 将x(n)以N 8为周期 进行周期延拓成x(n),求x(n)的DFS。
解法一:数值解
N 1
X (k) x(n)WNnk
X ( j) x(t)e jtdt
x(t) 1 X ( j)e jtd
2
时域连续函数造成频域是非周期的谱, 而时域的非周期造成频域是连续的谱密度函数。
FT演示
连续时间、离散频率—傅里叶级数
X
(
jk
0
)
1 T0
T0 / 2 x(t)e jk0tdt
T0 / 2
x(t) X ( jk0 )e jk0t k
6
解:方法1 整理x(n)有(N=12):
x(n)
1
j 2π n
e 12
1
e
j 2π n 12
1
j 2
e 12
n
1
j 2
e 12
(11) n
2
2
2
2
与DFS定义对比知:在 k 112r 和 k 1112r时:
X (k) N / 2 6, 其他 X (k) 0。
方法2 由定义式直接计算,得
X
因此,我们感兴趣的是时域及频域都是离散 的情况。
离散时间、离散频率—离散傅里叶变换
N 1
j 2 nk
X (k) x(n)e N
n0
x(n)
1
N 1jBiblioteka 2 nkX (k)e NN k0
DFS演示
一个域的离散造成另一个域的周期延拓, 因此离散傅里叶变换的时域和频域都是离 散的和周期的
四种傅里叶变换形式的归纳
k次谐波分量:e jk0n
周期序列的DFS正变换和反变换:
X (k)
DFS[x(n)]
N 1
j 2 nk
x(n)e N
N 1
x(n)WNnk
n0
n0
x(n)
IDFS[ X (k)]
1 N
N 1
j 2 nk
X (k)e N
k 0
1 N
N 1
X (k )WNnk
k 0
其中:
WN
j 2
e N
周期序列:x(n) x(n rN )
r为任意整数 N为周期
连续周期函数:
xa (t) xa (t kT0 ) T0为周期
xa (t) A(k )e jk0t
k
基频:0 2 / T0
k次谐波分量:e jk0t
N为周期的周期序列:
x(n) A(k )e jk0n
k
基频:0 2 / N
例:已知序列x(n)是周期为6的周期序列, 如图所示,试求其DFS的系数。
解:根据定义求解
N 1
X (k ) x(n)WNnk
n0
5
x(n)W6nk
n0
j 2 k
j 2 2k
14 12e 6 10e 6
j 2 3k
j 2 4k
j 2 5k
8e 6 6e 6 10e 6
(k)
11 n0
1
2
j 2
e 12
n
e
j 2 12
kn
1 2
e
j 2 12
n
e
j 2 12
kn
X~ (k) 1
1 11 j 2 ( k 1)n e 12
11 j 2 ( k 11)n
e 12
2 n0
2 n0
j 2 ( k 1)12
j 2 ( k 11)12
1 1 e 12
1 1 e 12
第三章 离散傅里叶变换(DFT)
Chapter 3: The Discrete Fourier Transform (DFT)
第三章学习目标
• 理解傅里叶变换的几种形式
• 了解周期序列的傅里叶级数及性质,掌握 周期卷积过程
• 理解离散傅里叶变换及性质,掌握圆周移 位、共轭对称性,掌握圆周卷积、线性卷 积及两者之间的关系
2
2 j 2 ( k 1)
j 2 ( k 11)
1 e 12
1 e 12
6, k 1 12r
6,
k
11
12r
x(n)
co0s,
其 它 的k n
6
6, k 112r X~(k) 6, k 1112r
时域连续函数造成频域是非周期的谱, 而频域的离散对应时域是周期函数。
FS演示
周期连续信号的频谱具有以下特点: ①离散性,即谱线是离散的; ②谱波性,即谱线只出现在基波频率的整数倍
上,且具有非周期性,是一种线谱; ③收敛性,即各次谐波的幅度随谐波次数的增
高而减小; ④各次谐波的幅度的衰减速度与信号波形有关,
时域波形变化愈慢,高频分量衰减愈快,高 频成分愈少;反之,时域波形变化愈剧烈, 高频分量愈多。
离散时间、连续频率—序列的傅里叶变换
X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
2
SFT演示
时域的离散化造成频域的周期延拓, 而时域的非周期对应于频域的连续
易见,前三种傅里叶变换对都不适于计算机 上运算,因为它们至少在一个域(时域或频域)中 函数是连续的。
解法二:公式解
X
k
DFS
x
n
N
1
x(n)e
j 2 N
kn
7
x
n0
n
e
j 2 8
n0
kn
3
e
n0
j kn 4
j k4
1e 4
j k
1e 4
j k
j k
j k
e 2 e 2 e 2
j k
j k
j k
e 8 e 8 e 8
e
j 3 k 8
sin 2
k
sin k
8
例:周期序列 x(n) cos n展开为DFS,求其系数。
• 了解频域抽样理论
• 理解频谱分析过程
• 了解序列的抽取与插值过程
一、Fourier变换的几种可能形式
时间函数
频率函数
连续时间、连续频率—傅里叶变换 连续时间、离散频率—傅里叶级数 离散时间、连续频率—序列的傅里叶变换 离散时间、离散频率—离散傅里叶变换
四种信号频谱 演示
连续时间、连续频率—傅里叶变换
时间函数
频率函数
连续和非周期 非周期和连续
连续和周期(T0) 非周期和离散(Ω0=2π/T0) 离散(T)和非周期 周期(Ωs=2π/T)和连续
离散(T)和周期(T0) 周期(Ωs=2π/T)和离散(Ω0=2π/T0)
二 、周期序列的DFS及其性质
DFS: Discrete Fourier Series