熊伟运筹学(第2版)第二版课后习题答案_前八章答案
熊伟编《运筹学》习题十详细解答
【解】模型 4。
D=50, A=40, H=10f 2HAD2一10一40一50 25200(元) 则每隔0.4月生产一次,每次生产量为20件。
10.2某化工厂每年需要甘油 100吨,订货的固定成本为 100元,甘油单价为7800元/吨,每 吨年保管费为32元,求:(1)最优订货批量;(2)年订货次数;(3)总成本。
【解】模型 4。
D=100 , A=100 , H=32 , C=7800小 J 2AD''2 100 100 冲Q上-上厂绚件)n D/Q 4(次) f . 2 HAD CD2一32一100一100 7800 100 780800(元)则(1)最优订货批量为 25件;(2)年订货4次;(3)总成本为780800元。
10.3工厂每月需要甲零件 3000件,每件零件120元,月存储费率为1.5%,每批订货费为 150元,求经济订货批量及订货周期。
【解】模型 4。
D=3000 , A=150 , H=120 X 0.015= 1.8, C=120Q 磐 FP 0707(件) t Q/D 0.24(月)f 2HAD CD 2 1.8 150 3000 120 3000 361272.79(元)则经济订货批量为 707件,订货周期为0.24月。
10.4某公司预计年销售计算机 2000台,每次订货费为 500元,存储费为32元/ (年台),缺货费为100元/年台。
试求:(1)提前期为零时的最优订货批量及最大缺货量; (2)提前期为10天时的订货点及最大存储量。
【解】模型 3。
D=2000 , A=500 , H=32 , B=100, L=0.0274(年)R = LD — S = 0.0274X 2000 — 69= 55-69 = — 14 (件)(1)最优订货批量为 287台,最大缺货量为 69台;⑵再订货点为—14台,最大存储量习题十10.1某产品每月用量为 优生产批量及生产周期。
运筹学基础课后习题答案
运筹学基础课后习题答案[2002年版新教材]第一章导论P51.、区别决策中的定性分析和定量分析,试举例。
定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。
举例:免了吧。
2、.构成运筹学的科学方法论的六个步骤是哪些?.观察待决策问题所处的环境;.分析和定义待决策的问题;.拟定模型;.选择输入资料;.提出解并验证它的合理性(注意敏感度试验);.实施最优解;3、.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据第二章作业预测P251、.为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分?答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。
但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。
调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。
(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。
2.、某地区积累了5个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α=0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤)年度12345大米销售量实际值(千公斤)52025079393744533979。
答:F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F16=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9F6=3581.1+400.77+35.433+4.5711+0.3764F6=4022.33、某地区积累了11个年度纺织品销售额与职工工资总额的数据,列入下列表中(表略),计算:(1)回归参数a,b(2)写出一元线性回归方程。
运筹学课后习题答案
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
运筹学习题参考答案
习题参考答案第二章 习 题1.线性规划模型为:⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++++0,,1800231200214002..453max 321321321321321x x x x x x x x x x x x t s x x x 2. 标准形式为:⎪⎪⎩⎪⎪⎨⎧≥=-++-=++=++---+-0,,,,,,1002333800120035.15.1..322min 87654328325473262543254x x x x x x x x x x x x x x x x x x x t s x x x x 3.(1)最优解为(2,2),最优值为8.(2)根据等式约束得:213--6x x x =代入规划等价于:⎪⎩⎪⎨⎧≥≥+≤+++0,3-6..62max 21212121x x x x x x t s x x 先用图解法求线性规划⎪⎩⎪⎨⎧≥≥+≤++0,3-6..2max 21212121x x x x x x t s x x 得最优解为(0,6)代入原规划可得最优解为(0,6,0)最优值为18.4.(1)以21,x x 为基变量可得基可行解(3,1,0),对应的基阵为:⎪⎪⎭⎫⎝⎛1101 以31,x x 为基变量可得基可行解(2,0,1),对应的基阵为:⎪⎪⎭⎫ ⎝⎛2111 (2)规划转化为标准形式:⎪⎩⎪⎨⎧≥=++=++--0,,,55623..34min 432142132121x x x x x x x x x x t s x x 以32,x x 为基变量可得基可行解(0,1,4,0),对应的基阵为:⎪⎪⎭⎫⎝⎛0512 5. 以432,,x x x 为基变量可得基可行解(0,2,3,9),对应的典式为:32192231412=+=+=x x x x x 非基变量1x 的检验数为21-。
6. (1) a=0,b=3,c=1,d=0;(2) 基可行解为(0,0,1,6,2) (3)最优值为3.7.(1)最优解为(1.6,0,1.2),最优值为-4.4;(2)令11-=x y ,则0≥y ,11+=y x ,在规划中用1+y 替代1x ,并化标准形式。
《管理运筹学》(第二版)课后习题参考标准答案
《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0b,≥i决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0bAX,的解,称为可行解。
=X≥基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a x x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
运筹学(第二版)课后答案
405
附录四习题参考答案
CB -M 0 -M σj -M 5 -M σj 1 0 -M σj
XB X6 X5 X7 X6 X2 X7 X3 X2 X7
4 X1 3 2 1 4+4M -1 2 -1 4-2M -1 2 -2 5-2M
5 X2 2 1 1 5+3M 0 1 0 0 0 1 0 0
(1) 、 (2)答案如下表所示,其中打三角符号的是基本可行解,打星 号的为最优解:
402
附录四习题参考答案
x1 x2 x3 x4 x5 z x1 x2 x3 △ 0 0 4 12 18 0 0 0 0 △ 4 0 0 12 6 12 3 0 0 6 0 -2 12 0 18 0 0 1 △ 4 3 0 6 0 27 -9/2 0 5/2 △ 0 6 4 0 6 30 0 5/2 0 *△ 2 6 2 0 0 36 0 3/2 1 4 6 0 0 -6 42 3 5/2 0 0 9 4 -6 0 45 0 0 5/2 1.3 (1)解:单纯形法 首先,将问题化为标准型。加松弛变量 x3,x4,得
1 0 1 0 0 (P 1,P 2,P 3,P 4,P 5)即 0 2 0 1 0 3 2 0 0 1 x1 x3 4 1 0 1 0 2 0 线性独立,故有 2 x 2 12 x 4 因(P 1,P 2,P 3) 3x 2 x 18 x 2 5 3 2 0 1 x1 x3 4 令非基变量 x4 , x5 0 得 2 x 2 12 → 3x 2 x 18 2 1
12400120300175max547543216543215443217654321?jxxxxxxxxxxxxxxxxxxxxxstxxxxxxxzj第二章对偶理论和灵敏度分析21对偶问题为1????????????????02211042010min2121212121yyyyyyyystyys2????????????????????????无约束32131321213213210013312245minyyyyyyyyyyyyystyyys3???????????????????????????无约束32132132132131321001373323232253minyyyyyyyyyyyyyystyyys4?????????????????????????无约束3213213213213210071036655552015maxyyyyyyyyyyyystyyys附录四习题参考答案410221因为对偶变量ycbb1第k个约束条件乘上0即b1的k列将为变化前的1由此对偶问题变化后的解y1y2
运筹学II习题解答(DOC)
第七章决策论1. 某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是 三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型 决策的五种方法进行决策(使用折衷法时a = 0.6)。
悲观法:根据“小中取大”原则,应选取的经营策略为 乐观法:根据“大中取大”原则,应选取的经营策略为 折中法(a =0.6):计算折中收益值如下:51 折中收益值=0.6x50+0.4x (-5)=28 52 折中收益值=0.6x30+0.4x0=18 S3 折中收益值=0.6x10+0.4x10=10 显然,应选取经营策略s1为决策方案。
平均法:计算平均收益如下:S3: 故选择策略s1,s2为决策方案。
'最小遗憾法:分三步 第一,定各种自然状态下的最大收益值,如方括号中所示;第二,确定每一方案在不同状态下的最小遗憾值, 并找出每一方案的最大 遗憾值如S1: x i = (50+10-5) /3=55/3 S2:X2=(30+25)/3=55/3(4)s3; s1X 3=(1O+1O)/3=1O(5)】(1) (2)圆括号中所示;第三,大中取小,进行决策。
故选取S1作为决策方案。
经营 策略市场状况Q1Q2 Q3 S1 0 (15)15S2 (20) 0 10 S3(40)152•如上题中三种状态的概率分别为:0.3,0.4, 0.3,试用期望值方法和决策树方法决策。
(1)用期望值方法决策:计算各经营策略下的期望收益值如下:CSi ) =£尸住 i )XH 二1匸53-13〔S3) =2 FC^i)X3i = 10j-1故选取决策S 2时目标收益最大。
(2)用决策树方法,画决策树如下:尸(內)=0. 4 八十)=0- 317.531抉策19 /—f …—30of 尸®曲4 △圧佥八、尸(内)二0・3 灵0 ——— 1010 尸(内)二0・3 P(&1)二Q ・3 P (i j l e i ) 构造差(11)构造一般(12)构造好(l 3)无油(e 1) 0.6 0.3 0.1 贫油(e 2)0.30.4 0.3 富油(e 3)0.10.40.5假定勘探费用为1万元,试确定:3.某石油公司拟在某地钻井,可能的结果有三:无油 (e 1),贫油(e 2)和富油(e3), 估计可能的概率为:P (e 1)=0.5, P (e 2)=O .3, P (e 3)=0.2。
《运筹学》(第二版)课后习题参考答案
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;
运筹学答案(第八章)
School of Management
运筹学教程
第八章习题解答
解:两条船就够了。 一条船完成:T4→T5→T3; 另一条船完成:T1→T2 。
page 37 28 January 2019
School of Management
page 32 28 January 2019
School of Management
运筹学教程
第八章习题解答
page 33 28 January 2019
School of Management
运筹学教程
第八章习题解答
8.20 某种货物由2个仓库A1,A2运送到3个配货中 心B1,B2,B3。A1,A2的库存量分别为每天13t,9t; B 1 , B2 , B3 每天需求分别为 9t , 5t , 6t 。各仓库到配 货中心的运输能力、单位运费如表 8 — 4 ,求运费最省 的运输方案。
page 30 28 January 2019
School of Management
运筹学教程
第八章习题解答
8.18 甲、乙、丙、丁、戊、己6人组成一个小组, 检查 5 个单位的工作,若一单位和乙、丙、丁三人有 工作联系,则用 {乙,丙,丁 } 表示,其余四个单位分 别为{甲,戊,己},{甲,乙,戊,己},{甲,乙,丁, 己},{甲,乙,丙}。若到一个单位去检查工作的人必 须是和该单位没有联系的人,问应如何安排? 解:此题应该假设 1 人只能去 1个单位检查工作。 但是一个单位可以有多人去检查。具体安排如下: 甲和己→单位1、乙→单位2 、丙→单位3 、丁→ 单位5 、戊→单位4 。
运筹学教程
第八章习题解答
《管理运筹学》(第二版)课后习题参考答案
《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a xx x x Z ++= s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
运筹学课后习题答案 熊伟(第二版)
【解】虚拟一个发点和一个收点
T6.11-1
得到流量v=22的最小费用流,最小费用为271。求解过程参看第4章PPT文档习题答案。
T6.11-13
最小费用最大流如下图,最大流量等于27,总费用等于351。
6.12如图6-43所示,(1)求解旅行售货员问题;(2)求解中国邮路问题。
图6-43
【解】(1)旅行售货员问题。
总费用最小的设备更新方案为:第一种方案,第1年购置一台设备使用到第5年年末;第二种方案,第1年购置一台设备使用到第2年年末,第3年年初更新后使用到第5年年末。总费用为11.5万元。
6.8图6-43是世界某6大城市之间的航线,边上的数字为票价(百美元),用Floyd算法设计任意两城市之间票价最便宜的路线表。
表5-56
B1
B2
B3
B4
Ai
A1
9
15
4
8
10
A2
3
1
7
6
30
A3
2
10
13
4
20
A4
4
5
8
3
43
bj
20
15
50
15
【解】(1)
(2)
5.4求下列运输问题的最优解
(1)C1目标函数求最小值;(2)C2目标函数求最大值
15 45 20 40 60 30 50 40
(3)目标函数最小值,B1的需求为30≤b1≤50, B2的需求为40,B3的需求为20≤b3≤60,A1不可达A4,B4的需求为30.
【解】(1)
(2)
(3)先化为平衡表
B11
B12
B2
B31
B32
熊伟编《运筹学》习题二详细解答
习题二1 •某人根据医嘱,每天需补充A、B、C三种营养,A不少于80单位,B不少于150单位,C不少于180单位.此人准备每天从六种食物中摄取这三种营养成分. 已知六种食物每百克的营养成分含量及食物价格如表2-22所示.(1)试建立此人在满足健康需要的基础上花费最少的数学模型;(2)假定有一个厂商计划生产一中药丸,售给此人服用,药丸中包含有A , B , C三种营养成分•试为厂商制定一个药丸的合理价格,既使此人愿意购买,又使厂商能获得最大利益,建立数学模型.表 2-221 X j jmin Z 0.5% 0.4X0.8X30 .9x40.3X50.2X613x125x214X3 40X48X5 11X6 8024x19x230X325X412X5 15X6 15018x17x221X3 34X410X5 180x1> x2、X、X4、X、X6 0(2 )设V i为第i种单位营养的价格,则数学模型为max w 80y1 150 y2180 y313V1 24 y2 18y3 0.525y1 9y2 7y30.414y1 30 y221y30.840y1 25y2 34 y3 0.98y1 12y2 10y3 0.311y1 15y2 0.5力,丫2”302 •写出下列线性规划的对偶问题max 2X14X2min w % 4y2八X1 3X2 1 ”y1 y2 2(1)X15X2 4 3y1 5y2 4X1,X2 0 y1, y2 0min w 9% 6y 2 2y 3+5y 4 10 y 5 3y i 6y 2 y 3 g 衣 2 对偶问题为:2y i 2y 2 3 y i 5y 2 出 6 6y i y 2 2y 37y i 无约束;y 2 0, y 3, 0, y 4 0, X 5 03 .考虑线性规划mi nZ 12X 120X 2X 1 4X 2 4 X 1 5X 22 2X 1 3X 27X 1, X 2 0(1) 说明原问题与对偶问题都有最优解; ⑵通过解对偶问题由最优表中观察出原问题的最优解; ⑶利用公式C B B^1求原问题的最优解; (4)利用互补松弛条件求原问题的最优解.【解】(1)原问题的对偶问题为maxw 4% 2y 2 7y 3 y i y 2 2y 312min Z 2x i X 2 3x 3 x 1 2X 210(2)1 2X i 3X 2 X 38X ,X 无约束,X 0maxw 10y i 8y 2 y i y 22 【解】2y i 3y 21y 2 3叶无约束;y 2 0maxZX 1 2X 24X 3 3X 410X 1X 2 X 3 4X 48(3)7X 1 6X 2 2X 3 5X 4 104X 1 8X 2 6X 3 X 4 6X 1,X 2 0,X 3 0,X 4无约束min w 8y 1 10y 2 6y 3【解】10 y 1 7y 2 4y 31 y 1 6y2 8y3 2 y 1 2y 2 6y 34 4y 1 5y 2 y 33y 1 无约束;y 2 0, y 3 0 max Z 2X -I 3X 2 6X 3 7X 43X -I 2X 2 X 3 6X 4 9 6X -I 5X 3 X 4X 1 2X 2 X 3 62X 45 X 1 10X 10, X 2,X 3, X 4无约束max Z2X -I 3X 2 6X 3 7X 43X 1 2X 2 X 3 6X 4 9 6X -| 5X 3 X 46【解】 X 1 2X 2 X 3 2X 42X -I 5 X -I10X - 0, X , X , X 无约束4y i 5y 3*20y j 0,j 1,2,3容易看出原问题和对偶问题都有可行解,女口X = (2, 1)、Y = (1 , 0, 1),由定理2.4知都有最优解。
熊伟运筹学(第2版)1-3章参考答案
运筹学(第2版)习题答案1--3习题一1.1 讨论下列问题:(1)在例1.2中,如果设x j (j=1,2,…,7)为工作了5天后星期一到星期日开始休息的营业员,该模型如何变化.(2)在例1.3中,能否将约束条件改为等式;如果要求余料最少,数学模型如何变化;简述板材下料的思路. (3)在例1.4中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化.(4)在例1.6中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每天的加工时间不超过另一种设备任一台加工时间1小时,模型如何变化.(5)在单纯形法中,为什么说当00(1,2,,)k ik a i m λ>≤=并且时线性规划具有无界解。
1.2 工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.根据市场需求,试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为1.3 建筑公司需要用6m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1【解】 设x j (j =1,2,…,14)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为用单纯形法求解得到两个基本最优解X (1)=( 50 ,200 ,0 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=534 X (2)=( 0 ,200 ,100 ,0,84 ,0,0 ,0 ,0 ,0 ,0 ,150 ,0 ,0 );Z=534 (2)余料最少数学模型为用单纯形法求解得到两个基本最优解X (1)=( 0 ,300 ,0 ,0,50 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料550根 X (2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根 显然用料最少的方案最优。
《管理运筹学》(第二版)课后习题参考答案
《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a xx x x Z ++= s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
熊伟编《运筹学》习题十二详细解答
习题十二12.1 证明本章中的定理412.2【解】设局中人1分别以21x 和2分别以21y y 和的概率选择L 和R 策略,用方程组方法,则可得到:1212122201x x x x x x +=+⎧⎨+=⎩ 12121220131y y y y y y +=+⎧⎨+=⎩ 解出:122/3,1/3x x ==, 123/4,1/4y y ==。
混合策略纳什均衡为:G=(**,y x )其中: ()**(2/3,1/3),3/4,1/4TTx y ==12.3 求解下列矩阵对策,其中赢得矩阵A 分别为(1)5692354810⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, (2) 632745206⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, (3)75910664132321452346755786⎡⎤⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦【解】(1)有鞍点。
最优解13(,)αβ,V G =5 (2) 有鞍点。
最优解11(,)αβ,V G =2(3) 有鞍点。
最优解12(,)αβ及52(,)αβ,V G =5 12.4利用优超原则求解下列矩阵对策(1)A=1392257630252240-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦, (2) 2343564132421457346454126A --⎡⎤⎢⎥-⎢⎥⎢⎥=--⎢⎥-⎢⎥⎢⎥⎣⎦【解】(1)9113213-2256256252525630530530332762542-200305220A -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→→→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦- 由公式(12.19)~(12.23)得11221221()()15a a a a +-+=-*110,,,022X ⎛⎫= ⎪⎝⎭,*51,,0,066Y ⎛⎫= ⎪⎝⎭;52G V =(2) 41324132621424132346434214533464412634644126547526541A ---⎡⎤-⎡⎤⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=→→---⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦-- 34434441642166--⎡⎤⎡⎤→→⎢⎥⎢⎥⎣⎦⎣⎦第2列与第3列的凸组合(如:0.5(4,1)+0.5(-4,6)<(3,4))优超于第1列4416-⎡⎤⎢⎥⎣⎦最优解:58103280,0,0,,;0,0,,0;1313131313G X Y V ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭12.5用线性规划法求解矩阵对策732645307A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦【解】局中人Ⅰ:123123121231,2,3min 76313412571z x x x x x x x x x x x x x x ⎧=++⎪+-≥⎪⎪+≥⎨⎪-+≥⎪⎪≥⎩ 局中人Ⅱ:1231231231312,3max 73216451371,0w y y y y y y y y y y y y y y ⎧=++⎪++≤⎪⎪+-≤⎨⎪-+≤⎪⎪≥⎩ 模型Ⅱ的最优表:Basis C(i) Y1 Y2Y3 Y4 Y5 Y6 Y2 1 2.619 1 0 0.333 0 -0.0952 0.2381 Y5 0 -6.619 0 0 -1.33 1 1.0952 0.7619 Y31-0.4286 0 1 0 0 0.1429 0.1429 C(j)-Z(j)-1.1905-0.3333-0.04760.381线性规划的最优解:Y=(0,0.2381,0.1429),X=(0.3333,0,0.0476);w=0.381 作变换得到对策的解:X *=(0.8748,0,0.1251),Y *=(0,0.6249,0.3751);V G =2.624712.6 若二人零和对策的赢得矩阵为(1) A=⎥⎦⎤⎢⎣⎡3542; (2) A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡535442632; (3) A=0000,0,0,0a b c c a b ⎡⎤⎢⎥⎢⎥⎢⎥⎦>⎣ 求混合策略纳什均衡.【解】(1)列方程组。
运筹学答案(熊伟)中
习题四4.1 工厂生产甲、乙两种产品,由A、B二组人员来生产。
A组人员熟练工人比较多,工作效率高,成本也高;B组人员新手较多工作效率比较低,成本也较低。
例如,A 组只生产甲产品时每小时生产10件,成本是50元有关资料如表4.21所示。
班生产的产品每件增加成本5元。
工厂根据市场需求、利润及生产能力确定了下列目标顺序: P 1:每周供应市场甲产品400件,乙产品300件 P 2:每周利润指标不低于500元P 3:两组都尽可能少加班,如必须加班由A组优先加班 建立此生产计划的数学模型。
4.1【解】 解法一:设x 1, x 2分别为A 组一周内正常时间生产产品甲、乙的产量,x 3, x 4分别为A 组一周内加班时间生产产品甲、乙的产量;x 5, x 6分别为B 组一周内正常时间生产产品甲、乙的产量,x 7, x 8分别为B 组一周内加班时间生产产品甲、乙的产量。
总利润为13571357246824681234567880()(50554550)75()(45504045)3030252535353030x x x x x x x x x x x x x x x x x x x x x x x x +++-+++++++-+++=+++++++生产时间为A 组:12340.10.1250.10.125x x x x +++B 组:56780.1250.20.1250.2x x x x +++ 数学模型为:112233454671357112468221234567833124456553min ()()(2)40030030302525353530305000.10.125400.1250.2400.10.Z p d d p d p d d p d d x x x x d d x x x x d d x x x x x x x x d d x x d d x x d d x ---+++++-+-+=++++++++++-=++++-=++++++++-=++-=++-=+-----4667877125100.1250.2100,,0,1,2,,7;1,2,,8j i i x d d x x d d x d d i j -+-+-+⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪+-=⎪⎪++-=⎪≥≥==⎪⎩解法二:设x 1, x 2分别为A 组一周内生产产品甲、乙的正常时间,x 3, x 4分别为A 组一周内生产产品甲、乙的加班时间;x 5, x 6分别为B 组一周内生产产品甲、乙的正常时间,x 7, x 8分别为B 组一周内生产产品甲、乙的加班时间。
熊伟 运筹学 参考 答案 练习 习题 第 版 武汉理工大学
第8章 动态规划8.1 在设备负荷分配问题中,n =10,a =0.7,b =0.85,g =15,h =10,期初有设备1000台。
试利用公式(8.7)确定10期的设备最优负荷方案。
【解】由公式10()n t n tii i i g ha a gb a ---==-≤≤-∑∑得(g -h )/g (b -a )=0.2222,a 0+a 1+a 2=1+0.7+0.49=2.19<2.222<a 0+a 1+a 2+a 3=2.533,n -t-1=2,t =7,则1~6年低负荷运行,7~10年为高负荷运行。
各年年初投入设备数如下表。
年份1 2 3 4 5 6 7 8 9 10 设备台数 1000 850 723 614 522 444 377 264 184.8 129 8.2如图8-4,求A 到F 的最短路线及最短距离。
【解】A 到F 的最短距离为13;最短路线 A→ B2→ C3 → D2 → E2 → F 及A→C 2 → D2 → E2 → F8.3求解下列非线性规划(1) 123123max 0,1,2,3j Z x x x x x x C x j =++=⎧⎪⎨≥=⎪⎩ (2) 22123123123min ,,0Z x x x x x x Cx x x =++++=⎧⎨≥⎩ (3) 2123123123m a x 2310,,0Z x x x x x x x x x =++++=⎧⎨≥⎩(4) 123123max 42100,1,2,3j Z x x x x x x x j =++=⎧⎪⎨≥=⎪⎩ (5) 123123max 24100,1,2,3j Z x x x x x x x j =++≤⎧⎪⎨≥=⎪⎩ (6)221123123123max 228,,0Z x x x x x x x x x x =+++++=⎧⎨≥⎩【解】(1)设s 3=x 3 , s 3+x 2=s 2,s 2+x 1=s 1=C则有 x 3= s 3 ,0≤x 2≤s 2,0≤x 1≤s 1=C 用逆推法,从后向前依次有k =3, 333333()max()x s f s x s === 及最优解 x 3*=s 3k =2,22222222233222222000()max [()max [()]max (,)x s x s x s f s x f x x s x h s x ≤≤≤≤≤≤==-=由222222120,2h s x x s x ∂=-=∂则=22222<0,h x ∂∂=-故 2212x s =为极大值点。