1989考研数二真题及解析
1989考研数二真题及解析
精心整理1989年全国硕士研究生入学统一考试数学二试题一、填空题(每小题3分,满分21分.把答案填在题中横线上.) (1) 0lim cot 2x x x →=______.(2)sin t tdt π=⎰______.(3) 曲线(1)(2)xy t t dt =--在点(0,0)处的切线方程是______.()2x x =+(1) 设0x >时,曲线1siny x x= ( ) (A) 有且仅有水平渐近线 (B) 有且仅有铅直渐近线(C) 既有水平渐近线,也有铅直渐近线 (D) 既无水平渐近线,也无铅直渐近线(2) 若2350a b -<,则方程532340x ax bx c +++= ( )(A) 无实根 (B) 有唯一实根(C) 有三个不同实根 (D) 有五个不同实根 (3) 曲线cos ()22y x x ππ=-≤≤与x 轴所围成的图形,绕x 轴旋转一周所成的旋转体的体积为 ( )(A) 2π (B) π (C) 22π (D) 2π(4) 设两函数()f x 及()g x 都在x a =处取得极大值,则函数()()()F x f x g x =在x a =处( )七、(本大题满分11分)对函数21x y +=,填写下表:八、(本题满分10分)设抛物线2y ax bx c =++过原点,当01x ≤≤时,0y ≥,又已知该抛物线与x 轴及直线1x =所围图形的面积为13,试确定,,a b c 使此图形绕x 轴旋转一周而成的旋转体的体积V最小.1989年全国硕士研究生入学统一考试数学二试题解析由y '在其定义域内的连续性,可知0(01)(02)2x y ='=--=.所以,所求切线方程为02(0)y x -=-,即2y x =. (4)【答案】!n【解析】方法一:利用函数导数的概念求解,即lim(1)(2)()12!x x x x n n n →=++⋅⋅+=⋅⋅⋅=.方法二:利用其导数的连续性,由复合函数求导法则可知, (1)(2)(1)1x x x x n ++⋅⋅+-⋅,所以 (0)(01)(02)(0)00f n '=++⋅⋅++++12!n n =⋅⋅⋅=.(5)【答案】1x -【解析】由定积分的性质可知,1()f t dt ⎰和变量没有关系,且()f x 是连续函数,故1()f t dt ⎰为一常数,为简化计算和防止混淆,令1()f t dt a =⎰,则有恒等式()2f x x a =+,两边0到1积分得11(1)【解析】令u e=,v =则arcsin arcsin y e u ==,由复合函数求导法则,(arcsin )v v y u u e v e ''''===⋅=即 y e '=【相关知识点】复合函数求导法则:(())y f x ϕ=的导数(())()y f x f x ϕ'''=.(2)【解析】利用不定积分的换元积分法,22ln 1ln ln ln dx d x C x x x x ==-+⎰⎰.(3)【解析】可将函数转化称为熟悉的形式来求其极限,12sin cos 12sin cos 10lim[1(2sin cos 1)]x x x x xx x x +-⋅+-→=++-,令 2sin cos 1x x t +-=,则当0x →时,0t →, 则 112sin cos 1lim[1(2sin cos 1)]lim[1]x x tx t x x t +-→→++-=+,这是个比较熟悉的极限,即10lim(1)tt t e →+=.把1(2),(2)02f f '==及20()1f x dx =⎰代入上式,得1111101022222=⋅-⋅+⋅⋅=. 三、选择题(每小题3分,满分18分.)(1)【答案】(A) 【解析】函数1siny x x=只有间断点0x =.1lim lim sin x x y x x++→→=,其中1sin x 是有界函数.当0x +→时,x 为无穷小,无穷小量和一个有界函数的乘积仍然是无穷小,所以1lim lim sin 0x x y x x++→→==, 故函数没有铅直渐近线.01sin1sin lim limlim 11x x x t x y t x t x+→+∞→+∞→=== , 又 53lim ()lim (234)x x f x x ax bx c →-∞→-∞=+++=-∞所以利用连续函数的介值定理可知,在(,)-∞+∞内至少存在一点0(,)x ∈-∞+∞使得0()0f x =,又因为()y f x =是严格的单调函数,故0x 是唯一的.故()0f x =有唯一实根,应选(B). (3)【答案】(C)【解析】如图cos (22y x x ππ=-≤≤的图像,则当cos y x =绕x 轴旋转一周,在x 处取微增dx ,则微柱体的体积2cos dV xdx π=,所以体积V 有[][]22222sin 20()422222x x ππππππππππ--=-+=++=. 因此选(C).(4)【答案】(D) 【解析】题中给出的条件中,除了一处极值点外均未指明函数其它性质,为了判定的方便,如 1cos ,00,0x y xx ⎧≠⎪=⎨⎪=⎩在0x =处不连续,因而不可导,但是 0001111cos(0)cos(0)cos cos()()lim lim lim 0222h h h f a h f a h h h h h h h h→→→+---+--===,001111cos()cos(0)cos cos (2)()2222limlim lim 0h h h f a h f a h h h h h hh h→→→---+-+===均存在;(D)是充分的:00()()()()lim limx h x h f a x f a f a f a h x h ∆=-∆→→+∆---=∆存在0()()()lim h f a f a h f a h→--'⇒=存在,应选(D).四、(本题满分6分)【解析】所给方程为一阶线性非齐次微分方程,先写成标准形式211(x 征根,因此非齐次方程有特解sin cos Y xa x xb x =+.代入方程并比较系数,得10,2a b ==,故cos 2xY x =,所以12()cos sin cos 2xf x c x c x x =++.又因为(0)0,(0)1f f '==,所以1210,2c c ==,即 1()sin cos 22xf x x x =+.六、(本题满分7分)【解析】方法一:判定方程()0f x =等价于判定函数()y f x =与x 的交点个数.令()ln x f x x e π=-+⎰,其中π⎰是定积分,为常数,且被积函数1cos2x -在(0,)π非负,故0π>⎰,为简化计算,令00k π=>⎰,即()ln xf x x k e=-+,则其导数11()f x x e'=-,令()0f x '=解得唯一驻点x e =, 即 ()0,0f x x e'><<⎧⎨,()0,+∞,4362x x =+2212(1)0,(2,0),12(1)0,(,2)(0,),y x x xy x x x⎧'=-->∈-⎪⎪⎨⎪'=--<∈-∞-+∞⎪⎩故2x =-为极小值点.令0y ''=,得3x =-,即y ''在3x =-处左右变号,所以23,(3)9x y =--=-为函数的拐点.又 20011lim lim(),x x y x x →→=+=∞故0x =是函数的铅直渐近线;211lim lim(0,x x y x x→∞→∞=+=故0y =是函数的水平渐近线. 填写表格如下: 的体积2dV y dx π=,所以 令其等于0得唯一驻点54a =-,dVda在该处由负变正,此点为极小值点,故体积最小,这时32b =,故所求函数225342y ax bx c x x =++=-+.。
1989-2015考研数学二历年真题word版
2015年考研数学二真题一、选择题 1—8小题.每小题4分,共32分. 1.下列反常积分收敛的是( )(A )21dx x+∞⎰(B )2ln x dx x +∞⎰(C )21ln dx x x+∞⎰ (D )2x x dx e +∞⎰2.函数201sin ()lim x tt t f x x →⎛⎫=+⎪⎝⎭在(,)-∞+∞内( ) (A )连续 (B )有可去间断点(C )有跳跃间断点 (D )有无穷间断点3.设函数 100000cos ,(),(,),x x f x xx αβαβ⎧>⎪=>>⎨⎪≤⎩,若()f x '在0x =处连续,则( ) (A )1αβ-> (B )01αβ<-≤ (C )2αβ-> (D )02αβ<-≤4.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A )0 (B )1 (C )2 (D )3 5.设函数(,)f u v 满足22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则1111|,|u u v v f f u v ====∂∂∂∂依次为( ) (A)102, (B)102, (C)102,- (D)102,- 6.设D 是第一象限中由曲线2141,xy xy ==与直线3,y x y x ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰( )(A)1321422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(B)1231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(C)1321422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰(D)1231422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰7.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω (C ),a d ∈Ω∉Ω (D ),a d ∈Ω∈Ω8.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy =下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )2221232y y y -- (D ) 2221232y y y ++9.设33arctan x t y t t=⎧⎨=+⎩,则212|t d ydx == . 10.函数22()xf x x =在0x =处的n 阶导数0()()n f = .11.设函数()f x 连续,2()()x x xf t dt ϕ=⎰,若1115(),()ϕϕ'==,则1()f = .12.设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处()y x 取极值3,则()y x = .13.若函数(,)z z x y =由方程231x y zexyz +++=确定,则00(,)|dz = .14.设三阶矩阵A 的特征值为221,,-,2B A A E =-+,其中E 为三阶单位矩阵,则行列式B = .三、解答题15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值. 16.(本题满分10分)设0A >,D 是由曲线弧02sin ()y A x x π=≤≤及直线02,y x π==所围成的平面区域,12,V V 分别表示D 绕,x y 旋转一周所围成的旋转体的体积,若12V V =,求A 的值.17.(本题满分10分)已知(,)f x y 满足21(,)(),x xy f x y y e ''=+01(,)(),x x f x x e '=+202(,)f y y y =+,求(,)f x y 的极值.18.(本题满分10分)计算二重积分()dxdy Dx x y -⎰⎰,其中{}2222(,)|,D x y xy y x =+≤≥19.(本题满分10分)已知212111()x xf x t dt tdt =+++⎰⎰,求()f x 的零点个数.20.(本题满分11分)已知高温物体置于低温介质中,任一时刻物体温度对时间的变化率与该时刻物体和介质的温差成正比,现将一初始温度为120C ︒,物体在20C ︒恒温介质中冷却,30分钟后该物体的温度降到30C ︒.若要将物体的温度继续降至21C ︒,还需要冷却多长时间?21.(本题满分11分)已知函数()f x 在区间[,)a +∞上具有二阶导数,000(),(),()f a f x f x '''=>>.设b a >,曲线()y f x =在点(,())b f b 的切线与x 轴的交点是00(,)x ,证明:0.a x b <<22.(本题满分11分)设矩阵101101a A a a ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,且30A =.(1)求a 的值;(2)若矩阵X 满足22X XA AX AXA E ---=,其中E 为三阶单位矩阵,求X . 23.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8题,每题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 (A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -=(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d ydx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y==的解为y = .(13) 曲线()20y x x x =+<上曲率为22的点的坐标是 .(14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = . 三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积. (18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=,(I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1.已知当0x →时,函数是等价无穷小,则与kcx x x x f 3sin sin 3)(-= A k=1,c=4 B k=a, c=-4 C k=3,c=4 D k=3,c=-4 A )0(2f '- B )0(f '- C )0(f ' D 0 2.函数)3)(2)(1(ln )(---=x x x x f 的驻点个数为 A 0 B 1 C 2 D 33.微分方程的特解形式为)0(2>+=-'-λλλλx x e e y y A)(x x e e a λλ-+ B )(x x e e ax λλ-+ C )(x x be ae x λλ-+ D )(2x x be ae x λλ-+5设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件A 0)0(,1)0(>''>f fB 0)0(,1)0(<''>f fC 0)0(,1)0(>''<f f D0)0(,1)0(<''<f f6.设⎰⎰⎰===44400cos ln ,cot ln ,sin ln πππxdx K xdx J xdx I 的大小关系是、、则K J IA I<J<KB I<K<JC J<I<KD K<J<I7.设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第一行得单位矩阵。
1987-1989考研数学二真题及参考答案
(4) 设 L 为取正向的圆周 x2 y2 9 ,则曲线积分 (2xy 2y)dx (x2 4x)dy 的值是 L 18 .
(5) 已知三维线性空间的一组基底 1 (1,1, 0), 2 (1, 0,1), 3 ( 0,1,1) ,则向量 =( 2 , 0 , 0 ) 在上述基底下的坐标是 ( 1 , 1 , -1 )
其中 s 是曲线
z
y 1
(1 y 3) 绕 Y 轴旋转一周所形成的曲面,它的法向量与 Y 轴
x 0
正向的夹角恒大于 / 2 .
解: S 的方程为 y x2 z2 1,记 S1 : y 3, (x2 z2) ,知 S S1 为封闭曲面,设其
方向取外侧,所围区域为 ,则由高斯公式,有
2x yz
○1 当 z 0 时, Fz (z)
0dxdy 0 ,此时 fz (z) 0 0;
2x yz
○2
当 0 z 2 时, Fz (z)
z
dy
zy 2
e ydx
z
0
0
2
z e ydy 1
0
2
z ye ydy ,此时
0
fz
(z)
Fz(z)
1 2
z eydy 1 (1 ez ) ;
1987 年全国硕士研究生入学统一考试 数学试题参考解答
数 学(试卷Ⅰ)
一、填空题(每小题 3 分,满分 15 分. 只写答案不写解题过程)
(1) t
及
x 1 y 2 z 1 121
都平行,且过原点的平面方程是
x y50
(2) 当 x 1/ ln 2 ;时,函数 y x2x 取得极小值.
考研数学真题1989
1989年全国硕士研究生入学统一考试英语试题1. Modern man faces dangers completely unknown ________ his predecessors.[A] for [B] to [C] of [D] by2. The chances of seeing a helicopter in my hometown are one ________ a million.[A] for [B] to [C] in [D] against3. ________ we have all the materials ready, we should begin the new task at once.[A] Since that [B] Since now [C] By now [D] Now that4. We hope the measures to control prices, ________ taken by the government, willsucceed.[A] when [B] as [C] since [D] after5. The historical events of that period are arranged ________.[A] in alphabetical order [B] in an alphabetical order[C] in the alphabetical orders [D] in alphabetical orders6. In some markets there may be only one seller. ________ is called a monopoly.[A] Situation as this [B] Such kind of situation[C] Such a situation [D] A situation of this7. He is ________ to speak the truth.[A] too much of a coward [B] too much a coward[C] so much a coward [D] so much of a coward8. He always gives ________ to his wife’s demands and does whatever she tellshim to.[A] up [B] away [C] in [D] out9. It’s ________ in the regulations that you can take 20 kilos of luggage with you.[A] laid upon [B] laid out [C] laid up [D] laid down10. Look at all the corruption that’s going on. It’s time the city was ________.[A] cleaned out [B] cleaned down [C] cleaned away [D] cleaned up11. Though he did not say so directly, the inspector ________ the man was guilty.[A] declared [B] implied [C] disclosed [D] said12. The Prime Minister refused to ________ on the rumour that he had planned toresign.[A] explain [B] comment [C] remark [D] talk13. I asked the tailor to make a small ________ to my trousers because they were toolong.[A] change [B] variation [C] revision [D] alteration14. Magnificent views over the countryside have often ________ people to writepoems.[A] excited [B] inspired [C] induced [D] attracted15. The food was divided ________ according to the age and size of the children.[A] equally [B] proportionately [C] sufficiently [D] adequately Section II Reading ComprehensionText 1A scientist once said: “I have concluded that the earth is being visited by intelligently controlled vehicles from outer space.”If we take this as a reasonable explanation for UFOs (unidentified flying objects), questions immediately come up.“Why don’t they get in touch with us, then? Why don’t they land right on the White House lawn and declare themselves?” people asked.In reply, scientists say that, while this may be what we want, it may not necessarily be what they want.“The most likely explanation, it seems to me,” said Dr. Mead, “is that they are simply watching what we are up to -- that responsible society outside our solar system is keeping an eye on us to see that we don’t set in motion a chain reaction that might have unexpected effects for outside our solar system.”Opinions from other scientists might go like this: “Why should they want to get in touch with us? We may feel we’re more important than we really are! They may want to observe us only and not interfere with the development of our civilization. They may not care if we see them but they also may not care to say ‘hello’.”Some scientists have also suggested that Earth is a kind of zoo or wildlife reserve. Just as we set aside wilderness areas and wildlife reserves to allow animals and growing things to develop naturally while we observe them, so perhaps Earth was set aside ages ago for the same purpose.Are we being observed by intelligent beings from other civilizations in the universe? Are they watching our progress in space travel? Do we live in a gigantic“zoo” observed by our “keepers,” but having no communication with them?Never before in our history have we had to confront ideas like these. The simple fact is that we, who have always regarded ourselves as supreme in the universe, may not be so. Now we have to recognize that, among the stars in the heavens, there may very well be worlds inhabited by beings who are to us as we are to ants.16. People who ask the question “Why don’t they get in touch with us... and declarethemselves?” think that ________.[A] there are no such things as UFOs[B] UFOs are visitors from solar system[C] there’s no reason for UFOs sooner or later[D] we are bound to see UFOs sooner or later17. According to Dr. Mead, the attitude of beings from outer space toward us is oneof ________.[A] unfriendliness[B] suspicion[C] superiority[D] hostility18. The tone of the writer is that of ________.[A] doubt[B] warning[C] indifference[D] criticismText 2The use of the motor is becoming more and more widespread in the twentieth century; as an increasing number of countries develop both technically and economically, so a larger proportion of the world’s population is able to buy and use a car. Possessing a car gives a much greater degree of mobility, enabling the driver to move around freely. The owner of a car is no longer forced to rely on public transport and is, therefore, not compelled to work locally. He can choose from different jobs and probably changes his work more frequently as he is not restricted to a choice within a small radius. Travelling to work by car is also more comfortable than having to use public transport; the driver can adjust the heating in winter and the air conditioning in the summer to suit his own needs and preference. There is no irritation caused by waiting for trains, buses or underground trains, standing in long patient queues, or sitting on windy platforms, for as long as half an hour sometimes. With the building of good, fast motorways long distances can be covered rapidly and pleasantly. For the first time in this century also, many people are now able to enjoy their leisuretime to the full by making trips to the country or seaside at the weekends, instead of being confined to their immediate neighbourhood. This feeling of independence, and the freedom to go where you please, is perhaps the greatest advantage of the car.When considering the drawbacks, perhaps pollution is of prime importance. As more and more cars are produced and used, so the emission from their exhaust-pipes contains an ever larger volume of poisonous gas. Some of the contents of this gas, such as lead, not only pollute the atmosphere but cause actual harm to the health of people. Many of the minor illnesses of modern industrial society, headaches, tiredness, and stomach upsets are thought to arise from breathing polluted air; doctors’ surgeries are full of people suffering from illnesses caused by pollution. It is also becoming increasingly difficult to deal with the problem of traffic in towns; most of the important cities of the world suffer from traffic congestion. In fact any advantage gained in comfort is often cancelled out in city driving by the frustration caused by traffic jams: endless queues of cars crawling one after another through all the main streets. As an increasing number of traffic regulation schemes are devised, the poor bewildered driver finds himself diverted and forced into one-way systems which cause even greater delays than the traffic jams they are supposed to prevent. The mounting cost of petrol and the increased license fees and road tax all add to the driver’s worries. In fact, he must sometimes wonder if the motor car is such a blessing and not just a menace.19. More and more people can afford to buy and use cars because ________.[A] an increasing number of cars are being produced[B] the cost of cars is getting cheaper with the development of technology[C] lots of countries have become more developed[D] the use of cars has proved to be more economical20. The advantages of having a car are best experienced in the driver’s ________.[A] freedom in choosing his job[B] comfort during the travels[C] enjoyment of his leisure time[D] feeling of self-reliance21. What is considered by the writer as the greatest menace to the people caused bythe widespread use of motor cars?[A] air pollution[B] traffic jams[C] fatal diseases[D] high costText 3Manners nowadays in metropolitan cities like London are practically non-existent. It is nothing for a big, strong schoolboy to elbow an elderly woman aside in the dash for the last remaining seat on the tube or bus, much less stand up and offer his seat to her, as he ought. In fact, it is saddening to note that if a man does offer his seat to an older woman, it is nearly always a Continental man or one from the older generation.This question of giving up seats in public transport is much argued about by young men, who say that, since women have claimed equality, they no longer deserve to be treated with courtesy and that those who go out to work should take their turn in the rat race like anyone else. Women have never claimed to be physically as strong as men. Even if it is not agreed, however, that young men should stand up for younger women, the fact remains that courtesy should be shown to the old, the sick and the burdened. Are we really so lost to all ideals of unselfishness that we can sit there indifferently reading the paper or a book, saying to ourselves “First come, first served,” while a grey-haired woman, a mother with a young child or a cripple stands? Yet this is all too often seen.Conditions in travel are really very hard on everyone, we know, but hardship is surely no excuse. Sometimes one wonders what would have been the behaviour of these stout young men in a packed refugee train or a train on its way to a prison-camp during the War. Would they have considered it only right and their proper due to keep the best places for themselves then?Older people, tired and irritable from a day’s work, are not angels, either -- far from it. Many a brisk argument or an insulting quarrel breaks out as the weary queues push and shove each other to get on buses and tubes. One cannot commend this, of course, but one does feel there is just a little more excuse.If cities are to remain pleasant places to live in at all, however, it seems imperative, not only that communications in transport should be improved, but also that communication between human beings should be kept smooth and polite. All over cities, it seems that people are too tired and too rushed to be polite. Shop assistants won’t bother to assist, taxi drivers growl at each other as they dash dangerously round corners, bus conductor pull the bell before their desperate passengers have had time to get on or off the bus, and so on and so on. It seems to us that it is up to the young and strong to do their small part to stop such deterioration. 22. From what you have read, would you expect manners to improve among people________?[A] who are physically weak or crippled[B] who once lived in a prison-camp during the War[C] who live in big modern cities[D] who live only in metropolitan cities23. What is the writer’s opinion concerning courteous manners towards women?[A] Now that women have claimed equality, they no longer need to be treateddifferently from men.[B] It is generally considered old-fashioned for young men to give up their seatsto young women.[C] “Lady First” should be universally practiced.[D] Special consideration ought to be shown them.24. According to the author communication between human beings would besmoother if ________.[A] people were more considerate towards each other[B] people were not so tired and irritable[C] women were treated with more courtesy[D] public transport could be improved25. What is the possible meaning of the word “deterioration” in the last paragraph?[A] worsening of general situation[B] lowering of moral standards[C] declining of physical constitution[D] spreading of evil conductSection III Close TestOne day drought may be a thing of the past at least in coastal cities. Vast areas of desert throughout the world may for the first time 26and provide millions of hectares of land where now nothing grows.By the end of this century this may not be mere 27. Scientists are already looking into the possibility of using some of the available ice in the Arctic and Antarctic. In these regions there are vast ice-caps formed by snow that has fallen over the past 50,000 years. Layer 28layer of deep snow means that, when melted, the snow water would be pure, not salty as sea-ice would be. There is so much 29pure water here that it would need only a fraction of it to turn much of the desert or poorly irrigated parts of the world into rich farmland. And what useful packages it would come in! It should be possible to cut off a bit of ice and transport it! Alternatively perhaps a passing iceberg could be 30. They are always breaking away from the main caps and floating around, pushed by currents, until they eventually melt and are wasted.Many icebergs are, of course, far too small to be towed 31distance, and would melt before they reached a country that needed them anywhere. It would be necessary to locate one that was 32and that was big enough to provide a good supply of ice when it reached us. Engineers think that an iceberg up to seven miles long and one and a half miles wide could be transported if the tug pulling it was as big as a supertanker! Even then they would cover only twenty miles every day. However, 33the iceberg was at its destination, more that 7,000 million cubic metres of water could be taken from it! That would probably be more than enough for any medium-sized city even in the hottest summer! But no doubt a use could be found for it. 34, scientist say, there would not be too much wastage in such a journey. The larger the iceberg, the slower it melts, even if it is towed through the tropics. This is because when the sun has a bigger area to warm 35, less heat actually gets into the iceberg. The vast frozen centre would be unaffected.26. [A] come to life [B] come into existence [C] come into activity[D] come round27. [A] speculation [B] imagination [C] computation [D] expectation28. [A] above [B] of [C] upon [D] over29. [A] essential [B] potential [C] claimable [D] obtainable30. [A] seized [B] snatched [C] grabbed [D] captured31. [A] much [B] any [C] some [D] certain32. [A] manageable [B] manipulative [C] operable [D] controllable33. [A] after [B] while [C] since [D] once34. [A] Apparently [B] Noticeably [C] Distinctly [D] Notably35. [A] round [B] over [C] up [D] through Section VII English-Chinese TranslationRead the following passage carefully and then translate the sentences in heavy type into Chinese. (20 points)When Jane Matheson started work at Advanced Electronics Inc. 12 years ago, (61) she laboured over a microscope, hand-welding tiny electronic computers and turned out 18 per hour. Now she tends the computerized machinery that turns out high capacity memory chips at the rate of 2,600 per hour. Production is up, profits are up, her income is up and Mrs. Matheson says the work is far less strain on her eyes.But the most significant effect of the changes at AEI was felt by the workers who are no longer there. Before the new computerized equipment was introduced, there were 940 workers at the plant. Now there are 121. (62) A plant follow-up survey showed that one year after the layoffs only 38% of the released workers found new employment at the same or better wages. Nearly half finally settled for lower pay and more than 13% are still out of work. The AEI example is only one of hundreds around the country which forge intelligently ahead into the latest technology, but leave the majority of their workers behind.(63) Its beginnings obscured by unemployment caused by the world economic slow-down, the new technological unemployment may emerge as the great socio-economic challenge of the end of the 20th century. One corporation economist says the growth of “machine job replacement” has been with us since the beginning of the industrial revolution, but never at the pace it is now. The human costs will be astonishing. (64) “It’s humiliating to be done out of your job by a machine and there is no way to fight back, but it is the effort to find a new job that really hurts.” Some workers, like Jane Matheson, are retrained to handle the new equipment, but often a whole new set of skills is required and that means a new, and invariably smaller set of workers. (65) The old workers, trapped by their limited skills, often never regain their old status and employment. Many drift into marginal areas. They feel no pride in their new work. They get badly paid for it and they feel miserable, but still they are luckier than those who never find it.(66) The social costs go far beyond the welfare and unemployment payments made by the government. Unemployment increases the chances of divorce, child abuse, and alcoholism, a new federal survey shows. Some experts say the problem is only temporary... that new technology will eventually create as many jobs as it destroys. (67) But futurologist Hymen Seymour says the astonishing efficiency of the new technology means there will be a simple and direct net reduction in the amount of human labor that needs to be done. “We should treat this as an opportunity to give people more leisure. It may not be easy, but society will have to reach a new unanimity on the division and distribution of labor,” Seymour says. He predicts most people will work only six-hour days and four-day weeks by the end of the century. But the concern of the unemployed is for now. (68) Federally funded training and free back-to-school programs for laid-off workers are under way, but few experts believe they will be able to keep up with the pace of the new technology. For the next few years, for a substantial portion of the workforce, times are going to be very tough indeed.。
1989考研数学真题+答案
1989年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题 (本题满分15分,每小题3分) (1) 以知f '(3)=2,则0(3)(3)lim2h f h f h→--=-1(2) 设()f x 是连续函数,且⎰+=1)(2)(dt t f x x f ,则()f x =1x -.(3) 设平面曲线L 为下半圆Y=-21x -,则曲线积分=+⎰)(22y x Lπ(4) 向量场22(,,)ln(1)z u x y z xy i ye j x z k =+++ 在点p(1,1,0)处的散度div u = 2 (5) 设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡304041003,I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001则逆矩阵1(2)A I --=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10002121001二、选择题 (本题满分15分,每小题3分) (1) 当0x >时,曲线1siny x x= (A) 有且仅有水平渐近线; (B) 有且仅有铅直渐近线.(C) 既有水平渐近线,也有铅直渐近线; (D) 既无水平渐近线,也无铅直渐近线.(2) 已知曲面224z x y =--上点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是(A) (1,-1,2) (B)(-1,1,2) (C)(1,1,2) (D)(-1,-1,2) (C)(3) 设线性无关的函数123,,y y y 都是二阶非齐次线性方程)()()(x f y x q y x p y =+'+''的解,12,c c 是任意常数,则该非齐次方程的通解是(A)32211y y c y c ++(B)3212211)1(y c c y c y c +--+ (C)3212211)1(y c c y c y c ---+ (D)3212211)1(y c c y c y c --++(D)(4) 设函数2(),01,()f x x x s x =≤<=1sin ,n bn n x π∞=∑,x -∞<<+∞,其中102()sin ,(1,2,)n b f x n xdx n π==⎰ ,.则1()2s -)等于(A) 12-(B) 14-(C)41 (D) 21 (B) (5) 设A 是4阶矩阵,且A 的行列式0A =,则A 中(A) 必有一列元素全为0; (B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合;(D) 任一列向量是其余列向量的线性组合. (C) 三、(本题满分15分,每小题5分)(1) 设),()2(xy x g y x f z +-=,其中函数()f t 二阶可导,(,)g u v 具有连续的二阶偏导数,求y x z∂∂∂2.解:2u v z f g yg x∂'=++∂,……2分 22uv vv v zf xg xyg g x y∂''=-+++∂∂. …5分(2) 设曲线积分⎰+02)(dy x y dx xy α与路径无关,其中)(x α具有连续的导数,且)0(α=0.计算⎰+)1,1()0,0(2)(dy x y dx xy α的值.解:由2(,),(,)(),P QP x y xy Q x y y x y xϕ∂∂===∂∂, ……1分 得22(),()xy y x x x C ϕϕ'==+. 再由(0)0C=0ϕ=得,故2()x x ϕ=. ……3分所以(1,1)(1,1)222(0,0)(0,0)()xy dx y x dy xy dx x ydy ϕ+=+⎰⎰.沿直线y x =从点(0,0)到点(1,1)积分,得(1,1)123(0,0)1()22xy dx y x dy x dx ϕ+==⎰⎰ ……5分 (3) 计算三重积分⎰⎰⎰Ω+dy z x )(,其中是Ω由曲面z=22y x +与z=221y x --所围成的区域.解:利用球面坐标计算21240sin cos sin xdv d d r r dr ππθϕϕθϕΩ=⋅⎰⎰⎰⎰⎰⎰……1分 4240011sin [(sin 2)]0244d d πππϕθθϕϕ=⋅-⋅=⎛⎜⎠⎰. ……2分2124000cos sin zdv d d r r dr ππθϕϕϕΩ=⋅⎰⎰⎰⎰⎰⎰240112sin 248d πππϕϕ=⋅⋅=⎰. ……4分所以()8x z dv πΩ+=⎰⎰⎰. ……5分四、(本题满分6分) 将函数arctgx f =)(xx-+11展为x 的幂级数. 解: 由221()(1),(11)1n n n f x x x x ∞='==--<<+∑ ……2分得12210000(1)()(0)()(1)21xn xn nn n n f x f f t dt t dt x n +∞∞+==-'-==-=+⎛⎜⎠∑∑⎰.而(0)arctan14f π==, ……5分 所以2101(1)arctan ,(11)1421n n n x x x x n π∞+=+-=+-≤<-+∑.……6分五、(本题满分7分) 设0()sin ()()xf x x x t f t dt =--⎰,其中f 为连续函数,求()f x .解:0()sin ()()xx f x x xf t dt tf t dt =-+⎰⎰,0()cos (),()sin ()xf x x f t dt f x x f x '''=-=--⎰.即()()sin f x f x x ''+=-, ……2分 这是二阶常系数非齐次线性微分方程,初始条件为00|(0)0,|(0)1x x y f y f ==''====. ……3分 其对应齐次方程的通解为12sin cos y C x C x =+. ……4分设非齐次方程的特解*(sin cos )y x a x b x =+,可得10,2a b ==;于是*cos 2xy x =. ……5分 因此非齐次方程的通解为12sin cos cos 2xy C x C x x =++. ……6分 又由初始条件定出121,02C C ==,从而1()sin cos 22xf x x x =+.……7分六、(本题满分7分)证明方程lnx=x e x 2cos 10--⎰πdx 在区间(0,+∞)内有且仅有两个不同实根.解:1cos 222xdx π-=⎰.……2分记()ln 22x F x x e =--11()F x e x'=-,()0F e '=. 因当0x e <<时,()0F x '<,()F x 递减;当e x <<+∞时,()0F x '>,()F x 递增;故()F x 在区间(0,)()e e +∞和,内分别至多一个零点. ……5分又()220F e =-<,34()0,()0F e F e ->>.由零点定理,()F x 在区间34(,)()e e e e -和,内分别有一个零点.故方程0ln 1cos 2x x xdx e π=--⎰在(0,)+∞内有且仅有两个实根. ……7分 七、(本题满分6分)问λ为何值时,线性方程组13123123()4226423x x f x x x x x x x λλλ+=⎧⎪=++=+⎨⎪++=+⎩有解,并求出解的一般形式.解:对方程组的增广矩阵进行初等行变换得1011014122012326142301243λλλλλλ⎛⎫⎛⎫ ⎪ ⎪+→--+ ⎪ ⎪ ⎪ ⎪+--+⎝⎭⎝⎭101012320001λλλ⎛⎫ ⎪→--+⎪ ⎪-+⎝⎭ ……3分 当10λ-+=,即1λ=时,方程组有解. ……4分这时方程组为131231231423645x x x x x x x x +=⎧⎪++=⎨⎪++=⎩,而1323121x x x x +=⎧⎨-=-⎩为其同解方程组. ……5分解之得1323112x x x x =-⎧⎨=-+⎩.其中3x 取任意常数. ……6分八、(本题满分7分)假设λ为n 阶可逆矩阵A 的一个特征值,证明: (1)λ1为A-1的特征值;(2) —λ||A 为A 的伴随矩阵A*的特征值.证:(1)由条件知有非零向量ξ满足ξλξ=A……2分 两端左乘以1-A ,得1ξλξ-=A .……3分因ξ为非零向量,故0λ≠,于是有11ξξλ-=A ,所以1λ为1-A 的特征值.……4分 (2)由于1*1||-=AA A , ……5分 故前一式又可写为*11||ξξλ=A A ,……7分从而有*||ξξλ=A A ,所以||λA 为*A 的特征值.……8分九、(本题满分9分)设半径为R 的圆面∑的球心在定球面2222,(0)x y z a a ++=>上,问当R 取何值时,球面∑在定球面内部的那部分的面积最大?解:设球面∑的方程为2222()x y z a R ++-=.两球面的交线在xoy 面上的投影为222222(4)40R x y a R a z ⎧+=-⎪⎨⎪=⎩. ……2分记投影曲线所围平面区域为xy D .球面∑在定球面内的部分的方程为z a = 这部分球面的面积22222()1xyxyx y D D S R z z dxdy R x y''=++=--⎰⎰⎰⎰……4分2232422222Ra R a R d R aR rππθπ-==--⎰.……6分 令23()40R S R R a ππ'=-=,得驻点1240(),3aR R ==舍去, ……8分 由于4()403a S π''=-<.故当43aR =时,球面∑在定球面内的部分的面积最大.……9分十、填空题 (本题满分6分,每小题2分)(1) 已知随机事件A 的概率P(A)=0.5,随机事件B 的概率P(B)=0.6及条件概率P(B|A)=0.8, 则和事件A ⋃B 的概率P(A ⋃B)=0.7(2) 甲,乙两人独立的对同一目标射击一次.其命中率分别为0.6和0.5.先已知目标被命中,则它是甲射中的概率是0.75(3) 若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是0.8.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1,标准差(均方差)为2的正态分布,而Y 服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数解:因相互独立的正态随机变量的线性组合仍然服从正态分布,故只需确定Z 的均值()E Z 和方差()D Z .……1分 由于()2()()35E Z E X E Y =-+=,……3分2()2()()9D Z D X D Y=+=. ……5分所以Z的概率密度函数为2(5)18()32zzf zπ--=. ……6分数 学(试卷二)一、填空题 【 同数学一 第一题 】 二、选择题 【 同数学一 第二题 】 三、【 同数学一 第三题 】 四、(本题满分18分,每小题6分) (1) 【 同数学一第四(1)题 】(2) 求八分之一球面2222x y z R ++=,0,0,0x y z ≥≥≥的边界曲线的重心,设曲线的线密度1ρ=.解:设曲线在XOY ,YOZ ,ZOX 坐标平面内的弧段分别为123L ,L ,L (如图), 则曲线质量为123L +L L 23342R m ds R ππ+==⨯=⎰. ……2分 记曲线重心为(,,)x y z ,则123L +L L 1x xds m+=⎰ ……3分 ()123L L L 1xds xds xds m =++⎰⎰⎰()131L L L 120xds xds xds m m =++=⎰⎰⎰22202243R R R dx m m R x π===-⎛⎜⎠. ……5分由对称性知43R y z x π===,即所求重心为444333R R R πππ⎛⎫ ⎪⎝⎭,,.……6分 (3) 设空间区域Ω由曲面222z a x y =--与平面0z =围成,其中a 为正的常数,记Ω表面的外侧为S ,Ω的体积为V ,求证:V dxdy xyz z dzdx z y x dydz z y x S=++-⎰⎰)1(2222.证: 由高斯公式知原式=12xyz dxdydz Ω⎰⎰⎰(+) ……2分 2V xyzdxdydz Ω=+⎰⎰.……4分因Ω关于XOZ 坐标平面对称,xyz 是Ω上关于y 的奇函数,故有0xyzdxdydz Ω=⎰⎰⎰.……6分所以欲证等式成立.五、(本题满分7分)【 同数学一 第五题 】 六、(本题满分7分)【 同数学一 第六题 】 七、(本题满分6分)【 同数学一 第七题 】 八、(本题满分8分)【 同数学一 第八题 】 九、(本题满分9分)【 同数学一 第九题 】数 学(试卷三)一、填空题 (本题满分21分,每小题3分) (1) 0lim 21/2x xctg x →=.(2)⎰πsin tdt t =π.(3) 曲线y =⎰--xdt t t 0)2)(1( 点(0,0)处的切线方程是2y x =.(4) 设()(1)(2)()f x x x x x n =+++ ,则!)0(n f ='(5) 【 同数学一 第一、(2)题 】(6) 设()f x =0,0,sin 2>≤⎪⎩⎪⎨⎧+x x xbx bx a 在0x =处连续,则常数a 与b 应满足的关系是a b =.(7) 设tan y x y =+,则dy =2cot ydx .二、(本题满分20分,每小题4分) (1) 已知arcsin xy e -=y '解:222()12(1)(1)(1)x xx xx x e x y eex e -----'⋅'===----. ……4分(2) 求⎰x x dx2ln .解: 22ln ln ln dx d x x x x =⎛⎛⎜⎜⎠⎠. ……2分 1ln C x=-+.……4分(3) 求 xx x x 10)cos sin 2(lim +→.解: 1ln ln(2sin cos )y x x x=+ ……2分 利用罗比塔法则有002cos sin limln lim 22sin cos x x x xy x x→→-==+.……3分 故120lim(2sin cos )xx x x e →+=.……4分(4) 已知2ln(1)x t y arctgt⎧=+⎨=⎩ 求 dx dy及 22dx y d . 解: 22111221dy t t dx t t +==+,……2分2222321112241d y t t dx t t t +=-⋅=-+.……4分(5) 已知1(2),(2)02f f '== 及 ⎰=201)(dx x f ,求 ⎰''102)2(dx x f x .解: 设2t x =,则 2122001(2)()24t x f x dx f t dt ''''=⎰⎰……1分 222001()2()8t f t tf t dt ⎡⎤''=-⎢⎥⎣⎦⎰……2分 2012()8tdf t ⎡⎤=-⎢⎥⎣⎦⎰……3分 220011()()[11]044tf t f t dt ⎡⎤=--=--=⎢⎥⎣⎦⎰.……4分三、选择题 (本题满分18分,每小题3分) (1) 【 同数学一 第二、(1) 题 】(2) 若2350a b -<,则方程043235=+++c bx ax x (B)(A) 无实根 (B) 有唯一实根 (C) 有三个不同实根 (D) 有五个不同实根 (3) 曲线cos y x =(22x ππ-≤≤)与x 轴围成的图形绕x 轴旋转一周所成的旋转体的体积为(A) /2π (B) π (C) 2/2π (D) π2 (4) 设函数()f x 及()g x 都在x a =处取得极大值,则函数()()()F x f x g x =在x a = (D)(A) 必取极大值 . (B) 必取极小值.(C) 不可能取极值. (D) 是否取极值不能确定.(5) 微分方程1+=-''x e y y 的一个特解应具有形式(式中,a b 为常数) (B)(A) x ae b + (B) x axe b + (C) x ae bx + (D) xaxe bx +(6) ()f x 在点a x =可导的一个充分条件是 (D)(A) ⎥⎦⎤⎢⎣⎡-++∞→)()1(lim a f h a f h h 存在 (B) hh a f h a f h )()2(lim0+-+→存在(C) h h a f h a f h 2)()(lim--+→存在 (D) hh a f a f h )()(lim 0--→存在四、(本题满分6分)微分方程)0()1(2+∞<<=-+'x e y x y x x 满足0)1(=y 的解. 解:由通解公式有112()xxx dx dx xxe y ee dx C x---⎛⎜⎠⎰=+⎰……2分 即y =2x xCe e x+.……4分 再由(1)0y =,得C e =-.……5分 故所求通解为()x x e e e y x-=.……6分五、(本题满分7分)【 同数学一 第五题 】 六、(本题满分7分)【 同数学一 第六题 】 七、(本题满分11分) 对函数y=21xx +,填写下表. 单调减区间 单调增区间 极 值 点 极 值 凹 区 间 凸 区 间 拐 点 渐 近 线单调减少区间 (,2),(0,)-∞-+∞ (2分) 单调增加区间 (2,0)-(3分) 极值点 2- (4分) 极值 1/4- (5分) 凹区间 (3,0)(0,)-+∞, (7分) 凸区间 (,3)-∞- (8分) 拐点 (3,2/9)--(9分) 渐进线00x y ==和(11分)八、(本题满分10分)设抛物线2y ax bx c =++过原点,当01x ≤≤,时0y ≥,又已知该抛物线与x 轴及直线1x =所围成的面积为31.试确定,,a b c 的值,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.解:因曲线过原点,故0c =. ……1分由题设有1201()323a b ax bx dx +=+=⎰,即2(1)3b a =-. ……3分 又2212201()()523a b V ax bx dx ab ππ=+=++⎰. ……5分将b 的表达式代入上式得22114[(1)(1)]5339a V a a a π=+-+⋅-. ……6分令2128(1)053327a a V a a π⎡⎤'=+---=⎢⎥⎣⎦,解得54a =-.……8分 代入b 的表达式得32b =. ……9分因a V π''>54(-)=04135及实际情况,知当53,,042a b c =-==时,体积最小. ……10分数 学(试卷四)一、填空题:(本题满分15分,每小题3分)(1) 曲线2sin y x x =+在点(,1)22ππ+处的切线方程是1y x =+.(2) 幂级数∑∞=+11n nn x 的收敛域是[1,1)-.(3) 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足的条件是1λ≠.(4) 设随机变量X 的分布函数为=)(x F 00sin 0/21/2x A x x x ππ<⎧⎪≤≤⎨⎪>⎩若若若,则A = 1 ;P {|x |<6π}=2/1.(5) 设随机变量X 的数学期望EX=μ,方差DX=2σ,则由切比雪夫(chebyshev)不等式,有≤≥-}3{σμX P 1/9 .二、选择题:(本题满分15分,每小题3分)(1) 设232)(-+=x x x f , 则当x →0时, (B)(A) ()f x 与x 是等价无穷小量 (B) ()f x 与x 是同阶但非等价无穷小量(C) ()f x 是比x 较高阶的无穷小量 (D) ()f x 是比x 较低阶的无穷小量 (2) 在下列等式中,正确的结果是(C)(A)⎰=')()(x f dx x f (B) ⎰=)()(x f x df (C) ⎰=)()(x f dx x f dx d (D) ⎰=)()(x f dx x f d(3) 【 同数学一 第二、(5) 题 】(4) 设A 和B 均为n ⨯n 矩阵 , 则必有 (C)(A) B A B A +=+ ( B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A (5) 以A 表示事件 “甲种产品畅销,乙种产品滞销”, 则其对立事件A 为(D)(A)“甲种产品滞销,乙种产品畅销” (B)“甲,乙产品均畅销”(C)“甲种产品滞销” (D)“甲种产品滞销或乙种产品畅销” 三、计算题 (本题满分15分,每小题5分) (1) 求极限11lim(sincos )x x x x→∞+ 解:设1u x=,则当x →∞时,0u →. 01sin cos )limlim(sin cos )u u u u →+→=+=uln(uu u原式e. ……1分 而00ln(sin cos )cos sin limlim 1sin cos u u u u u u u →→+-==+uu……4分 于是原式=e .……5分(2) 已知(,)z f u v =,u x y v x y =+=,且(,)f u v 的二阶偏导数都连续, 求 yx z∂∂∂2.解:z f u f v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂f f y u v∂∂=+⋅∂∂ ……2分 2222222z f u f vf u f v f y x y u y u v y v u y v y v ⎛⎫∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅⋅+⋅+ ⎪∂∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ ……4分222222f f f f f x y xy u u v v u v v ∂∂∂∂∂=+⋅+⋅++∂∂∂∂∂∂∂ 22222()f f f f x y xy u u v v v∂∂∂∂=++⋅++∂∂∂∂∂. ……5分(3) 求微分方程 x e y y y -=+'+''265 的通解.解:由特征方程为256(2)(3)0r r r r ++=++=,知特征根为2,3--.……1分 于是对应齐次微分方程的通解为2312()xx y x C eC e --=+.……2分 其中12,C C 为任意常数.设所给非齐次方程的特解为*()xy x Ae -=.……3分 将*()y x 代入原方程,可得1A =,故所给非齐次微分方程的特解为*()x y x e -=. ……4分 从而,所给微分方程的通解为2312()x x x y x C e C e e ---=++.……5分四、(本题满分9分)设某厂家打算生产一批商品投放市场,已知该商品的需求函数为2()10xp p x e -== 且最大需求量为6,其中x 表示需求量,p 表示价格.(1)求该商品的边际收益函数;(2分)(2)求使收益最大时的产量,最大收益和相应价格. (4分) (3)画出收益函数的图形.(3分)解:(1) 收益函数为2()10,06;x R x px xe x -==≤≤……1分 边际收益函数为25(2)x dR MR x e dx-==-.……2分(2) 由25(2)0x R x e-'=-=,得驻点02x =. 由于12005|(4)502xx x R x e e --==''=-=-<.……4分可见()R x 在点2x =处达到极大值,亦即最大值122(2)1020x x R xee --===.于是当产量为2时,收益取最大值120e -,而相应的价格为110e -.……6分(3) 由上面的计算结果,易得下表x[0,2]2[2,4]4[4,6]R ' + 0-- R '' ---+R单增,凸极大值20e单减,凸240(4,)e单减,凹……9分收益函数的图形为五、(本题满分9分)已知函数⎩⎨⎧≤<-≤≤=21210)(x x x x x f 若若,试计算下列各题:(1) 200()x S f x e dx -=⎰,(4分); (2) 412(2)xS f x e dx -=-⎰,(2分);(3) 222(2)n xn nS f x n e dx +-=-⎰(n=2,3,…)(1分); (4) ∑∞==0n n S S .(2分)解:(1) 12001(2)xx S xe dx x e dx --=+-⎰⎰.……1分其中111100012x x x xe dx xe e dx e ----=+=-⎰⎰,……2分 2222111(2)(2)x x x x e dx x e e dx e -----=---=⎰⎰.……3分 从而1212012(1)S e e e ---=-+=-.……4分(2) 令2t x =-,则4222102(2)()x t S f x e dx f t e dt S e ----=-==⎰⎰.……6分 (3) 令2t x n =-,则22200()t n n n S f t e dt S e ---==⎰.……7分 (4) 22000()nn nn n n S S S eS e ∞∞∞--======∑∑∑……8分 02111S e e e --==-+. ……9分六、(本题满分6分)假设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且0)(≤'x f ,记⎰-=xadt t f a x x F )(1)(,证明在(,)a b 内0)(≤'x F . 证: 由于()f x 在[,]a b 上连续,在(,)a b 内可导,因此21111()()()()()()x x a a F x f x f t dt f x f t dt x a x a x a x a ⎡⎤'=-=-⎢⎥----⎣⎦⎰⎰. ……2分由积分中值定理知,存在,a x ξξ<<,使1()()xa f f t dt x aξ=-⎰. 因此[]1()()()F x f x f x aξ'=--. ……4分又由于()0f x '≤,知()f x 在(,)a b 上非增函数,所以当x ξ>时,()()f x f ξ≤.因10x a>-,故由此可知()0F x '≤. ……6分七、(本题满分5分)已知X=AX+B,其中010111101A ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,112053B -⎛⎫⎪= ⎪ ⎪-⎝⎭,求矩阵X..解: 以E 表示3阶单位矩阵,由X =AX +B ,有(-)=E A X B . ……1分 其中110101102-⎛⎫ ⎪-=- ⎪ ⎪⎝⎭E A .……2分其逆矩阵为102/31/3()12/31/301/31/3-⎛⎫⎪-=- ⎪ ⎪-⎝⎭E A ; ……4分于是102/31/31131()12/31/3202001/31/35311---⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-=-= ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭X E A B .……5分八、(本题满分6分)设()1,1,11=α,()3,2,12=α,()t ,3,13=α, (1) 问当t 为何值时,向量组321,,ααα线性无关?(3分) (2) 问当t 为何值时,向量组321,,ααα线性相关?(1分) (3) 当向量组321,,ααα 线性相关时,将3α表示为1α和2α的线性组合.(2分)解:设有实数123,,k k k ,使1212330k a a k k a ++=,则得方程组:123123123023030k k k k k k k k k t ++=++⎧=++=⎪⎨⎪⎩ (*), 其系数行列式为 111123513D t t ==-. ……2分(1) 当5t ≠时,0D ≠,方程组(*)只有零解:1230k k k ===.这时,向量组3,21,a a a 线性无关.……3分 (2) 当5t =时,0D ≠,方程组(*)有非零解,即不存在不全为0的常数123,,k k k ,使1212330k a a k k a ++=,这时,向量3,21,a a a 线性相关.……4分(3) 设5t =.由111111123012135000⎛⎫⎛⎫⎪ ⎪→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭知方程组(*)可化为1323020k k k k -=+=⎧⎨⎩. 令31k =,得121,2k k ==-.因此,有12320a a a -+=.从而3a 可以通过1a 和,2a 表示为3122a a a =-+.……6分九、(本题满分5分)设122212221A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭,(1) 试求A 矩阵的特征值.(2分)(2) 利用(1)小题的结果,求矩阵1-+A E 的特征值.其中E 是三阶单位矩阵(3分)解:(1)矩阵A 的特征方程为2122||212(1)(5)0221λλλλλλ+---=-+=-+=-+E A ,由此得矩阵A 的特征值1,1,5-.……2分(2)由于矩阵A 的特征值1,1,5-,可知1-A 的特征值为11,1,5-.……3分因此,有1||0--=E A ,11()05---=E A .由此可见1|(11)()|0-+-+=E E A ,11|(1)()|05--+-+=E E A ,即1|2()|0--+=E E A ,14|()|05--+=E E A .于是,矩阵1-+E A 的特征值42,2,5.……5分十、(本题满分7分)已知随机变量X 和Y 的联合密度为⎩⎨⎧+∞<<∞<<=+-其他若00,0),()(y x e y x f y x ,试求:(1) {}P X Y < (5分) ; (2)()E XY (2分)解:(1) {}(,)X YP X Y f x y dxdy <<=⎰⎰……2分()01(1)2yyx y y x y y e dxdy e dy e dy e e dy +∞+∞+∞-+----===-=⎰⎰⎰⎰⎰. ……5分 (2) ()()1x y xy E XY xyedxdy xe dx ye dy +∞+∞+∞+∞-+--===⎰⎰⎰⎰.……7分十一、(本题满分8分)设随机变量在 [2,5]上服从均匀分布.现在对X 进行三次独立观 测.试求至少有两次观测值大于3的概率.解:以A 表示事件“对X 的观测值大于3”,即A {3}X =>,由条件知,X 的密度函数为125()30x f x ⎧≤≤⎪=⎨⎪⎩若其他,5312(){3}33P A P X dx =>==⎰. ……4分以3u 表示三次观测值大于3的次数(即在三次独立观测中事件A 出现的次数).显然,3u 服从参数为3n =,23p =的二项分布, 因此,所求概率为223333321220{2}()()33327P u C C ≥=+=. ……8分数 学(试卷五)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学四 第一、(1) 题 】(2) 某商品的需求量Q 与价格P 的函数关系为b Q ap =,其中a 和b 为常数,且0≠a ,则需求量对价格P 的弹性是 b .(3) 行列式1111111111111111--+---+---x x x x 4x .(4) 设随机变量123,,X X X 相互独立,其中1X 在[0,6]上服从均匀分布,2X 服从正态分布23(0,2),N X 服从参数为3=λ的泊松分布.记12323Y X X X =-+,则DY = 46 .(5) 【 同数学四 第一、(4) 题 】二、选择题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学四 第二、(1) 题 】 (2) 【 同数学四 第二、(2) 题 】 (3) 【 同数学一 第二、(2) 题 】(4) 设n 元齐次线性方程组AX =0的系数矩阵A 的秩为r ,则AX =0有非零解的充分必要条件是 (B) (A) n r = (B) n r ≥ (C) n r < (D) n r > (5) 【 同数学四 第二、(5) 题】三、(本题满分20分,每小题5分) (1) 求极限1lim ()x xx x e →+∞+.解:原式ln()lim x x x e xe→+∞+=. ……1分 而ln()1lim lim x xx x x x e e x x e→+∞→+∞++=+ ……2分 lim1xxx e e →+∞=+ ……3分 lim 1xx x e e→+∞==. ……4分因此1lim ()x xx x e e →+∞+=.……5分(2) 已知22y x a z -=,其中1,0≠>a a ,求dz .解:222222ln x y z a a x x y x y -∂==∂--, ……2分222222ln x y z a a yx yx y-∂=⋅=∂--. ……4分222222)z z dz dx dy xdx ydy x y x y x y x y ∂∂=+==-∂∂---. ……5分(3) 求不定积分dx xx x ⎰-+2)1ln(. 解:11ln(1)dx x d x x--⎰⎰原式= ……1分11ln ||ln(1)(1)x x dx x x x =----⎰……2分 111ln ||ln(1)1x x dx x x x ⎛⎫=---+ ⎪-⎝⎭⎛⎜⎠……3分 1ln ||ln(1)ln ||ln(1)x x x x C x =---+-+……4分 1(1)ln(1)x C x=--+.……5分 (4) 求二重积分dxdy y x y x D⎰⎰++--222211,其中D 是122=+y x ,0,0==y x 所围成的区域在第I 象限部分.解:作极坐标变换cos sin x r x r θθ=⎧⎨=⎩,……1分 原式21220011rd rdr r πθ-=+⎰⎰……2分 1202(1)21rdr r π=-+⎰ ……3分 12201ln(1)22r r π⎡⎤=+-⎢⎥⎣⎦ ……4分 1[ln 2]22π=-. ……5分四、(本题满分6分)已知某企业的总收入函数为324226x x x R --=,总成本函数为28x x C +=,其中x 表示产品的产量.求利润函数,边际收入函数,以及企业获得最大利润时的产量和最大利润.解:(1) 利润函数为23223262481834L R C x x x x x x x x =-=----=--.……1分 (2) 边际收入函数为226412dRMR x x x dx ==--. ……2分 (3) 边际成本函数为82dCMC x dx==+.……3分 (4) 解方程2186120dLx x dx=--=,得1, 1.5()x x ==-舍去.……4分 而由2211(624)300x x d lx x dx ===--=-< ……5分知,当1x =时L达到极大值2311|(1834)|11x x L x x x ===--=.因为0x >时,()L x 只有一个极大值,没有极小值,故此极大值就是最大值. 于是,当产量为1时利润最大,最大利润为11.……6分五、(本题满分12分)已知函数22)1(2x x y -=,试求其单调区间,极值点,及图形的凹凸性,拐点和渐近线,并画出函数图形.解:34(1)xy x '=-,令0y '=,得0x =. ……1分 84(1)x y x +''=-4,令0y ''=,得12x =-……2分于是,可列出如下表格:(1) 由表中计算结果可见:0x =是函数的极小值点,极小值为0;……3分点12(,)29-是该曲线的拐点; ……4分 区间(,0)(1,)-∞+∞和是函数的单调减区间;……5分 区间(0,1)是函数的单调增区间; ……6分 在1(,)2-∞-上函数图形凸,……7分 在1(,1)2-和(1,)+∞上函数图形凹.……8分 (2) 由lim 2x y →∞=,知2y =为函数图形的水平渐近线;……9分 由1lim x y →=∞,知1x =为函数的图形的铅垂渐近线.……10分(3) 函数图形如下:……12分六、(本题满分5分)【 同数学四 第七题 】 七、(本题满分6分)【 同数学四 第八题 】 八、(本题满分5分)【 同数学四 第九题 】 九、(本题满分8分)已知随机变量X 和Y 的联合概率分布为:(,)X Y(0,0) (0,1) (1,0) (1,1) (2,0) (2,1) {}y Y x X P ==,0.10 0.15 0.25 0.20 0.15 0.15求:(1) X 的概率分布; (2) X +Y 的概率分布; (3)2sinY X Z +=π的数学期望.解:(1) X 的概率分为X 0 1 2{}P X x =0.25 0.45 0.30……3分(2) X+Y 的概率分为……6分(3) ()[sin]2X Y E π+sin 00.10sin0.40sin 0.35sin0.1522πππ3=⨯+⨯+⨯+⨯ 0.400.150.25=-=.……8分十、(本题满分8分)某仪器装有三只独立工作的同型号电子元件,其寿命(单位:小时)都服从同一指数分布,分布密度为6001,0()6000,0xe xf x -⎧>⎪=⎨⎪≤⎩若若,试求:在仪器使用的最初200小时那,至少有一只电子元件损坏的概率α.解:设三只元件编号分别为1,2,3;以(1,2,3)i A i =表示事件“在仪器使用的最初 200小时内,第i 只元件损坏”;以(1,2,3)i X i =表示“第i 只元件的使用寿命”. 由题意知(1,2,3)i X i =服从密度为()f x 的指数分布.易见160032001()(200)600x i i P A P X e dx e --+∞=>==⎰.……5分所求事件的概率1313123123()1()1()1P A A A P A A A e e α--==-=-=- . ……8分X Y + 0 1 2 3{}P X Y s +=0.10 0.40 0.35 0.15。
1989年全国硕士研究生入学统一考试数学试题参考解答及评分标准
x
dx 在区间(0,+ )内有且仅有两个不同实根. . „„2 分
x ln x 2 ,则 F(x) , F (e) 0 . e e x 因当 0 x e 时, F (x) 0 , F ( x ) 递减;当e x 时, F (x) 0 , F ( x ) 递增;
(B) c1y1 c2 y2 (1 c1 c2 )y3 (D) c1y1 c2 y2 (1 c1 c2 )y3 (D)
b 2
n
1
f (x) sin n xdx,(n 1, 2,) ,.则 s( ) )等于 2
1989 年 • 第 1 页
n1
n x, , x ,其中 bn sin 1
八、(本题满分 7 分) 假设 为 n 阶可逆矩阵 A 的一个特征值,证明: (1)
„„3 分
„„4 分 „„5 分
„„6 分
1
为 A-1 的特征值;
(2) —
|A|
1
为 A 的伴随矩阵A*的特征值. „„2 分
证 : (1)由条件知有非零向量 满足 A
1 两端左乘以 A ,得 A .
0
(A)
1 2
(B)
1 4
(C)(C)
1 4
(D)
1 2
(B)
(5) 设 A 是 4 阶矩阵,且 A 的行列式 A 0 ,则 A 中 (A) 必有一列元素全为 0; (B) 必有两列元素对应成比例; (C) 必有一列向量是其余列向量的线性组合; (D) 任一列向量是其余列向量的线性组合. 三、(本题满分 15 分,每小题 5 分) (1) 设 z f (2x y) g ( x , xy) ,其中函数 f (t) 二阶可导,g ( u , v) 具有连续的二阶偏导 (C)
1989考研数学二真题及答案解析
五、(本题满分 7 分)
x
∫ 设 f (x) = sin x − (x − t) f (t)dt ,其中 f 为连续函数,求 f (x) . 0
六、(本题满分 7 分)
∫ 证明方程 ln x =x − π 1− cos 2xdx 在区间 (0, +∞) 内有且仅有两个不同实根.
e0
七、(本大题满分 11 分)
❤
所以 f ′(0) = (0 +1)(0 + 2) ⋅⋅ (0 + n) + 0 + + 0 =1⋅ 2 ⋅⋅ n = n!.
(5)【答案】 x −1
1
∫ 【解析】由定积分的性质可知, f (t)dt 和变量没有关系,且 f (x) 是连续函数,故 0
1
∫ f (t)dt 为一常数,为简化计算和防止混淆, 0
lim(2 sin
x + cos x) x
= e x→0
x
,
x→0
而
lim 2sin x + cos x −1 洛 lim 2 cos x − sin x = 2 ,
x→0
x
x→0
1
所以
1
lim(2sin x + cos = x) x
lim 2sin x+cos x−1
e x→0
x=
e2 .
x→0
(4)【解析】这是个函数的参数方程,
2
2
所以
∫ ∫ 1 f (2x)dx = 1
2
f (t)dt .
0
20
∫ 把= f (2)
1= , f ′(2)
0及
2
f (x)dx = 1代入上式,得
1989年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准
则逆矩阵 ( A
2I )1
012
1
2 0
0 1
二、选择题 (本题满分 15 分,每小题 3 分)
(1) 当 x 0 时,曲线 y x sin 1 x
(A) 有且仅有水平渐近线;
(B) 有且仅有铅直渐近线.
(C) 既有水平渐近线,也有铅直渐近线; (D) 既无水平渐近线,也无铅直渐近线.
(2) 已知曲面 z 4 x2 y2 上点 P 处的切平面平行于平面 2x 2 y z 1 0 ,则点 P 的
1989 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准 数 学(试卷一)
一、填空题 (本题满分 15 分,每小题 3 分)
(1) 以知 f (3)=2,则 lim f (3 h) f (3) -1
h0
2h
1
(2) 设 f (x) 是连续函数,且 f (x) x 2 f (t)dt ,则 f (x) x 1 . 0
0
0
0
即 f (x) f (x) sin x ,
„„2 分
这是二阶常系数非齐次线性微分方程,初始条件为 y |x0 f (0) 0, y |x0 f (0) 1.„„3 分
其对应齐次方程的通解为 y C1 sin x C2 cos x .
„„4 分
设非齐次方程的特解 y* x(asin x bcos x),可得 a 0,b 1 ;于是 y* x cos x . „„5 分
„„2 分
„„5 分 „„6 分
五、(本题满分 7 分)
x
设 f (x) sin x (x t) f (t)dt ,其中 f 为连续函数,求 f (x) . 0
x
x
1989考研数二真题及解析
1989年全国硕士研究生入学统一考试数学二试题一、填空题(每小题3分,满分21分.把答案填在题中横线上.) (1) 0lim cot 2x x x →=______.(2)sin t tdt π=⎰______.(3) 曲线0(1)(2)xy t t dt =--⎰在点(0,0)处的切线方程是______.(4) 设()(1)(2)()f x x x x x n =++⋅⋅+,则(0)f '=______.(5) 设()f x 是连续函数,且1()2()f x x f t dt =+⎰,则()f x =______.(6) 设2,0()sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在0x =处连续,则常数a 与b 应满足的关系是_____.(7) 设tan y x y =+,则dy =______.二、计算题(每小题4分,满分20分.) (1)已知arcsin y e =求y '.(2) 求2ln dx x x ⎰.(3) 求10lim(2sin cos )xx x x →+.(4) 已知2ln(1),arctan ,x t y t ⎧=+⎨=⎩求dy dx 及22d ydx .(5) 已知1(2),(2)02f f '==及20()1f x dx =⎰,求120(2)x f x dx ''⎰.三、选择题(每小题3分,满分18分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 设0x >时,曲线1siny x x= ( ) (A) 有且仅有水平渐近线 (B) 有且仅有铅直渐近线(C) 既有水平渐近线,也有铅直渐近线 (D) 既无水平渐近线,也无铅直渐近线(2) 若2350a b -<,则方程532340x ax bx c +++= ( )(A) 无实根 (B) 有唯一实根 (C) 有三个不同实根 (D) 有五个不同实根 (3) 曲线cos ()22y x x ππ=-≤≤与x 轴所围成的图形,绕x 轴旋转一周所成的旋转体的体积为 ( )(A) 2π (B) π (C) 22π (D) 2π(4) 设两函数()f x 及()g x 都在x a =处取得极大值,则函数()()()F x f x g x =在x a =处( )(A) 必取极大值 (B) 必取极小值(C) 不可能取极值 (D) 是否取极值不能确定(5) 微分方程1x y y e ''-=+的一个特解应具有形式(式中,a b 为常数) ( )(A) xae b + (B) xaxe b + (C) xae bx + (D) xaxe bx + (6) 设()f x 在x a =的某个领域内有定义,则()f x 在x a =处可导的一个充分条件是( )(A) 1lim [()()]h h f a f a h→+∞+-存在 (B) 0(2)()lim h f a h f a h h→+-+存在(C) 0()()lim 2h f a h f a h h→+--存在(D) 0()()lim h f a f a h h→--存在四、(本题满分6分)求微分方程2(1)xxy x y e '+-=(0)x <<+∞满足(1)0y =的解.五、(本题满分7分)设0()sin ()()xf x x x t f t dt =--⎰,其中f 为连续函数,求()f x .六、(本题满分7分)证明方程0ln x x e π=-⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本大题满分11分)对函数21x y x+=,填写下表:八、(本题满分10分)设抛物线2y ax bx c =++过原点,当01x ≤≤时,0y ≥,又已知该抛物线与x 轴及直线1x =所围图形的面积为13,试确定,,a b c 使此图形绕x 轴旋转一周而成的旋转体的体积V最小.1989年全国硕士研究生入学统一考试数学二试题解析一、填空题(每小题3分,满分21分.) (1)【答案】12【解析】这是个0⋅∞型未定式,可将其等价变换成0型,从而利用洛必达法则进行求解. 方法一: 000cos 2lim cot 2lim lim cos 2sin 2sin 2x x x x xx x xx x x→→→==⋅0011lim lim sin 22cos 22x x x x x →→==洛. 方法二: 00cos 2lim cot 2lim sin 2x x xx x x x→→=0012121lim cos 2lim .2sin 22sin 22x x x x x x x →→=⋅== 【相关知识点】0sin lim x x x →是两个重要极限中的一个,0sin lim1x xx→=. (2)【答案】π【解析】利用分部积分法和牛顿-莱布尼茨公式来求解,sin t tdt π=⎰[]000(cos )cos (cos )td t t t t dt πππ-=---⎰⎰分部法[]00sin (00)t ππππ=++=+-=.(3)【答案】2y x =【解析】要求平面曲线的切线,首先应求出该切线的斜率,即0()f x '. 这是一个积分上限函数,满足积分上限函数的求导法则,即(1)(2)y x x '=--. 由y '在其定义域内的连续性,可知0(01)(02)2x y ='=--=.所以,所求切线方程为02(0)y x -=-,即2y x =. (4)【答案】!n【解析】方法一:利用函数导数的概念求解,即00()(0)(1)(2)()0(0)limlim x x f x f x x x x n f x x→→-++⋅⋅+-'==lim(1)(2)()12!x x x x n n n →=++⋅⋅+=⋅⋅⋅=.方法二:利用其导数的连续性,由复合函数求导法则可知, ()(1)(2)()1(2)()f x x x x n x x x n '=++⋅⋅++⋅⋅+⋅⋅+++(1)(2)(1)1x x x x n ++⋅⋅+-⋅,所以 (0)(01)(02)(0)00f n '=++⋅⋅++++12!n n =⋅⋅⋅=.(5)【答案】1x -【解析】由定积分的性质可知,1()f t dt ⎰和变量没有关系,且()f x 是连续函数,故1()f t dt ⎰为一常数,为简化计算和防止混淆,令1()f t dt a =⎰,则有恒等式()2f x x a =+,两边0到1积分得11()(2)f x dx x a dx =+⎰⎰,即 []111112000001(2)222a x a dx xdx a dx x a x ⎡⎤=+=+=+⎢⎥⎣⎦⎰⎰⎰122a =+,解之得12a =-,因此()21f x x a x =+=-. (6)【答案】a b =【解析】如果函数在0x 处连续,则函数在该点处的左右极限与该点处函数值必然相等, 由函数连续性可知(0)(0)0f f a b a -==+⋅=. 而 000sin sin sin (0)lim lim lim x x x bx bx bxf b b b x bx bx++++→→→==⋅=⋅=, 如果()f x 在0x =处连续,必有(0)(0)f f -+=,即a b =. (7)【答案】2()dxx y + 【解析】这是个隐函数,按照隐函数求导法,两边微分得2sec y dy dx dy ⋅=+, 所以 222sec 1tan ()dx dx dxdy y y x y ===++,(0x y +≠).二、计算题(每小题4分,满分20分.) (1)【解析】令u e=,v =则arcsin arcsin y e u ==,由复合函数求导法则,(arcsin )v v y u u e v e ''''===⋅=即y e '=(2)【解析】利用不定积分的换元积分法,22ln 1ln ln ln dx d x C x x x x ==-+⎰⎰.(3)【解析】可将函数转化称为熟悉的形式来求其极限,11lim(2sin cos )lim[1(2sin cos 1)]xxx x x x x x →→+=++-12sin cos 12sin cos 10lim[1(2sin cos 1)]x x x x xx x x +-⋅+-→=++-,令 2sin cos 1x x t +-=,则当0x →时,0t →, 则 112sin cos 1lim[1(2sin cos 1)]lim[1]x x tx t x x t +-→→++-=+,这是个比较熟悉的极限,即10lim(1)tt t e →+=.所以 012sin cos 1limlim(2sin cos )x x x xxx x x e→+-→+=,而 002sin cos 12cos sin limlim 21x x x x x xx →→+--=洛,所以 012sin cos 1lim20lim(2sin cos )x x x xx x x x ee →+-→+==.(4)【解析】这是个函数的参数方程,22111221dy dy dt t dx t dx t dt t +===+,2222321111211()()()2222(2)41d y d d dt d t dx t dx dx t dt t dx dt t t tdt t -+==⋅=⋅=⋅=-+. 【相关知识点】参数方程所确定函数的微分法:如果()()x t y t φϕ=⎧⎨=⎩,则()()dy t dx t ϕφ'='.(5)【解析】利用定积分的分部积分法求解定积分,111122220000111(2)(2)(2)(2)222x f x dx x df x x f x f x dx '''''⎡⎤==⋅-⎣⎦⎰⎰⎰分部法 []1011(2)0(2)2f xf x dx ''=⋅--⎰1011(2)(2)22f xdf x '=-⎰ ()1100111(2)(2)(2)222f xf x f x dx ⎡⎤'=--⎢⎥⎣⎦⎰ 1111(2)(2)(2)222f f f x dx '=-+⎰,令2t x =,则11,22x t dx dt ==, 所以 12001(2)()2f x dx f t dt =⎰⎰.把1(2),(2)02f f '==及20()1f x dx =⎰代入上式,得11200111(2)(2)(2)(2)222x f x dx f f f x dx '''=-+⎰⎰201111(2)(2)()2222f f f t dt '=-+⋅⎰1111101022222=⋅-⋅+⋅⋅=.三、选择题(每小题3分,满分18分.) (1)【答案】(A)【解析】函数1siny x x =只有间断点0x =. 001lim lim sin x x y x x ++→→=,其中1sin x是有界函数.当0x +→时,x 为无穷小,无穷小量和一个有界函数的乘积仍然是无穷小,所以1lim lim sin 0x x y x x++→→==, 故函数没有铅直渐近线.01sin1sin lim limlim 11x x x t x y t x t x+→+∞→+∞→=== , 所以1y =为函数的水平渐近线,所以答案为(A).【相关知识点】铅直渐近线:如函数()y f x =在其间断点0x x =处有0lim ()x x f x →=∞,则0x x =是函数的一条铅直渐近线;水平渐近线:当lim (),(x f x a a →∞=为常数),则y a =为函数的水平渐近线.(2)【答案】(B)【解析】判定方程()0f x =实根的个数,其实就是判定函数()y f x =与x 有几个交点,即对函数图形的描绘的简单应用, 令 53()234f x x ax bx c =+++, 则 42()563f x x ax b '=++.令 2t x =,则422()563563()f x x ax b t at b f t ''=++=++=,其判别式22(6)45312(35)0a b a b ∆=-⋅⋅=-<, 所以 2()563f t t at b '=++无实根,即()0f t '>.所以 53()234f x x ax bx c =+++在(,)x ∈-∞+∞是严格的单调递增函数. 又 53lim ()lim (234)x x f x x ax bx c →-∞→-∞=+++=-∞53lim ()lim (234)x x f x x ax bx c →+∞→+∞=+++=+∞所以利用连续函数的介值定理可知,在(,)-∞+∞内至少存在一点0(,)x ∈-∞+∞使得0()0f x =,又因为()y f x =是严格的单调函数,故0x 是唯一的.故()0f x =有唯一实根,应选(B). (3)【答案】(C)【解析】如图cos ()22y x x ππ=-≤≤的图像,则当cos y x =绕x 轴旋转一周,在x 处取微增dx ,则微柱体的体积2cos dV xdx π=,所以体积V 有222cos V xdx πππ-=⎰222222cos 21cos 22242x dx xd x dx πππππππππ---+==+⎰⎰⎰[][]22222sin 20()422222x x ππππππππππ--=-+=++=. 因此选(C).(4)【答案】(D) 【解析】题中给出的条件中,除了一处极值点外均未指明函数其它性质,为了判定的方便,可以举出反例而排除.若取2()()()f x g x x a ==--,两者都在x a =处取得极大值0, 而4()()()()F x f x g x x a ==-在x a =处取得极小值,所以(A)、(C)都不正确.若取2()()1()f x g x x a ==--,两者都在x a =处取得极大值1, 而22()()()1()F x f x g x x a ⎡⎤==--⎣⎦在x a =处取得极大值1,所以(B)也不正确,从而选(D).(5)【答案】(B)【解析】微分方程1x y y e ''-=+所对应的齐次微分方程的特征方程为210r -=,它的两个根是121,1r r ==-.而形如x y y e ''-=必有特解1x Y x ae =⋅;1y y ''-=必有特解1Y b =. 由叠加得原方程必有特解xY x ae b =⋅+,应选(B). (6)【答案】(D)【解析】利用导数的概念判定()f x 在x a =处可导的充分条件. (A)等价于0()()limt f a t f a t→++-存在,所以只能保证函数在x a =右导数存在;(B)、(C)显然是()f x 在x a =处可导的必要条件,而非充分条件,如 1cos ,00,0x y xx ⎧≠⎪=⎨⎪=⎩在0x =处不连续,因而不可导,但是 0001111cos(0)cos(0)cos cos()()lim lim lim 0222h h h f a h f a h h h h h h h h→→→+---+--===, 0001111cos()cos(0)cos cos(2)()2222lim lim lim 0h h h f a h f a h h h h h h h h→→→---+-+===均存在; (D)是充分的:00()()()()lim lim x h x h f a x f a f a f a h x h ∆=-∆→→+∆---=∆存在0()()()lim h f a f a h f a h→--'⇒=存在,应选(D).四、(本题满分6分)【解析】所给方程为一阶线性非齐次微分方程,先写成标准形式211(1)x y y e x x'+-=,通解为 11(1)(1)21()dxdx x xx y ee e dx C x ---⎰⎰=+⎰211()()xx xx x x e e e dx C e C x x e x=+=+⎰. 代入初始条件(1)0y =,得C e =-,所求解为 ()x xe y e e x=-. 【相关知识点】一阶线性非齐次微分方程的标准形式为()()y p x y q x '+=,其通解公式为()()(())p x dx p x dxy e q x e dx C -⎰⎰=+⎰,其中C 为常数.五、(本题满分7分)【解析】先将原式进行等价变换,再求导,试着发现其中的规律, 0()sin ()()sin ()()xx xf x x x t f t dt x x f t dt tf t dt =--=-+⎰⎰⎰,所给方程是含有未知函数及其积分的方程,两边求导,得()cos ()()()cos ()x xf x x f t dt xf x xf x x f t dt '=--+=-⎰⎰,再求导,得()sin ()f x x f x ''=--,即 ()()sin f x f x x ''+=-,这是个简单的二阶常系数非齐次线性微分方程,对应的齐次方程的特征方程为210r +=, 此特征方程的根为r i =±,而右边的sin x 可看作sin x e x αβ,0,1,i i αβαβ==±=±为特征根,因此非齐次方程有特解sin cos Y xa x xb x =+.代入方程并比较系数,得10,2a b ==,故cos 2xY x =,所以 12()cos sin cos 2xf x c x c x x =++.又因为(0)0,(0)1f f '==,所以1210,2c c ==,即 1()sin cos 22xf x x x =+.六、(本题满分7分)【解析】方法一:判定方程()0f x =等价于判定函数()y f x =与x 的交点个数.令 0()ln xf x x e π=-+⎰,其中π⎰是定积分,为常数,且被积函数1cos 2x -在(0,)π非负,故0π>⎰,为简化计算,令00k π=>⎰,即()ln xf x x k e=-+,则其导数11()f x x e'=-,令()0f x '=解得唯一驻点x e =, 即 ()0,0()0,f x x ef x e x '><<⎧⎨'<<<+∞⎩,所以,x e =是最大点,最大值为()ln 0ef e e k k e=-+=>.又因为 00lim ()lim(ln )lim ()lim (ln )x x x x x f x x k ex f x x k e ++→→→+∞→+∞⎧=-+=-∞⎪⎪⎨⎪=-+=-∞⎪⎩,由连续函数的介值定理知在(0,)e 与(,)e +∞各有且仅有一个零点(不相同),故方程0ln x x e π=-⎰在(0,)+∞有且仅有两个不同实根.方法二:ππ=⎰⎰,因为当0x π≤≤时,sin 0x ≥, 所以]00sin cos 0xdx x πππ==-=>⎰.其它同方法一.七、(本大题满分11分)【解析】函数21x y x +=的定义域为()(),00,-∞+∞,将函数化简为211,y x x =+ 则 32243321126216(1),(2)y y x xx x x x x x '''=--=--=+=+.令0y '=,得2x =-,即2212(1)0,(2,0),12(1)0,(,2)(0,),y x x xy x x x⎧'=-->∈-⎪⎪⎨⎪'=--<∈-∞-+∞⎪⎩故2x =-为极小值点.令0y ''=,得3x =-,即3316(2)0,(3,0)(0,),16(2)0,(,3)y x x xy x x x⎧''=+>∈-+∞⎪⎪⎨⎪''=+<∈-∞-⎪⎩为凹,,为凸,y ''在3x =-处左右变号,所以23,(3)9x y =--=-为函数的拐点.又 20011lim lim(),x x y x x→→=+=∞故0x =是函数的铅直渐近线;211lim lim()0,x x y x x→∞→∞=+=故0y =是函数的水平渐近线. (0,)+∞(0,)+∞3) 2)八、(本题满分10分)【解析】由题知曲线过点(0,0),得0c =,即2y ax bx =+. 如图所示,从x x dx →+的面积dS ydx =,所以11123200011()32S ydx ax bx dx ax bx ⎡⎤==+=+⎢⎥⎣⎦⎰⎰ 32a b=+, 由题知 1323a b +=,即223ab -=.当2y ax bx =+绕x 轴旋转一周,则从x x dx →+的体积2dV y dx π=,所以 旋转体积1254232211222000()()523523ax abx b x a ab b V y dx ax bx dx ππππ⎡⎤==+=++=++⎢⎥⎣⎦⎰⎰, b 用a 代入消去b ,得224(1)(1)5273a a a a V π⎡⎤--=++⎢⎥⎣⎦,这是个含有a 的函数,两边对a 求导得4(1)275dV a da π=+, 令其等于0得唯一驻点54a =-,dVda在该处由负变正,此点为极小值点,故体积最小,这时32b =,故所求函数225342y ax bx c x x =++=-+.。
1989-2015考研数学二历年真题word版
2015年考研数学二真题一、选择题 1—8小题.每小题4分,共32分. 1.下列反常积分收敛的是( )(A )2x+∞⎰(B )2ln x dx x +∞⎰(C )21ln dx x x+∞⎰ (D )2x x dx e +∞⎰2.函数201sin ()lim x tt t f x x →⎛⎫=+⎪⎝⎭在(,)-∞+∞内( ) (A )连续 (B )有可去间断点(C )有跳跃间断点 (D )有无穷间断点3.设函数 100000cos ,(),(,),x x f x xx αβαβ⎧>⎪=>>⎨⎪≤⎩,若()f x '在0x =处连续,则( ) (A )1αβ-> (B )01αβ<-≤ (C )2αβ-> (D )02αβ<-≤4.设函数()f x 在(,)-∞+∞上连续,其二阶导数()f x ''的图形如右图所示,则曲线()y f x =在(,)-∞+∞的拐点个数为(A )0 (B )1 (C )2 (D )3 5.设函数(,)f u v 满足22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则1111|,|u u v v f f u v ====∂∂∂∂依次为( ) (A)102, (B)102, (C)102,- (D)102,- 6.设D 是第一象限中由曲线2141,xy xy ==和直线3,y x y x ==所围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰( )(A)1321422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(B)231422sin sin (cos ,sin )d f r r rdr πθπθθθθ⎰⎰(C)1321422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰(D)231422sin sin (cos ,sin )d f r r dr πθπθθθθ⎰⎰7.设矩阵2211111214,A a b d a d ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若集合{}12,Ω=,则线性方程组Ax b =有无穷多解的充分必要条件是(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω (C ),a d ∈Ω∉Ω (D ),a d ∈Ω∈Ω8.设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中()123,,P e e e =,若()132,,Q e e e =-,则123(,,)f x x x 在x Qy=下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )2221232y y y -- (D ) 2221232y y y ++9.设33arctan x t y t t=⎧⎨=+⎩,则212|t d ydx == . 10.函数22()xf x x =在0x =处的n 阶导数0()()n f = .11.设函数()f x 连续,2()()x x xf t dt ϕ=⎰,若1115(),()ϕϕ'==,则1()f = .12.设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处()y x 取极值3,则()y x = . 13.若函数(,)z z x y =由方程231x y zexyz +++=确定,则00(,)|dz = .14.设三阶矩阵A 的特征值为221,,-,2B A A E =-+,其中E 为三阶单位矩阵,则行列式B = . 三、解答题15.(本题满分10分)设函数1()ln()sin f x x a x bx x =+++,3()g x kx =在0x →时为等价无穷小,求常数,,a b k 的取值. 16.(本题满分10分)设0A >,D 是由曲线弧02sin ()y A x x π=≤≤及直线02,y x π==所围成的平面区域,12,V V 分别表示D 绕,x y 旋转一周所围成的旋转体的体积,若12V V =,求A 的值.17.(本题满分10分)已知(,)f x y 满足21(,)(),x xy f x y y e ''=+01(,)(),x x f x x e '=+202(,)f y y y =+,求(,)f x y 的极值.18.(本题满分10分)计算二重积分()dxdy Dx x y -⎰⎰,其中{}2222(,)|,D x y x y y x =+≤≥ 19.(本题满分10分)已知22111()x f x t dt tdt =+++⎰⎰,求()f x 的零点个数.20.(本题满分11分)已知高温物体置于低温介质中,任一时刻物体温度对时间的变化率和该时刻物体和介质的温差成正比,现将一初始温度为120C ︒,物体在20C ︒恒温介质中冷却,30分钟后该物体的温度降到30C ︒.若要将物体的温度继续降至21C ︒,还需要冷却多长时间?21.(本题满分11分)已知函数()f x 在区间[,)a +∞上具有二阶导数,000(),(),()f a f x f x '''=>>.设b a >,曲线()y f x =在点(,())b f b 的切线和x 轴的交点是00(,)x ,证明:0.a x b <<22.(本题满分11分)设矩阵101101a A a a ⎛⎫⎪=- ⎪ ⎪⎝⎭,且30A =.(1)求a 的值;(2)若矩阵X 满足22X XA AX AXA E ---=,其中E 为三阶单位矩阵,求X . 23.(本题满分11分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角矩阵.2012年全国硕士研究生入学统一测试数学二试题一、选择题:1-8题,每题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)曲线221x xyx+=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设20sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是 ( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= (A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d ydx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为22的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行和第2行得矩阵B ,则*BA = . 三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -和kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 和x 轴交于B 点,区域D 由L 和直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤和极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=,(I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<. (21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一测试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.1.已知当0x →时,函数是等价无穷小,则与kcx x x x f 3sin sin 3)(-= A k=1,c=4 B k=a, c=-4 C k=3,c=4 D k=3,c=-42.=-==→3320)(2)(,0)0(0)(lim x x f x f x f x x f x 则处可导,且在已知 A )0(2f '- B )0(f '- C )0(f ' D 0 3.函数)3)(2)(1(ln )(---=x x x x f 的驻点个数为 A 0 B 1 C 2 D 34.微分方程的特解形式为)0(2>+=-'-λλλλx x e e y y A)(x x e e a λλ-+ B )(x x e e ax λλ-+ C )(x x be ae x λλ-+ D )(2x x be ae x λλ-+5设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件A 0)0(,1)0(>''>f fB 0)0(,1)0(<''>f fC 0)0(,1)0(>''<f fD 0)0(,1)0(<''<f f 6.设⎰⎰⎰===44400cos ln ,cot ln ,sin ln πππxdx K xdx J xdx I 的大小关系是、、则K J IA I<J<KB I<K<JC J<I<KD K<J<I7.设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行和第一行得单位矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1989考研数二真题及解析1989年全国硕士研究生入学统一考试数学二试题一、填空题(每小题3分,满分21分.把答案填在题中横线上.)(1) 0lim cot 2x x x →=______.(2) 0sin t tdt π=⎰______.(3) 曲线0(1)(2)x y t t dt=--⎰在点(0,0)处的切线方程是______.(4) 设()(1)(2)()f x x x x x n =++⋅⋅+L ,则(0)f '=______.(5) 设()f x 是连续函数,且1()2()f x x f t dt=+⎰,则()f x =______. (6) 设2,0()sin ,0a bx x f x bxx x⎧+≤⎪=⎨>⎪⎩在0x =处连续,则常数a 与b 应满足的关系是_____. (7) 设tan y x y =+,则dy =______.二、计算题(每小题4分,满分20分.) (1) 已知arcsin xy e -=求y '.(2) 求2ln dxx x⎰. (3) 求1lim(2sin cos )xx x x →+.(4) 已知2ln(1),arctan ,x t y t ⎧=+⎨=⎩求dy dx及22d y dx . (5) 已知1(2),(2)02f f '==及20()1f x dx =⎰,求12(2)xf x dx''⎰.三、选择题(每小题3分,满分18分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 设x >时,曲线1siny x x=( )(A) 有且仅有水平渐近线 (B) 有且仅有铅直渐近线(C) 既有水平渐近线,也有铅直渐近线 (D) 既无水平渐近线,也无铅直渐近线 (2) 若2350a b -<,则方程532340x ax bx c +++=( )(A) 无实根(B) 有唯一实根(C)有三个不同实根(D) 有五个不同实根(3) 曲线cos ()22y x x ππ=-≤≤与x 轴所围成的图形,绕x轴旋转一周所成的旋转体的体积为( )π(B) π(A)2π (D) 2π(C) 22(4) 设两函数()g x都在x a=处取得极大值,则f x及())(A) 必取极大值(B) 必取极小值(C) 不可能取极值(D) 是否取极值不能确定(5) 微分方程1x''-=+的一个特解应具有形式y y e(式中,a b为常数) ( )(A) x ae b+ (B) x axe b+ (C)x+ (D) x axe bx+ae bx(6) 设()f x在f x在x a=的某个领域内有定义,则()x a=处可导的一个充分条件是( ) (A) 1lim [()()]h h f a f a h→+∞+-存在 (B) 0(2)()lim h f a h f a h h →+-+存在(C) 0()()lim 2h f a h f a h h →+--存在(D) 0()()lim h f a f a h h →--存在四、(本题满分6分)求微分方程2(1)xxy x y e'+-=(0)x <<+∞满足(1)0y =的解.五、(本题满分7分)设0()sin ()()x f x x x t f t dt =--⎰,其中f 为连续函数,求()f x .六、(本题满分7分)证明方程0ln 1cos 2xx xdxe π=--⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本大题满分11分)对函数21x y x +=,填写下表:单调减少区间 单调增加区间 极值点 极值 凹(U )区间 凸(I )区间 拐点 渐近线八、(本题满分10分)设抛物线2y axbx c=++过原点,当01x ≤≤时,0y ≥,又已知该抛物线与x 轴及直线1x =所围图形的面积为13,试确定,,a b c 使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.1989年全国硕士研究生入学统一考试数学二试题解析一、填空题(每小题3分,满分21分.) (1)【答案】12【解析】这是个0⋅∞型未定式,可将其等价变换成00型,从而利用洛必达法则进行求解. 方法一: 0cos 2lim cot 2lim lim cos 2sin 2sin 2x x x x x x x x x x x→→→==⋅ 0011limlim sin 22cos 22x x x x x →→==洛.方法二: 0cos 2lim cot 2lim sin 2x x x x x x x→→= 0012121lim cos 2lim .2sin 22sin 22x x x x x x x →→=⋅==【相关知识点】0sin lim x xx→是两个重要极限中的一个,0sin lim 1x x x→=. (2)【答案】π【解析】利用分部积分法和牛顿-莱布尼茨公式来求解,sin t tdt π=⎰[]000(cos )cos (cos )td t t t t dt πππ-=---⎰⎰分部法[]00sin (00)t ππππ=++=+-=.(3)【答案】2y x =【解析】要求平面曲线的切线,首先应求出该切线的斜率,即0()f x '.这是一个积分上限函数,满足积分上限函数的求导法则,即(1)(2)y x x '=--.由y '在其定义域内的连续性,可知0(01)(02)2x y ='=--=.所以,所求切线方程为02(0)y x -=-,即2y x =.(4)【答案】!n【解析】方法一:利用函数导数的概念求解,即0()(0)(1)(2)()0(0)limlim x x f x f x x x x n f x x→→-++⋅⋅+-'==Llim(1)(2)()12!x x x x n n n →=++⋅⋅+=⋅⋅⋅=L L .方法二:利用其导数的连续性,由复合函数求导法则可知,()(1)(2)()1(2)()f x x x x n x x x n '=++⋅⋅++⋅⋅+⋅⋅+++L L L (1)(2)(1)1x x x x n ++⋅⋅+-⋅L , 所以 (0)(01)(02)(0)00f n '=++⋅⋅++++L L 12!n n =⋅⋅⋅=L . (5)【答案】1x -【解析】由定积分的性质可知,1()f t dt⎰和变量没有关系,且()f x 是连续函数,故1()f t dt ⎰为一常数,为简化计算和防止混淆,令10()f t dt a=⎰,则有恒等式()2f x x a =+,两边0到1积分得11()(2)f x dx x a dx=+⎰⎰,即[]111112000001(2)222a x a dx xdx a dx x a x ⎡⎤=+=+=+⎢⎥⎣⎦⎰⎰⎰122a=+,解之得12a =-,因此()21f x x a x =+=-. (6)【答案】a b =【解析】如果函数在0x 处连续,则函数在该点处的左右极限与该点处函数值必然相等, 由函数连续性可知(0)(0)0f f a b a -==+⋅=.而 000sin sin sin (0)lim lim lim x x x bx bx bxf b b b x bx bx++++→→→==⋅=⋅=, 如果()f x 在0x =处连续,必有(0)(0)f f -+=,即a b =.(7)【答案】2()dx x y + 【解析】这是个隐函数,按照隐函数求导法,两边微分得2secy dy dx dy⋅=+,所以 222sec 1tan ()dx dx dxdy y y x y ===++,(0x y +≠).二、计算题(每小题4分,满分20分.) (1)【解析】令xu e =,v x =则arcsin arcsin xy eu-==,由复合函数求导法则,222(arcsin )2111v v y u u e v e xuuu''''===⋅=---即 221x xy e xe-'=-【相关知识点】复合函数求导法则:(())y f x ϕ=的导数(())()y f x f x ϕ'''=.(2)【解析】利用不定积分的换元积分法,22ln 1ln ln ln dx d x Cx x x x ==-+⎰⎰.(3)【解析】可将函数转化称为熟悉的形式来求其极限,110lim(2sin cos )lim[1(2sin cos 1)]xxx x x x x x →→+=++-12sin cos 12sin cos 10lim[1(2sin cos 1)]x x x x xx x x +-⋅+-→=++-,令 2sin cos 1x x t +-=,则当0x →时,0t →,则 112sin cos 1lim[1(2sin cos 1)]lim[1]x x tx t x x t +-→→++-=+,这是个比较熟悉的极限,即10lim(1)tt t e→+=.所以 012sin cos 1lim0lim(2sin cos )x x x xx x x x e→+-→+=,而 002sin cos 12cos sin lim lim 21x x x x x x x →→+--=洛,所以 012sin cos 1lim2lim(2sin cos )x x x xxx x x ee →+-→+==.(4)【解析】这是个函数的参数方程,22111221dy dy dt t dx t dx tdt t+===+,2222321111211()()()2222(2)41d y d d dt d t dx t dx dx t dt t dx dt t t tdt t -+==⋅=⋅=⋅=-+.【相关知识点】参数方程所确定函数的微分法:如果()()x t y t φϕ=⎧⎨=⎩,则()()dy t dx t ϕφ'='. (5)【解析】利用定积分的分部积分法求解定积分,111122220000111(2)(2)(2)(2)222x f x dx x df x x f x f x dx '''''⎡⎤==⋅-⎣⎦⎰⎰⎰分部法[]1011(2)0(2)2f xf x dx''=⋅--⎰1011(2)(2)22f xdf x '=-⎰()1100111(2)(2)(2)222f xf x f x dx ⎡⎤'=--⎢⎥⎣⎦⎰1111(2)(2)(2)222f f f x dx '=-+⎰,令2t x =,则11,22x t dx dt ==, 所以 1201(2)()2f x dx f t dt =⎰⎰.把1(2),(2)02f f '==及2()1f x dx =⎰代入上式,得1120111(2)(2)(2)(2)222xf x dx f f f x dx '''=-+⎰⎰21111(2)(2)()2222f f f t dt '=-+⋅⎰1111101022222=⋅-⋅+⋅⋅=.三、选择题(每小题3分,满分18分.) (1)【答案】(A)【解析】函数1sin y x x=只有间断点0x =. 001lim lim sin x x y x x ++→→=,其中1sin x是有界函数.当0x +→时,x 为无穷小,无穷小量和一个有界函数的乘积仍然是无穷小,所以1lim lim sin 0x x y x x++→→==,故函数没有铅直渐近线.01sin1sin lim limlim 11x x x t x y t x t x+→+∞→+∞→=== ,所以1y =为函数的水平渐近线,所以答案为(A). 【相关知识点】铅直渐近线:如函数()y f x =在其间断点0x x =处有0lim ()x x f x →=∞,则0x x =是函数的一条铅直渐近线;水平渐近线:当lim (),(x f x a a →∞=为常数),则y a =为函数的水平渐近线. (2)【答案】(B)【解析】判定方程()0f x =实根的个数,其实就是判定函数()y f x =与x 有几个交点,即对函数图形的描绘的简单应用,令 53()234f x xax bx c=+++,则 42()563f x x ax b'=++.令 2t x =,则422()563563()f x x ax b t at b f t ''=++=++=,其判别式22(6)45312(35)0a b a b ∆=-⋅⋅=-<,所以 2()563f t tat b'=++无实根,即()0f t '>.所以 53()234f x xax bx c=+++在(,)x ∈-∞+∞是严格的单调递增函数.又 53lim ()lim (234)x x f x x ax bx c →-∞→-∞=+++=-∞53lim ()lim (234)x x f x xax bx c →+∞→+∞=+++=+∞所以利用连续函数的介值定理可知,在(,)-∞+∞内至少存在一点0(,)x ∈-∞+∞使得0()0f x =,又因为()y f x =是严格的单调函数,故0x 是唯一的.故()0f x =有唯一实根,应选(B). (3)【答案】(C)【解析】如图cos ()22y x x ππ=-≤≤的图像,则当cos y x=绕x 轴旋转一周,在x 处取微增dx ,则微柱体的体积2cosdV xdxπ=,所以体积V 有222cos V xdxπππ-=⎰222222cos 21cos 22242x dx xd x dxπππππππππ---+==+⎰⎰⎰[][]22222sin 20()422222x x ππππππππππ--=-+=++=.因此选(C). (4)【答案】(D)【解析】题中给出的条件中,除了一处极值点外均未指明函数其它性质,为了判定的方便,可以举出反例而排除.若取2()()()f x g x x a ==--,两者都在x a =处取得极大值0, 而4()()()()F x f x g x x a ==-在x a =处取得极小值,所以(A)、(C)都不正确.若取2()()1()f x g x x a ==--,两者都在x a =处取得极大值1, 而22()()()1()F x f x g x x a ⎡⎤==--⎣⎦在x a =处取得极大值1,所以(B)也不正确,从而选(D). (5)【答案】(B)【解析】微分方程1xy y e ''-=+所对应的齐次微分方程的特征方程为210r-=,它的两个根是121,1r r==-.而形如xy y e ''-=必有特解1xY x ae =⋅;1y y ''-=必有特解1Y b=.由叠加得原方程必有特解xY x ae b=⋅+,应选(B).(6)【答案】(D)【解析】利用导数的概念判定()f x 在x a =处可导的充分条件.(A)等价于0()()lim t f a t f a t →++-存在,所以只能保证函数在x a =右导数存在;(B)、(C)显然是()f x 在x a =处可导的必要条件,而非充分条件, 如 1cos ,00,0x y x x ⎧≠⎪=⎨⎪=⎩在0x =处不连续,因而不可导,但是0001111cos(0)cos(0)cos cos()()lim lim lim 0222h h h f a h f a h h h h h h h h→→→+---+--===,0001111cos()cos(0)cos cos(2)()2222lim lim lim 0h h h f a h f a h h h h h h h h→→→---+-+===均存在; (D)是充分的:00()()()()lim lim x h x h f a x f a f a f a h x h∆=-∆→→+∆---=∆存在0()()()lim h f a f a h f a h →--'⇒=存在,应选(D).四、(本题满分6分)【解析】所给方程为一阶线性非齐次微分方程,先写成标准形式211(1)xy y e x x'+-=,通解为 11(1)(1)21()dxdx x xxy e e e dx C x ---⎰⎰=+⎰211()()x x x x x x e e e dx C e C x x e x=+=+⎰.代入初始条件(1)0y =,得C e=-,所求解为()x xe y e e x=-.【相关知识点】一阶线性非齐次微分方程的标准形式为()()y p x y q x '+=,其通解公式为()()(())p x dxp x dxy e q x e dx C -⎰⎰=+⎰,其中C 为常数.五、(本题满分7分)【解析】先将原式进行等价变换,再求导,试着发现其中的规律, 0()sin ()()sin ()()xx xf x x x t f t dt x x f t dt tf t dt=--=-+⎰⎰⎰,所给方程是含有未知函数及其积分的方程,两边求导,得()cos ()()()cos ()xxf x x f t dt xf x xf x x f t dt'=--+=-⎰⎰,再求导,得()sin ()f x x f x ''=--,即 ()()sin f x f x x ''+=-,这是个简单的二阶常系数非齐次线性微分方程,对应的齐次方程的特征方程为210r+=,此特征方程的根为r i =±,而右边的sin x 可看作sin x e xαβ,0,1,i i αβαβ==±=±为特征根,因此非齐次方程有特解sin cos Y xa x xb x =+.代入方程并比较系数,得10,2a b ==,故cos 2xY x =,所以 12()cos sin cos 2xf x c x c x x=++.又因为(0)0,(0)1f f '==,所以1210,2c c ==,即1()sin cos 22xf x x x=+.六、(本题满分7分)【解析】方法一:判定方程()0f x =等价于判定函数()y f x =与x 的交点个数. 令 0()ln 1cos 2x f x x xdxe π=-+-⎰,其中01cos 2xdxπ-⎰是定积分,为常数,且被积函数1cos2x-在(0,)π非负,故1cos 20xdx π->⎰,为简化计算,令01cos 20xdx k π-=>⎰,即()ln xf x x ke=-+,则其导数11()f x x e'=-,令()0f x '=解得唯一驻点x e =, 即()0,0()0,f x x ef x e x '><<⎧⎨'<<<+∞⎩,所以,x e =是最大点,最大值为()ln 0e f e e k k e=-+=>.又因为00lim ()lim (ln )lim ()lim (ln )x x x x x f x x k e x f x x k e ++→→→+∞→+∞⎧=-+=-∞⎪⎪⎨⎪=-+=-∞⎪⎩,由连续函数的介值定理知在(0,)e 与(,)e +∞各有且仅有一个零点(不相同),故方程0ln 1cos 2xx xdxe π=--⎰在(0,)+∞有且仅有两个不同实根. 方法二:201cos 2sin xdx xdxππ-=⎰⎰,因为当0x π≤≤时,sin 0x ≥,所以]2002sin 2sin 2cos 220xdx xdx x πππ==-=>⎰.其它同方法一.七、(本大题满分11分)【解析】函数21x y x +=的定义域为()(),00,-∞+∞U ,将函数化简为211,y x x=+ 则 32243321126216(1),(2)y y x xx x x x x x '''=--=--=+=+.令0y '=,得2x =-,即2212(1)0,(2,0),12(1)0,(,2)(0,),y x x x y x x x⎧'=-->∈-⎪⎪⎨⎪'=--<∈-∞-+∞⎪⎩U 故2x =-为极小值点.令0y ''=,得3x =-,即3316(2)0,(3,0)(0,),16(2)0,(,3)y x x x y x x x⎧''=+>∈-+∞⎪⎪⎨⎪''=+<∈-∞-⎪⎩U 为凹,,为凸,y ''在3x =-处左右变号,所以23,(3)9x y =--=-为函数的拐点.又 211lim lim(),x x y x x→→=+=∞故0x =是函数的铅直渐近线;211lim lim()0,x x y x x→∞→∞=+=故0y =是函数的水平渐近线.填写表格如下: 单调减少区间 (,2)(0,)-∞-+∞U单调增加区间 (2,0)- 极值点 2x =- 极值 14y =-凹区间 (3,0)(0,)-+∞U 凸区间 (,3)-∞- 拐点 2(3,)9-- 渐近线 0,0x y ==Born to win八、(本题满分10分)【解析】由题知曲线过点(0,0),得0c =,即2y ax bx =+. 如图所示,从x x dx →+的面积dS ydx =,所以 11123200011()32S ydx ax bx dx ax bx ⎡⎤==+=+⎢⎥⎣⎦⎰⎰32a b =+, 由题知 1323a b +=,即223a b -=. 当2y ax bx =+绕x 轴旋转一周,则从x x dx →+的体积2dV y dx π=,所以旋转体积 1254232211222000()()523523a x abx b x a ab b V y dx ax bx dx ππππ⎡⎤==+=++=++⎢⎥⎣⎦⎰⎰,b 用a 代入消去b ,得224(1)(1)5273a a a a V π⎡⎤--=++⎢⎥⎣⎦,这是个含有a 的函数,两边对a 求导得4(1)275dV a da π=+,令其等于0得唯一驻点54a =-,dV da在该处由负变正,此点为极小值点,故体积最小, 这时32b =,故所求函数225342y ax bxc x x =++=-+.。