完整版2018中考分式方程真题

合集下载

【2018中考数学真题+分类汇编】三期7分式与分式方程试题含解析369【2018数学中考真题分项汇编系列】

【2018中考数学真题+分类汇编】三期7分式与分式方程试题含解析369【2018数学中考真题分项汇编系列】

分式与分式方程一.选择题1. (2018·湖北荆州·3分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【解答】解:去分母得:1﹣3(x﹣2)=﹣4,故选:B.2.(2018·云南省昆明·4分)甲、乙两船从相距300km的A.B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.=B.=C.=D.=【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.3.(2018·云南省·4分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.4.(2018·浙江省台州·4分)计算,结果正确的是()A.1 B.x C.D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==1故选:A.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5.(2018·重庆市B卷)(4.00分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠﹣2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是﹣8﹣4=﹣12,故选:B.【点评】本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.6.(2018·辽宁省葫芦岛市) 若分式的值为0,则x的值为()A.0 B.1 C.﹣1 D.±1【解答】解:∵分式的值为零,∴,解得x=1.故选B.7.(2018·辽宁省阜新市)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为()A.=4 B.=4C.=4 D.=4×2【解答】解:设特快列车的平均行驶速度为xkm/h,由题意得.故选C.8. (2018•莱芜•3分)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B.C.D.【分析】据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A.,错误;B.,错误;C.,错误;D.,正确;故选:D.【点评】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.二.填空题1.(2018·云南省昆明·3分)若m+=3,则m2+= 7 .【分析】把已知等式两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.2.(2018·四川省攀枝花·3分)如果a+b=2,那么代数式(a﹣)÷的值是.解:当a+b=2时,原式=•=•=a+b=2故答案为:2.3.(2018·浙江省台州·5分)如果分式有意义,那么实数x的取值范围是x≠2.【分析】根据分式有意义的条件可得x﹣2≠0,再解即可.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.4.(2018·辽宁省沈阳市)(3.00分)化简:﹣= .【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5. (2018•乐山•3分)化简+的结果是解: +=﹣==﹣1.故答案为:﹣1.6. (2018·湖北咸宁·3分)如果分式有意义,那么实数x的取值范围是_____.【答案】x≠2【解析】分析:根据分式有意义,分母不等于0列式计算即可得解.详解:由题意得,x−2≠0,解得x≠2.故答案为:x≠2.点睛:此题考查了分式有意义的条件:分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.7.(2018·江苏常州·2分)化简:= 1 .【分析】原式利用同分母分式的减法法则计算即可.【解答】解:原式==1,故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(2018·江苏镇江·2分)若分式有意义,则实数x的取值范围是x≠3.【解答】解:由题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.三.解答题1. (2018·广西贺州·6分)解分式方程:+1=【解答】解:去分母得:4+x2﹣1=x2﹣2x+1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.2. (2018·广西梧州·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3. (2018·广西梧州·10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A.B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A.B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y 与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型两人+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A.B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.【点评】本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.4. (2018·湖北江汉·5分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.5. (2018·湖北荆州·5分)先化简,后求值(1﹣)÷,其中a=+1.解:原式=(﹣)÷=•=,当a=+1时,原式==.6. (2018·湖北十堰·6分)化简:﹣÷【分析】原式利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可求出值.【解答】解:原式=﹣•=﹣==.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.(2018·云南省昆明·7分)先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=tan60°﹣|﹣1|时,∴a=﹣1∴原式=•==【点评】本题考查分式的运算法则,解题的关键是熟练运用分式运算法则,本题属于基础题型.8.(2018·云南省曲靖)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.9.(2018·云南省曲靖)甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:=,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.10.(2018·云南省·6分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x 平方米的绿化面积,根据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.11.(2018·重庆市B卷)(2)(a﹣1﹣)÷(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.(2)原式=•=•=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.(2018·辽宁省盘锦市)先化简,再求值:(1﹣)÷,其中a=2+.【解答】解:原式=(﹣)=•=,当a=2+时,原式==+1.13.(2018·辽宁省葫芦岛市) 先化简,再求值:(﹣)÷,其中a=3﹣1+2sin30°.【解答】解:当a=3﹣1+2sin30°时,∴a=+1=原式=[]•=()•=•==714.(2018·辽宁省盘锦市)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?【解答】解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:=1.5×,解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,解得:y≥35.答:每套悠悠球的售价至少是35元.15 (2018·辽宁省阜新市)先化简,再求值:÷(1+),其中a=2.(2)原式=÷=×=当a=2时,原式==16.(2018·辽宁省抚顺市)(10.00分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.【解答】解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.17.(2018·辽宁省抚顺市)(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.18. (2018•呼和浩特•10分)计算(1)计算:2﹣2+(3﹣)÷﹣3sin45°;(2)解方程:+1=.解:(1)原式=﹣+(9﹣)÷﹣3×=﹣++﹣=3;(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:x=1时,x﹣2=﹣1≠0,所以分式方程的解为x=1.19. (2018•广安•6分)先化简,再求值:÷(a﹣1﹣),并从﹣1,0,1,2四个数中,选一个合适的数代入求值【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,∵a≠﹣1且a≠0且a≠2,∴a=1,则原式==﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.20. (2018•广安•8分)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A.B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?【分析】(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据销售利润=单辆利润×销售数量,即可得出y关于a的函数关系式,由B型车的进货数量不超过A型车数量的两倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.【点评】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)利用一次函数的性质求出最大利润.21. (2018•莱芜•6分)先化简,再求值:(+)÷,其中a=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=+1时,原式=×=×===2【点评】本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.22. (2018•陕西•6分)化简:【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得. 【详解】===.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键. 23.(2018·辽宁大连·9分)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得: =,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.24.(2018·江苏镇江·5分)(1)解方程:=+1.【解答】解:(1)两边都乘以(x﹣1)(x+2),得:x(x﹣1)=2(x+2)+(x﹣1)(x+2),解得:x=﹣,当x=﹣时,(x﹣1)(x+2)≠0,∴分式方程的解为x=﹣.25.(2018·吉林长春·6分)先化简,再求值:+,其中x=﹣1.【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:+====x+1,当x=﹣1时,原式=﹣1+1=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.。

全国各地2018年中考数学真题汇编 分式-精编

全国各地2018年中考数学真题汇编 分式-精编

分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2 B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1 C. x>1 D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2 B . 0 C.-2 D.-5【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= •﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)•=x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

全国各地2018年中考数学真题汇编 分式

全国各地2018年中考数学真题汇编 分式

分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2 B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1 C. x>1 D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B. 0C. -2D. -5【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

全国各地2018届中考数学真题汇编 分式

全国各地2018届中考数学真题汇编 分式

分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2 B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1 C. x>1 D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B. 0C. -2D. -5【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

【精品】全国各地2018年中考数学真题汇编 分式【含答案】

【精品】全国各地2018年中考数学真题汇编 分式【含答案】

分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B . 2 C.3 D.4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2 B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1 C. x>1 D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B.0 C. -2 D. -5 【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

全国各地2018年中考数学真题汇编分式

全国各地2018年中考数学真题汇编分式

分式一、选择题1. (2018 山东滨州 ) 以下运算:①2 3 6 3 2 6 5 5 3 3 3,此中结a ?a =a ,②( a ) =a ,③a÷a=a,④( ab) =a b果正确的个数为()A. 1B.2C. 3D.4【答案】 B2. (2018 天津 )计算的结果为()A. 1B. 3C.D.【答案】 C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2 或-2 B. 2C. -2D. 0【答案】 A4. 函数中,自变量 x 的取值范围是()。

A. x≠0B. x<1 C. x>1 D. x≠1【答案】 D5. 若分式的值为 0,则的值是()A. 2B.0C.-2D. -5【答案】 A6. 若分式的值为0,则x的值是()A. 3B.C. 3 或D. 0 【答案】 A二、填空题7. 要使分式存心义,则的取值范围是 ________.【答案】 28. 要使分式存心义, x 的取值应知足 ________。

【答案】 x≠19. 使得代数式存心义的的取值范围是 ________.【答案】10. 若分式的值为 0,则 x 的值为 ________.【答案】 -3三、解答题11. 先化简,再求值:,此中.【答案】原式 = = ,当时,原式=。

12. 计算:( 1)( 2)【答案】( 1)解:原式 = =( 2)解:原式 ===13. 先化简,再求值:,此中.【答案】解:原式∵ x=2,∴=.14. 先化简,再求值:(-)÷,此中x 知足x2- 2x-2=0.【答案】解:原式= ,= ,=,∵x2-2x-2=0 ,∴ x2=2x+2,∴= .15. 计算:.【答案】解:原式==﹒.16. 先化简 , 再求值 :, 此中是不等式组的整数解. 【答案】解:原式=?﹣=﹣=,不等式组解得:3< x< 5,整数解为x=4,当 x=4 时,原式 =..2 2 0 ﹣ 117. 先化简,再求值:(xy +x y)×,此中 x= π ﹣(), y=2sin45 °﹣.【答案】解:原式=xy( x+y)?=x﹣ y,当 x=1﹣ 2=﹣ 1, y=﹣2=﹣时,原式=﹣118. 计算.【答案】解:19.已知( 1)化简 T。

2018年中考数学专题复习卷:分式方程(含解析)

2018年中考数学专题复习卷:分式方程(含解析)

分式方程一、选择题1.方程的解为().A. x=-1B. x=0C. x=D. x=12.解分式方程分以下几步,其中错误的一步是()A. 方程两边分式的最简公分母是(x-1)(x+1)B. 方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C. 解这个整式方程,得x=1 D. 原方程的解为x =13.方程的解的个数为()A. 0个B. 1个C. 2个 D. 3个4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.5.若关于x的分式方程= 的根为正数,则k的取值范围是( )A. k<- 且k≠-1 B. k≠-1C. -<k<1 D. k<-6.若方程=1有增根,则它的增根是()A. 0B. 1C. ﹣1 D. 1和﹣17.已知= - ,其中A,B为常数,则4A-B的值为( )A. 13B. 9C. 7D. 58.为响应“绿色校园”的号召,八年级(5)班全体师生义务植树300棵.原计划每小时植树棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.9.关于x的分式方程的解为正实数,则实数m的取值范围是()A. m<-6且m≠2B. m>6且m≠2 C. m<6且m≠-2 D. m<6且m≠210.在今年抗震赈灾活动中,小明统计了自己所在学校的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.D.11.己知关于x的分式方程=1的解是非正数,则a的取值范围是()A. a≤-lB. a≤-2 C. a≤1且a≠-2 D. a≤-1且a≠-212.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A. ﹣=1 B . ﹣=1C. ﹣=1 D . ﹣=1二、填空题13.方程的解是________14.当x=________时, 与互为相反数.15.若分式方程有增根,则这个增根是________16.已知关于x的方程x+ =a+ 的解是x1=a,x2= ,应用此结论可以得到方程x+ =[x]+ 的非整数解为________([x]表示不大于x的最大整数).17.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设米,根据题意可列出方程:________.18.若关于x的分式方程=2的解为负数,则k的取值范围为________.19.当________时,解分式方程会出现增根.20.已知a>b>0,且,则________。

2018年数学中考试题分类汇编(分式) 精品

2018年数学中考试题分类汇编(分式) 精品

15.(2018年芜湖市)已知113x y -=,则代数式21422x xy yx xy y----的值为 一、选择1、(2018年宜宾市)若分式122--x x 的值为0,则x 的值为( ) A. 1 B. -1 C. ±1 D.2 1、(本题共3小题,每小题5分,共15分)(2018年宜宾市)(1)请先将下式化简,再选择一个你喜欢又使原式有意义的数代入求值..121)11(2+-÷--a a a a 2.(四川省资阳市)先化简,再求值:(212x x --2144x x -+)÷222x x-,其中x =1.1、(08凉山州)先化简再求值2111224x x x -⎛⎫+÷⎪--⎝⎭,其中,3x =. (2018襄樊市)当m = 时,关于x 的分式方程213x mx +=--无解 (2018黄冈市)计算()a b a bb a a+-÷的结果为( )A .a b b -B .a b b +C .a b a -D .a b a +简求值:222161816416x x x x x x ⎛⎫-+÷ ⎪++--⎝⎭,其中1x =. 答(2018恩施自治州)请从下列三个代数式中任选两个构成一个分式,并化简该分式x2-4xy+4y2x2-4y2x-2y(2018无锡)计算22()ab ab的结果为( ) A.b B .aC.1D.1b(2018常州市) 化简:211111a a a a +---+(2018无锡)先化简,再求值:244(2)24x x x x -++- ,其中x =(2018苏州)若220x x --=2)AB C D (2018苏州)解方程:222(1)160x x x x+++-=. (威海市)方程423532=-+-xx x 的解是 .(威海市)先化简,再求值:⎪⎭⎫⎝⎛--÷-+x x x x x 1211,其中2=x . (枣庄市)先化简,再求值:22212221x x xx x x --+--+÷x ,其中x =23. (枣庄市)某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案: (1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.(2018年西宁市) 2.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义) . 用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅(1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若 1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.三、解答题(2018年甘肃省白银市)化简: a a a a a a 4)22(2-⋅+--. (2018年重庆市)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中 以下是江苏省王伟根分类2018年全国中考数学试题分类汇编(分式)1. (2018年扬州市)(2)课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-的值。

各地2018年中考数学试卷精选汇编 分式与分式方程(含解析).-2019-11-12-20-47-36-246

各地2018年中考数学试卷精选汇编 分式与分式方程(含解析).-2019-11-12-20-47-36-246

分式与分式方程一、选择题1.(2018•江西•3分)计算的结果为A. B. C. D.【解析】本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】A★2.(2018•山东淄博•4 分)化简的结果为()A.B.a﹣1 C.a D.1【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+==a﹣1故选:B.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.3.(2018•山东淄博•4 分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前 30 天完成了这一任务.设实际工作时每天绿化的面积为 x 万平方米,则下面所列方程中正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30天完成任务,即可得出关于 x 的分式方程.【解答】解:设实际工作时每天绿化的面积为 x 万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4.(2018•四川成都•3 分)分式方程的解是()A. x=1B. C. D.【答案】A【考点】解分式方程【解析】【解答】解:方程两边同时乘以 x(x-2)得:(x+1)(x-2)+x=x(x-2)x2-x-2+x=x2-2x经检验:x=1 是原方程的根。

故答案为:A【分析】方程两边同时乘以 x(x-2),将分式方程转化为整式方程,再解整式方程,然后检验即可求解。

5.(2018·湖北省武汉·3分)若分式在实数范围内有意义,则实数 x 的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.6.(2018·湖北省孝感·3分)已知x+y=4,x﹣y=,则式子(x﹣y+)(x+y﹣)的值是()A.48B.12C.16D.12【分析】先通分算加法,再算乘法,最后代入求出即可.【解答】解:(x﹣y+)(x+y﹣)=•=•=(x+y )(x ﹣y ), 当 x+y=4,x ﹣y=时,原式=4=12,故选:D .【点评】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.7.(2018·湖南省衡阳·3 分)衡阳市某生态示范园计划种植一批梨树,原计划总产值 30 万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的 1.5 倍,总产量比原计划增加了 6 万千克,种植亩数减少了 10 亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为 x 万千克,根据题意,列方程为( )A . ﹣ =10B . ﹣ =10C .﹣ =10 D . +=10【解答】解:设原计划每亩平均产量 x 万千克,则改良后平均每亩产量为 1.5x 万千克,根据题意列方程为: ﹣ =10.故选:A .8.(2018·山东临沂·3 分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为 5000 万元,今年 1~5 月份,每辆车的销售价格比去年降低 1 万元.销售数量与去年一整年的相同.销售总额比去年一整年的少 20%,今年 1﹣5 月份每辆车的销售价格是多少万元?设今年 1﹣5 月份每辆车的销售价格为 x 万元.根据题意,列方程正确的是( ) A . = B . = C . = D . =【分析】设今年 1﹣5 月份每辆车的销售价格为 x 万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年 1﹣5 月份每辆车的销售价格为 x 万元,则去年的销售价格为(x+1)万元/辆,根据题意,得: = ,故选:A .【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.9.(2018·山东威海·3 分)化简(a ﹣1)÷( ﹣1)•a 的结果是( )A .﹣a 2B .1C .a 2D .﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a ﹣1)÷ •a=(a ﹣1)••a=﹣a 2,【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.分) 如果 a - b = 2 a 2 + b2- b ) ⋅ a10.(2018•北京•2 3 ,那么代数式 (的值为2a a - bA . 3B . 2 3C . 3 3D . 4 3【答案】A= a 2+ b 2- 2ab ⋅ a = (a - b )2⋅ a = a - b ,∵ a - b = 2 ,∴原式 = . 【解析】原式3 3 a - b a - b 2 a 2 a 2【考点】分式化简求值,整体代入.11.(2018•甘肃白银,定西,武威•3 分)若分式的值为 0,则的值是()A. 2 或-2B. 2C. -2D. 0【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选 A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.12. (2018•湖南省永州市•4 分)函数 y= 中自变量 x 的取值范围是( )A .x ≥3B .x <3C .x ≠3D .x=3【分析】根据分式的意义,分母不等于 0,可以求出 x 的范围. 【解答】解:根据题意得:x ﹣3≠0, 解得:x ≠3.故选:C .【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;(3)当函数表达式是二次根式时,被开方数非负. 13. (2018•株洲市•3 分)关于的分式方程 解为,则常数的值为()A.B. C. D.【答案】D详解:把 x=4 代入方程 ,得,解得 a=10.故选:D .点睛:此题考查了分式方程的解,分式方程注意分母不能为 0. 14. (2018·天津·3 分)计算的结果为( )A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式= .故选:C .点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15. (2018 年江苏省宿迁)函数中,自变量 x 的取值范围是( )。

(完整)2018中考数学分式方程

(完整)2018中考数学分式方程

2018中考数学分式方程一.选择题(共15小题)1.(2018•成都)分式方程=1的解是( )A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.2.(2018•昆明)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为( )A. =B. =C. =D. =【分析】直接利用两船的行驶距离除以速度=时间,得出等式求出答案.【解答】解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.3.(2018•通辽)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=100【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【解答】解:设科普类图书平均每本的价格是x元,则可列方程为:﹣=100.故选:B.4.(2018•张家界)若关于x的分式方程=1的解为x=2,则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2,∴x=m﹣2=2,解得:m=4.故选:B.5.(2018•株洲)关于x的分式方程解为x=4,则常数a的值为()A.a=1 B.a=2 C.a=4 D.a=10【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a=﹣1.【解答】解:把x=4代入方程,得+=0,解得a=10.故选:D.6.(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解: =1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.7.(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1。

2018年中考数学真题 --分式

2018年中考数学真题 --分式

2018年中考真题----分式
1. (2018山东滨州)下列运算:
①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,结果正确的个数为()
A. 1
B. 2
C. 3
D. 4
2. (2018天津)计算的结果为()
A. 1
B. 3
C.
D.
3.(2018甘肃凉州)若分式的值为0,则的值是()
A. 2或-2
B. 2
C. -2
D. 0
4.函数中,自变量x的取值范围是()。

A. x≠0
B. x<1
C. x>1
D. x≠1
5.若分式的值为0,则的值是()
A. 2
B. 0
C. -2
D. -5
6.若分式的值为0,则x的值是()
A. 3
B.
C. 3或
D. 0
7.要使分式有意义,则的取值范围是________.
8.要使分式有意义,x的取值应满足________。

9.使得代数式有意义的的取值范围是________.
10.若分式的值为0,则x的值为________.
11.先化简,再求值:,其中.
12.计算:
13.先化简,再求值:,其中.
14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.
15.先化简,再求值: ,其中是不等式组的整数解.
16.已知
(1)化简T. (2)若正方形ABCD的边长为a,且它的面积为9,求T的值.。

八年级分式方程练习题(2018版含答案)

八年级分式方程练习题(2018版含答案)

八年级分式方程练习题(2018版含答案)基础巩固一、选择题1.下列关于x 的方程是分式方程的为( )A .B .C .D . 2.解分式方程,下列四步中,错误的一步是( ) A .方程两边分式的最简公分母是x 2-1B .方程两边同乘(x 2-1),得整式方程2(x -1)+3(x +1)=6C .解这个整式方程得x =1D .原方程的解为x =13.当x =__________时,与互为相反数. 4.把分式方程化为整式方程为__________. 5.解下列分式方程:(1); (2). 6.甲、乙两个火车站相距1 280 km ,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11 h ,求列车提速后的速度. 能力提升7.若分式方程的解是2,则a 的值是( ) 23356x x ++-=137x x a+=-+x a b x a b a b -=-2(1)11x x -=-2236111x x x +=+--25x x --1x x +1222x x x+=--32322x x x +=+-81877x x x --=--22ax x =+A .1B .2C .3D .48.已知关于x 的分式方程的解是非正数,则a 的取值范围是( ) A .a ≤-1B .a ≤-2C .a ≤1且a ≠-2D .a ≤-1且a ≠-29.方程,则的值为( ) A .-2 B .-1 C .1 D .210.某工地调72人挖土和运土,已知3人挖出的土1人恰好能全部运走,调配劳动力使挖出来的土能及时运走且不窝工,解决此问题可设派x 人挖土,其他人运土,列方程①;②;③x +3x =72;④,上述方程中,正确的有( ) A .1个 B .2个C .3个D .4个11.定义一种运算,根据这个规定,则的解为__________. 12.某校九年级两个班各为灾区捐款1 800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程. 211a x +=+24410x x -+=2x7213x x -=723x x -=372x x=-11a b a b =+☆322x =☆参考答案1.D 点拨:分母中含未知数的方程是分式方程,选项A 中的分母不含未知数,选项B ,C 中的分母含有字母,但不是未知数x ,故选D.2.D 点拨:解分式方程时要检验,当x =1时,最简公分母x 2-1=0,所以原分式方程无解,故选D.3. 点拨:与互为相反数,即,解得,经检验,是原方程的根. 4.x +2(x -2)=-1 点拨:原方程可变形为,方程两边同乘x -2,得x +2(x -2)=-1. 5.解:(1)去分母,得3x (x -2)+2(x +2)=3(x +2)( x -2),去括号,得3x 2-6x +2x +4=3x 2-12,整理,得-4x =-16,解得x =4.经检验x =4是原方程的解,所以原方程的解为x =4.(2)方程两边同乘x -7,得x -8+1=8(x -7),解这个方程,得x =7.检验,当x =7时,x -7=0.所以x =7不是原方程的解,所以原方程无解.6.解:设列车提速前的速度为x km/h ,则提速后的速度为3.2x km/h.根据题意,得. 解得,x =80.经检验,x =80是所列方程的解,也符合实际意义.所以80×3.2=256(km/h).答:列车提速后的速度为256 km/h.7.D 点拨:去分母,得ax =2(x +2),把x =2代入,得a =4,故选D.8.D 点拨:在方程两边同乘以x +1得,a +2=x +1,x =a +1. 由即解得a ≤-1且a ≠-2.故应选择D. 9.C 点拨:原方程可变形为,把看做未知数,解得. 10.C11.1 点拨:根据规定,得可变形为,解得x =1. 5625x x --1x x +1205x x x x +-+=-56x =56x =1222x x x +=---12801280113.2x x-=211a x +=+10,10,a x +≤⎧⎨+≠⎩10,110a a +≤⎧⎨++≠⎩,222120x x ⎛⎫-⨯+= ⎪⎝⎭2x 21x =322x =☆11322x +=12.解:求两个班人均捐款各多少元? 设1班人均捐款x 元,则2班人均捐款(x +4)元,根据题意得,,解得x =36, 经检验x =36是原方程的根,∴x +4=40.答:1班人均捐36元,2班人均捐40元. 求两个班人数各多少人?设1班有x 人,则根据题意得,,解得x =50,经检验x =50是原方程的根,∴0.9x =45. 答:1班有50人,2班有45人.1800180090%4x x ⋅=+1800180040.9x x +=。

2018中考 分式方程真题

2018中考 分式方程真题

分式方程参考答案与试题解析一.选择题(共9小题)1.(2018•成都)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.2.(2018•株洲)关于x的分式方程解为x=4,则常数a的值为()A.a=1 B.a=2 C.a=4 D.a=10【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a=﹣1.【解答】解:把x=4代入方程,得+=0,解得a=10.故选:D.3.(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D.+=10【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=10亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:﹣=10.故选:A.4.(2018•重庆)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2【分析】表示出不等式组的解集,由不等式有且只有4个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【解答】解:,不等式组整理得:,由不等式组有且只有四个整数解,得到0<≤1,解得:﹣2<a≤2,即整数a=﹣1,0,1,2,=2,分式方程去分母得:y+a﹣2a=2(y﹣1),解得:y=2﹣a,由分式方程的解为非负数以及分式有意义的条件,得到a为﹣1,0,2,之和为1.故选:C.5.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.= B.=C.=D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.6.(2018•重庆)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠﹣2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是﹣8﹣4=﹣12,故选:B.7.(2018•黔南州)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.【解答】解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:﹣=2,故选:A.8.(2018•德州)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.9.(2018•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
参考答案与试题解析
一.选择题(共9小题)
成都)分式方程=1的解是()1.(2018?
A.x=1 B.x=﹣1 C.x=3 D.x=﹣3
【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求
解.
解:=1【解答】,
去分母,方程两边同时乘以x(x﹣2)得:
(x+1)(x﹣2)+x=x(x﹣2),
22﹣2x+x=x,﹣x﹣2x
x=1,
经检验,x=1是原分式方程的解,
故选:A.
的分式方程解为x=4,则常数a的值为(2.(2018?株洲)关于x)
A.a=1 B.a=2 C.a=4 D.a=10
【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a=﹣
1.
代入方程x=4,得【解答】解:把
,=0+
解得a=10.
故选:D.
3.(2018?衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()
﹣B=10A..﹣=10
=10.=10 ﹣.DC+
【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=10亩,根据等量关系列出方程即可.
【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x
万千克,
﹣=10.根据题意列方程为:
.故选:A
第14页(共页)
的不等式组有且只有四个整数解,且使关于ya使关于x的4.(2018?重庆)若数
=2的解为非负数,则符合条件的所有整数a方程的和为()
A.﹣3 B.﹣2 C.1 D.2
【分析】表示出不等式组的解集,由不等式有且只有4个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之
和.
解:【解答】,
不等式组整理得:,
<01,由不等式组有且只有四个整数解,得到≤
解得:﹣2<a≤2,即整数a=﹣1,0,1,2,
=2,
分式方程去分母得:y+a﹣2a=2(y﹣1),
解得:y=2﹣a,
由分式方程的解为非负数以及分式有意义的条件,得到a为﹣1,0,2,之和为1.
故选:C.
5.(2018?临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()
=A B..=
==C..D
【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)
万元/辆,根据“销售数量与去年一整年的相同”可列方程.
【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,
=,根据题意,得:
.故选:A
第2页(共4页)
的不等式组x,有且仅有三个整数解,且使关重庆)若数a使关于.6(2018?
=1有整数解,则满足条件的所有a的值之和是(于y的分式方程 +)
A.﹣10 B.﹣12 C.﹣16 D.﹣18
【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答
案.
解:,【解答】
,x≥﹣3解①得
,x≤解②得
≤x.3≤不等式组的解集是﹣
∵仅有三个整数解,
≤<10∴﹣
∴﹣8≤a<﹣3,
+=1
3y﹣a﹣12=y﹣
2.
y=∴
∵y≠﹣2,
∴a≠﹣6,
y=又有整数解,
∴a=﹣8或﹣4,
所有满足条件的整数a的值之和是﹣8﹣4=﹣12,
故选:B.
7.(2018?黔南州)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()
.=2 .AB=2
=2.C=2 D.
【分析】设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.
【解答】解:设原计划每天施工x米,则实际每天施工(x+30)米,
﹣=2根据题意,可列方程:,
第3页(共4页)
故选:A.
1=的解为(德州)分式方程﹣)8.(2018?
A.x=1 B.x=2 C.x=﹣1 D.无解
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
22﹣x+x2=3【解答】解:去分母得:x,+2x﹣
解得:x=1,
经检验x=1是增根,分式方程无解.
故选:D.
9.(2018?淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()
.AB.
..CD
【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x的分式方
程.
万平方米,则原来每天绿化的面积为x万【解答】解:设实际工作时每天绿化的面积为平方米,
.=30﹣依题意得:,即
.故选:D
第4页(共4页)。

相关文档
最新文档