初中数学动点问题专题讲解

合集下载

中考数学动点问题专题讲解(一)(建立动点问题的函数解析式)

中考数学动点问题专题讲解(一)(建立动点问题的函数解析式)

所谓“动点型问题”是指题设图形中存在一个或多个动点 ,它们在线段、射线或弧线上运动的一类开放性题目 .解决这种问题的重点是动中求静 ,灵巧运用相关数学知识解决问题 .重点 :动中求静 .数学思想:分类思想 函数思想 方程思想 数形联合思想 转变思想着重对几何图形运动变化能力的观察从变换的角度和运动变化来研究三角形、 四边形、函数图像等图形, 经过 “对称、动点的运动 ”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间看法和合情推理。

选择基本的几何图形, 让学生经历研究的过程,以能力立意,观察学生的自主研究能力,促使培育学生解决问题的能力.图形在动点的运动过程中察看图形的变化状况,需要理解图形在不一样地点的状况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学 “动点 ”研究题的基本思路 ,这也是动向几何数学识题中最核心的数学实质 。

二期课改后数学卷中的数学压轴性题正逐渐转向数形联合、 动向几何、着手操作、实验研究等方向发展.这些压轴题题型众多、题意创新,目的是观察学生的剖析问题、解决问题的能力,内容包含空间看法、应企图识、推理能力等.从数学思想的层面上讲:( 1)运动看法;( 2)方程思想;( 3)数形联合思想;( 4)分类思想;(5)转变思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热门的形成和命题的动向, 它有益于我们教师在教课中研究对策,掌握方向.只的这样,才能更好的培育学生解题修养,在素质教育的背景下更明确地表现课程标准的导向. 本文拟就压轴题的题型背景和划分度丈量点的存在性和划分度小题办理手法提出自己的看法.专题一:成立动点问题的函数分析式函数揭露了运动变化过程中量与量之间的变化规律,是初中数学的重要内容 .动点问题反应的是一种函数思想,因为某一个点或某图形的有条件地运动变化 ,惹起未知量与已知量间的一种变化关系 ,这种变化关系就是动点问题中的函数关系 .那么 ,我们如何成立这种函数解析式呢下边联合中考试题举例剖析.一、应用勾股定理成立函数分析式例 1(2000 年·上海 )如图 1,在半径为 6,圆心角为 90°的扇形 OAB 的弧 AB 上,有一个动点 P,PH⊥ O A,垂足为 H,△ OPH 的重心为 G.(1)当点 P 在弧 AB 上运动时 ,线段 GO 、GP 、GH 中 ,有无长度保持不变的线段假若有 ,请指出这样的线段 ,并求出相应的长度 .(2)设 PH x ,GP y ,求 y 对于 x 的函数分析式,并写出函数的定义域(即自变量 x 的取值范围 ).(3)假如△ PGH 是等腰三角形 ,试求出线段 PH 的长 .解 :(1)当点 P 在弧 AB 上运动时 ,OP 保持不变 ,于是线段 GO 、GP 、GH中 ,有长度保持不变的线段,这条线段是GH=2NH=2 1 OP=2.B33 2P(2) 在 Rt △ POH中 ,OHOP 2 PH 236 x 2 ,∴yN11x 2.G xMHOH3622OM H A在 Rt △ MPH 中 ,图 1MPPH 2MH 2x 2 9 1 x 21 36 3 x 2.4 2∴ y =GP=2MP=136 3x 2 (0< x <6).33(3)△ PGH 是等腰三角形有三种可能状况 :① GP=PH时 , 1 36 3 2 x6x63x x , 解得 . 经查验 , 是原方程的根 ,且切合题意 .② GP=GH 时 ,题意 .1 x22 ,解得 x 0. 经查验 ,x 0是原方程的根 ,但不切合36 33③ PH=GH 时 , x 2 .综上所述 ,假如△ PGH 是等腰三角形 ,那么线段 PH 的长为6 或 2.本专题的主要特点是两个点在运动的过程中, 直接或间接地结构了直角三角线, 所以能够利用勾股定理去成立函数关系式 . 勾股定理是初中数学的重要定理, 在运用勾股定理写函数分析式的过程中, 主假如找边的等量关系, 要擅长发现这种内在的关系, 用代数式去表示这些边, 达到解题的目的 . 因为是压轴题, 有的先有铺垫, 再写分析式; 有的写好分析式后, 再证明等腰三角形、相像三角形等,还有的再解一些与圆相关的体型 . 要仔细领悟,达到举一反三的目的 .1 切记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方 .例题 ,扇形中∠ AOB=45°,半径 OB=2,矩形 PQRS 的极点 P 、 S 在半径 OA 上, Q 在半径 OB 上, R 在弧 AB 上,连结 OR.( 1) 当∠ AOR=30°时,求 OP 长( 2) 设 OP=x ,OS=y ,求 y 与 x 的函数关系式及定义域2 在四边形的翻折与旋转中,常常会应用到勾股定理,由此产生些函数分析式的问题,要娴熟掌握 .例题: 如图,正方形 ABCD 中, AB=6,有一块含 45°角的三角板,把 45°角的极点放在 D 点,将三角板绕着点 D 旋转,使这个 45°角的两边与线段 AB 、 BC 分别订交于点 E 、 F (点 E 与点 A 、 B 不重合)(1)从几个不一样的地点,分别丈量AE、EF、 FC 的长,从中你能发现 AE、 EF、 FC的数目之间拥有如何的关系并证明你所获得的结论(2)设 AE=x,CF=y,求 y 与 x 之间的函数分析式,并写出函数的定义域(3)试问△ BEF的面积可否为 8 假如能,恳求出 EF的长;假如不可以,请说明原因 .3在一些特别的四边形中,如矩形、正方形,它们都是直角,菱形的对角线相互垂直,这些都有可能结构直角三角形,能够考虑用勾股定理写出函数的分析式.例题:如图,在菱形 ABCD中,AB=4,∠ B=60°,点 P是射线 BC上的一个动点,∠PAQ=60°,交射线 CD 于点 Q,设点 P 到点 B 的距离为 x, PQ=y(1)求证:三角形 APQ 是等边三角形(2)求 y 对于 x 的函数分析式,并写出它的定义域(3)假如 PD⊥ AQ,求 BP 的值4作底边上的高,能够结构直角三角形,利用勾股定理写函数的分析式例题:如图,等边△ABC的边长为 3,点 P、Q 分别是 AB、BC上的动点(点P、Q 与△ABC 的极点不重合),且AP=BQ, AQ、 CP 订交于点 E.(1)如设线段 AP 为 x,线段 CP为 y,求 y 对于 x 的函数分析式,并写出定义域(2)当△ CBP的面积是△ CEQ的面积的 2 倍时,求 AP 的长(3)点 P、Q 分别在 AB、BC 上挪动过程中, AQ 和 CP 可否相互垂直如能,请指出P 点的地点,请说明原因.5在解圆的题目时,首选的协助线是弦心距,它不单能够运用垂径定理,并且结构了直角三角形,为用勾股定理写函数分析式创建了条件.例题:如图,⊙ A 和⊙ B 是外离的两圆,两圆的连心线分别交⊙A、⊙ B 于 E、 F,点 P 是线段 AB 上的一动点(点P 不与 E、 F 重合), PC切⊙ A 于点 C, PD 切⊙ B 于点 D,已知⊙A 的半径为 2 ,⊙ B 的半径为1,AB=5.(1)如设线段BP 的长为 x,线段 CP 的长为 y,求 y 对于 x 的函数分析式,并写出函数的定义域(2)假如 PC=PD,求 PB 的长(3)假如PC=2PD,判断此时直线CP与⊙ B 的地点关系,证明你的结论6 重申圆的首选协助线是弦心距,它不单能够均分弦,并且结构了直角三角形,为解题创建新思路 .例题:如图,在△ ABC中, AB=15,AC=20,cotA=2,P 是边 AB 上的一个动点,⊙P 的半径为定长 . 当点 P 与点 B 重合时,⊙ P 恰巧与边 AC 相切;当点 P 与点 B 不重合,且⊙ P 与边 AC 订交于点 M 和点 N 时,设 AP=x,MN=y.(1)求⊙ P 的半径(2)求 y 对于 x 的函数分析式,并写出它的定义域(3)当 AP=6 5时,试比较∠ CPN与∠ A 的大小,并说明原因阶梯题组训练1如图, E 是正方形 ABCD的边 AD 上的动点, F 是边 BC 延伸线上的一点,且 BF=EF,AB=12,设 AE=x,BF=y.(1)当△ BEF是等边三角形时,求BF 的长;(2)求 y 与 x 之间的函数分析式,并写出它的定义域;(3)把△ ABE 沿着直线 BE翻折,点 A 落在点 A′处,尝试究:△A′BF 可否为等腰三角形假如能,恳求出 AE 的长;假如不可以,请说明原因 .2如图,在△ ABC中,∠ACB=90°,∠ A=30°,D 是边 AC 上不与点 A、C 重合的随意一点,DE⊥ AB,垂足为点E, M 是 BD 的中点 .(1)求证: CM=EM;(2)假如 BC= 3设 AD=x, CM=y,求 y 与 x 的函数分析式,并写出函数的定义域;(3)当点 D 在线段 AC 上挪动时,∠ MCE 的大小能否发生变化假如不变,求出∠MCE 的大小;假如发生变化,说明如何变化.3 ABCD 中,对角线 AC⊥ AB, AB=15, AC=20,点 P 为射线 BC 上一动点, AP⊥ PM(点 M 与点B 分别在直线 AP 的双侧 ),且∠ PAM=∠ CAD,连结 MD.(1)当点 M 在 ABCD内时,如图,设 BP=x,AP=y,求 y 对于 x 的函数关系式,并写出函数定义域;(2) 请在备用图中画出切合题意的表示图,并研究:图中能否存在与△AMD 相像的三角形若存在,请写出并证明;若不存在,请说明原因;(3) 当△为等腰三角形时,求BP的长.4抛物线经过 A(2, 0)、 B( 8, 0)、 C(0,16 3) . 3(1)求抛物线的分析式;(2)设抛物线的极点为P,把△ APB 翻折,使点 Pl 落在线段 AB 上(不与 A、 B 重合),记作 P′,折痕为 EF,设 AP′ =x,PE=y,求 y 对于 x 的函数关系式,并写出定义域;(3)当点 P′在线段 AB 上运动但不与 A、B 重合时,可否使△ EFP′的一边与 x 轴垂直若能,恳求出此时点P′的坐标;若不可以,请你说明原因.5 如图,矩形 ABCD中, AD=7, AB=BE=2,点 P 是 EC(包含 E、 C)上的动点,线段 AP 的垂直均分线分别交 BC、 AD 于点 F、 G,设 BP=x, AG=y.(1)四边形 AFPG是说明图形请说明原因;(2)求 y 与 x 的函数关系式;(3)假如分别以线段GP、 DC 为直径作圆,且使两圆外切,求x 的值 .6在梯形 ABCD中,ADE 为底边 BC 上一点,以点 E 为圆心, BE 为半径画⊙ E 交直线 DE于点F.(1)如图,当点 F 在线段 DE上时,设 BE=x,DF=y,试成立 y 对于 x 的函数关系式,并写出自变量 x 的取值范围;(2)当以 CD为直径的⊙ O 与⊙ E 相切时,求 x 的值;(3)连结 AF、 BF,当△ ABF 是以 AF 为腰的等腰三角形时,求x 的值 .7 如图,在正方形ABCD中, AB=1,弧 AC 是以点 B 为圆心, AB 长为半径的圆的一段弧,点E 是边 AD 上的随意一点(点 E 与点 A 、 D 不重合),过 E 作弧 AC 所在圆的切线,交 DC 于点F ,G 为切点 .( 1) 当∠ DEF=45°时,求证点 G 为线段 EF 的中点;( 2) 设 AE=x , FC=y ,求 y 对于 x 的函数分析式,并写出函数的分析式;( 3) 将△ DEF 沿直线 EF 翻折后得△ D 1EF ,如图 2,当 EF=5时,议论△ AD 1D 与△ ED 1 F 是6否相像,假如相像,请加以证明;假如不相像,只需求写出结论,不要求写出原因.( 2003 年上海第 27 题)二、应用比率式成立函数分析式例 2( 2006 年·山东)如图 2,在△ ABC 中 ,AB=AC=1,点 D,E 在直线 BC 上运动 . 设 BD=x, CE=y .(1)假如∠ BAC=30° ,∠ DAE=105° ,试确立 y 与 x 之间的函数分析式;(2)假如∠ BAC 的度数为 ,∠ DAE 的度数为,当 ,知足如何的关系式时 之间的函数分析式还成立试说明原因.解:(1)在△ ABC 中 ,∵ AB=AC,∠ BAC=30° ,∴∠ ABC=∠ACB=75° ,∴∠ ABD=∠ ACE=105° .∵∠ BAC=30°,∠ DAE=105° , ∴∠ DAB+∠ CAE=75° , 又∠ DAB+∠ ADB=∠ ABC=75° ,D∴∠ CAE=∠ ADB,B ∴△ ADB ∽△ EAC, ∴ABBD ,CEAC1 x1∴, ∴ y .y1x(2)因为∠ DAB+∠ CAE=,又∠ DAB+∠ ADB=∠ ABC=90,2且函数关系式成立 ,∴90 2 =, 整理得 90 .2 当90 时 ,函数分析式 y 1 2成立 .x例 3(2005 年·上海 )如图 3(1),在△ ABC 中 ,∠ ABC=90° ,AB=4,BC=3.点 O 是边 AC 上的一个动点 ,以点 O 为圆心作半圆 ,与边 AB 相切于点CD,交线段 OC 于点 E.作 EP ⊥ ED,交射线 AB 于点 P,交射线 CB 于点 F.,(1)中 y 与 xAEC图 2FBPD AE O3(1)(1)求证 : △ADE ∽△ AEP.PB (2)设 OA= x ,AP= y ,求 y 对于 x 的函数分析式 ,并写出它的定义 域.F(3)当 BF=1 时 ,求线段 AP 的长 . D解:(1)连结 OD.依据题意 ,得 OD ⊥ AB,∴∠ ODA=90° ,∠ODA=∠ DEP.CA又由 OD=OE,得∠ ODE=∠ OED.∴∠ ADE=∠ AEP, ∴△ ADE ∽△E O AEP.3(2)(2) ∵ ∠ ABC=90 ° ,AB=4,BC=3, ∴ AC=5. ∵ ∠ ABC=∠ADO=90° , ∴ OD ∥ BC, ∴ODx , ADx ,35 4 5∴ OD= 3x ,AD=4x . ∴ AE=x 3x= 8x . 55 5 5∵△ ADE ∽△ AEP, ∴AEAD ,8 x 4 x1625∴55 .∴ y x ( 0 x).APAEy8 x 585(3)当 BF=1 时,①若 EP 交线段 ∵∠ ADE=∠ AEP, ∴∠ F=∠ PDE, CB 的延伸线于点 F,如图 3(1),则 CF=4.∴∠ PDE=∠ PEC. ∵∠ FBP=∠ DEP=90°, ∠FPB=∠ DPE, ∴∠ F=∠ FEC, ∴ CF=CE.∴ 5-8x =4,得 x 5 .可求得 y 2 ,即 AP=2.5 8②若 EP 交线段 CB 于点 F,如图 3(2), 则 CF=2. 近似① ,可得 CF=CE. ∴ 5-8x =2,得 x 15 .5 8可求得 y6 ,即 AP=6.综上所述 , 当 BF=1 时 ,线段 AP 的长为 2 或 6.本专题研究在图形的运动变化过程中,存在平行或相像的三角形,利用比例式来成立函数关系式 . 难一些的题目此中的一个变量是比率式, 一个变量是线段,也是利用相像或平行来结构比率式, 进而写出函数的分析式 . 作为最后的一道压轴题,一般状况下写出分析式后还会有一个证等腰或相像或相切的题目,能够二次函数专题中的解题思想进行办理.1 由平行获得比率式,进而成立函数关系式.例题: 如图,在△ ABC 中, AB=AC=4,BC=1AB ,点 P 是边 AC 上的一个点, AP= 1 PD ,22∠APD=∠ ABC ,连结 DC 并延伸交边 AB 的延伸线于点 E(1)求证:AD证明:△ ADE∽△ GFA (2)设 DE=x, BG=y,求 y 对于 x 的函数分析式及定义域(3)当 BH= 1时,求 DE的长43在学习利用相像比成立函数的分析式的时候,初中阶段的知识已经学了许多,对最后的压轴题的综合性的要求已经很高了. 一般会在写分析式前有一些证明或计算,写好分析式后再来一个证明等腰三角形或圆的地点关系等. 假如能够把一道复杂的压轴题拆分红几道小的题目,各个击破,难题也就变简单了.例题:如图,在Rt△ ABC中,∠ C=90°, sinB= 4,AC=4; D 是 BC的延伸线上一个动点,5∠EDA=∠B, AE(1) 找出图中的相像三角形,并加以证明(2)设 CD=x, AE=y,求 y 对于 x 的函数分析式,并写出函数的定义域(3)当△ ADE 为等腰三角形时,求 AE 的长4方才研究的写函数分析式都是在几何图形中进行的,下边来看在平面直角坐标系中如何写分析式 .例题:如图,在直角坐标系中的等腰梯形 AOCD 中,AD AD23例题:如图,在平面直角坐标系中,OC55点 A 的坐标为( 1, 0),点 B、 C 的坐标分别为( -1, 0), C( 0, b),且 0< b< 3, m 是经过点 B、 C 的直线,当点 C 在线段 OC上挪动时,过点 A 作 AD⊥m 于点 D.(1) 求点 D、 O 之间的距离S△BDA(2) 假如=ɑ,试求:ɑ与 b 的函数关系式及ɑ的取值范围S△BOC(3)当∠ ADO 的余切值为 2 时,求直线 m 的分析式(4)求此时△ ABD 与△ BOC重叠部分的面积6当我们学习到利用相像三角形的相像比来成立函数分析式的时候,初中阶段的知识已经学得差不多了,对于一些貌似很复杂的图形,只需能够分层求解,就能化繁为简.例题:如图,在边长为 6 的正方形ABCD的双侧如图作正方形BEFG、正方形 DMNK ,恰巧使得N、 A、 F 三点在向来线上,连结MF 交线段 AD 于点 P,连结 NP,设正方形BEFG 的边长为x,正方形DMNK 的边长为y.(1)求y对于x的函数关系式及自变量x 的取值范围(2)当△ NPF的面积为32 时,求 x 的值(3)以P为圆心,AP为半径的圆能够与以G 为圆心, GF 为半径的圆相切,若能恳求x 的值,若不可以,请说明原因练习:1. 如图,在三角形中, AB=AC=8,BC=10,点 D 、E 分别在 BC 、 AC 上(点 D 不与 B 、 C 重合),且∠ ADE=∠ B ,设 BD=x , AE=y.( 1) 求 y 与 x 之间的函数分析式,并写出函数的定义域( 2) 点 D 在 BC 上的运动过程中,△ ADE 能否有可能成为一个等腰三角形若有可能,请求出当△ ADE 为等腰三角形时 x 的值 ;如不行能,请说明原因.2.在△ ABC 中, AB=4, AC=5, cosA= 3, 点 D 是边 AC 上的点,点 E 是边 AB 上的点,且5知足∠ AED=∠ A , DE 的延伸线交射线 CB 于点 F ,设 AD=x , EF=y.( 1) 如图 1,用含 x 的代数式表示线段 AE 的长( 2) 如图 1,求 y 对于 x 的函数分析式及函数的定义域 (3)连结 EC ,如图 2,求档 x 为什么值时,△AEC 与△ BEF 相像 .3.如图,在矩形 ABCD 中, AB=m ( m 是大于 0 的常数),BC=8,E 为线段 BC 上的动点(不与 B 、 C 重合) .连结 DE ,作 EF ⊥ DE , EF 与射线 BA 交于点 F ,设 CE=x , BF=y.(1) 求 y 对于 x 的函数关系式(2) 若 m=8,求 x 为什么值时, y 的值最大,最大值是多少(3) 若 y=12,要使△ DEF 为等腰三角形, m 的值应为多少m(1)已知在梯形 ABCD中, AD 如图, P 为 BC上的一点,且 BP=2. 求证:△ BEP∽△ CPD;(2)假如点 P 在 BC 边上挪动(点 P 与点 B、C 不重合),且知足∠ EPF=∠C, PF 交直线CD 与点 F,同时交直线 AD 于点 M ,那么(3)当点 F 在线段 CD 的延伸线上时,设 BP=x, DF=y,求 y 对于 x 的函数分析式,并写出函数的定义域;(4)当△DMF= 9 △ BEP时,求BP的长.S 4 S(1)如图,在四边形 ABCD中,∠ B=90°,AD 求 y 对于 x 的函数分析式,并写出定义域;(2)当 AD=11 时,求 AG 的长;(3)假如半径为EG 的⊙ E 与半径为FD 的⊙ F 相切,求这两个圆的半径.4. 如图,在半径为 5 的⊙ O 中,点A、 B 在⊙ O 上,∠ AOB=90°,点 C 是弧 AB 上的一个动点, AC与 OB 的延伸线订交于点D,设 AC=x, BD=y.(1) 求 y 对于 x 的函数分析式,并写出它的定义域;(2) 若⊙ O 与⊙ O 订交于点 A、 C,且⊙ O 与⊙ O 的圆心距为2,当 BD= OB 时,求⊙ O1 1 1 13 的半径;(3)能否存在点 C,使得△ DCB∽△ DOC 假如存在,请证明;假如不存在,请简要说明原因 .( 1) 已知∠ ABC=90°, AB=2,BC=3, ADPQ AD当 AD= 3,且点 Q 在线段 AB 上时,PC AB 2设点 B 、 Q 之间的距离为 x ,S △APQ=y ,此中 S △APQ 表示△ APQ 的面积, S △PBC 表示S △PBC△PBC 的面积,求 y 对于 x 的函数分析式,并写出函数定义域;( 2) 当 AD < AB ,且点 Q 在线段 AB 的延伸线上时 (如图 3 所示),求∠ QPC 的大小 (. 2009上海第 25 题)三、应用求图形面积的方法成立函数关系式例 4( 2004 年·上海)如图 ,在△ ABC 中 ,∠BAC=90° ,AB=AC=2 2 ,⊙ A 的半径为 1.若点O 在 BC 边上运动 (与点 B 、 C 不重合 ),设 BO= x ,△ AOC 的面积为y .(1)求 y 对于 x 的函数分析式 ,并写出函数的定义域 .A(2)以点 O 为圆心 ,BO 长为半径作圆 O,求当⊙ O 与⊙ A 相切时 , △AOC 的面积 .解:(1)过点 A 作 AH ⊥ BC,垂足为 H.∵∠ BAC=90°,AB=AC=2 2 , ∴BC=4,AH= 1 BC=2. ∴ OC=4- x .1OC AH ,2B OH C∵SAOC∴ yx4 ( 0 x4 ).图 82(2)①当⊙ O 与⊙ A 外切时 ,7在 Rt △AOH 中 ,OA= x 1,OH= 2x ,∴(x 1)2 22 (2 x)2 . 解得 x.67 17此时 ,△AOC 的面积y = 4 .6 6②当⊙ O 与⊙ A内切时 ,在 Rt△AOH 中 ,OA= x 1,OH= x 2 ,∴(x 1)2 22 (x 2) 2 . 解得 x 7 .7 1 2此时 ,△AOC 的面积y = 4 .2 2综上所述 ,当⊙ O 与⊙ A 相切时 ,△ AOC的面积为17或1.6 2例 2、【 09 广东】正方形 ABCD边长为 4, M 、N 分别是 BC、 CD 上的两个动点,当M 点在BC 上运动时,保持 AM 和 MN 垂直.(1)证明: Rt△ABM∽Rt△MCN;(2)设 BM=x,梯形 ABCN 的面积为 y,求 y 与 x 之间的函数关系式;当M 点运动到什么位置时,四边形 ABCN面积最大,并求出最大面积;(3)当 M 点运动到什么地点时 Rt△ABM∽Rt△AMN ,求此时 x 的值练习 1.如图,在△ ABC 中, BC=8, CA=AB、 AC、BC 上(点 E 与点 A、 B 不重合),连结求出 y 与 x 之间的函数表达式,并写出自变量,∠ C=60°, EF∥ BC,点 E、F、 DED、 DF。

初中数学动点问题专题讲解精编版

初中数学动点问题专题讲解精编版

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x .∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. AB CO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

初中数轴上的动点问题

初中数轴上的动点问题

初中数轴上的动点问题1. 什么是数轴上的动点问题数轴嘛,大家都知道,就像一条有方向的线,上面有好多数。

动点问题呢,就是有个点在这个数轴上动来动去的。

比如说,这个点可能从一个数开始,然后按照一定的速度或者规则在数轴上移动。

这就像一个小蚂蚁在一根标了数字的绳子上爬,它一会儿在这个数字这儿,一会儿又跑到另一个数字那儿了。

动点问题可有趣啦,它就像是数轴这个舞台上的小演员,不停地变换位置,而我们呢,就要根据它的表演规则来搞清楚一些事情,比如它什么时候会到达某个特定的数,或者它在移动过程中和其他固定的点或者其他动点之间的距离关系。

2. 常见的动点问题类型求动点与定点的距离。

比如说,有一个点A在数轴上表示3,有个动点P从0开始,以每秒2个单位的速度向右移动,那我们就要算出经过几秒钟,点P和点A的距离是多少。

这就像是在玩一个追逐游戏,一个是站着不动的目标,一个是跑来跑去的追逐者,我们要算出他们之间的距离变化。

动点相遇问题。

就像有两个动点,一个从数轴左边出发,一个从右边出发,它们朝着对方移动,速度也不一样。

我们就得算出它们什么时候会在数轴上的某个地方相遇,就好像两个人在一条路上相对走来,什么时候会碰面一样。

还有动点的中点问题。

假如有两个动点,那它们之间的中点位置会随着它们的移动而改变,我们要找出这个中点在不同时刻所表示的数。

这就像是两个人拉着一根绳子的两端,绳子的中间点会随着他们的走动而移动,我们要知道这个中间点在任何时候的位置。

3. 解决数轴上动点问题的小技巧一定要先确定动点的起始位置和运动方向。

这就好比你要知道小蚂蚁从哪里出发,是向左还是向右爬。

如果题目说一个动点从 - 5开始,以每秒1个单位的速度向左移动,那这个信息就是解题的关键开头。

用代数式表示动点在不同时刻的位置。

比如说那个从0开始,以每秒2个单位速度向右移动的动点P,经过t秒后,它的位置就可以表示为2t。

这就像给小蚂蚁的位置做个标记,让我们能随时知道它在哪里。

初一动点问题专题

初一动点问题专题

初一动点问题专题动点问题是初一学生学习数学时经常遇到的难题,也是他们在数学学习中的一个难点。

动点问题涉及到的知识点较多,包括速度、时间、距离等,要求学生在解题时综合运用多种数学知识。

本文将结合初一学生的学习特点和解题心得,为大家详细讲解初一动点问题。

一、动点问题的基本概念1、动点问题的概念动点问题指的是一个或多个点在动。

在数学中,我们常常要解决某个点在运动中的位置、速度、时间等问题,这就是动点问题。

在解决动点问题时,常常需要利用速度和时间的关系来确定距离或者位置。

2、常见的动点问题类型在初一数学教学中,动点问题是比较常见的一个问题类型。

常见的动点问题有:两点同时运动、两点交替运动等。

下面我们将结合具体的例子来详细介绍这些类型的动点问题。

二、两点同时运动的问题两点同时运动的问题是初一学生比较容易遇到的一个问题类型。

这类问题的解题步骤一般包括:确定关系式,列方程,解方程,找答案等。

下面我们通过一个例题来详细介绍这类问题的解题方法。

例题:甲、乙两地相距150千米,甲乙两车同时出发相向而行,甲车每小时行60千米,乙车每小时行40千米,问几小时能相遇?解:假设相遇时,甲车行驶了x小时,乙车行驶了y小时。

则根据距离=速度*时间得出60x + 40y = 150 (1)又根据x+y=?得出60x + 60y = 150 (2)将两个方程相减得出20y=0y=3则x=2所以相遇时,甲车行驶了2小时,乙车行驶了3小时。

答:2小时。

三、两点交替运动的问题另一类常见的动点问题是两点交替运动的问题。

这类问题的解题步骤一般包括:列方程,解方程,找答案等。

下面我们通过一个例题来详细介绍这类问题的解题方法。

例题:两列火车从两地同时开出,两地相距150千米,一列火车以50千米/小时的速度开往另一地,另一列火车以40千米/小时的速度开往另一地,问几小时两列火车相遇?解:假设相遇时,快车行驶了x小时,慢车行驶了y小时。

则根据距离=速度*时间得出50x+40y=150 (1)又根据x+y=?得出50x+50y=150 (2)将两个方程相减得出10y=0y=3则x=0所以相遇时,快车行驶了0小时,慢车行驶了3小时。

七年级数学上册-动点问题专题讲解

七年级数学上册-动点问题专题讲解

七年级数学上册 动点问题专题讲解明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值.......,也即用右边的数减去左边的数的差。

即数轴上两点间的距离......... =. 右边点表示的数....... -. 左边点表示的数.......。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a ,向左运动b 个单位后表示的数为a -b ;向右运动b 个单位后所表示的数为a+b 。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

基础题1.如图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C 点. (1)求动点A 所走过的路程及A 、C 之间的距离. (2)若C 表示的数为1,则点A 表示的数为 .2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系1=-+,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是1(35)2__________________.(3)已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x.应用题1、已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。

中考数学动点问题专题讲解

中考数学动点问题专题讲解

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, .∴y =GP=32MP=233631x + (0<x <6). H M NGPOAB图1(3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CEAB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠AED C B图2OE 3(1)ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =,∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58.∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.E A3(2)O∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO 图8H动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

初一数学动点问题精讲

初一数学动点问题精讲

1 期末冲刺第十八课——动点问一、动点问题相关知识点:1. 1. 点的移动:点的移动:沿着正方向移动点表示的数字增加,逆着正方向移动点表示的数字减小(左减右加)2. 2. 两点之间的距离:两点之间的距离:数轴上两个点之间的距离可以用大数字减小数字计算得到(大减小)3.3.中点公式:中点公式:若x 为a 和b 的中点,则2a bx +=二、相关例题和练习例题1:数轴上有一个点A ,从原点出发向右运动,运动的速度是每秒钟2个单位长度;有一个点B ,从表示12的点出发向左运动,运动的速度是每秒钟3个单位长度;还有一个点C ,从10-出发向右运动,运动的速度是每秒钟2个单位长度。

(1)出发之前,若折叠数轴后点)出发之前,若折叠数轴后点-1-1和点3重合,则点A 和点和点_____________________重合。

重合。

(2)出发之后,写出t 秒之后三个点所在位置。

(3)何时A 和B 相距5个单位长度?(4)何时其中两点重合?(5)何时其中一点为另外两点的中点?练习1:已知在纸面上有一数轴(如图),折叠纸面(1)若表示1的点与表示1-的点重合,则表示2-的点与表示数_____的点重合;(2)若表示1-的点与表示3的点重合,回答以下问题:1)、表示5的点与表示数_____的点重合;2)、若数轴上A 、B 两点之间的距离为10(A 在B 的左侧),且A 、B 两点折叠后重合,求A 、B 两点表示的数是多少?3)、在2)的情况下,若A 点以每秒钟1个单位的速度向左运动,B 点以每秒钟4个单位的速度向左运动,问多少秒后A 、B 两点相距5个单位长度?4)、在3)的情况下,何时点A、点B和原点O的其中一点,为另外两点的中点?2。

中考数学动点题讲解

中考数学动点题讲解

中考数学动点题讲解中考数学动点题主要考察考生对平面几何中动点的理解和应用能力。

在这种题型中,需要考生根据动点的特点和运动轨迹,推导出动点所在的图形的性质和相关参数。

以下是中考数学动点题的讲解。

1. 直线上动点问题直线上动点问题是动点题中最简单的一种,通常需要考生根据动点的移动轨迹,推导出线段长度、角度等相关量的变化规律。

例如,有一条长度为10的线段AB,动点P沿着这条线段从A点开始匀速向B点移动,求当P点到达B点时,线段AB的中点O的位置。

解题思路:由于P点是匀速移动的,可以通过构建等速度线段来找到P点在到达B点前所处的位置。

具体地,我们可以在AB上构造以A点和B点为端点、长度为5的等速度线段CD和EF,分别与P点的轨迹相交于C点和E点。

根据线段AB的中点公式,可以得出线段OB的长度为5,因此,当P点到达B点时,线段OB的位置位于B点的左侧5个单位长度处。

2. 圆上动点问题圆上动点问题通常需要考生根据动点所在的圆的性质,推导出相关的几何关系和参数。

例如,有一条固定的半径为3的圆和一个动点P沿着这个圆的周长运动,当P点从起始位置出发后,经过圆心O点后,再走过180度后又回到起始位置,求动点P所走的路径长度。

解题思路:由于P点沿着圆的周长匀速运动,因此,当P点运动经过180度后,它所走的路径长度就是圆的周长的一半,即3π。

又因为P点在运动过程中经过圆心O点,因此,P点所在的运动轨迹是一条弧线,其长度等于圆心角的对应弧长。

根据圆心角的定义,当P 点运动经过180度时,它所对应的圆心角为π,因此,P点所在弧线的长度为圆的周长的一半,即3π。

3. 平面内任意图形上动点问题平面内任意图形上的动点问题通常需要考生根据所给图形的几何特征,推导出动点所处的位置和相关参数。

例如,有一个正方形ABCD和一个动点P沿着正方形边界从A点开始匀速运动,当P点回到A点时,求P点所在的轨迹。

解题思路:由于P点沿着正方形边界匀速运动,它所在的轨迹应为一条四边形,其四个顶点分别为A、B、C、D。

初中数学动点问题专题讲解

初中数学动点问题专题讲解

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中,22236x PH OP OH -=-=,∴2362121x OH MH -==. 在Rt △MPH 中, .H M NGPOAB图1∴y =GP=32MP=233631x +(0<x <6). (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x .经检验,6=x 是原方程的根,且符合题意.②GP=GH 时,2336312=+x ,解得0=x .经检验,0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°,∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°,∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC,∴ACBD CEAB =,∴11x y =,∴xy 1=. AED C B图2(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-,整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3.点O 是边AC 上的一个动点,以点O为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证:△ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP,∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3,∴AC=5.∵∠ABC=∠ADO=90°,∴OD ∥BC,∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54.∴AE=x x 53+=x 58.∵△ADE ∽△AEP,∴AE ADAP AE =,∴x x yx 585458=.∴x y 516=(8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.E A3(2)OOE 3(1)∵∠ADE=∠AEP,∴∠PDE=∠PEC.∵∠FBP=∠DEP=90°,∠FPB=∠DPE, ∴∠F=∠PDE,∴∠F=∠FEC,∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2),则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述,当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22,∴BC=4,AH=21BC=2.∴OC=4-x . ∵AH OC S AOC ⋅=∆21,∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2,∴222)2(2)1(x x -+=+.解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x ,∴222)2(2)1(-+=-x x .解得27=x . ABCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

七年级数学上册 动点问题专题讲解

七年级数学上册 动点问题专题讲解

七年级数学上册 动点问题专题讲解明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。

即数轴上两点间的距离 = 右边点表示的数 - 左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。

这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。

即一个点表示的数为a ,向左运动b 个单位后表示的数为a -b ;向右运动b 个单位后所表示的数为a+b 。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

基础题1.如图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C 点.(1)求动点A 所走过的路程及A 、C 之间的距离.(2)若C 表示的数为1,则点A 表示的数为 .2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系,那么在数轴上到表示数的点和表示数的点之间距离相等的点表示的数是11(35)2=-+a b __________________.(3)已知在数轴上表示数的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数.x x 应用题1、已知数轴上有A 、B 、C 三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时出发相向而行,甲的速度为4个单位/秒。

⑴ 问多少秒后,甲到A 、B 、C 的距离和为40个单位?⑵ 若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶ 在⑴ ⑵的条件下,当甲到A 、B 、C 的距离和为40个单位时,甲调头返回。

中考数学动点问题专题讲解(建立动点问题的函数解析式)

中考数学动点问题专题讲解(建立动点问题的函数解析式)

所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, .∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时,2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.本专题的主要特征是两个点在运动的过程中,直接或间接地构造了直角三角线,因此可以利用勾股定理去建立函数关系式. 勾股定理是初中数学的重要定理,在运用勾股定理写函数解析式的过程中,主要是找边的等量关系,要善于发现这种内在的关系,用代数式去表示这些边,达到解题的目的. 由于是压轴题,有的先有铺垫,再写解析式;有的写好解析式后,再证明等腰三角形、相似三角形等,还有的再解一些与圆有关的体型. 要认真领会,达到举一反三的目的.2222233621419x x x MH PH MP +=-+=+=H M NG PO A B 图1 x y1 牢记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方.例题,扇形中∠AOB=45°,半径OB=2,矩形PQRS的顶点P、S在半径OA上,Q在半径OB上,R在弧AB上,连结OR.(1)当∠AOR=30°时,求OP长(2)设OP=x,OS=y,求y与x的函数关系式及定义域2 在四边形的翻折与旋转中,往往会应用到勾股定理,由此产生些函数解析式的问题,要熟练掌握.例题:如图,正方形ABCD中,AB=6,有一块含45°角的三角板,把45°角的顶点放在D点,将三角板绕着点D旋转,使这个45°角的两边与线段AB、BC分别相交于点E、F(点E与点A、B不重合)(1)从几个不同的位置,分别测量AE、EF、FC的长,从中你能发现AE、EF、FC的数量之间具有怎样的关系?并证明你所得到的结论(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出函数的定义域(3)试问△BEF的面积能否为8?如果能,请求出EF的长;如果不能,请说明理由.3 在一些特殊的四边形中,如矩形、正方形,它们都是直角,菱形的对角线互相垂直,这些都有可能构造直角三角形,可以考虑用勾股定理写出函数的解析式.例题:如图,在菱形ABCD中,AB=4,∠B=60°,点P是射线BC上的一个动点,∠PAQ=60°,交射线CD于点Q,设点P到点B的距离为x,PQ=y(1)求证:三角形APQ是等边三角形(2)求y关于x的函数解析式,并写出它的定义域(3)如果PD⊥AQ,求BP的值4 作底边上的高,可以构造直角三角形,利用勾股定理写函数的解析式例题:如图,等边△ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与△ABC的顶点不重合),且AP=BQ,AQ、CP相交于点E.(1)如设线段AP为x,线段CP为y,求y关于x的函数解析式,并写出定义域(2)当△CBP的面积是△CEQ的面积的2倍时,求AP的长(3)点P、Q分别在AB、BC上移动过程中,AQ和CP能否互相垂直?如能,请指出P点的位置,请说明理由.5 在解圆的题目时,首选的辅助线是弦心距,它不仅可以运用垂径定理,而且构造了直角三角形,为用勾股定理写函数解析式创造了条件.例题:如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P 是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,PD切⊙B于点D,已知⊙A 的半径为2,⊙B的半径为1,AB=5.(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域(2)如果PC=PD,求PB的长(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论6 强调圆的首选辅助线是弦心距,它不仅可以平分弦,而且构造了直角三角形,为解题创建新思路.例题:如图,在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长. 当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P 与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径(2)求y关于x的函数解析式,并写出它的定义域(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由阶梯题组训练1 如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x之间的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.2 如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=3设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化?如果不变,求出∠MCE 的大小;如果发生变化,说明如何变化.3 ABCD中,对角线AC⊥AB,AB=15,AC=20,点P为射线BC上一动点,AP⊥PM(点M与点B分别在直线AP的两侧),且∠PAM=∠CAD,连结MD.(1)当点M在ABCD内时,如图,设BP=x,AP=y,求y关于x的函数关系式,并写出函数定义域;(2)请在备用图中画出符合题意的示意图,并探究:图中是否存在与△AMD相似的三角形?若存在,请写出并证明;若不存在,请说明理由;(3)当△为等腰三角形时,求BP的长.4 抛物线经过A(2,0)、B(8,0)、C(0,3316).(1)求抛物线的解析式;(2)设抛物线的顶点为P,把△APB翻折,使点Pl落在线段AB上(不与A、B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出定义域;(3)当点P′在线段AB上运动但不与A、B重合时,能否使△EFP′的一边与x轴垂直?若能,请求出此时点P′的坐标;若不能,请你说明理由.5 如图,矩形ABCD中,AD=7,AB=BE=2,点P是EC(包括E、C)上的动点,线段AP的垂直平分线分别交BC 、AD 于点F 、G ,设BP=x ,AG=y.(1) 四边形AFPG 是说明图形?请说明理由;(2) 求y 与x 的函数关系式;(3) 如果分别以线段GP 、DC 为直径作圆,且使两圆外切,求x 的值.6 在梯形ABCD 中,AD//BC ,AB ⊥AD ,AB=4,AD=5,CD=5. E 为底边BC 上一点,以点E 为圆心,BE 为半径画⊙E 交直线DE 于点F.(1) 如图,当点F 在线段DE 上时,设BE=x ,DF=y ,试建立y 关于x 的函数关系式,并写出自变量x 的取值范围;(2) 当以CD 为直径的⊙O 与⊙E 相切时,求x 的值;(3) 连结AF 、BF ,当△ABF 是以AF 为腰的等腰三角形时,求x 的值.7 如图,在正方形ABCD 中,AB=1,弧AC 是以点B 为圆心,AB 长为半径的圆的一段弧,点E 是边AD 上的任意一点(点E 与点A 、D 不重合),过E 作弧AC 所在圆的切线,交DC 于点F ,G 为切点.(1) 当∠DEF=45°时,求证点G 为线段EF 的中点;(2) 设AE=x ,FC=y ,求y 关于x 的函数解析式,并写出函数的解析式;(3) 将△DEF 沿直线EF 翻折后得△D 1EF ,如图2,当EF=65时,讨论△AD 1D 与△ED 1F 是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(2003年上海第27题)二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =, ∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长.解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x y x 585458=. ∴x y 516= (8250≤<x ). A E D C B 图2A 3(2)3(1)(3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE,∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2.类似①,可得CF=CE.∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.本专题探究在图形的运动变化过程中,存在平行或相似的三角形,利用比例式来建立函数关系式. 难一些的题目其中的一个变量是比例式,一个变量是线段,也是利用相似或平行来构造比例式,从而写出函数的解析式. 作为最后的一道压轴题,一般情况下写出解析式后还会有一个证等腰或相似或相切的题目,可以二次函数专题中的解题思想进行处理.1 由平行得到比例式,从而建立函数关系式.例题:如图,在△ABC 中,AB=AC=4,BC=21AB ,点P 是边AC 上的一个点,AP=21PD ,∠APD=∠ABC ,连结DC 并延长交边AB 的延长线于点E(1) 求证:AD//BC(2) 设AP=x ,BE=y ,求y 关于x 的函数解析式,并写出它的定义域(3) 连结BP ,当△CDP 与△CBE 相似时,试判断BP 与DE 的位置关系,并说明理由2 由三角形相似得到比例式,建立函数关系式例题:如图,在正方形ABCD 中,AB=2,E 为线段CD 上一点(点E 与点C 、D 不重合),FG 垂直平分AE ,且交AE 于F ,交AB 延长线于G ,交BC 于H.(1) 证明:△ADE ∽△GFA(2) 设DE=x ,BG=y ,求y 关于x 的函数解析式及定义域(3) 当BH=41时,求DE 的长 3 在学习利用相似比建立函数的解析式的时候,初中阶段的知识已经学了不少,对最后的压轴题的综合性的要求已经很高了. 一般会在写解析式前有一些证明或计算,写好解析式后再来一个证明等腰三角形或圆的位置关系等. 如果能够把一道复杂的压轴题拆分成几道小的题目,各个击破,难题也就变简单了.例题:如图,在Rt △ABC 中,∠C=90°,sinB=54,AC=4;D 是BC 的延长线上一个动点,∠EDA=∠B ,AE//BC.(1) 找出图中的相似三角形,并加以证明(2) 设CD=x ,AE=y ,求y 关于x 的函数解析式,并写出函数的定义域(3) 当△ADE 为等腰三角形时,求AE 的长4 刚才研究的写函数解析式都是在几何图形中进行的,下面来看在平面直角坐标系中怎样写解析式. 例题:如图,在直角坐标系中的等腰梯形AOCD 中,AD//x 轴,AO=CD=5,OC AD =52,cos a=53,P 是线段OC 上的一个动点,∠APQ=∠a,PQ 交射线AD 于点Q ,设P 点坐标为(x ,0),点Q 到D 的距离为y(1) 求过A 、O 、C 三点的抛物线解析式(2) 用含x 的代数式表示AP 的长(3) 求y 与x 的函数解析式及定义域(4) △CPQ 与△AOP 能否相似?若能,请求出x 的值,若不能,请说明理由5 当一个变量是比例式,另一个变量是一条线段,怎样来写函数的解析式呢?可以根据题目的要求,由相似三角形面积的比等于相似比的平方,或相似三角形周长的比等于相似比等建立函数解析式.例题:如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 、C 的坐标分别为(-1,0),C (0,b ),且0<b <3,m 是经过点B 、C 的直线,当点C 在线段OC 上移动时,过点A 作AD ⊥m 于点D.(1) 求点D 、O 之间的距离(2) 如果BOCBDA S △△S =ɑ,试求:ɑ与b 的函数关系式及ɑ的取值范围 (3) 当∠ADO 的余切值为2时,求直线m 的解析式(4) 求此时△ABD 与△BOC 重叠部分的面积6 当我们学习到利用相似三角形的相似比来建立函数解析式的时候,初中阶段的知识已经学得差不多了,对于一些貌似很复杂的图形,只要能够分层求解,就能化繁为简.例题:如图,在边长为6的正方形ABCD 的两侧如图作正方形BEFG 、正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连结MF 交线段AD 于点P ,连结NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y.(1) 求y 关于x 的函数关系式及自变量x 的取值范围(2) 当△NPF 的面积为32时,求x 的值(3) 以P 为圆心,AP 为半径的圆能够与以G 为圆心,GF 为半径的圆相切,若能请求x的值,若不能,请说明理由练习:1. 如图,在三角形中,AB=AC=8,BC=10,点D 、E 分别在BC 、AC 上(点D 不与B 、C 重合),且∠ADE=∠B ,设BD=x ,AE=y.(1) 求y 与x 之间的函数解析式,并写出函数的定义域(2) 点D 在BC 上的运动过程中,△ADE 是否有可能成为一个等腰三角形?如有可能,请求出当△ADE 为等腰三角形时x 的值;如不可能,请说明理由.2. 在△ABC 中,AB=4,AC=5,cosA=53,点D 是边AC 上的点,点E 是边AB 上的点,且满足∠AED=∠A ,DE 的延长线交射线CB 于点F ,设AD=x ,EF=y.(1) 如图1,用含x 的代数式表示线段AE 的长(2) 如图1,求y 关于x 的函数解析式及函数的定义域(3) 连结EC ,如图2,求档x 为何值时,△AEC 与△BEF 相似.3. 如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE=x ,BF=y.(1) 求y 关于x 的函数关系式(2) 若m=8,求x 为何值时,y 的值最大,最大值是多少?(3) 若y=m12,要使△DEF 为等腰三角形,m 的值应为多少?4. 已知在梯形ABCD 中,AD//BA ,AD <BC ,且BC=6,AB=DC=4,点E 是AB 的中点.(1) 如图,P 为BC 上的一点,且BP=2. 求证:△BEP ∽△CPD ;(2) 如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF=∠C ,PF 交直线CD与点F ,同时交直线AD 于点M ,那么(3) 当点F 在线段CD 的延长线上时,设BP=x ,DF=y ,求y 关于x 的函数解析式,并写出函数的定义域;(4) 当S △DMF =49S △BEP 时,求BP 的长.5. 如图,在四边形ABCD 中,∠B=90°,AD//BC ,AB=4,BC=12,点E 在边BA 的延长线上,AE=2,点F 在BC 边上,EF 与边AD 相交于点G ,DF ⊥EF ,设AG=x ,DF=y.(1) 求y 关于x 的函数解析式,并写出定义域;(2) 当AD=11时,求AG 的长;(3) 如果半径为EG 的⊙E 与半径为FD 的⊙F 相切,求这两个圆的半径.6. 如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y.(1) 求y 关于x 的函数解析式,并写出它的定义域;(2) 若⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=31OB 时,求⊙O 1的半径;(3) 是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由.7. 已知∠ABC=90°,AB=2,BC=3,AD//BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足PC PQ =ABAD (如图1所示) (1) 当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长; (2) 在图1中,连结AP. 当AD=23,且点Q 在线段AB 上时,设点B 、Q 之间的距离为x ,PBCAPQ S S △△=y ,其中S △APQ 表示△APQ 的面积,S △PBC 表示△PBC 的面积,求y 关于x 的函数解析式,并写出函数定义域;(3) 当AD <AB ,且点Q 在线段AB 的延长线上时(如图3所示),求∠QPC 的大小.(2009上海第25题)三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时, 在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.例2、【09广东】正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值A B C O 图8 H练习1.如图,在△ABC中,BC=8,CA= ,∠C=60°,EF∥BC,点E、F、D分别在AB、AC、BC上(点E与点A、B不重合),连接ED、DF。

七年级数学上册线段上动点问题的四种常见类型专题讲解课件

七年级数学上册线段上动点问题的四种常见类型专题讲解课件
4.知识是用来为人类服务的,我们应该把它们用于 有意义的方面.下面就两个情景作出评判.
情景一:如图①,从教学楼到图书馆,总有少数 同学不走人行道而横穿草坪,这是为什么呢?试 用所学数学知识来说明这个问题.
两点之间,线段最短.
情景二:如图②,A,B是河流l两旁的两个村庄, 现要在河边修一个抽水站向两村供水,问抽水站 修在什么地方才能使所需的管道最短?请在图中 表示出抽水站点P的位置,并说明你的理由:
2
2
2
综上所述,线段差倍分关系中的动点问题
3.如图,线段AB=24,动点P从A出发,以2个单位 长度/s的速度沿射线AB运动,M为AP的中点.
(1)出发多少秒后,PB=2AM?
解:设出发t s后,PB=2AM, 则PA=2t,PB=24-2t,AM=t. 所以24-2t=2t,解得t=6. 即出发6 s后,PB=2AM.
线段上动点问题的四种常见类型
1
2
3
4
类型 1 线段上动点与中点的综合问题
1.(1)如图①,D是AB上任意一点,M,N分别是AD, DB的中点,若AB=16,求MN的长;
解:MN=DM+DN
= AD1+ BD1= (A1D+BD)
= AB2=8. 2
2
1
2
(2)如图②,AB=16,点D是线段AB上一动点,M, N分别是AD,DB的中点,能否求出线段MN的长? 若能,求出其长,若不能,试说明理由;
两点之间,线段最短.
你赞同以上哪种做法?你认为应用数学知识为人类服 务时应注意什么?
赞同情景二中运用知识的做法. 注意略.
返回
形,并求出线段MN的长;若改变,请说明理由.
线段MN的长度不产生变化,其值为5.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P ,PH ⊥O A,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△P GH 是等腰三角形,试求出线段PH 的长.解:(1)当点P在弧A B上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32M P=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP =P H时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②G P=G H时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠B AC =30°,∠DAE =105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC 的度数为α,∠DA E的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵A B=A C,∠B AC=30°,∴∠A BC =∠A CB =75°, ∴∠AB D=∠AC E=105°. ∵∠BAC=30°,∠D AE =105°, ∴∠DAB +∠CAE =75°, 又∠DA B+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△AD B∽△E AC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. 2222233621419x x x MH PH MP +=-+=+= AED CB 图2HM NGPOAB图1x y(2)由于∠DAB +∠C AE=αβ-,又∠DAB+∠ADB =∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy 1=成立.例3(2005年·上海)如图3(1),在△AB C中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F .(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当B F=1时,求线段AP 的长.解:(1)连结OD. 根据题意,得O D⊥AB ,∴∠OD A=90°,∠OD A=∠DE P.又由OD=OE,得∠OD E=∠OED.∴∠ADE=∠A EP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC =5. ∵∠ABC =∠A DO =90°, ∴O D∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,A D=x 54. ∴A E=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF =1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PE C. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE , ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段C B于点F,如图3(2), 则CF =2. 类似①,可得CF =CE . ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF =1时,线段A P的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A的半径为1.若点O在BC 边A 3(2)3(1)上运动(与点B、C 不重合),设BO=x ,△A OC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AO C的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB =A C=22, ∴BC =4,AH=21BC =2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在R t△AOH 中,OA =1+x ,O H=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O与⊙A 内切时,在Rt △A OH 中,OA=1-x ,O H=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△A OC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题(一)点动问题. 1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点]本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在A B边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题.区分ABC DEOlA ′ABCDEO lF 度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法]1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程.2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解]解:(1) 证明CDF ∆∽EBD ∆∴BECDBD CF =,代入数据得8=CF ,∴A F=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法xCF 32=,相切时分外切和内切两种情况考虑: 外切,xx 321010+-=,24=x ;内切,xx 321010--=,17210±=x .100<<x ∴当⊙C 和⊙A 相切时,BE 的长为24或17210-. (3)当以边AC 为直径的⊙O 与线段DE 相切时,320=BE . 类题 ⑴一个动点:09杨浦25题(四月、五月)、09静安25题、⑵两个动点:09闸北25题、09松江25题、09卢湾25题、09青浦25题. (二)线动问题在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l过点B,把△ABE 沿直线l翻折,点A 与矩形ABC D的对称中心A'重合,求BC 的长; (2)若直线l 与A B相交于点F,且AO=41AC,设AD 的长为x ,五边形BC DEF 的面积为S.①求S关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.[题型背景和区分度测量点]本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线l 沿A B边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二. [区分度性小题处理手法]1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.2.直线与圆的相切的存在性的处理方法:利用d=r建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解](1)∵A ’是矩形A BCD 的对称中心∴A ’B=AA ’=21AC ∵A B=A ’B ,AB=3∴AC =6 33=BC(2)①92+=x AC ,9412+=x AO ,)9(1212+=x AF ,x x AE 492+=∴AF 21⋅=∆AE S AEFx x 96)9(22+=,x x x S 96)9(322+-= xx x S 968127024-+-= (333<<x )②若圆A 与直线l 相切,则941432+=-x x ,01=x (舍去),582=x ∵3582<=x ∴不存在这样的x ,使圆A 与直线l 相切.[类题]09虹口25题. (三)面动问题如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O,与x 轴的另一个交点为B 。

相关文档
最新文档