图解工业制氧生产工艺
氧气工业制法
氧气工业制法
水下氧气工业制法是一种立体控制的原材料经换热、脱附、分离,以及零气稀释等多步处理机制而制成洁净氧气的一种工艺. 首先, 将原料水以低温放置下反应器, 其温度逐渐降低到供氧温度的环境. 在换热器中,添加助燃剂使温度降低,直到氮气脱除温度,产物达到干燥水气.随后,将干燥水气经蒸发分离换热器,将水分完全蒸发出,最终制取洁净的氧气.
上述步骤制取的洁净氧气中含有氮气、水蒸气等有害成分,因此须经过零气稀释这一程序. 将制取的洁净氧向压换热器投入平衡准备,使其达到恒定温度. 这时,上压室内含有氧气和部分氮气混合物,氮气从上压换热器流出,而洁净氧气则被进料口不断补充,从而使氧气混合物恒定.
在循环换热器中,将压室内氮气流出回流到低压换热器,再返回到上压换热器,使氮气的比重慢慢降低,当低压换热器的温度升高时,氮气比重达到设定值,水蒸气就会被氧气替代,最终可制取洁净氧气.
以上是水下氧气工业制法的基本流程,经过以上几步处理机制,就可以得到洁净的氧气,其中氧含量高达99.5%,可以满足各种压力、浓度的需要。
氧气的工业制法(精)PPT课件
课堂练习答案
1.C 2.B 3.C 4.B 5.C 6.D 7.BC
• 8.铁架台(带铁夹) 试管带单孔橡皮塞 (火柴) 水槽 集气瓶 玻璃片
• 9.氯酸钾和二氧化锰 锰酸钾和二氧化锰 催化剂 生成物
酒精灯 二氧化锰
.
.
原理小结:
用过氧化氢和高锰酸钾及氯酸钾 制取氧气有什么相同的地方?
化合反应
化学反应类型 分解反应
分解反应 由一种反应物生成两种或两种以 上其他物质的反应叫分解反应。
.
三、氧气的实验室制法
二氧化锰
过氧化氢 或加热 水 + 氧气
H2O2
H2O O2
高锰酸钾 加热 锰酸钾 + 二氧化锰 + 氧气
KMnO4
(C)改变化学反应速率 (D)减慢化学反应速 率
3.实验室用加热氯酸钾或高锰酸钾的方法制取
氧气,其共同点是
()
(A)都是给固态物质加热
(B)都使用二氧化锰催化剂 (C)都发生了分解反应.
4.写出下列反应的文字表达式和化学方程式: (1)加热氯酸钾和二氧化锰的混合物制氧气 (2)加热高锰酸钾制氧气 (3)用双氧水和二氧化锰制氧气
.
2.催化剂
催化剂:能改变其它物质的化学反应速率, 而 本身的质量和化学性质在化学反应 前 后都没有改变的物质 。
催化作用:催化剂在化学反应中起的作用
.
注意事项:
(1) 反应前后,催化剂的质量和化学 性质不变; (2) 催化剂通过改变反应的途径而改变反 应的速率(可加快也可减慢); (3) 催化剂不能决定化学反应能否发生, 不能改变产物的质量。
思考并讨论下列问题:
你打算用什么药品来制取氧气? 你认为需要哪些仪器才能制取氧气? 一套制气装置,你认为应该包含哪些装置? 怎样来组装你所需要的仪器,组装时需要注意什么? 你认为制取气体前,需不需要检查装置的气密性?如果需要, 该怎么去检查呢? 气体常见的收集方法有哪些? 你认为用什么方法去收集所制得的氧气? 你认为什么时候收集氧气最合适?(排水法收集时) 怎样才知道集气瓶中已经装满了氧气?
氧气的工业制法
工业制氧的应用
03
工业制氧在钢铁行业的应用
炼钢过程
工业制氧在钢铁行业中主要用于 炼钢过程,提供高纯度氧气作为 氧化剂,加速铁矿石的氧化反应 ,提高炼钢效率。
切割和焊接
钢铁行业中的金属切割和焊接需 要高纯度氧气作为助燃剂,工业 制氧满足了这一需求,提高了切 割和焊接的质量和效率。
工业制氧在石油化工行业的应用
工业制氧的工艺流程
原料空气的采集
采集富含氧气的空气作为原料,如从高山、 深海等地区采集。
空气的净化
通过过滤、除湿、除尘等手段净化原料空气, 去除其中的杂质和有害物质。
空气的压缩
将净化后的空气进行压缩,提高其压力和流速。
空气的液化
将压缩后的空气进行液化,以便进行进一步的分离 。
气体的分离
利用物理或化学方法将氧气与其他气体分离。
技术成熟,生产成本低,产量大。
缺点
需要消耗大量能源,并产生大量副产品氮 气。
电解水法
原理
利用电解水产生氢气和氧气。
流程
将水通过直流电电解生成氢气 和氧气。
优点
纯度高,适用于高纯度氧气的 需求。
缺点
耗能大,生产成本高,产量相 对较小。
热解吸水法
01
02
03
04
原理
利用加热分解水产生氢气和氧 气。
流程
工业制氧的应急处理
事故预警
建立完善的事故预警系统, 及时发现和处理制氧过程 中的异常情况。
应急救援
组建专业的应急救援队伍, 配备必要的应急救援器材, 确保在发生事故时能够迅 速有效地进行救援。
事故报告
按照国家相关规定及时上 报事故情况,积极配合相 关部门进行事故调查和处 理。
氧气生产工艺流程图
氧气生产工艺流程图英文回答:Oxygen Production Process Flowchart.1. Air intake.Raw air is drawn into the compressor from the atmosphere.2. Air compression.The air is compressed in a multi-stage compressor to increase its pressure.3. Cooling and purification.The compressed air is cooled in an air-to-air heat exchanger to remove moisture and impurities.4. Molecular sieve adsorption (MSA)。
The cooled and purified air is passed through a molecular sieve bed, which selectively adsorbs nitrogen and other gases, leaving behind oxygen.5. Expansion.The oxygen-rich gas exiting the MSA is expanded through a turbine, which further cools the gas and raises its purity.6. Final purification.Any remaining impurities in the oxygen are removed by passing the gas through a activated carbon filter.7. Storage and distribution.The purified oxygen is stored in high-pressure containers and distributed to end users.中文回答:制氧工艺流程图。
工业制氧气的原理化学
工业制氧气的原理化学
工业制氧气的原理化学主要涉及两个过程:空气分离和制氧。
1. 空气分离:空气主要由氮气(约78%)、氧气(约21%)、水蒸气和稀有气体组成。
工业生产中,采用常见的空气分离技术是通过冷却压缩空气,然后通过膜技术或吸附剂技术(如分子筛或活性炭)分离氧气和氮气。
2. 制氧:制氧通常使用两种主要的工艺:常压吸附法和膜分离法。
- 常压吸附法:这种方法使用吸附剂,例如分子筛,可以选择性地吸附氮气,而不吸附氧气。
空气首先被压缩,并通过吸附床,其中用于吸附氮气。
氧气则从吸附床中通过洗涤剂冲洗,从而分离出来。
然后,吸附床通过排空或升压进入再生,以将吸附的氮气释放掉。
- 膜分离法:膜分离法使用特殊的膜材料,如聚合物膜或陶瓷膜,可以选择性地通过氧气,而阻止氮气的通过。
将压缩的空气通过膜,氧气可以通过膜的孔洞或固溶体扩散到另一侧,而氮气被阻拦。
通过这种方式,可以有效地分离氧气和氮气。
上述两种工艺可以根据实际需要进行调整和组合,以满足产量和纯度的要求。
工业制氧的各种方法
工业制氧
工业制氧工业制氧是指制造大量氧气,注重成本,讲究大量制取,对纯度要求一般不会太高。
大致可分为以下几种方法(一)物理制氧1、空气冷冻分离法空气中的主要成分是氧气和氮气。
利用氧气和氮气的沸点不同(氧气沸点为-183℃,氮气沸点为-196℃),从空气中制备氧气称空气分离法。
首先把空气预冷、净化(去除空气中的少量水分、二氧化碳、乙炔、碳氢化合物等气体和灰尘等杂质)、然后进行压缩、冷却,使之成为液态空气。
然后,利用氧和氮的沸点的不同,在精馏塔中把液态空气多次蒸发和冷凝,将氧气和氮气分离开来,得到纯氧(可以达到99.6%的纯度)和纯氮(可以达到99.9%的纯度)。
如果增加一些附加装置,还可以提取出氩、氖、氦、氪、氙等在空气中含量极少的稀有惰性气体。
由空气分离装置产出的氧气,经过压缩机的压缩,最后将压缩氧气装入高压钢瓶贮存,或通过管道直接输送到工厂、车间使用。
使用这种方法生产氧气,虽然需要大型的成套设备和严格的安全操作技术,但是产量高,每小时可以产出数干、万立方米的氧气,而且所耗用的原料仅仅是不用买、不用运、不用仓库储存的空气,所以从1903年研制出第一台深冷空分制氧机以来,这种制氧方法一直得到最广泛的应用。
2、分子筛制氧法(吸附法)利用氮分子大于氧分子的特性,使用特制的分子筛把空气中的氧离分出来。
首先,用压缩机迫使干燥的空气通过分子筛进入抽成真空的吸附器中,空气中的氮分子即被分子筛所吸附,氧气进入吸附器内,当吸附器内氧气达到一定量(压力达到一定程度)时,即可打开出氧阀门放出氧气。
经过一段时间,分子筛吸附的氮逐渐增多,吸附能力减弱,产出的氧气纯度下降,需要用真空泵抽出吸附在分子筛上面的氮,然后重复上述过程。
这种制取氧的方法亦称吸附法。
最近,利用吸附法制氧的小型制氧机已经开发出来,便于家庭使用。
3、电解制氧法把水放入电解槽中,加入氢氧化钠或氢氧化钾以提高水的电解度,然后通入直流电,水就分解为氧气和氢气。
每制取一立方米氧,同时获得两立方米氢。
制氧厂工艺流程图
河北普阳钢铁有限公司 2013.8.24
制氧工艺流程简介
制氧系统由10个系统组成,分为: 1、空压机系统 2、预冷系统 3、纯化系统 4、膨胀机系统 5、分馏系统 6、压氧系统 7、压氮系统 8、调压站 9、液氧贮存和汽化系统 10、液氩用是将空气进行压缩,同时也 是整个生产过程的动力之源。
氩塔系统
氩塔系统简介:
分馏塔上部出来的工艺氩成分(包含氧 气、氮气、氩气),进入C5,上升到C3, 在上部与液空换热,由于气体的沸点不同, 氧气液化,流到下部,经氩泵抽出到C5, 回分馏塔上部。然后进入氩精馏塔C4,与 液氮换热,由于氩气和氮气的沸点不同, 氩气液化到塔下部,经缓冲罐进入氩气贮 存系统。
液氩贮存和汽化系统简介
液氩自冷箱,进氩气贮存罐后,进缓冲 罐,送往用户,或者从贮存罐去精馏塔
调压站
调压站简介
控制整个制氧厂的气体输出,或者贮存 起来,或者送往用户和放空。
制氧流程结束
谢谢观看!
以上有不当之处,请大家给与批评指正, 谢谢大家!
29
分馏系统
分馏系统简介:
在分馏塔中空气首先经过主换热器与返 流气体换热,然后被冷却到接近饱和温度
( -172摄氏度),进入下塔。在下塔空气经 过初步分离成氮气和富氧液空,在下塔顶 部获得99.99%的气氮,进入主冷与液氧换 热冷凝成液氮,分布液氮回下塔作为下塔 的回流液。另一部分经过冷器过冷节流后 进入上塔,作为上塔的回流液。下塔釜液 位36%的液空,经过冷器进入上塔中部, 参加精馏。
以不同状态的四股流体进入上塔,经在 分离后,在上塔顶部得到纯度为99.99%的 氮气,氮气经过冷液化器,主换热器复热 后出分馏塔。上塔底部的液氧在主冷凝蒸 发器中被下塔的氮气加热而蒸发纯度为99.6 的氧气,经主换热器复热至常温后出分馏 塔。其余部分作为上升蒸汽参加精馏。在 上塔上部有污氮抽出,经过冷器、主换热 器复热引出分馏塔,污氮气一部分去纯化 作为分子筛的再生气体,多余部分放空或 者去水冷塔。
工业制氧原理和流程图
工业制氧原理及流程空气中含氮气78%,氧气21%。
由于空气是取之不尽的免费原料,因此工业制氧/制氮通常是将空气中的氧气和氮气分离出来。
制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。
本专题将详细介绍制氧/制氮的工艺流程,主要工艺设备的工作原理等信息。
[制氧/制氮目的]:制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。
[制氮原理简介]:以空气为原料,利用物理的方法,将其中的氧和氮分离而获得。
工业中有三种,即深冷空分法、分子筛空分法<PSA>和膜空分法。
A:深冷空分制氮深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。
它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。
液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同<在1大气压下,前者的沸点为-183℃,后者的为-196℃>,通过液空的精馏,使它们分离来获得氮气。
深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢<12~24h,安装要求高、周期较长。
综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。
深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。
B:分子筛空分制氮以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。
此法是七十年代迅速发展起来的一种新的制氮技术。
与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快<15~30分钟>、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制氧站生产工艺流程一、制氧/制氮系统工艺流程及主要设备
空气
二、工艺流程中各步骤工作原理及用途
1、空气过滤器
空气过滤器的净气室出口与空气压缩机入口相连接,当空气压缩机启动后,内部气压低于大气压,在负压作用下,从大气中红吸入加工空气。
空气经过过滤筒,灰尘灰尘会被滤网阻挡,无数小颗粒粉尘会吸附在过滤筒上,干净的空气进入空气压缩机中,所以过滤器中的滤筒需要经常吹扫。
此外空气过滤器外安装有一层粗滤网,起到初步过滤的作用。
2、空气压缩机
空气压缩机是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。
空气压缩机类型为离心式空气压缩机,一个空压机车间里有两台空气压缩机,当空气压力不够的时候会启动另外一台增加压力。
⑴EZ45-2+1空压机工作原理(简图如图1所示)
空气走向为:
过滤器
冷却
图
1
⑴ 47YD112空压机工作原理
图2
相同颜色代表管径相同
3、空冷塔和水冷塔
工艺流程如图3所示。
自空压机压缩后的高温空气②进入空冷塔压缩空气在空冷塔上升过程中,与塔上部喷入低温冷冻水⑧、中部喷入的循环冷却水①进行直接接触换热,将空气冷却后③送入分子筛。
从空冷塔中出来的冷却水④返回到冷却水循环系统中。
进入水冷塔的冷却水⑤与从水冷塔底部进入的干燥空气⑥进行逆流接触,干空气吸收水分达到饱和从塔顶释放⑦,冷却水温度降低形成冷冻水⑧,该冷冻水由泵打入空冷塔上部对空气进行冷却。
4、分子筛
分子筛吸附器为卧式双层床结构,下层为活性氧化铝,上层为分子筛,两只吸附器切换工作。
由空冷塔来的空气,经吸附器除去其中的水分,CO2及其它一些碳氢化合物后,除一部分工作仪表之外,其余均全部进入分馏塔及增压机。
当一台吸附器工作时,另一台吸附器则进行再生,冷吹备用。
由分馏塔来的污氮,经两台电加热炉加热至180度后,入吸附器加热再生,解析掉其中的水分和CO2,后经放空消声器派入大气。
5、换热器
换热器是将热流体的部分热量传递给冷流体的设备
6、膨胀机
增压透平膨胀机,由分子筛吸附器来的洁净空气一部分进入增压器,消耗掉由膨胀机输出的能量,同时使压力得以升高,经增压后的空气入增压机后冷却器,被常温水冷却到38左右,入主换热器冷却到一定温度167K 后入透平膨胀机膨胀,然后经膨胀后换热器进一步冷却入上塔参与精馏。
其余空气直接入主换热器冷却到露点100K附近出主换热器,入塔底部参与空气分馏。
7、空气分馏塔
空气分馏塔是一种采用精馏的方法,使各组份分离。
从而得到高纯度组份的设备。
空气被冷却至接近液化温度后送入分馏塔的下塔,空气自下向上与温度较低的回流液体充分接触进行传热,使部分空气冷凝为液体。
由于氧是难挥发组份,氮是易挥发组份,在冷凝过程中,氧比氮较多的冷凝下来,使气体中氮的纯度提高。
同时,气体冷凝时要放出冷凝潜热,使回流液体一部分汽化。
由于氮是易挥发组份。
因此,氮比氧较多的蒸发出来,使液体中氧纯度提高。
就这样,气体由下向上与每一块塔板上的回流液体进行传热传质,而每经过
一块塔板,气相中的氮纯度就提高一次,当气体到达下塔顶部时,绝大部分氧已被冷凝到液体中,使气相中的氮纯度达到99.999%。
一部分氮气进入冷凝蒸发器中,冷凝成液氮.作为下塔回流液。
同时上塔底部的液氧汽化,作为上塔的上升气体,参与上塔的分馏,将下塔底部得到的含氧38~40%的富氧液空节流后送入上塔,作为上塔的一部分回流液与上升气体接触传热,部分富氧液空汽化。
由于氧是难挥发组份,氮是易挥发组份,因此,氮比氧较多的蒸发出来,使液体氧纯度提高。
液体由上向下与上升气体多次传热传质,液相中的氧纯度不断提高,当液体到达上塔底部时就可得到99.6%的液氧。
8、氧压机
从空气分馏塔中分馏出来的低压氧气经过氧压机加压后送入氧气储槽中储存。
9、氮压机
从空气分馏塔中分馏出来的低压氮气经过氮压机加压后送入氮气储槽中储存。