散热片散热面积计算
散热器尺寸设计计算方法
散热器尺寸设计计算方法1.散热器面积计算:散热器的面积是散热效果的关键因素之一、根据散热器的材料、形状和工况要求,可以计算出散热器需要的面积。
常用的计算公式如下:A=Q/(U*ΔT)其中,A为散热器面积(m^2),Q为需要散热的功率(热量,W),U为散热器的总传热系数(J/(m^2·s·K)),ΔT为散热器的温差(K)。
2.散热器尺寸计算:散热器的尺寸也是影响散热效果的重要参数。
常用的尺寸设计计算方法有以下几种:(1)翅片间距计算:翅片间距是翅片散热器的一个重要参数,影响散热器的散热面积。
一般情况下,翅片间距需要与相邻的翅片高度相等,以确保散热面积充分利用。
翅片间距计算公式如下:S=H/(N+1)其中,S为翅片间距(m),H为散热器的高度(m),N为翅片数量。
(2)翅片厚度计算:翅片厚度会影响散热器的散热效果和机械强度,一般情况下,翅片厚度越小,散热效果越好。
根据散热器的散热面积和翅片的数量,可以计算出翅片的厚度。
翅片厚度计算公式如下:T=A/(N*L)其中,T为翅片厚度(m),A为散热器的面积(m^2),N为翅片数量,L为散热器的长度(m)。
(3)散热管直径计算:散热管的直径也是散热器的一个重要尺寸参数。
直径越大,散热效果越好,但同时也会增加材料成本。
根据散热器的总传热系数和散热管的数量,可以计算出散热管的直径。
D=sqrt((4Q)/(P*π*N))其中,D为散热管的直径(m),Q为需要散热的功率(W),P为散热管的壁厚(m),N为散热管的数量。
除了上面介绍的计算方法,根据具体的散热要求和特殊情况,也可以采用一些其他的尺寸设计计算方法。
需要根据实际情况选择合适的计算方法,确保散热器的散热效果和稳定性。
散热器尺寸设计计算办法
散热器尺寸设计计算办法
散热器是将热量从热源传递到周围环境的设备。
在进行散热器的尺寸
设计计算时,需要考虑散热器的材料、表面积、几何形状以及流体参数等
因素。
首先,散热器材料的选择对散热性能起着重要的影响。
常见的散热器
材料有铝、铜、不锈钢等。
这些材料具有良好的导热性能,可以有效地传
导热量。
其次,散热器的表面积是决定散热能力的重要因素。
表面积越大,散
热器与周围环境的接触面积就越大,从而有更好的散热效果。
在进行尺寸
设计时,可以根据所需的散热功率来计算表面积。
表面积的计算方法可以
利用散热器的几何形状进行估算,例如直立式散热器的面积可以通过散热
片的长度、厚度和数量来计算。
另外,散热器的几何形状也会对散热性能产生影响。
常见的散热器形
状有片状散热器、管式散热器、鳍片散热器等。
不同形状的散热器具有不
同的表面积和流体流通路径,因此其散热性能也会有所不同。
在进行尺寸
设计时,需要根据具体的应用场景和要求来选择合适的几何形状。
最后,流体参数是散热器尺寸设计中的重要考虑因素。
流体参数包括
流体的温度、流速、粘度等。
这些参数会影响到散热器的传热系数和压降。
在进行尺寸设计时,需要根据流体参数来计算散热器的传热系数和压降,
以保证散热器的性能满足设计要求。
综上所述,散热器的尺寸设计计算是一个复杂的过程,需要综合考虑
散热器材料、表面积、几何形状和流体参数等因素。
通过合理的设计计算,可以确保散热器具有良好的散热性能。
散热片计算方法
征热传导过程的物理量在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律:Q=K·A·(T1-T2)/L (1)式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差.热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为:R=(T1-T2)/Q=L/K·A(2)对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系.对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下:Z=(T1-T2)/(Q/A)=R·A (3)表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量.芯片工作温度的计算如图4的热传导过程中,总热阻R为:R=R1+R2+R3 (4)式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为:R2=Z/A (5)式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:T2=T1+P×R (6)式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2.实例下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为:R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7)由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为:R3=R4/60%=1.93℃/W(8)总热阻R为:R=R1+R2+R3=5.18℃/W (9)芯片的工作温度T2为:T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10)可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态.如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
暖气片计算与使用面积
暖气散热片计算与使用面积居民家中如何计算金旗舰暖气片使用数量即一算面积、二算瓦数(W )、三算片数。
热器买多少要按照一定的步骤计算。
1.算面积:计算卧室、起居室、卫生间等面积,作为测算的基础数据。
金旗舰,用品质温暖世界(生活)。
2.算瓦数(W):“W”(瓦)是暖气的供暖量,多大“W”可以温暖多大面积的房间有计算依据,我们可根据以下民用建筑供暖热指标测算参考数据,来计算出应购暖气的数量。
住宅45- 70,办公室、学校40-80,医院、幼儿园65-80,单层住宅80-105,食堂、餐厅115-140(单位:W/平方米)。
集中供暖阳面(有保温层):70—80 W/㎡。
集中供暖(有保温层)阴面、低层、顶层、端头户、郊区、平房等与采暖相关的不利因素,须适当加上20%—30%的散热量。
消费者可根据房屋的用途,用房屋面积乘以上述数据,得出房间需要的供热量。
但以上仅为理论数值,实际生活中可能还会有所变化。
一般情况下,楼房、北房、城里、中间要比平房、南房、城外、两端的房子暖和一些,在计算供暖量的时候可以不考虑富裕量。
反之,可再适当加上10%~20%作为富裕量,以免暖气在冷天时热量不够。
3.算片数:当需要的总瓦数计算出来后,消费者就可以换算出需要购买暖气的片数,进而可以计算出需要购买暖气的组数。
但暖气并不都是可以拆分组合的,消费者可根据面积选择其适用功率的暖气就可以了。
高度和长度:有一个简单的方法,在计算出散热器熟后,考虑散热器的修正,然后再适当加上20 %—50 %,作为邻户传热富裕量,以免散热器热量不够。
实际上,瓦数算出来以后就可以换算出散热器的片数进而计算出组数,实际散热器并不都是可以拆分组合的,尤其是卫浴型散热器,一般都是整体造型居多,消费者根据面积选择其适用的款式就可以了。
散热器应放置在窗下。
散热器的长度最好与窗户的宽度相近,散热器高度的选择取决于窗台的高度。
散热器的下部应留100毫米的空隙,以确保空气能顺畅通过散热器,形成气流循环。
srz铝翅片散热器散热面积计算公式
srz铝翅片散热器散热面积计算公式
SRZ铝翅片散热器是一种常用的散热设备,用于散热面积的计算公式能够帮助我们准确地评估其散热效果。
下面我将以人类的视角,为您详细介绍这个计算公式,并对其应用进行解释。
我们需要了解SRZ铝翅片散热器的基本结构。
它由一组铝制翅片组成,这些翅片呈现出鳍片状的形状,可以增加其表面积,以提高散热效果。
这意味着散热器的散热面积直接影响着其散热能力。
因此,我们需要一个准确的公式来计算散热面积。
根据我的了解,SRZ铝翅片散热器的散热面积计算公式如下:
散热面积 = 翅片长度 × 翅片宽度 × 翅片数量
其中,翅片长度指的是单个翅片的长度,翅片宽度指的是单个翅片的宽度,翅片数量是指整个散热器上翅片的总数。
通过这个公式,我们可以准确地计算出SRZ铝翅片散热器的散热面积。
当我们知道了散热面积后,就可以对散热器的散热能力有一个更清晰的了解,并可以根据实际需要进行选择和使用。
需要注意的是,散热面积的计算公式只是评估散热器性能的一个方面。
在实际应用中,我们还需要考虑其他因素,如散热材料的导热性能、散热器的安装方式等。
因此,在选择和使用SRZ铝翅片散热器时,我们还需要综合考虑这些因素。
通过以上的介绍,我们了解了SRZ铝翅片散热器散热面积的计算公式,并对其应用进行了解释。
希望这些信息对您有所帮助,让您更好地理解和使用SRZ铝翅片散热器。
发动机散热器设计计算
发动机散热器的设计计算散热片面积是冷却水箱的基本参数,通常单位功率所需散热面积为0.20~0.28 m2 /KW。
发动机后置的车辆冷却条件比较差,工程机械行走速度慢没有迎风冷却,因此所配置的水箱散热面积宜选用上限。
水箱所配相关管道不能太小,其中四缸机的管道内径三37mm,六缸机的管道内径三42mm。
水箱迎风面积要求尽可能大一点,通常情况下为0.31~0.37 m /KW,后置车、工程车辆还要大一些,由于道路条件改善,长时间的高速公路上高速行驶,或者容易超载,经常爬坡的车辆也要选得大一点。
对冷却液的要求:1•冷却作用:有效的带走一定的热量,使发动机得到冷却,防止过热。
2•防冻作用:防止冷却液结冰而导致水箱和柴油机水腔冻裂。
3•防氧化和腐蚀:冷却液可防止金属件的氧化和腐蚀。
为改善发动机的工作条件,进一步提高其冷却性能,发动机后置或者重型车都配置了膨胀水箱。
膨胀水箱应高于散热水箱50mm左右,必须具有相当于冷却系统总容积6%的冷却液膨胀空间,储备水量应是冷却系统总容积的11%,有暖风时达到20%,冷却液液面不能淹没加水伸长颈管,加水伸长颈管上部必须设通气孔,通气管不宜小于© 3.2mm,膨胀水箱最低液面以下水深不得低于50mm,以防止空气进入注水管。
由于受到发动机水循环系统进出口口径大小的限制,发动机进水接口外径为34mm (散热器出水接口外径也为34mm),发动机回水接口外径为35mm (散热器回水接口外径为35mm)。
本产品所选用的发动机额定功率为:110kw在设计或选用冷却部件时应以散入冷却系统的热量Q为原始数据,来计算冷却系统的循环水量和冷却空气量:燃料热能传给冷却系的分数,取同类机型的统计量, %,柴油机A=0.23〜0.30, 取 A=0.25g e-燃料消耗率,kg/kw.h ;柴油机为0.210R-发动机有效功率,取最大功率 110kw若水冷式机油散热器,要增加散热量,Q W增大5%〜10%.在算出发动机所需的散走的热量后,可计算冷却水循环量△tW-冷却水循环的容许温升(6112。
散热片计算方法
征热传导过程的物理量在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律:Q=K·A·(T1-T2)/L (1)式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差.热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为:R=(T1-T2)/Q=L/K·A (2)对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系.对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下:Z=(T1-T2)/(Q/A)=R·A (3)表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量.芯片工作温度的计算如图4的热传导过程中,总热阻R为:R=R1+R2+R3 (4)式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为:R2=Z/A (5)式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:T2=T1+P×R (6)式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2.实例下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为:R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W (7)由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为:R3=R4/60%=1.93℃/W (8)总热阻R为:R=R1+R2+R3=5.18℃/W (9)芯片的工作温度T2为:T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃(10)可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态.如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科)转载。
热管散热器散热计算公式
热管散热器散热计算公式热管散热器是一种高效的散热设备,它通过热管的热传导和散热片的散热来实现散热效果。
在工程实践中,我们需要通过一定的计算来确定热管散热器的散热效果,以确保设备正常运行。
本文将介绍热管散热器的散热计算公式,并对其进行详细的讲解。
热管散热器的散热计算公式可以分为两部分,热管的热传导计算和散热片的散热计算。
首先我们来看热管的热传导计算。
热管的热传导计算公式如下:Q = kAΔT / L。
其中,Q为热管的传热量,单位为瓦特(W);k为热管的导热系数,单位为瓦特/米-摄氏度(W/m·°C);A为热管的横截面积,单位为平方米(m^2);ΔT为热管两端的温度差,单位为摄氏度(°C);L为热管的长度,单位为米(m)。
在实际应用中,热管的导热系数k通常是已知的,可以根据热管的材料和结构参数进行查阅。
热管的横截面积A和长度L也是已知的,可以通过测量得到。
而热管两端的温度差ΔT则需要根据具体的工况和散热需求来确定。
通过这个公式,我们可以计算出热管的传热量,从而评估热管的散热性能。
接下来我们来看散热片的散热计算。
散热片的散热计算公式如下:Q = hAΔT。
其中,Q为散热片的传热量,单位为瓦特(W);h为散热片的对流换热系数,单位为瓦特/平方米-摄氏度(W/m^2·°C);A为散热片的表面积,单位为平方米(m^2);ΔT为散热片表面和环境的温度差,单位为摄氏度(°C)。
在实际应用中,散热片的表面积A是已知的,可以通过测量得到。
散热片的对流换热系数h通常需要根据具体的工况和散热片的形状来确定,可以通过经验公式或者计算流体力学模拟得到。
而散热片表面和环境的温度差ΔT也需要根据具体的工况和散热需求来确定。
通过这个公式,我们可以计算出散热片的传热量,从而评估散热片的散热性能。
综合考虑热管和散热片的散热计算公式,我们可以得到整个热管散热器的散热量。
在实际应用中,我们还需要考虑热管和散热片的布局和组合方式,以及热管散热器的整体热阻等因素。
散热器选择及散热计算
暖气片散热片选择及散热计算热性能相同发热元器件布置:显示PCB上安装IC(0.3W),LSI(1.5W)时温度上升的实测值。
按(a)排列,IC的温度上升值是18℃-30℃,LSI温度上升值是50℃。
按(b)排列,LSI温度上升值是40℃,比(a)排列还要低10℃。
因此,具有相同水平的耐热元件混合排列时,基本排列顺序是:耗电大的元件、散热性差的元件应装在上风处。
2 高发热器件加散热器、导热板当PCB中有少数器件发热量较大时(少于3个)时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。
当发热器件量较多时(多于3个),可采用大的散热罩(板),它是按PCB板上发热器件的位置和高低而定制的专用散热器或是在一个大的平板散热器上抠出不同的元件高低位置。
将散热罩整体扣在元件面上,与每个元件接触而散热。
但由于元器件装焊时高低一致性差,散热效果并不好。
通常在元器件面上加柔软的热相变导热垫来改善散热效果。
2通过PCB板本身散热目前广泛应用的PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。
这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径,几乎不能指望由PCB本身树脂传导热量,而是从元件的表面向周围空气中散热。
但随着电子产品已进入到部件小型化、高密度安装、高发热化组装时代,若只靠表面积十分小的元件表面来散热是非常不够的。
同时由于QFP、BGA等表面安装元件的大量使用,元器件产生的热量大量地传给PCB板,因此,解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。
1 选用导热性良好的板材现今大量使用的环氧玻璃布类板材,其导热系数一股为0.2W/m℃。
普通的电子电路由于发热量小,通常采用环氧玻璃布类基材制作,其产生的少量热量一般通过走线热设计和元器件本身散发出去。
随着元件小型化、高集成化,高频化,其热密度明显加大,特别是功率器件的使用,为满足这种高散热要求后来开发出了一些新型导热性板材。
散热器的计算公式
散热器的计算公式
散热器是一种用来散发热量的设备,广泛应用于各个领域,包
括建筑、工业、汽车等。
计算散热器的散热能力对于确保设备正常
运作非常重要。
以下是一些常用的散热器计算公式。
1. 热功率计算
散热器的主要功能是散发热量,因此计算热功率是散热器设计
的关键。
热功率可根据以下公式计算:
热功率 (W) = 热量传导系数 (U) ×温度差(ΔT) × 表面积 (A)
其中,热量传导系数是指散热器材料的热导率,温度差是散热
器表面的温度与周围环境温度之差,表面积是指散热器的外表面积。
2. 散热器尺寸计算
散热器尺寸的计算涉及到散热片的数量和间距。
以下是一些常
用的散热器尺寸计算公式:
- 散热片数量 (N) = 热功率 (W) / 单个散热片的散热能力 (Q)
其中,单个散热片的散热能力可由散热片的热导率 (K) 和表面积 (A) 计算得出。
- 散热片间距 (D) = 散热器高度 (H) / (散热片数量 (N) - 1)
3. 散热器材料选择
散热器材料的选择是散热器设计中的另一个重要因素。
常用的散热器材料包括铝、铜、不锈钢等。
根据散热需求和成本考虑,选择适当的材料是非常关键的。
4. 其他因素考虑
除了以上的计算公式外,散热器设计还需要考虑其他因素,例如流体流量、风速、散热器的布局等。
这些因素会对散热器的散热能力产生影响,需要进行综合考虑。
综上所述,散热器设计的计算公式涉及热功率、散热器尺寸、材料选择等因素。
根据实际需求合理使用这些公式可以确保散热器的有效运作。
散热片设计计算公式
散热片设计计算公式
散热片是一种用于散热的重要元件,广泛应用于电子设备和机械设备中。
它的设计计算公式是根据散热片的尺寸、材料和工作条件来确定的。
在设计散热片时,需要考虑到散热片的导热性能、散热面积和散热效率等因素。
散热片的导热性能是影响散热效果的重要因素之一。
导热性能通常用散热片的导热系数来衡量,导热系数越大,散热片的散热效果就越好。
导热系数可以通过实验测试或者参考材料手册来获取。
在设计散热片时,需要选择导热性能较好的材料,以提高散热片的导热性能。
散热片的散热面积也是影响散热效果的重要因素。
散热面积越大,散热片能够散热的表面积就越大,散热效果也就越好。
在设计散热片时,需要根据散热要求和设备尺寸等因素来确定散热片的尺寸。
通常情况下,散热片的外形可以选择矩形、方形、圆形等形状,根据实际应用情况来确定。
散热片的散热效率也是需要考虑的因素之一。
散热效率可以通过散热片的设计参数来计算,常见的计算公式如下:
散热效率 = 散热量 / 输入功率
其中,散热量是指散热片从热源吸收的热量,输入功率是指散热片
所消耗的功率。
散热效率越高,散热片的散热效果就越好。
在设计散热片时,需要根据实际情况来选择合适的计算公式,并考虑到散热片的材料、尺寸和工作条件等因素。
散热片的设计计算公式是根据散热片的导热性能、散热面积和散热效率等因素来确定的。
在设计散热片时,需要综合考虑这些因素,并选择合适的材料和尺寸,以提高散热片的散热效果。
通过合理设计和计算,可以使散热片达到更好的散热效果,保证设备的正常运行。
风冷散热的设计及计算
风冷散热的设计及计算风冷散热原理:散热片的核心是同散热片底座紧密接触的,因此芯片表面发出的热量就会通过热传导传到散热片上,再由风扇转动所造成的气流将热量“吹走”,如此循环,便是处理器散热的简单过程。
散热片材料的比较:现在市面上的散热风扇所使用的散热片材料一般都是铝合金,只有极少数是使用其他材料。
学过物理的人应该都知道铝导热性并不是最好的,从效果来看最好的应该是银,接下来是纯铜,紧接着才会是铝。
但是前两种材料的价格比较贵,如果用来作散热片成本不好控制。
使用铝业也有很多优点,比如重量比较轻,可塑性比较好。
因此兼顾导热性和其他方面使用铝就成为了主要的散热材料。
不过我们使用的散热片没有百分之百纯铝的产品,因为纯铝太过柔软,如果想做成散热片一般都会加入少量的其他金属,成为铝合金(得到更好的硬度)。
风扇:单是有了一个好的散热片,而不加风扇,就算表面积再大,也没有用!因为无法同空气进行完全的流通,散热效果肯定会大打折扣。
从这个来看,风扇的效果有时甚至比散热片还重要。
假如没有好的风扇,则散热片表面积大的特点便无法充分展现出来。
挑选风扇的宗旨就是,风扇吹出来的风越强劲越好。
风扇吹出来的风力越强,空气流动的速度越快,散热效果同样也就越好。
要判断风扇是否够强劲,转速是一个重要的依据。
转速越快,风就越强,简单看功率的大小。
轴承:市面上用的轴承一般有两种,滚珠轴承和含油轴承,滚珠轴承比含油轴承好,声音小、寿命长。
但是滚珠轴承的设计比较难,其中一个工艺是预压,是指将滚珠固定到轴承套中的过程,这要求滚珠与轴承套表面结合紧密,没有间隙,以使钢珠磨损度最小。
通常在国内厂家轴承制造中,预压前上下轴承套是正对的,因为钢珠尺寸与轴承套尺寸肯定会存在一定误差,所以在预压受力后,滚珠同轴承套之间总有5—10微米的间隙,就是这个间隙,使得轴承的老化磨损程度大大增加,使用寿命缩短。
同样过程,在NSK公司的轴承制造中,预压时上下轴承套的会有一个5微米左右的相对距离,这样轴承套在受压后就会紧紧的卡住滚珠,使其间的间隙减小为零,在风扇工作中,滚珠就不会有跳动,从而使磨损降至最小,保证风扇畅通且长久高速运转。
散热器选型
1.1、散热器采暖1.1.1、散热器选型计算1) 根据各房间的面积(架空大的可按体积计算)计算出采暖房间的采暖负荷Q,计算方法可参考采暖负荷计算方法;2) 由采暖房间的采暖负荷Q计算出散热片的散热面积F,计算公式如下:F=Q/[K.(tp j-t a)]式中:F——散热器的计算散热面积(m2);Q——采暖房间的采暖负荷(w);K——散热片的单位面积散热量,产品样本提供(w/m2.℃);t p j——散热器内热媒平均温度(℃),t p j=(Tin+Tout)/2,Tin为散热片设计进水温度,Tout为散热片设计出水温度;t a——室内设计温度(℃),一般设计为16-20℃;3) 由换热面积F结合散热片单片换热面积F1便可确定散热片数量;注释:(1)以上计算方法未对散热器片数(长度)、连接方式、安装形式等修正以及房间内明装不保温管道散热修正等,实际设计时应对其进行适当修正,具体修正方法参照相关资料;(2)散热器传热系数应取设计工况下的计算值,在非设计工况下运行时应对散热系数进行指数修正,国内散热器传热系数指数修正计算公式为:K=a×(dt)b其中dt为散热器内热媒平均温度与室内设计温度之差,dt=t pj-t a;a、b为系数与指数,为实验数据,由散热器技术资料提供。
国内散热器按国家标准GB/T13754设计t in(进水温度)为95℃,t out(出水温度)为70℃,t a(室内平均温度)为18℃,dt=(t in+t out)/2-t a=64.5℃,国内一些常见散热器传热系数参见表14、表15;表14:一些铸铁散热器规格及其传热系数K值型号散热面积(m2/片)水容量(L/片)重量(kg/片)工作压力(Mpa)传热系数计算公式标准传热系数(W/m2℃)TC0.285-4长翼型(大60) 1.16 8 28 0.4 K=1.743dt0.28 5.59 TZ2-5-5(M-132型)0.24 1.32 7 0.5 K=2.426dt0.2867.99 TZ4-6-5(四柱760型)0.235 1.16 6.6 0.5 K=2.503dt0.2938.49 TZ4-5-5(四柱640型)0.20 1.03 5.7 0.5 K=3.663dt0.167.13 TZ2-5-5(二柱700型)0.24 1.35 6 0.5 K=2.02dt0.271 6.25 四柱813型0.28 1.40 8 0.5 K=2.237dt0.3027.87 圆翼型 1.80 4.42 38.2 0.5单排 5.81 双排 5.08 三排 4.65 注释:(1)散热器要求表面喷银粉漆,明装,同侧连接上进下出;(2)标准传热系数为dt=64.5℃时的传热系数;(3)修正计算实例:如对于四柱760型单片在tin=95℃,tout=70℃时(即dt=64.5℃时)K=8.49w/m2℃,单片散热量为Q=K×F×dt=8.49×0.235×64.5=128.69w;在tin=80℃,tout=60℃时,dt=(80+60)÷2-18=52℃,K=2.503dt0.293=2.503×520.293=7.96w/m2℃,故可计算出此时单片散热量为Q’=7.96×0.235×52=97.27w。
散热器设计的基本计算
散热器设计的基本计算1.散热功率计算:散热器主要的功能是将设备产生的热量迅速散发出去。
在设计散热器时,首先需要计算散热功率,即设备需要散发的热量。
散热功率的计算公式为:Q=P×R其中,Q为散热功率,单位为W;P为设备的功率,单位为W;R为散热器的散热系数,单位为W/℃。
2.散热面积计算:散热面积是散热器的一个重要参数。
散热面积越大,散热器的散热效果越好。
散热面积的计算公式为:A=Q/(h×ΔT)其中,A为散热面积,单位为m²;Q为散热功率,单位为W;h为热对流换热系数,单位为W/(m²·℃);ΔT为设备的工作温度与环境温度之差,单位为℃。
3.散热器材料选择:散热器的材料也会影响其散热性能。
一般来说,散热器的材料应具有良好的导热性能和强度。
常用的散热器材料有铝、铜、铝合金等。
不同的材料具有不同的热传导系数,选择合适的材料可以提高散热器的散热效果。
4.热传导性能计算:热传导性能是指散热器材料的导热能力。
我们可以通过热阻来衡量热传导性能。
热阻的计算公式为:Rt=L/(k×A)其中,Rt为热阻,单位为℃/W;L为材料的长度,单位为m;k为材料的热导率,单位为W/(m·℃);A为散热器的截面面积,单位为m²。
5.散热器的结构设计:散热器的结构设计也是散热器设计的重要部分。
在结构设计时,需要考虑到散热面积的最大化和散热器的流体阻力。
通常,散热器的散热面积可以通过增加散热片的数量和密度来实现。
而流体阻力则可以通过优化散热片的形状和间距来降低。
总之,散热器的设计需要考虑到多个因素,包括散热功率、散热面积、材料选择、热传导性能和结构设计等。
通过合理的计算和设计,可以达到提高散热效果的目的。
空冷器散热面积计算公式(一)
空冷器散热面积计算公式(一)空冷器散热面积计算公式1. 简介 - 空冷器是一种广泛应用于各种电子设备中的散热装置,通过增大散热面积,利用自然对流或强制对流的方式将热量散发到周围环境中。
- 计算空冷器的散热面积是评估其散热性能的重要指标之一,可以帮助设计人员选定适当的散热器类型及尺寸。
2. 常用计算公式矩形散热片的散热面积计算公式A=l⋅w•A:散热片的散热面积(单位:平方米)•l:散热片的长度(单位:米)•w:散热片的宽度(单位:米)例子:假设一个矩形散热片的长度为,宽度为,则散热面积为A=×=2圆形散热片的散热面积计算公式A=π⋅r2•A:散热片的散热面积(单位:平方米)•r:散热片的半径(单位:米)•π:圆周率,约等于例子:假设一个圆形散热片的半径为,则散热面积为A=×2≈2多孔散热片的散热面积计算公式A=n⋅S•A:散热片的散热面积(单位:平方米)•n:散热片的数量•S:单个散热片的面积(单位:平方米)例子:假设一个空冷器有 4 个相同的散热片,每个散热片的面积为 ^2,则散热面积为A=4×2=2复杂形状散热片的散热面积计算公式针对复杂形状的散热片,可以采用近似计算的方法,将其分解为多个简单形状(如矩形、圆形等),然后逐个计算各个部分的散热面积,再将其累加得到总散热面积。
例子:假设一个复杂形状散热片可以近似分解为一个矩形和一个圆形,矩形部分的长为,宽为,圆形部分的半径为,则散热面积为A=(×)+(π×2)总结空冷器散热面积的计算根据散热器的形状不同而有所差异。
对于矩形、圆形、多孔等简单形状的散热片,可以直接套用对应的计算公式进行计算。
对于复杂形状的散热片,则需要将其分解为简单形状进行计算。
准确计算空冷器散热面积可以帮助设计人员选择合适的散热器,并评估其散热性能。
如何计算散热片的尺寸
如何计算散热片尺寸一、7805设计事例设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W。
按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出。
二、正确的设计方法是:首先确定最高的环境温度,比如60℃,查出民品7805的最高结温Tj(max)=125℃,那么允许的温升是65℃。
要求的热阻是65℃/2.45W=26℃/W。
再查7805的热阻,TO-220封装的热阻θJA=54℃/W,TO-3封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还是不对的),所以不论那种封装都必须加散热片。
资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻。
计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W。
其实这个值非常大,只要是个散热片即可满足。
三、散热片尺寸设计散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。
基本的计算方法是:1.最大总热阻θja = ( 器件芯的最高允许温度TJ - 最高环境温度 TA ) / 最大耗散功率其中,对硅半导体,TJ可高到125℃,但一般不应取那么高,温度太高会降低可靠性和寿命最高环境温度TA 是使用中机箱内的温度,比气温会高。
最大耗散功率见器件手册。
2.总热阻θja=芯到壳的热阻θjc +壳到散热片的 θcs + 散热片到环境的 θsa其中,θjc在大功率器件的DateSheet中都有,例如 3---5θcs 对TO220封装,用2左右,对TO3封装,用3左右,加导热硅脂后,该值会小一点,加云母绝缘后,该值会大一点。
散热片到环境的热阻 θsa 跟散热片的材料、表面积、厚度都有关系,作为参考,给出一组数据例子。
a.对于厚2mm的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是:序号 表面积(平方厘米) 热阻(℃/W)1 500 2.02 250 2.93 100 44 50 5.25 25 6.5中间的数据可以估计了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
散热片作为强化传热的重要技术之一,广泛地应用于提高固体壁面的传热速率。
比如飞机、空调、电子元件、机动车辆的散热器、船用散热器等[1]。
对散热片强化传热的研究引起国
内外众多学者的关注,如对散热片自然对流的研究[2-7],对散热片强制对流的研究[8-12 ]。
前人对散热片的研究大致可分为两类:其一,采用实验的手段,在一定范围内改变散热片组的结构尺寸和操作参数,比较其传热性能,从而得出散热片组最优的结构尺寸和最优的操作参数;其二,采用数学方法,对某一具体情况推导出偏微分方程,简化其边界条件,求其数值解。
本文深入分析散热片组间流体的流动特性及传热特性,总结各种因素对传热的影响,采用最优化技术及先进的计算机软件技术,对自然对流情况下矩形散热片组的散热过程进行了优化研究,并设计典型实验,检验优化结果。
2 散热片散热过程分析散热片多用于强化发热表面向空气散热的情况,故本文以与空气接触的散热片
为研究对
象。
由于散热片表面温度(一般不超过250 C )不高,散热片组对空气的辐射换热量采用式(1) 计算可知,它所占比例小于总散热量的3%。
因此,散热片表面与周围环境之间的散热主要
是对流传热。
式(1)中的F为辐射角系数,本文散热片组的辐射角系数由G N ELLISON [13]
介绍的方法求得。
(1)
散热片传热是一个比较复杂的物理过程,对此过程,国内外学者进行了深入的实验研究,他们的工作主要着重于传热系数大小、传热系数与流体流速以及流道的几何形状等因素的内在联系。
在实验研究中得到了许多适用于具体实验条件的准数关联式。
这些结果对传热过程
的了解和散热片的设计有重要的意义。
在自然对流条件下,散热片组的结构参数(散热片的间距、高度、厚度 )是散热片散热的
主要影响因素,散热片组的结构见文献[ 14]。
2.1 间距对散热片散热的影响
描述流体与固体间对流传热的基本方程式为:
Q=hA AT (2)
从上式可以看出,通过提高传热系数h,增大传热面积来强化流体与散热片表面间的对
流传热效果。
当基面宽度 W给定时,假定传热温差AT,传热系数h不变,这样散热量 Q
的提高就取决于换热面积 A 的大小。
增加散热片数量就可以增加换热面积,有利于散热。
但散热片数目的增多,减小了散热片间的距离S,传热系数h也随之降低。
2.2 高度对散热片散热的影响
提高散热片的高度 H可以增加换热面积 A,从而达到强化传热的目的。
但增加高度会使散热片顶部的局部传热系数降低,导致平均传热系数的降低。
此外,高度也影响着从散热片基面到端部的温度降。
高度越大,温度降也越大,导致散热片表面与周围大气的平均温度差就随之降低,不利于散热。
实际上,散热片的高度还将受到整机外型尺寸的限制。
2.3 厚度对散热片散热的影响
散热片越薄,则单位长度上可装载的散热片的数量就越多,从而增大散热面积,强化散热片的散热;随着散热片厚度的增大,散热片表面与周围大气的平均换热温度差AT就随之
降低,这对于散热是不利的。
在实际的应用中,厚度3的大小往往受工艺水平高低所限。
一
般铸造散热片的厚度3不小于2 mm,机加工散热片的厚度3不小于1 mm。
3 模型根据以上的分析可知,在散热片的设计中,散热片结构参数的选取是问题的关键。
本文以文献[ 7]的实验研究为基础,在限定散热量及基面面积的条件下,以设备的一次投资费用最少为目标函数,对散热片组的结构尺寸进行了计算机模拟优化计算。
目标函数为:
Y=CX (3) 对于密集散热技术中采用散热片的形状较为简单,而且一般是经机械加工制成的,因此,式(3) 中的 C 可取为常数。
这样,目标函数就简化为所用散热材料的质量。
散热材料由纯铝制成,其密度在本研究范围内变化很小,可以忽略。
为了便于研究,把散热材料的质量转化为其体积,即以所用散热材料的体积为实际的目标函数,其计算公式为:
(4)
式中: x、y、z 分别为散热片的高度、厚度、间距。
约束条件:
①散热片高度:O w x w Hmax②散热片厚度:S 0<ym③散热片间距:SC K z w Sms;
④散热量:Q W QC±n QO
4 实例与分析上述的优化问题是一个比较复杂的带有约束条件的非线性规划。
对此问题,首先采用罚函数法 (外点法 )将其化为无约束非线性规划;其次采用坐标轮换法再将多维非线性规划化为一维非线性规划;最后采用一维搜索法之进退法求解该问题。
在上述算法基础上,采用 Borland C++ 语言设计出通用的优化程序。
我们预先设定:可装翅空间的体积(长乂宽>高)为250 mm<180 mm<60 mm ,壁温为
175 C,环境温度为25 C,额定的散热量为 300 ±0 W。
计算结果见表1。
表 1 自然对流条件下散热片组的优化计算mm
优化值 (初始值 ) 优化值 (初始值 )
高度厚度间距高度厚度间距
60.00(60) 1.03(5) 13.76(20) 59.89(50) 1.03(5) 13.70(20)
59.24(40) 1.03(5) 13.34(20) 58.05(30) 1.03(5) 12.69(20)
57.45(20) 1.03(5) 12.37(20) 59.95(60) 1.02(11) 13.76(20)
60.00(60) 1.06(1) 13.67(20) 59.85(60) 1.03(5) 13.68(35)
59.98(60) 1.03(5) 13.75(30) 59.96(60) 1.05(5) 13.69(10)
59.57(60) 1.09(5) 13.37(5) 59.89(50) 1.02(8) 13.73(18)
59.24(40) 1.01(6) 13.41(21) 60.00(55) 1.08(10) 13.63(30)
根据表1的优化结果,可计算出平均最优的散热片组结构尺寸为59.80 >1.04 >13.62, 散热片数为13片(散热片组基面宽度为176.96 mm)。
由此可计算出其单位质量散热材料的传热
速率为: Qopt=599 W/kg 。
对于结构尺寸为 60X1X13和60X1X14的散热片组分别进行实验研究,最后得到单位质量散热材料的传热速率分别为: Q1=457 W/kg 和 Q2=540 W/kg。
从上述三个结构可以看出,优化结果比结构尺寸为60X1X13 的散热片组实验值高
23.7%,比结构尺寸为 60 X X14的散热片组实验值高 9.8%。
为进一步检验计算结果的可靠性,把计算结果和文献[7]中的实验结果进行了比较。
在自然对流条件下散热片组传热性能的实验研究中,在所研究的范围内(温差为150 C,
散热量为300 W,散热片组的结构参数范围为,高度:30〜60 mm ;厚度:3〜15 mm ;间距: 3〜40 mm),得到的最优高度为 60 mm。
在这一点上,优化结论与实验结果是相符的。
在上述实验研究中,没有得出全局的最优间距和厚度值,仅得到了一些局部最优点。
本文把这些最优点和优化结论进行了比较。
当散热片高度为60 mm、厚度为3 mm时,最优的间距为10 mm,此时,散热片组单位质量散热材料的传热速率为:Q'=154 W/kg其与优化结果相差 74.3%。
当散热片高度为40 mm、间距为9 mm时,最优的厚度为 3 mm ,此时散热片组单位质量散热材料的传热速率为:Q'=169 W/kg其与优化结果相差 71.8%。
从上述的比较可以看出优化后的散热片组,不仅满足了散热要求,而且显著地提高了散热片的材料利用率,亦大大降低了一次投资的费用,优化效果是显著的。
5 结论
(1) 自然对流条件下散热片组优化设计是一三变量(散热片高度、间距及厚度 )的非线性规划。
(2) 优化设计的散热片组可较大地提高其材料利用率,最大散热量也有所增大。
符号说明
A为传热面积,m2;AT为散热片组总的传热面积,m2;C为单位质量材料的加工费Y /kg ; H为散热片高度,m;h为传热系数,W/(m2. C ); L为基面长度,m;S为间距,m;a为空气的平均温度, K; f 为散热片组中散热片的平均温度, K; W 为基面宽度, m; Y 为总投资,Y; X为设备总重,kg ; 3为散热片厚度,m;b为斯蒂芬-玻尔兹曼常数, W/(m2.K4)。