第1课时 菱形的性质与判定(1)课堂本
北师大版九年级数学上册教学课件:1.1菱形的性质与判定 (共36张PPT)
拓展点一
拓展点二
拓展点三
拓展点一
拓展点二
拓展点三
拓展点二 菱形判定方法的综合应用 例2 (2016· 沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连 接DE.求证:
(1)∠CEB=∠CBE; (2)四边形BCED是菱形. 分析:(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD, ∠CBE=∠ABD即可. (2)先证明四边形BCED是平行四边形,再根据BC=BD即可判定.
分析:根据AB=AD及AE为∠BAD的平分线可得出∠1=∠2,从而证 得△BAE≌△DAE,这样就得出四边形ABED为平行四边形,然后根据 菱形的判定定理即可得出结论.
知识点一
知识点二
知识点三
证明:如图,∵AE平分∠BAD, ∴∠1=∠2. ∵AB=AD,AE=AE, ∴△BAE≌△DAE.∴BE=DE. ∵AD∥BC,∴∠2=∠3=∠1. ∴AB=BE. ∴AB=BE=DE=AD. ∴四边形ABED是菱形.
1识点二
知识点三
知识点一 菱形的定义 有一组邻边相等的平行四边形叫做菱形. 名师解读 几何中的定义都有两重性:一是可作为一条性质,二是 可作为一条判定. (1)根据菱形的定义,判断一个四边形是菱形必须同时具备两个 条件: ①四边形是平行四边形; ②四边形有一组邻边相等. (2)由菱形的定义可知,一个四边形是菱形,则具有如下性质: ①菱形是平行四边形; ②菱形有一组邻边相等.
知识点一
知识点二
知识点三
例2 (2016· 淮安)已知:如图,在菱形ABCD中,点E,F分别为边 CD,AD的中点,连接AE,CF,求证:△ADE≌△CDF. 分析:由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由 SAS证明△ADE≌△CDF即可. 证明:∵四边形ABCD是菱形, ∴AD=CD, ∵点E,F分别为边CD,AD的中点, ∴AD=2DF,CD=2DE,∴DE=DF,
菱形的性质与判定
Page 12
课 后 作 业
解:∵四边形ABCD是菱形, ∴AB=BC,AC⊥BD,AD∥BC, ∴∠ABC+∠BAD=180°, ∵∠ABC与∠BAD的度数比为1:2, ∴∠ABC= ×180°=60°, ∴∠ABO= ∠ABC=30°, ∵菱形ABCD的周长是8 cm. ∴AB=2 cm, ∴OA= AB=1 cm, ∴OB= = , ∴AC=2OA=2 cm,BD=2OB=2 cm.
Page 7
课 堂 精 讲
总结:菱形的性质:菱形具有平行四边形的一切性 质;菱形的四条边都相等;菱形的两条对角线互相 垂直,并且每一条对角线平分一组对角;菱形是轴 对称图形,它有2条对称轴,分别是两条对角线所 在直线.
类 比 精 炼
2.如图,菱形ABCD中,对角线AC、 BC相交于点O,H为AD边中点,菱 形ABCD的周长为28,求OH的长? 【分析】根据菱形的四条边都相等求出AB,菱形 的对角线互相平分求出OB=OD,然后判断出OH是 △ABD的中位线,再根据三角形的中位线平行于 第三边并且等于第三边的一半解答.
Page 8
课 堂 精 讲
【解答】解:在菱形ABCD中,AB=AD=BC=DC,AO=OC ∵菱形的周长为28, ∴AB=7, ∵H为AD边的中点, ∴OH为△ABD的中位线, ∴OH= AB= ×7=3.5.
【点评】本题考查了菱形的性质,三角形的 中位线平行于第三边并且等于第三边的一半 ,熟记性质与定理是解题的关键.
Page 15
挑 战 中 考
11.(2016巴中改编)如图,在菱形ABCD中,对角 线AC与BD相交于点O,MN过点O且与边AD、BC分别 交于点M和点N. (1)请你判断OM和ON的数 量关系,并说明理由。 (2)过点D作DE∥AC交BC的 延长线于点E,当AB=6,AC =8时,求△BDE的周长. 【解答】解:(1)∵四边形ABCD是菱形, ∴AD∥BC,AO=OC,∴∠MAO=∠NCO, 又∠MOA=∠NOC,∴△MAO≌△NCO(ASA), ∴OM=ON.
1.1菱形的性质与判定(1)
D O 菱形的性质: A C 边:四条边都相等, B 对边平行且相等 角:对角相等,邻角互补 对角线:互相垂直、平分,且每一条对角线 平分一组对角
探索
如图,在菱形ABCD中,对角线AC、 BD相交于点O. (1)图中有哪些线段是相等的?哪些 D 角是相等的?
A
O C
B
探索
(2)图中有哪些等腰三角形、直角三角形?
D
AOCB源自(3)两条对角线AC、BD有什么特定的位置 关系?
已知:如图,在菱形ABCD中,AB=AD,对 角线AC与BD相交于点O. 求证:(1)AB=BC=CD=AD;(2)AC⊥BD.
想一想:下图中的平行四边形有什么 共同特征?
1、定义:
一组邻边相等的平形四边形是菱形。
思考:菱形是平行四边形吗?
平行四边形
菱形
菱形是特殊的平行四边形,具有平行四 边形所有的性质。
议一议
木工师傅在做菱形的窗格时,总是保证 四条边框一样长,你能说出其中的道理吗? 与同伴交流。
定理:菱形的四条边相等.
练习2.已知菱形的周长8cm,一条对角线 长为2cm,则另一条对角线的长为____cm。
A
D
B
C
例3.P4习题1.1第3题 如图,在菱形ABCD 中,对角线AC与BD相交于点O,求证:AC 平分∠BAD和∠BCD,BD平分∠ABC和 ∠ADC.
结论:菱形的对角线平分对角!
练习3. 如图,在菱形ABCD中,E,F分别是 AB和AD 上的点,且AE=AF,求证CE=CF
D
A
O
C
B
2、菱形的性质
(1)菱形具有平行四边形的所有性质 (2)菱形的四条边相等 菱形的对角线互相垂直平分,
1.菱形的性质与判定第1课时菱形的性质PPT课件(北师大版)
新知导航
2.如图,菱形ABCD的边长为4 cm,对角线AC,BD 交于O,∠BAD=60°.求对角线AC,BD的长.
解:∵四边形ABCD是菱形, ∴AB=AD,∵∠BAD=60°, ∴△ABD是等边三角形, ∴BD=AB=4 cm ∴BO=2 cm,∴AO=2 3 cm,∴AC=4 3 cm
第1课时 菱形的性质
第1课时 菱形的性质
新知导航
知识点3:对角线平分对角
【例3】如图,菱形ABCD中,O是对角线AC上一点,
连接OB,OD,求证:OB=OD.
【例3】证明:∵四边形ABCD是菱形,
∴AD=AB,∠DAO=∠BAO AD=AB
在△ADO和△ABO中, ∠DAO=∠BAO , AO=AO
∴△ADO≌△ABO(SAS),∴OB=OD.
第1课时 菱形的性质
新知导航
(一)基础呈现 菱形的定义:有一组邻边 相等 的 平行四边形 叫做 菱形. 菱形的性质 (1)菱形具有平行四边形的所有性质; (2)菱形不同于一般平行四边形的性质: ①四条边都 相等 ; ②两条对角线 垂直平分 ,并且每条对角线平分对角. ③菱形是轴对称图形,有 2 条对称轴.
(2)平行四边形的对角
相等
.
(3)平行四边形的对角线 互相平分 .
第1课时 菱形的性质
知识回顾
几何语言 ∵四边形ABCD是平行四边形 ∴(边)__如__A__B_=__C_D_________________________; (角)____∠__A__=__∠__C_________________________; (对角线)__O_A__=__O_C_,__O__B_=__O_D__等______________.
第1课时 菱形的性质
第1课1.1(1)菱形的性质与判定
2、等边三角形的性质与判定
3、如图4,在□ABCD中,对角线AC与BD相交于点O,BD⊥AD,
AB=10,AD=8,则BC ____,OD ____,AC ____, ____。
二、新课学习( )
上面三幅图中,含有一种特殊的平行四边形,我们把它叫做菱形。
解:∵四边形ABCD是菱形(已知)
∴AB ____(菱形的________________)
AD//____(菱形的____________)
∴∠ABC+∠A ____゜(两直线平行,_____________)
∵∠ABC (已知)
∴∠A ____゜
∴△ABD是等边三角形(_____________________的等腰三角形是等边三角形)
求证:AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC.
11、已知:如图13,在菱形ABCD中,对角线AC与BD相交于点O,
∠ABC 120°,周长为16,求BD和AC的长。
四、提升练习
12、已知:如图14,在菱形ABCD中,∠BAC 0°,AC ,求菱形ABCD的周长。
13、证明:三角形的中位线定理,即三角形的____________________________________。
8、已知:如图10,在菱形ABCD中,对角线AC与BD相交于点O,BD 12,AC ,求菱形ABCD的周长。
三、过关练习
9、已知:如图11,在菱形ABCD中,∠BAD 60°,BD ,求菱形ABCD的周长。
10、求证:菱形的每一条对角线平分一组对角
已知:如图12,在菱形ABCD中,对角线AC与BD相交于点O。
已知:如图15,DE是△ABC的中位线。
北师大九年级数学上册--第一单元 1.1 菱形的性质与判定 1 课件
∴AB=AD,OB=OD
∴AC⊥BD,AC平分∠BAD
(等腰三角形的三线合一)
同理得:AC平分∠BCD, BD平分∠ ABC和∠ADC
D
边
菱形的两组对边平行且相等
菱形的四条边相等
A
菱形的两组对角分别相等
56
1 2
O
3 4
C
78
B
角 菱形的邻角互补
几何语言
∵四边形ABCD是菱形
对角线
= 菱菱每形形一的的条两两对条条 角对对线角角平线线分互互一相相组平垂对∴分直角∠∴∴,。∴DA∴O∴AABAA∠∠BDA=∠∠=B+BDACO∠13C∥∥AD==C⊥=AB∠∠CB;CO=CB=C24BD∠CB∠D=D==DADO1CBA8DBC0° = 菱形是中心对称图形,对称 ∠5=∠6
的长为 ,则另一条对角线的长为 .
12.如图所示,两个全等菱形的边长为 1 米,
一个微型机器人由 A 点开始按 A﹣>B﹣>C
﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A 的
顺序沿菱形的边循环运动,行走 2015 米
停下,则这个微型机器人停在
点.
(1)图中有哪些线段是相等的? 哪些角是相等的?
(2)图中有哪些等腰三角形?直 角三角形?
(3)两条对角线AC、BD有什么 特定的位置关系?
因为菱形是特殊的平行四边形,所以它除具有 平行四边形的所有性质外,还有平行四边形的所没 有的特殊性质。
菱形的四条边都相等;
菱形的两条对角线互相垂直
平分,每一条对角线平分一组 对角。
证明:∵四边形ABCD是菱形 ∴AD=BC,AB=CD (菱形的对边相等)
又∵AB=BC ∴AB=BC=CD=AD
北师大版九年级上册1.1菱形的性质与判定(第1课时)课件
结
定理(对角线的性质): 菱形的对角线互相
垂直.
所有对角线互相垂直的四边形的面积都 等于其两条对角线乘积的一半.
教学过程
分层作业
课
第一层:第4页习题1、2题.
后
巩
第二层:第4页习题1、2、3、4题.
固
教学过程
结 束
感谢聆听
新
课
定理(对角线的性质): 菱形的对角线互相垂直. 有两条对称轴,它们互相垂直.
将△ABO沿点A到点C的方向平移, 通过上面的折纸活动,我们可以发现:
已知:如图 ,在菱形 ABCD 中,AB = AD,对角线 AC 与 BD 相交于点O.
精 得到△A'B'O'.当点A'与点C重合 定理(边的性质): 菱形的四条边相等. 析 时,点A与点B'之间的距离为 如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.
A
授 (2)AC⊥BD.
B
O
C
D
教学过程
证一证
用菱形纸片折一折,回答下列问题:
你能列举一些这样的性质吗?
菱形的四条边相等,对角线互相垂直.
证明:(1)∵四边形 ABCD 是菱形, 定理(边的性质): 菱形的四条边相等.
通过上面的折纸活动和证明,菱形有如下的性质: (2)菱形中有哪些相等的线段?
新 ∴AB=CD,AD=BC(菱形的对边相等). 定理(边的性质): 菱形的四条边相等.
新 对称图形.
授
定理(边的性质): 菱形的四条边相等.
定理(对角线的性质): 菱形的对角线互相
垂直.
1.1 菱形的性质与判定(一)
2、菱形的性质:①菱形是轴对称图形,对称轴 是两条对角线所在的直线;②菱形的四条边都 相等;③菱形的对角线互相垂直平分。
3、菱形具有平行四边形的所有,应用菱形的 性质可以进行计算和推理。
作业
• 习题1.1 知识技能 1、2、3 • 准备圆规、直尺
本节课结束BCD中, 对角线AC与BD相交于点O, ∠BAD=60°,BD=6,求菱形 的边长AB和对角线AC的长。
随堂练习
如图,在菱形ABCD中,对角 线AC与BD 相交于点O. 已知 AB=5cm,AO=4cm ,求 BD的 长.
课堂小结
1、菱形的定义:一组邻边相等的平行四边形 是菱形。
第一章 特殊平行四边形
第1节 菱形的性质与判定(一)
图片中有你熟悉的图形吗?
一组邻边相等的平行四边形叫做菱形。
A
D
O
B
C
做一做
请同学们用菱形纸片折 一折,回答下列问题:
菱形是轴对称图形吗?如果是,它有几条 对称轴?对称轴之间有什么位置关系?
已知:如图1-1,在菱形ABCD中, AB=AD, 对角线AC与BD相交于点O. 求证:(1)AB=BC=CD=AD; (2)AC⊥BD.
第一讲菱形的性质与判定
第一讲菱形的性质与判定(一)菱形的定义与性质1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直平分.并且平分一组对角。
(3)菱形既是中心对称图形,也是轴对称图形,对称轴是两条对角线所在的直线。
(4)菱形的面积计算:①菱形的面积等于底乘高②菱形的面积等于对角线乘积的一半;对角线互相垂直的四边形的面积都可以用两条对角线乘积的一半来进行计算3.菱形具有平行四边形的所有性质,应用菱形的性质可以进行计算和推理.典例分析:知识点1:利用菱形的性质求角的度数例1:如图,在菱形ABCD中,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF的度数.知识点2:利用菱形的性质求线段长例2:(1)如图,已知菱形ABCD的对角线AC=8,BD=6,AC与BD相交于点O,求菱形ABCD 的周长与面积.(2)如图,P为菱形ABCD的对角线上一点,PE⊥AB于E,AP=5,AE=4,则点P到边AD 的距离等于_________.例2(2)图例2(3)图(3)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.知识点3:利用菱形的对称性求最短距离例3:(1)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD 上一动点,则EP+FP的最小值为()A.1B.2C.3D.4例3(1)图例3(2)图(2)如图,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E、F 分别是AG、AD上的两个动点,则EF+ED的最小值是.知识点4:利用菱形的性质求面积例4:如图,菱形ABCD中,E是AB的中点,且DE丄AB,AE=2.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.知识点5:利用菱形的性质证明例5:(1)已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.①求证:AE=AF;②若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.(2)如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB.求证:∠APD=∠EBC.(二)菱形的判定判定方法:1、定义法:有一组邻边相等的平行四边形叫做菱形2、对角线:①对角线互相垂直平分的四边形是菱形②对角线互相平分的平行四边形是菱形3、边:四条边都相等的四边形是菱形注:(1)菱形的判断可以从两个基本图形(四边形或平行四边形)考虑,进行证明.(2)菱形的性质定理和菱形的判定定理是互逆定理图文展示:典例分析:知识点6:利用定义判定菱形例6:已知:△ABC中,CD平分∠ACB交AB于D,DE∥AC交BC于E,DF∥BC 交AC于F.求证:四边形DECF是菱形.知识点7:利用“对角线互相垂直的平行四边形是菱形”判定菱形例7:如图:,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC于点E,F,求证四边形BEDF是菱形.知识点8:利用“四边相等的四边形是菱形”判定菱形例8:如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、CD、AC、BD的中点;求证:四边形EGFH是菱形.(三)菱形的性质与判定的综合应用例9:如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.例10:将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.例11:如图,两张宽度相等的纸条叠放在一起,重叠部分构成四边形ABCD.(1)求证:四边形ABCD是菱形;(2)若纸条宽3cm,∠ABC=60°,求四边形ABCD的面积.例12:已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.夯实基础:1.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分2.已知▱ABCD的对角线相交于点O,分别添加下列条件:①AC⊥BD;②AB=BC;③AC平分∠BAD;④AO=DO.使得▱ABCD是菱形的条件有()A.1个B.2个C.3个D.4个3.如图,菱形ABCD的周长为8,高AE长为,则AC:BD=()A.1:2B.1:3C.1:D.1:第3题第4题4.菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.5.在菱形ABCD中,E,F分别是BC,CD上的点,若△AEF是等边三角形,且EF=AB,则∠BAD的度数是()A.100°B.105° C.110° D.120°6.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A.12B.24C.48D.967.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的周长为.第7题第8题第9题8.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为()A.24 cm2B.20 cm2C.16 cm2D.12 cm29.如图,菱形ABCD中,∠DAB=60°,DF⊥AB于点E,且DF=DC,连结PC,则∠DCF的度数为度.10.如图,菱形ABCD的对角线AC与BD相交于点O,已知AB=13cm,AC=24cm.(1)求:菱形ABCD的面积;(2)如过点D作DE⊥BC,垂足为E,求DE的长.11.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE,若∠E=50°,求∠BAO的大小.12.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.13.如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.14.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.15.如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.16.已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.。
1.1.1菱形的性质与判定
(2)AC⊥BD
A
B
O
D
C
归纳总结
如图:∵四边形ABCD是菱形
∴
,
,
,
对称轴是:
A
(边) (角) (对角线)
B
O
D
C
例题ห้องสมุดไป่ตู้析
如图,在菱形ABCD中,对角线AC与BD相 交于点O, ∠BAD=60°,BD=6, 求菱形的边长AB和对角线AC的长。
B
A
O
C
D
例题解析
B
A
O
C
D
例题解析
B
A
O
C
D
解决菱形的问题时,你会注意结合哪些图形的运用?
;
(2)角:
;
(3)对角线:
;
(4)对称性:
;
3、与平行四边形相比较,菱形特有的性质是:
(1)
;
(2)
;
(3)
.
小组交流
以小组为单位,完成下列活动:(时间:8分钟)
1、把你课前备好的平行四边形改为菱形
2、利用折叠方法说明菱形的对称性
3、如图,四边形ABCD是菱形,AB=AD,
求证:(1)AB=BC=CD=AD
菱形的性质与判定(一)
图 片 欣 赏
学习目标
1、经历菱形的性质的探究过程,了解菱形的概念 及其与平行四边形的关系;
2、掌握菱形的性质并能灵活运用
3、经历折纸、说理等活动,发展合情推理能力 和逻辑推理能力
自 根据刚才的演示,探究一下问题(时间:5分钟)
主 1、菱形是平行四边形吗?
探
究
2、试写出菱形的性质 (1)边:
跟踪训练
1.1.1 菱形的性质与判定(第一课时)
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=
1 2
AC,BO=
1 2
BD.
∵AC=6cm,BD=12cm,
∴AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理得
AB AO2 BO2 32 62 3 5 cm.
∴菱形的周长=4AB=4×3 5 =12 5(cm).
第一章 特殊平行四边形
1. 菱形的性质与判定(第1课时) 菱形的性质
学习目标
1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点)
情境引入
下面几幅图片中都含有一些平行四边形. 观察这些平行四 边形,你能发现它们有什么样的共同特征吗?
在Rt△AOB 中,由勾股定理,得 OA2 OB2 AB2 , ∴ OA AB2 OB2 62 32 3 3 . ∴ AC=2OA= 6 3(菱形的对角线互相平分).
图1-2
随堂练习
如图,在菱形ABCD中,对角线AC与 BD相交 于点O. 已知AB=5 cm,AO=4 cm,求 BD的长.
解:∵四边形ABCD是菱形, ∴ AC⊥BD(菱形的对角线互相垂直). 在Rt△AOB中,由勾股定理得AO2+BO2=AB2, ∴ BO AB2 AO2 52 42 3 . ∵ BD=2BO=2×3=6(菱形的对角线互相平分). ∴ BD=6 cm.
练习 1. 如图,在菱形ABCD中,对角线AC、BD相交
2. 如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F, 求证:AE=AF.
证明:∵四边形ABCD是菱形,
第1课时 菱形的性质
第一课时
观察下面几幅图片,我们不难发现 其中包含一些平行四边形,但这些平 行四边形又有哪些共同的特征呢?
与左图相比较,这种平行四边形特殊在哪里?你能给菱 形下定义吗?
一组邻边相等的平行四边形叫做菱形。
想一想
菱形是特殊的平行四边形,它具有一 般平行四边形的所有性质。你能列举一些 这样的性质吗?
菱形的对边平行且相等,对角相等,对 角线互相平分。
你认为菱形还具有哪些特殊的性质? 与同伴交流。
做一做
用菱形纸片折一折,回答下列问题: (1)菱形是轴对称图形吗?如果是,它有
几条对称轴?对称轴之间有什么位置关系? (2)菱形中有哪些相等的线段?
结论
菱形是轴对称图形,有两条对 称轴,是菱形两条对角线所在的 直线。两条对称轴互相垂直。
为什么?
课堂小结
1.菱形的定义:一组邻边相等的平行四边形 是菱形。
2.菱形的性质:①菱形是轴对称图形,对称 轴是两条对角线所在的直线;②菱形的四条边 都相等;③菱形的对角线互相垂直平分。
3.菱形具有平行四边形的所有,应用菱形的 性质可以进行计算和推理。
作业
习题:知识技能、数学理解。
(2)∵AB=AD, ∴△ABD是等腰三角形。
又∵四边形ABCD是菱形, ∴OB=OD(菱形的对角线互相平分)。
在等腰三角形ABD中, ∵OB=OD, ∴AO⊥BD,即AC⊥BD。
菱形是特殊的平行四边形,它除具有平行 四边形的所有性质外,还有平行四边形所没 有的特殊性质。
定理:菱形的四条边都相等。
定理:菱形的两条对角线互相垂直。
例1
如图,在菱形ABCD中, 对角线AC与BD相交于点O, ∠BAD=60°,BD=2,求 AB和AC的长。
第1讲 菱形的性质与判定(解析版)
第1讲 菱形的性质与判定 1.理解掌握菱形的概念性质及判定定理2.会用菱形的有关知识进行证明,会计算菱形的面积 知识点01 菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式. ②菱形面积12ab .(a 、b 是两条对角线的长度) 【知识拓展1】菱形的两条对角线长的比是32,面积是cm 12,则它的对角线的长分别是 cm , cm . (★)解答方法:∵ 设菱形的两条对角线的长分别为厘米厘米x x 3,2,∴ 122132=⋅⋅=x x S 菱形,∴ 解得舍去)(2,221-==x x , ∴ 对角线的长分别为cm cm 6,4。
答案:cm cm 6,4。
【总结方法】菱形的面积等于对角线乘积的一半。
【即学即练】两对角线分别是6cm 和8cm 的菱形面积是 _________ cm 2,周长是 _________ cm . (★) 解答方法:菱形面积是224286cm =÷⨯;∵菱形的对角线互相垂直平分,根据勾股定理可得,边长为5cm ,则周长是20cm . 知识精讲目标导航故答案为24,20.解答:24,20【知识拓展2】菱形的周长是它的高的8倍,则菱形较小的一个角为()(★★) A.60°B.45°C.30°D.15°解答方法:菱形的周长为边长的4倍,又∵菱形周长为高的8倍,∴AB=2AE,∵△ABE为直角三角形,∴∠ABC=30°.故选 C.答案:C【总结方法】本题考查了菱形各边长相等的性质,考查了直角三角形中的特殊角,本题中根据特殊角求得∠ABC=30°是解题的关键.【即学即练1】菱形的一条对角线与边长相等,则菱形中较小的内角是()(★★) A.60°B.15°C.30°D.90°解答方法:因为菱形的一条对角线与边长相等,所以该对角线和菱形的两边组成的是等边三角形,可得该菱形较小内角的度数是60°.解答:A【即学即练2】如果菱形的周长等于一条对角线长的4倍,那么这个菱形较小的一个内角等于度.(★★)解答方法:∵菱形的周长等于一条对角线长的4倍,∴AB=BD=AD,∴△ABD是等边三角形,∴∠A=60°.即这个菱形较小的一个内角等于60°.解答:60【知识拓展3】已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE. (★★)答案:证明:∵ 四边形ABCD 是菱形,∴ BCD CA CD CB ∠=平分,.∴ CE CE DCE BCE =∠=∠又.,∴ △BCE ≌△COB (SAS ).∴ ∠CBE=∠CDE .∵ 在菱形ABCD 中,AB ∥CD , ∴∠AFD=∠FDC∴ ∠AFD=∠CBE .【总结方法】通过菱形的基本性质可以得到三角形全等,进而推出对应角相等,然后利用平行内错角相等进行转化即可得到要证明的结论。
北师大版九年级数学上册第1章1.1菱形的性质与判定说课稿
3.技术工具:电子白板、课堂互动软件等,方便师生互动,实时反馈学生的学习情况。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:教师提问,引导学生思考,鼓励学生表达自己的观点,对学生的回答给予积极评价;
2.生生互动:组织学生进行小组讨论、合作探究,互相交流想法,共同解决问题;
3.课堂竞赛:设置小组竞赛,鼓励学生积极参与,提高学生的合作意识和竞争意识;
4.课后交流:利用网络平台,让学生在课后继续讨论、分享学习心得,拓宽学生的知识视野。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将以生活中的实际例子导入新课。首先,展示一组包含菱形的图片,如菱形饰品、建筑物的菱形结构等,让学生观察并思考这些图片中的共同特征。然后,提出问题:“你们在生活中还见过哪些形状像这样的图形?”引导学生发现菱形在生活中的广泛应用,从而引出本节课的主题——菱形的性质与判定。
(二)学习障碍
学生在学习本节课之前,已经掌握了矩形、三角形的性质和判定方法,具备了一定的几何图形分析能力。但在学习菱形的性质与判定时,可能存在以下学习障碍:
1.对菱形性质的理解和记忆不够深刻,容易与其他图形混淆;
2.对菱形判定定理的运用不够熟练,难以判断复杂的四边形是否为菱形;
3.在解决实际问题中,缺乏将菱形性质和判定应用于问题求解的能力。
2.探究式教学:鼓励学生主动探究、发现、总结规律,有助于培养学生的创新精神和实践能力;
3.任务驱动法:以具体任务为驱动,促使学生积极参与,提高学生解决问题的能力和团队合作意识。
(二)媒体资源
第1讲:菱形的性质与判定_教案
∵在Rt△ABC中,CH⊥AB于H,
∴∠1+∠AFH=90°,∠2+∠4=90°,
∵∠3=∠AFH,∠1=∠2,
∴∠3=∠4,
∴FC=CD,
∵DE⊥AB垂足为E,∠ACD=90°,∠1=∠2,
∴CD=DE,∴FC=DE,
∵CH⊥AB,DE⊥AB,
∴FC∥DE,
∴四边形CFED是平行四边形,
【解析】根据菱形的判定,平行的性质,全等三角形的判定和性质,由已知,添加OA=OC或AD=BC或AD//BC或AB=BC等即可判定ABCD成为菱形.
3.【答案】见解析.
【解析】△ECF是等边三角形.
证明:连接AC,
∵∠B=60°,
∴AC=AB=CD,∠D=∠CAE=60°
又∵AE=FD,
∴△CDF≌△CEA(SAS),
A.4 B.24 C.8 D.24
2.如图,菱形ABCD中,P为对角线AC上一动点,E,F分别为AB、BC中点,若AC=8,BD=6,则PE+PF的最小值为___________.
答案与解析
1.【答案】C
【解析】试题分析:先根据菱形的性质求得∠BAD=60°,AO=3,即可得到△ABD为等边三角形,根据等边三角形可得AB的长,从而求得结果.
A. D.8
2.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,
使四边形ABCD成为菱形.(只需添加一个条件即可)
3.如图,在菱形ABCD中,∠B=60°,点E、F分别在边AB、AD上,且AE=DF.
(1)试猜想△ECF的形状,并说明理由.
(2)若AB=10,那么△ECF的周长是否存在最小值?如果存在,请求出来;如果不存在,请说明理由.
第01讲 菱形的性质与判定(知识解读+真题演练+课后巩固)(原卷版)
第1讲 菱形的性质与判定1. 理解菱形的概念;2. 探索并证明菱形的性质定理和判定定理,并能运用它们进行证明和计算;3. 通过经历菱形的性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养和发展学生的合情推理能力;4. 通过菱形的性质定理和判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力。
知识点 1:菱形的性质菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:(1)具有平行四边形的性质(2)且四条边都相等(3)两条对角线互相垂直平分,每一条对角线平分一组对角。
注意:菱形是轴对称图形,每条对角线所在的直线都是对称轴。
知识点2:菱形的面积菱形的面积等于两条对角线长的乘积的一半BD AC BD AC S S AOB Rt ABCD •=••⨯==∆2121212144菱形知识点3:菱形的判定※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
【题型1菱形的概念和性质】【典例1】如图,在菱形ABCD中,对角线AC,BD相交于点O,已知AC=10cm,BD=24cm,则△ABD的周长为()A.30cm B.36cm C.50cm D.52cm【变式1-1】如图,在菱形ABCD中,∠ABD=30°,则∠A的度数为()A.150°B.140°C.130°D.120°【变式1-2】在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定正确的是()A.AB=AD B.AC⊥BD C.∠DAC=∠BAC D.AC=BD 【变式1-3】如图,菱形ABCO中的顶点O,A的坐标分别为(0,0),,点C在x轴的正半轴上,则点B的坐标为()A.B.C.D.【典例2】(2022秋•绥化期末)下列不属于菱形性质的是()A.四条边都相等B.两条对角线相等C.两条对角线互相垂直D.每一条对角线平分一组对角【变式2-1】(2022秋•舞钢市期中)下列说法不正确的是()A.菱形的四条边都相等B.菱形的对角线相等C.菱形是轴对称图形D.菱形的对角线互相垂直【变式2-2】(2022春•兰陵县期末)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.25°B.30°C.35°D.40°【变式2-3】(2022•赫章县模拟)如图,在平面直角坐标系中,四边形ABCD 为菱形,A,B两点的坐标分别是(4,0),(0,3),点C,D在坐标轴上,则菱形ABCD的周长等于()A.16B.20C.24D.26【典例3-1】(2021秋•榆林期末)如图,在菱形ABCD中,若AB=5,AC=8,则菱形ABCD的面积为()A.24B.20C.16D.12【典例3-2】(2022•文山州模拟)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,DB=8,则点A到BC的距离为()A.B.6C.8D.(2021秋•深圳期末)已知菱形的两条对角线的长分别为6cm和8cm,【变式3-1】则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm2【变式3-2】(2021秋•毕节市期末)如图,在菱形ABCD中,对角线AC与BD 相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A.6B.8C.D.【题型2:菱形的判定】【典例4】依据所标识的数据,下列平行四边形一定为菱形的是()A.B.C.D.【变式4-1】在下列条件中,能够判定▱ABCD为菱形的是()A.AB=AC B.AC⊥BD C.AC⊥BC D.AC=BD【变式4-2】如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.∠ABC=90°D.AO=BO【变式4-3】要检验一张四边形的纸片是否为菱形,下列方案中可行的是()A.度量四个内角是否相等B.测量两条对角线是否相等C.测量两条对角线的交点到四个顶点的距离是否相等D.将这纸片分别沿两条对角线对折,看对角线两侧的部分是否每次都完全重合【典例5】(2022春•苍溪县期末)如图,在△AFC中,∠F AC=90°,B、E分别是FC、AB的中点,过点A作AD∥FC交FE的延长线于点D.(1)求证:BF=AD;(2)求证:四边形ABCD是菱形.【变式5-1】(2022秋•章丘区校级月考)已知:如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点F,E是AC的中点,过点A作AD∥BC,交FE的延长线于点D.(1)求证:四边形AFCD是平行四边形;(2)给△ABC添加一个条件,使得四边形AFCD是菱形.请证明你的结论.【变式5-2】(2022•天宁区校级一模)如图,在四边形ABCD中,AC与BD相交于点O.且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:△AOE≌△COD;(2)若AB=BC,求证:四边形AECD是菱形.【题型3:菱形的性质与判定综合】【典例6】(2022•冷水滩区校级开学)如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于点D,交BC于点E,过点A作BC的平行线交ED于点F,连接AE,AF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.【变式6-1】(2022秋•龙岗区期末)如图,在四边形ABCD中,AB∥CD,AD ∥BC,AC平分∠DAB,连接BD交AC于点O,过点C作CE⊥AB交AB延长线于点E.(1)求证:四边形ABCD为菱形;(2)若OA=4,OB=3,求CE的长.【变式6-2】(2022•新市区校级一模)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若,∠F AC=30°,∠B=45°,求AB的长.【变式6-3】(2022春•张家港市校级月考)如图,▱ABCD对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE,OE=CD.(1)求证:▱ABCD是菱形;(2)若AB=4,∠ABC=60°,求AE的长.1.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E 为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48 2.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D 作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4B.4C.8D.8 3.(2022•淄博)如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为()A.16B.6C.12D.30 4.(2022•甘肃)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB =2cm,AC=4cm,则BD的长为cm.5.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.6.(2022•岳阳)如图,点E,F分别在▱ABCD的边AB,BC上,AE=CF,连接DE,DF.请从以下三个条件:①∠1=∠2;②DE=DF;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD为菱形.(1)你添加的条件是(填序号);(2)添加了条件后,请证明▱ABCD为菱形.7.(2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE =AF.求证:CE=CF.8.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.9.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD 的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.1.(2022•齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是.(只需写出一个条件即可)2.(2021春•龙马潭区期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是AB的中点,连结EO.若EO=2,则CD的长为()A.2B.3C.4D.5 3.(2022秋•丰城市校级期末)如图,菱形ABCD中对角线相交于点O,AB=AC,则∠ADB的度数是()A.30°B.40°C.50°D.60°4.(2022秋•南海区期中)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的周长是()A.14cm B.16cm C.18cm D.20cm 5.(2021秋•建平县期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.6B.8C.12D.16 6.(2022秋•碑林区校级期中)如图,已知菱形的两条对角线AC与BD长分别是12和16,则这个菱形的面积是()A.192B.48C.96D.40 7.(2022秋•三明期中)如图,在菱形ABCD中,AC交BD于点O,DE⊥BC 于点E,连接OE,若∠BCD=50°,则∠OED的度数是()A.25°B.30°C.35°D.20°9.(2022秋•浑南区期中)在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线互相垂直平分C.两条对角线互相垂直D.两条对角线相等且互相垂直10.(2022秋•二七区校级月考)如图▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形11.(2022春•铁西区期末)已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC =60°,BC的垂直平分线分别交BC和AB于点D和点E,点F在DE的延长线上,且AF=CE.(1)∠BCE的度数为°.(2)求证:四边形ACEF是菱形.12.(2022春•长乐区期中)如图,▱ABCD的对角线AC,BD相交于点O,且AB=13,AO=12,BO=5.求证:▱ABCD是菱形.13.(2022秋•海淀区期中)如图,在△ABC中,∠ABC=90°,BD为△ABC的中线.BE∥DC,BE=DC,连接CE.(1)求证:四边形BDCE为菱形;(2)连接DE,若∠ACB=60°,BC=4,求DE的长.。
第1课时 菱形的性质与判定(1)课堂本
如图,连接AC,BD.
∵对角线AC=8,BD=6,
∴对角线的一半分别为4,3,
∴菱形的边长为=
=5,
菱形的面积=5BE= ×8×6,
解得BE= .
Page 16
cm,则另一条对角线的长是(C )
A.4cm
B. cm
C.2cm
D.2 cm
Page 7
巩固提高
4.菱形的两条对角线分别是12 cm,16 cm,则
菱形的边长是( C )
A.6 cm B.8 cm C.10 cm D.15 cm
5.菱形的周长为4,一个内角为60°,则较短
的对角线长为( C )
A.2 B.
2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则 △ABC的周长等于( B ) A.20 B.15 C.10 D.5
Page 5
精典范例
【例3】菱形具有而一般平行四边形不具有的 性质是( D ) A.对角相等 B.对边相等 C.对角线相等 D.对角线互相垂直
Page 6
变式练习
3.菱形的边长是2 cm,一条对角线的长是2
证明:∵四边形ABCD是菱形, ∴AB=CB,∠A=∠C, ∵BE⊥AD,BF⊥CD, ∴∠AEB=∠CFB=90°, 在△ABE和△CBF中, ∠A=∠C,AB=CB, ∠AEB=∠CFB=90° ∴△ABE≌△CBF(AAS),∴BE=BF.
Page 15
巩固提高
(2)当菱形ABCD的对角线AC=8,BD=6时,求 BE的长.
是菱形,对角线AC与BD相交于O,
∴AC⊥BD,DO=BO,
∵AB=5,AO=4,
∴BO=
=3,
∴BD=2BO=2×3=6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的对角线长为( C )
A.2 B.
C.1 D.
8
巩固提高
6.如图,在菱形ABCD中,∠ABC=60°,AC=4, 则BD的长为( B) A.8 B. 4 C. 2 D.8
9
巩固提高
7.菱形的边长为4,两邻角度数的比为1∶2,此 菱形的面积为 . 8.已知菱形的边长为10cm,两条对角线之比为 3:4,则菱形两条对角线分别为 12 cm,. 16 cm
6
变式练习
3.菱形的边长是2 cm,一条对角线的长是2
cm,则另一条对角线的长是(C )
A.4cm
B. cm
C.2cm
D.2 cm
7
巩固提高
4.菱形的两条对角线分别是12 cm,16 cm,则
菱形的边长是( C)
A.6 cm B.8 cm C.10 cm D.15 cm
5.菱形的周长为4,一个内角为60°,则较短
如图,连接AC,BD.
∵对角线AC=8,BD=6,
∴对角线的一半分别为4,3,
∴菱形的边长为=
=5,
菱形的面积=5BE= ×8×6,
解得BE= .
16
证明:∵四边形ABCD是菱形, ∴AB=CB,∠A=∠C, ∵BE⊥AD,BF⊥CD,∴∠AEB=∠CFB=90°, 在△ABE和△CBF中, ∠A=∠C,AB=CB, ∠AEB=∠CFB=90° ∴△ABE≌△CBF(AAS),∴BE=BF.
15
巩固提高
(2)当菱形ABCD的对角线AC=8,BD=6时,求 BE的长.
证明:∵ABCD是菱形, ∴AD=CD, ∵E,F分别是CD,AD的中点, ∴DE= CD,DF= AD,∴DE=DF,
又∵∠ADE=∠CDF, ∴△AED≌△CFD(SAS), ∴AE=CF.
14
巩固提高
12.如图,四边形ABCD是菱形,BE⊥AD.BF⊥CD, 垂足分别为E,F. (1)求证:BE=BF;
3
精典范例
【例2】如图,已知菱形ABCD的边长为5,则 它的周长为__2_0________.
4
变式练习
2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则 △ABC的周长等于( B ) A.20 B.15 C.10 D.5
5ห้องสมุดไป่ตู้
精典范例
【例3】菱形具有而一般平行四边形不具有的 性质是( D ) A.对角相等 B.对边相等 C.对角线相等 D.对角线互相垂直
第一章 特殊的平行四边形
第1课时 菱形的性质与判定(1)
精典范例(变式练习) 巩固提高
1
精典范例
【例1】如图,在平行四边形ABCD中, ∵∠1=∠2, ∴BC=DC, ∴平行四边形ABCD是菱形 (__有一组邻边相等的平行四边形是菱形__). (请在括号内填上理由)
2
变式练习
1.如图,在四边形ABCD中,AB=CD,AD=BC, 添加一个条件使四边形ABCD是菱形,那么所 添加的条件可以是__A_B_=_C_D_______ (写出一个即可).
∴AC⊥BD,DO=BO,
∵AB=5,AO=4,
∴BO=
=3,
∴BD=2BO=2×3=6.
12
巩固提高
(2)求菱形的面积. (2)∵四边形ABCD是菱形, ∴AC=2AO=8, ∴菱形ABCD的面积=AC×BD× =24.
13
巩固提高
11.如图,已知四边形ABCD是菱形,点E,F分 别是边CD,AD的中点.求证:AE=CF.
10
巩固提高
9.如图,菱形ABCD中,AB=4,∠B=60°, AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF, 则△AEF的面积是_______.
11
巩固提高
10.如图,四边形ABCD是菱形,对角线AC与BD 相交于O,AB=5,AO=4. (1)求BD的长;
解:(1)∵四边形ABCD
是菱形,对角线AC与BD相交于O,