高中物理向心力典型例题新人教版必修1
高中物理向心力例题
高中物理向心力例题
向心力,引导每一个自然过程,为我们揭开宇宙秩序背后的奥秘。
例题:
在一支向心的弹射装置中,由一个电机施加动力,在玻璃环上轮流排
列的小弹丸按同样的时间间隔向心射出。
下面假设玻璃环的半径为R,弹丸的序号从一到n,则请算出第i个弹丸离玻璃环出发点的距离,已知施加动力的有效时间为7t(t是任意时间单位)。
解:第i个弹丸离玻璃环出发点的距离 xi = (7t x i) / n × R 。
假设玻璃环的半径R=10米,弹丸的序号n=20,已知施加动力的有效
时间为7t,则第5个弹丸离玻璃环出发点的距离为
x5 = 7t x 5 / 20 x 10 = 17.5t米。
高一物理向心力典型例题(含问题详解)
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C.D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmrω2,故. 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9πs解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙.则F向=M甲ω2r甲=M乙ω2r乙=9.2 N ① r甲+r乙=0.9 m ②由①②两式可解得只有D正确答案:D7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G与摩擦力F,是一对平衡力,在向心力方向上受弹力F N.根据向心力公式,可知F N=mω2r,当ω增大时,F N增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A、B错误.周期不变时,绳长易断,故D正确.由,当线速度不变时绳短易断,C错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零 C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=m ω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=π v=ω*r 所以r=4/π a=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v1,则mgh=mg·2R+ 1/2mv12 F n+mg= mv12/R 得:F n=40 N②小球刚好通过最高点时速度为v2,则mg= mv22/R又mgh′=mg2R+1/2 mv22/R得h′=2.5R 答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
高一物理向心力公式试题
高一物理向心力公式试题1.关于向心加速度的物理意义,下列说法正确的是A.它描述的是线速度方向变化的快慢B.它描述的是线速度大小变化的快慢C.它描述的是角速度变化的快慢D.以上说法都不正确【答案】A【解析】圆周运动的向心加速度只改变速度的方向,不改变速度大小,向心加速度描述的是线速度方向变化的快慢的物理量,A正确。
【考点】考查了对向心加速度的理解2.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体与圆筒一起运,物体相对桶壁静止.则()A.物体受到4个力的作用.B.物体所受向心力是物体所受的重力提供的.C.物体所受向心力是物体所受的弹力提供的.D.物体所受向心力是物体所受的静摩擦力提供的【答案】 C【解析】试题分析: 对物体进行受力分析,物体在竖直方向上受重力和静摩擦力,并且这两个力相互平衡,水平方向受圆筒给它指向圆心的压力,所以物体受到三个力作用,故A错误;可知物体的合外力即为圆筒给它指向圆心的弹力,所以物体所受向心力由弹力力提供,故B、D错误,C正确。
【考点】向心力3.质量为m的小球,用长为l的线悬挂在O点,在O点正下方l/2处有一光滑的钉子O/,把小球拉到与O/在同一水平面的位置,摆线被钉子拦住,如图所示,将小球从静止释放,当球第一次通过最低点P时A.小球速率突然减小B.小球向心力突然增大C.小球的向心加速度突然减小D.摆线上的张力突然增大【答案】C【解析】让小球从静止释放,当小球第一次经过最低点时,小球受到的拉力和重力都与速度垂直,其线速度不会瞬时变化,圆周运动的圆心由O变到O/,运动半径变大,根据知,向心力突然变小,由知,小球的向心加速度突然减小,由知,摆线上张力突然变小,故A、B、D错误,C正确。
【考点】本题考查圆周运动相关知识和牛顿第二定律,意在考查考生综合分析问题的能力。
4.如图所示,一圆环以直径AB为轴做匀速转动,P、Q、R是环上的三点,则下列说法正确的是()A.向心加速度的大小aP =aQ=aRB.任意时刻P、Q、R三点向心加速度的方向不同C.线速度vP >vQ>vRD.任意时刻P、Q、R三点的线速度方向均不同【答案】 C【解析】试题分析:一圆环以直径AB为轴做匀速转动,圆环上各点角速度相等,根据公式an=ω2r,向心加速度与到转动轴O的距离成正比,aP >aQ>aR,故A错误;三点向心加速度的方向均是水平指向AB轴的,可以看出任意时刻P、Q、R三点向心加速度的方向相同,故B错误;由图可知:半径rP >rQ>rR,由v=ωr可知,角速度相等,线速度vP>vQ>vR,故C正确;线速度的方向为该点的切线方向,任意时刻P、Q、R三点的线速度方向均相同,故D错误;【考点】向心力5.下列说法正确的是().A.匀速圆周运动不是匀速运动而是匀变速运动B.圆周运动的加速度一定指向圆心C.向心加速度越大,物体速度的方向变化越快D.因为a=,所以a与v2成正比【答案】C【解析】匀速圆周运动,不是匀速也不是匀变速,因为其加速度的方向时刻改变,是变加速运动,故A不对;对变速圆周运动,不但速度方向改变,具有向心加速度,并且速度大小也发生改变,具有与速度在一条直线上的加速度,故其合加速度(实际加速度)不指向圆心,向心加速度就是描述速度方向发生改变的快慢,故B不对、C对.对公式a=只有当半径一定时才有关系a∝v2,D不对.6.如图所示,细绳一端系着质量为M=0.6 kg的物体,静止在水平盘面上,另一端通过光滑小孔吊着质量m=0.3 kg的物体,M的中心与小孔距离为0.2 m,并知M和水平盘面的最大静摩擦力为2 N.现使此水平盘绕中心轴转动,问角速度ω在什么范围内m处于静止状态?(g取10 m/s2)【答案】2.9 rad/s≤ω≤6.5 rad/s【解析】设物体M和水平盘面保持相对静止,当ω具有最小值时,M有向着圆心O运动的趋势,故水平盘面对M的摩擦力方向背向圆心,且等于最大静摩擦力fmax=2 N.对于M:F-fmax =Mrω,则ω1===rad/s≈2.9 rad/s.当ω具有最大值时,M有离开圆心O的趋势,水平盘面对M摩擦力的方向指向圆心,fmax=2 N.对M有:F+fmax=Mrω则ω2==≈6.5 rad/s,故ω的范围是2.9 rad/s≤ω≤6.5 rad/s.7.如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A的受力情况是()A.受重力、支持力B. 受重力、支持力和指向圆心的摩擦力C. 受重力、支持力、向心力和指向圆心的摩擦力D. 以上都不正确【答案】B【解析】A随圆盘一起做匀速圆周运动,则A所受的合外力提供向心力。
向心力典型例题附答案详解
1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为A. B. C. D.2、下面关于向心力的叙述中,正确的是A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小3、关于向心力的说法,正确的是A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变6、甲、乙两名溜冰运动员,M甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距m,弹簧秤的示数为N,下列判断正确的是A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是mD.两人的运动半径不同,甲为m,乙为m7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C 错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B 不对,C对不动的条件与ω无关.若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为s2s2π m/s2ω=2π/T=2π/2=πv=ωr所以r=4/πa=v∧2/r=16/4/π=4π12、在水平路面上安全转弯的汽车,向心力是A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题共3道小题1、如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h= m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环如图所示,则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________g=10 m/s2.匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明;一运动学特征及应用匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动;为了描述其运动的特殊性,又引入周期T、频率f、角速度 等物理量,涉及的物理量及公式较多;因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点;1. 基本概念、公式的理解和运用例1 关于匀速圆周运动,下列说法正确的是A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B、D;例2 在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 ;2. 传动带传动问题例3 如图2所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑;求:1=B C ωω: ;2=B C v v : ;3=B C a a : ;例4 如图3所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时求杆OA 和AB 段对球A 的拉力之比; 对A 球:OA L m F F 221ω=- ①对B 球:OB L m F 22ω= ②① 两式联立解得2321=F F 例5 如图4所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内作匀速圆周运动,则下列说法正确的是A. 球A 的线速度必定大于球B 的线速度B. 球A 的角速度必定小于球B 的角速度C. 球A 的运动周期必定小于球B 的运动周期D. 球A 对筒壁的压力必定大于球B 对筒壁的压力3. 联系实际问题例7 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等;解析:设汽车质量为m,车轮与地面的动摩擦因数为μ,刹车时车速为0v ,此时车离墙距离为0s ,为方便起见,设车是沿墙底线的中垂线运动;若司机采用刹车,车向前滑行的距离设为s,则==g v s μ220常数,若司机采取急转弯法,则Rv m mg 20=μR 是最小转弯半径,s g v R 220==μ; 讨论:1若R s >0,则急刹车或急转弯均可以;2若s s R >>0,则急刹车会平安无事,汽车能否急转弯与墙的长度和位置有关,如图6所示,质点P 表示汽车,AB 表示墙,若墙长度R l 2<,如图6,)cos (2θR R l -=,则墙在AB 和CD 之间任一位置上,汽车转弯同样平安无事; 3若s s <0,则不能急刹车,但由2知若墙长和位置符合一定条件,汽车照样可以转弯;点评:利用基本知识解决实际问题的关键是看能否将实际问题转化为合理的物理模型;三. 匀速圆周运动的实例变形课文中的圆周运动只有汽车过桥和火车转弯两个实例,而从这两个实例可以变化出很多模型;试分析如下:一汽车过桥原型:汽车过凸桥如图1所示,汽车受到重力G 和支持力F N ,合力提供汽车过桥所需的向心力;假设汽车过桥的速度为v,质量为m,桥的半径为r,r mv F G N 2=-; 分析:当支持力为零时,只有重力提供汽车所需的向心力,即rmv G 20=,gr v =0 1. 当汽车的速度0v v >,汽车所受的重力G 小于过桥所需的向心力,汽车过桥时就会离开桥面飞起来;2. 当汽车的速度0v v =,汽车所受的重力G 恰好等于过桥需要的向心力,汽车恰好通过桥面的最高点;),(020gr v rmv G == 3. 当汽车的速度0v v <,汽车所受的重力G 大于所需的向心力,此时需要的向心力要由重力和支持力的合力共同来提供;)(2rmv F G N =- 因此,汽车过凸桥的最大速度为gr ;模型一:绳拉小球在竖直平面内过最高点的运动;如图2所示,小球所受的重力和绳的拉力的合力提供小球所需的向心力,即rv m F mg T 2=+; 分析:当绳的拉力为零时,只有重力提供小球所需的向心力,即r mv G 20=,gr v =0 1. 当小球的速度0v v >,物体所受的重力G 已不足以提供物体所需的向心力;不足的部分将由小球所受的绳的拉力来提供,只要不超过绳的承受力,已知物体的速度,就可求出对应的拉力;)(2rv m F mg T =+ 2. 当小球的速度0v v =,物体所受的重力G 刚好提供物体所需的向心力;),(020gr v rmv G == 3. 当小球的速度0v v <,物体所受的重力G 大于所需的向心力,此时小球将上不到最高点;因此,绳拉小球在竖直平面内过最高点时的最小速度为gr v =0;实例:翻转过山车如图3所示:由于过山车在轨道最高点所受的力为重力和轨道的支持力,故分析方法与模型一类似;请同学们自己分析一下;模型二:一轻杆固定一小球在竖直平面内过最高点的运动;如图4所示,物体所受的重力和杆对球的弹力的合力提供物体所需的向心力,即rv m F mg T 2=- 分析:当杆对球的弹力为零时,只有重力提供小球所需的向心力,即rmv G 20=,gr v =0 1. 当小球的速度0v v >,物体所受的重力G 已不足以提供物体所需的向心力;不足的部分将由小球所受的杆的拉力来提供;此时杆对小球的弹力为向下的拉力,参考图3;已知物体的速度,就可求出对应的拉力;)(2r v m F mg T =+ 2. 当小球的速度0v v =,物体所受的重力G 刚好提供物体所需的向心力;),(020gr v rmv G == 3. 当小球的速度0v v <,物体所受的重力G 大于所需的向心力,多余的部分将由杆对小球的支持力来抵消;此时杆对小球的弹力为向上的支持力;)(2rv m F mg T =- 4. 当小球的速度0=v ,物体所受的重力G 等于杆对小球的支持力;)(T F mg =因此,一轻杆固定一小球在竖直平面内过最高点的最小速度为0; 二火车转弯原型:火车转弯如图5所示,火车在平直的轨道上转弯,将挤压外轨,由外轨给火车的弹力提供火车转弯所需的向心力,这样久而久之,将损坏外轨;故火车转弯处使外轨略高于内轨,火车驶过转弯处时,铁轨对火车的支持力F N 的方向不再是竖直的,而是斜向弯道的内侧,它与重力的合力指向圆心,提供火车转弯所需的向心力如图6所示;这就减轻了轮缘与外轨的挤压;分析:当火车的速度为0v 时,火车所需的向心力全部由重力和支持力的合力来提供,即rv m mg 20tan =θ,θtan 0gr v =; 1. 若火车的速度0v v >,将挤压外轨;2. 若火车的速度0v v <,将挤压内轨;模型一:圆锥摆小球所需的向心力由重力和绳的拉力的合力来提供如图7所示模型二:小球在漏斗中的转动小球所需的向心力由重力和漏斗的支持力的合力来提供如图8所示四. 匀速圆周运动的多解问题匀速圆周运动的多解问题常涉及两个物体的两种不同的运动,其中一个做匀速圆周运动,另一个做其他形式的运动;由于这两种运动是同时进行的,因此,依据等时性建立等式来解待求量是解答此类问题的基本思路;特别需要提醒同学们注意的是,因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这就要求我们在表达做匀速圆周运动物体的运动时间时,必须把各种可能都考虑进去,以下几例运算结果中的自然数“n ”正是这一考虑的数学化;例1 如图1所示,直径为d 的圆筒绕中心轴做匀速圆周运动,枪口发射的子弹速度为v,并沿直径匀速穿过圆筒;若子弹穿出后在圆筒上只留下一个弹孔,则圆筒运动的角速度为多少解析:子弹穿过圆筒后做匀速直线运动,当它再次到达圆筒壁时,若原来的弹孔也恰好运动到此处;则圆筒上只留下一个弹孔,在子弹运动位移为d 的时间内,圆筒转过的角度为ππ+n 2,其中 3,2,1,0=n ,即ωππ+=n v d 2;时间相等 解得角速度的值v dn ππω+=2, 3,2,1,0=n例2 质点P 以O 为圆心做半径为R 的匀速圆周运动,如图2所示,周期为T;当P 经过图中D 点时,有一质量为m 的另一质点Q 受到力F 的作用从静止开始做匀加速直线运动;为使P 、Q 两质点在某时刻的速度相同,则F 的大小应满足什么条件解析:速度相同包括大小相等和方向相同,由质点P 的旋转情况可知,只有当P 运动到圆周上的C 点时P 、Q 速度方向才相同,即质点P 转过)43(+n 周)3,2,1,0( =n 经历的时间)3,2,1,0()43( =+=n T n t ①质点P 的速率T R v π2= ② 在同样的时间内,质点Q 做匀加速直线运动,速度应达到v,由牛顿第二定律及速度公式得t mF v = ③ 联立以上三式,解得)3,2,1,0()34(82 =+=n T n mR F π 例3 如图3所示,在同一竖直平面内,A 物体从a 点开始做匀速圆周运动,同时B 物体从圆心O 处自由落下,要使两物体在b 点相遇,求A 的角速度;解析:A 、B 两物体在b 点相遇,则要求A 从a 匀速转到b 和B 从O 自由下落到b 用的时间相等;A 从a 匀速转到b 的时间T n t )43(1+=)3,2,1,0(2)43( =+=n n ωπ B 从O 自由下落到b 点的时间gR t 22=由21t t =,解得例4 如图4,半径为R 的水平圆盘正以中心O 为转轴匀速转动,从圆板中心O的正上方h 高处水平抛出一球,此时半径OB 恰与球的初速度方向一致;要使球正好落在B 点,则小球的初速度及圆盘的角速分别为多少解析:要使球正好落在B 点,则要求小球在做平抛运动的时间内,圆盘恰好转了n 圈 3,2,1=n ; 对小球221gt h = ① t v R 0= ②对圆盘)3,2,1(2 ==n t n ωπ ③联立以上三式,解得)3,2,1(2 ==n h g n πω h g R v 20= 模拟试题一. 选择题在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确1. 下列说法正确的是A. 做匀速圆周运动的物体的加速度恒定B. 做匀速圆周运动的物体所受合外力为零C. 做匀速圆周运动的物体的速度大小是不变的D. 做匀速圆周运动的物体处于平衡状态2. 如图1所示,把一个长为20cm,系数为360N/m 的弹簧一端固定,作为圆心,弹簧的另一端连接一个质量为0.50kg 的小球,当小球以min /360r π的转速在光滑水平面上做匀速圆周运动时,弹簧的伸长应为A. 5.2cmB. 5.3cmC. 5.0cmD.=2n=23600.05m5cm 一圆盘可以绕其竖直轴在图2所示水平面内转动,圆盘半径为R;甲、乙物体质量分别是M 和mM>m,它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为)(R L L <的轻绳连在一起;若将甲物体放在转轴位置上,甲、乙之间连线刚好沿半径方向被拉直,要使两物体与圆盘间不发生相对滑动,则转盘旋转角速度的最大值不得超过两物体均看作质点 A. mL g m M )(-μ B. ML gm M )(-μ C. ML gm M )(+μ D. mL gm M )(+μ4. 如图3所示,一个球绕中心线O O '以ω角速度转动,则A. A 、B 两点的角速度相等B. A 、B 两点的线速度相等C. 若︒=30θ,则2:3:=B A v vD. 以上答案都不对5. 一圆盘可绕圆盘中心O 且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A,它随圆盘一起运动做匀速圆周运动,如图4所示,则关于木块A 的受力,下列说法正确的是A. 木块A 受重力、支持力和向心力B. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相反C. 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同6. 如图5所示,质量为m 的小球在竖直平面内的光滑圆轨道上做圆周运动;圆半径为R,小球经过圆环最高点时刚好不脱离圆环,则其通过最高点时A. 小球对圆环的压力大小等于mgB. 小球受到的向心力等于重力mgC. 小球的线速度大小等于gRD. 小球的向心加速度大小等于g二. 填空题7. 一辆质量为4t 的汽车驶过半径为50m 的凸形桥面时,始终保持5m/s 的速率;汽车所受的阻力为车对桥面压力的倍;通过桥的最高点时汽车牵引力是 N;g=10m/s 2三. 解答题解答应写出必要的文字说明、方程式和演算步骤8. m 1、m 2是质量分别为50g 和100g 的小球,套在水平光滑杆上,如图6所示;两球相距21cm,并用细线相连接,欲使小球绕轴以600r/min 的转速在水平面内转动而不滑动,两球离转动中心多远线上拉力是多大9. 如图7所示,在水平转台上放有A 、B 两个小物块,它们距离轴心O 分别为m r A 2.0=,m r B 3.0=,它们与台面间相互作用的静摩擦力的最大值为其重力的倍,取2/10s m g =;1当转台转动时,要使两物块都不发生相对于台面的滑动,求转台转动的角速度的范围;2要使两物块都对台面发生滑动,求转台转动角度速度应满足的条件; 试题答案1. C2. C3. D4. AC5. C6. BCD7. 3109.1⨯8. cm r 141= cm r 72= N F F T T 2821==9.1s rad /31020≤≤ω 2s rad /52>ω。
高一物理向心力公式试题答案及解析
高一物理向心力公式试题答案及解析1.一圆盘可以绕其竖直轴在水平面内运动,圆盘半径为R,甲、乙两物体的质量分别为M和m (M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用长为L的轻绳连在一起,L<R.若将甲物体放在转轴位置上,甲、乙连线正好沿半径方向拉直。
要使两物体与圆盘不发生相对滑动,则圆盘旋转的角速度最大不得超过(两物体看作质点)A.B.C.D.【答案】D【解析】当绳子的拉力等于A的最大静摩擦力时,角速度达到最大,有.所以,D正确。
【考点】考查了圆周运动规律的应用2.如图所示,质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小球在水平面内作半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为()A.mω2R B.C.D.不能确定【答案】C【解析】球受竖直向下的重力和杆对球斜向上方的弹力作用,其合力提供向心力,由数学知识有,C正确,所以本题选择C。
【考点】向心力3.如图所示,汽车以一定的速率运动,当它通过凸形拱桥的最高点A,水平路面B及凹形桥最低点C时的压力大小分别为FA 、FB与FC,则下列说法正确的是A.FA 、FB与FC大小均等于汽车所受到的重力大小B.FA小于汽车所受到的重力C.FA 、FB与FC大小均不等于汽车所受到的重力大小D.FC大于汽车所受到的重力【答案】D【解析】试题分析: 在平直公路上行驶时,重力等于压力,所以FB=mg;汽车到达桥顶时,受重力mg和向上的支持力FA ,合力等于向心力,有:,解得:FA<mg;在凹形桥最低点C时,有,解得:F>mg;故A、B、C错误,D正确。
C【考点】向心力4.从2007年4月18日起,全国铁路正式实施第六次大面积提速,时速将达到200公里以上,其中京哈、京沪、京广、胶济等提速干线的部分区段时速可达250公里,我们从济南到青岛乘“和谐号”列车就可以体验时速250公里的追风感觉.火车转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损.为解决火车高速转弯时外轨受损这一难题,你认为以下措施可行的是()A.适当减小内外轨的高度差B.适当增加内外轨的高度差C.适当减小弯道半径D.适当增大弯道半径【答案】 BD【解析】试题分析: 火车转弯时为减小外轨所受压力,可使外轨略离于内轨,使轨道形成斜面,若火车速度合适,内外轨均不受挤压.此时,重力与支持力的合力提供向心力,,解得:,当火车速度增大时,应适当增大转弯半径或增加内外轨道的高度差,故A、C错误,B、D正确。
人教版高一物理向心力和向心加速度习题及答案解析(3)
向心力和向心加速度(3)1.下列说法正确的是( )A .匀速圆周运动是匀变速曲线运动B .匀速圆周运动的线速度不变C .匀速圆周运动的加速度不变D .匀速圆周运动的角速度不变【解析】匀速圆周运动的加速度方向时刻变化,所以匀速圆周运动的加速度是不断变化的,不是匀变速曲线运动,所以A 和C 错误;又因为线速度的方向不断变化,所以线速度是变化的,B 错误;匀速圆周运动的角速度是保持不变的,所以D 正确。
【答案】D2.关于向心力的下列说法正确的是( )A .物体由于做圆周运动而产生了一个向心力B .向心力只改变做圆周运动物体的线速度的方向,不改变线速度的大小C .做匀速圆周运动的物体向心力是不变的D .以上说法均不正确【解析】物体不是由于做圆周运动而产生向心力,而是物体做圆周运动需要向心力,物体在向心力的作用下才能做圆周运动,所以A 错;因为向心力的方向与线速度的方向总是垂直,所以向心力不能改变线速度的大小,只能改变线速度的方向,所以B 正确;由于向心力的方向总是指向圆心,所以向心力的方向时刻改变,向心力是不断变化的,C 、D 错误;【答案】B3.关于做匀速圆周运动物体的线速度、角速度、周期之间的关系,下列说法正确的是( )A .线速度大的角速度一定大B .线速度大的周期一定小C .角速度大的半径一定小D .角速度大的周期一定小【解析】根据v=r ω可知,在r 一定的情况下,线速度大的角速度一定大,所以A 错;根据Tr v π2=可知,在r 一定的情况下,线速度大的周期一定小,所以B 错;角速度是反映物体转动快慢的物理量,它与半径无关,由ω=v r知,只有当线速度v 一定时,角速度ω才与半径r 成反比,所以C 错;根据Tπω2=可知,角速度与周期成反比,所以D 正确。
【答案】D4.关于质点做匀速圆周运动的下列说法正确的是( )A .由a =v 2r知,a 与r 成反比 B .由a =ω2r 知,a 与r 成正比 C .由ω=v r知,ω与r 成反比 D .由ω=2πn 知,ω与转速n 成正比 【解析】由a =v 2r知,只有在v 一定时,a 才与r 成反比,如果v 不一定,则a 与r 不成反比,同理,只有当ω一定时,a 才与r 成正比;v 一定时,ω与r 成反比;因2π是定值,故ω与n 成正比。
最全高一物理向心力和向心加速度的习题打印版.doc
[高一物理学案]5.52 向心力 向心加速度(习题课)Ⅰ 学习目标1、进一步掌握向心力、向心加速度的有关知识,理解向心力、向心加速度的概念。
2、熟练应用向心力、向心加速度的有关公式分析和计算有关问题 Ⅱ 基础知识回顾1. 什么是向心力、向心加速度?2、向心力和向心加速度的大小怎样计算?3、填写下列提纲: (1①做匀速圆周运动的物体所受的合外力总是指向 ,所以叫②向心力公式:222)2(Tmr r v m mr F πω===③向心力总是指向圆心,而线速度沿圆周的切线方向,故向心力始终与线速度垂直,所以向心力的作用效果只是改变物体线速度的 而不改变线速度的(2①向心力产生的加速度也总是指向 ,叫 .②公式:a=rω2= =2)2(Tr π Ⅲ 例题精讲【例题1】A 、B 两质点均做匀速圆周运动,m A ∶m B =R A ∶R B =1∶2,当A 转60转时,B 正好转45转,则两质点所受向心力之比为多少?【例题2】如图1,A 、B 、C三个物体放在水平旋转的圆盘上,三物与转盘的最大静摩擦因数均为μ,A 的质量是2m ,B 和C 的质量均为m ,A 、B 离轴距离为R ,C 离轴2R ,若三物相对盘静止,则 .A .每个物体均受重力、支持力、静摩擦力、向心力四个力作用B .C 的向心加速度最大 C .B 的摩擦力最小D .当圆台转速增大时,C 比B 先滑动,A 和B 同时滑动【例题3】如图2,线段OA =2AB ,AB 两球质量相等,当它们绕O 点在光滑的水平桌面上以相同的角速度转动时,两线段拉力之比T BA :T OB 为A .2∶3B .3∶2C .5∶3D .2∶1Ⅳ 课堂练习1.关于质点做匀速圆周运动的下列说法中,错误的是A .由a =rv 2可知,a 与r 成反比B .由a =ω2r 可知,a 与r 成正比C .由v =ωr 可知,ω与r 成反比D .由ω=2πn 可知,ω与n 成反比2.如图3所示的两轮以皮带传动,没有打滑,A 、B 、C 三点的位置关系如图,若r 1>r 2,O 1C =r 2,则三点的向心加速度的关系为图 3A .a A =aB =aC B .a C >a A >a B C .a C <a A <a BD .a C =a B >a A 3.下列关于向心力的说法中,正确的是 A .物体由于做圆周运动产生了一个向心力图 1图 2B.做匀速圆周运动的物体,其向心力为其所受的合外力C.做匀速圆周运动的物体,其向心力不变D.向心加速度决定向心力的大小4.有长短不同,材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么A.两个小球以相同的线速度运动时,长绳易断B.两个小球以相同的角速度运动时,长绳易断C.两个球以相同的周期运动时,短绳易断D.不论如何,短绳易断5.一质量为m的木块,由碗边滑向碗底,碗内表面是半径为r的球面,由于摩擦力的作用,木块运动的速率不变,则A.木块的加速度为零B.木块所受合外力为零C.木块所受合外力的大小一定,方向改变D.木块的加速度大小不变6.关于向心加速度,下列说法正确的是A.它描述的是线速度方向变化的快慢B.它描述的是线速度大小变化的快慢C.它描述的是向心力变化的快慢D.它描述的是转速的快慢7.如图4所示,原长为L的轻质弹簧,劲度系数为k,一端系在圆盘的中心O,另一端系一质量为m的金属球,不计摩擦,当盘和球一起旋转时弹簧伸长量为ΔL,则盘旋转的向心加速度为_____,角速度为_____。
高中一年级物理向心力典型例题(含答案)全解
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmrω2,故. 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s 解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M 甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙.则F向=M甲ω2r甲=M乙ω2r乙=9.2 N ① r甲+r乙=0.9 m ②由①②两式可解得只有D正确答案:D7、如图所示,在匀速转动的圆筒壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G与摩擦力F,是一对平衡力,在向心力方向上受弹力F N.根据向心力公式,可知F N=mω2r,当ω增大时,F N增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A、B错误.周期不变时,绳长易断,故D正确.由,当线速度不变时绳短易断,C错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零 C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/π a=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ 即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v1,则mgh=mg·2R+ 1/2mv12 F n+mg= mv12/R 得:F n=40 N②小球刚好通过最高点时速度为v2,则mg= mv22/R又mgh′=mg2R+1/2 mv22/R得h′=2.5R答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
高一物理 向心力向心加速·典型例题解析
向心力向心加速度·典型例题解析【例1】如图37-1所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的距离是半径的1/3.当大轮边缘上的P点的向心加速度是0.12m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大?解析:P点和S点在同一个转动轮子上,其角速度相等,即ωP=ωS.由向心加速度公式a=rω2可知:a s/a p=r s/r p,∴a s=r s/r p·a p=1/3×0.12m/s2=0.04m/s2.由于皮带传动时不打滑,Q点和P点都在由皮带传动的两个轮子边缘,这两点的线速度的大小相等,即v Q=v P.由向心加速度公式a=v2/r可知:a Q/a P =r P/r Q,∴a Q=r P/r Q×a P=2/1×0.12m/s2=0.24 m/s2.点拨:解决这类问题的关键是抓住相同量,找出已知量、待求量和相同量之间的关系,即可求解.【问题讨论】(1)在已知a p的情况下,为什么求解a s时要用公式a=rω2、求解a Q时,要用公式a=v2/r?(2)回忆一下初中电学中学过的导体的电阻消耗的电功率与电阻的关系式:P=I2R和P=U2/R,你能找出电学中的电功率P与电阻R的关系及这里的向心加速度a与圆周半径r的关系之间的相似之处吗?【例2】如图37-2所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个木块,当圆盘匀角速转动时,木块随圆盘一起运动,那么[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心B.木块受到圆盘对它的摩擦力,方向指向圆盘中心C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同D.因为摩擦力总是阻碍物体的运动,所以木块所受到圆盘对它的摩擦力的方向与木块的运动方向相反解析:从静摩擦力总是阻碍物体间的相对运动的趋势来分析:由于圆盘转动时,以转动的圆盘为参照物,物体的运动趋势是沿半径向外,背离圆心的,所以盘面对木块的静摩擦力方向沿半径指向圆心.从做匀速圆周运动的物体必须受到一个向心力的角度来分析:木块随圆盘一起做匀速圆周运动,它必须受到沿半径指向圆心的合力.由于木块所受的重力和盘面的支持力都在竖直方向上,只有来自盘面的静摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力方向必沿半径指向圆心.所以,正确选项为B.点拨:1.向心力是按效果命名的,它可以是重力、或弹力、或摩擦力,也可以是这些力的合力或分力所提供.2.静摩擦力是由物体的受力情况和运动情况决定的.【问题讨论】有的同学认为,做圆周运动的物体有沿切线方向飞出的趋势,静摩擦力的方向应该与物体的运动趋势方向相反.因而应该选取的正确答案为D.你认为他的说法对吗?为什么?【例3】如图37-3所示,在光滑水平桌面上有一光滑小孔O;一根轻绳穿过小孔,一端连接质量为m=1kg的小球A,另一端连接质量为M=4kg 的重物B.(1)当小球A沿半径r=0.1m的圆周做匀速圆周运动,其角速度为ω=10rad/s时,物体B对地面的压力为多大?(2)当A球的角速度为多大时,B物体处于将要离开、而尚未离开地面的临界状态?(g=10m/s2)点拨:小球A作匀速圆周运动,由绳子的拉力提供向心力,从而使B对地面的压力减少.当B物体将要离开而尚未离开地面时,小球A所需的向心力恰好等于重物B的重力参考答案(1)30N(2)20rad/s【例4】小球A和B用细线连接,可以在光滑的水平杆上无摩擦地滑动,已知它们的质量之比m1∶m2=3∶1,当这一装置绕着竖直轴做匀速转动且A、B两球与水平杆子达到相对静止时(如图37-4所示),A、B两球做匀速圆周运动的[ ] A.线速度大小相等B.角速度相等C.向心力的大小之比为F1∶F2=3∶1D.半径之比为r1∶r2=1∶3点拨:当两小球随轴转动达到稳定状态时,把它们联系在一起的同一根细线为A、B两小球提供的向心力大小相等;同轴转动的角速度相等;两小球的圆周轨道半径之和为细线的长度;两小球的线速度与各自的轨道半径成正比.【问题讨论】如果上述装置的转速增大,当转速增至某一数值时,细线会被拉断,断了细线后的A、B两个小球将如何运动?参考答案BD跟踪反馈1.如图37-5所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于这个小球的受力情况,下列说法中,正确的是[ ] A.受重力、拉力、向心力B.受重力、拉力C.只受重力D.以上说法均不正确2.如图37-6所示的皮带传动装置中,O为轮子A和B的共同转轴,O′为轮子C的转轴,A、B、C分别是三个轮子边缘上的质点,且R A=R C=2R B,则三质点的向心加速度大小之比a A∶a B∶a C等于[ ] A.4∶2∶1B.2∶1∶2C∶1∶2∶4D.4∶1∶4 3.如图37-7所示,水平光滑圆盘的中央有一小孔,让一根细绳穿过小孔,一端连结一个小球,另一端连结一个弹簧,弹簧下端固定在地板上,弹簧处在原长时,小球恰好处在圆心小孔处,让小球拉出小孔并使其作匀速圆周运动,证明其角速度为恒量,与旋转半径无关.4.用一根细绳拴一物体,使它在距水平地面高h=1.6m处的水平面内做匀速圆周运动,轨道的圆周半径r=1m.细绳在某一时刻突然被拉断,物体飞出后,落地点到圆周运动轨道圆心的水平距离S=3m,则物体做匀速圆周运动的线速度为多大?向心加速度多大?参考答案1.B 2.A 3.由题意可得kΔL=mω2ΔL,km/m 4v5m/s a25m/s2∴ω=.=,=。
高一物理向心力公式试题
高一物理向心力公式试题1.如图(a)所示,一根细线上端固定在S点,下端连一小铁球A,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是:()A.小球做匀速圆周运动时的角速度一定大于(l为摆长)B.小球做匀速圆周运动时,受到重力,绳子拉力和向心力作用.C.另有一个圆锥摆,摆长更大一点,两者悬点相同.如图(b)所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B球的角速度等于A球的角速度D.如果两个小球的质量相等,则在图(b)中两条细线受到的拉力相等【答案】 AC【解析】试题分析: 由圆周运动规律可得:,解得,故A正确;匀速圆周运动的向心力是由合力提供的,小球做匀速圆周运动时,受到重力、绳子的拉力,其合力充当向心力,故B错误;由,可知,由于高度相同,B球的角速度等于于A球的角速度,故C正确;拉力,由于θB >θA,如果两个小球的质量相等,则在图乙中两条细线受到的拉力应该是A细线受到的拉力大,故D错误。
【考点】向心力;向心加速度2.如图,在探究向心力公式的实验中,为了探究物体质量、圆周运动的半径、角速度与向心力的关系,运用的试验方法是法;现将小球分别放在两边的槽内,为探究小球受到的向心力大小与角速度大小的关系,做法正确的是:在小球运动半径(填“相等”或“不相等”)的情况下,用质量(填“相同”或“不相同”)的钢球做实验。
【答案】控制变量法;相等;相同【解析】试题分析: 在研究物体的“探究向心力的大小与质量、角速度和半径之间关系”四个物理量的关系时,由于变量较多,因此采用了“控制变量法”进行研究,分别控制一个物理量不变,看另外两个物理量之间的关系;为探究小球受到的向心力大小与角速度大小的关系,做法正确的是:必须在小球运动半径相等的情况下,用质量相同的钢球做实验。
【考点】向心力3.质量为m的小球,用长为l的线悬挂在O点,在O点正下方l/2处有一光滑的钉子O/,把小球拉到与O/在同一水平面的位置,摆线被钉子拦住,如图所示,将小球从静止释放,当球第一次通过最低点P时A.小球速率突然减小B.小球向心力突然增大C.小球的向心加速度突然减小D.摆线上的张力突然增大【答案】C【解析】让小球从静止释放,当小球第一次经过最低点时,小球受到的拉力和重力都与速度垂直,其线速度不会瞬时变化,圆周运动的圆心由O变到O/,运动半径变大,根据知,向心力突然变小,由知,小球的向心加速度突然减小,由知,摆线上张力突然变小,故A、B、D错误,C正确。
高一物理向心力公式试题答案及解析
高一物理向心力公式试题答案及解析1.如图所示,半径为R的圆筒绕竖直中心轴OO′转动,小物块A靠在圆筒的内壁上,它与圆筒的动摩擦因数为,现要使A不下落,则圆筒转动的角速度至少为()A.B.C.D.【答案】D【解析】物体A随桶做匀速圆周运动,则竖直方向:,水平方向:,联立解得:,选项D 正确。
【考点】匀速圆周运动;向心力2.冰面对溜冰运动员的最大静摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,其安全速度的最大值是()A.B.C.D.【答案】B【解析】由题意可知,最大静摩擦力为重力的k倍,所以最大静摩擦力等于kmg,设运动员的最大的速度为v,则:,解得:,B正确;【考点】考查了圆周运动实例分析3.链球运动员在将链球抛掷出去之前,总要双手抓住链条,加速转动几圈,如图所示,这样可以使链球的速度尽量增大,抛出去后飞行更远,在运动员加速转动的过程中,能发现他手中与链球相连的链条与竖直方向的夹角θ将随链球转速的增大而增大,则以下几个图象中能描述ω与θ的关系的是()【答案】 D【解析】试题分析:设链条长为L,链球圆周运动的向心力是重力mg和拉力F的合力,向心力,解得,故D正确,A、B、C错误。
【考点】向心力4.已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T,试求地球同步卫星的向心加速度大小。
【答案】【解析】设卫星离地面高度为h , 2分2分2分由以上三式解得 2分【考点】万有引力定律向心加速度5.如图所示,水平转台上放着A、B、C三个物体,质量分别为2m、m、m,离转轴的距离分别为R、R、2R,与转台间的摩擦因数相同,转台旋转时,下列说法中正确的是()A、若三个物体均未滑动,C物体的向心加速度最大B、若三个物体均未滑动,B物体受的摩擦力最大C、转速增加,A物比B物先滑动D、转速增加,C物先滑动【答案】 AD【解析】试题分析:三物都未滑动时,角速度相同,设角速度为ω,根据向心加速度公式a=ω2r,知C的向心加速度最大.故A正确;三个物体受到的静摩擦力分别为:fA=(2m)ω2R,f B =mω2R,fC=mω2(2R).所以物体B受到的摩擦力最小.故B错误;根据μmg=mrω2得:ω=,因为C物体的临界角速度最小,增加转速,可知C先达到最大静摩擦力,所以C先滑动.A、B的临界角速度相等,可知A、B一起滑动.故C错误,D正确.【考点】向心力6.如图所示,长为L的悬线固定在O点,在O点正下方处有一钉子C,把悬线另一端的小球m拉到跟悬点在同一水平面上无初速度释放,小球运动到悬点正下方时悬线碰到钉子,则小球的 ().A.线速度突然增大B.角速度突然增大C.向心加速度突然增大D.悬线拉力突然增大【答案】BCD【解析】悬线与钉子碰撞前后,线的拉力始终与球运动方向垂直,故小球的线速度不变.当半径减小时,由ω=知ω变大,再由F向=m知向心加速度突然增大.而在最低点F向=F-mg,故悬线拉力变大.由此可知,B、C、D选项正确.7.如图所示,在匀速转动的圆筒内壁上有一个小物体圆筒一起运动,小物体所需要的向心力由以下哪个力来提供A.重力B.弹力C.静摩擦力D.滑动摩擦力【答案】B【解析】因为小物块随圆筒做匀速圆周运动,所以竖直方向重力和静摩擦力平衡;水平方向的弹力提供向心力,选项B正确。
向心力典型例题
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmrω2,故 . 所以A、B、C均错误,D正确.4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C6、甲、乙两名溜冰运动员,M甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F 向,角速度为ω,半径分别为r 甲、r 乙.则F 向=M 甲ω2r 甲=M 乙ω2r 乙=9.2 N ① r 甲+r 乙=0.9 m ②由①②两式可解得只有D 正确 答案:D7、如图所示,在匀速转动的圆筒壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说确的是( )A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变 析:物体在竖直方向上受重力G 与摩擦力F ,是一对平衡力,在向心力方向上受弹力F N .根据向心力公式,可知F N =mω2r ,当ω增大时,F N 增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是( )A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A 、B 错误.周期不变时,绳长易断,故D 正确.由,当线速度不变时绳短易断,C 错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M 的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/πa=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg 的小球从光滑斜面上高h=3.5 m 处由静止滑下,斜面的底端连着一个半径R=1 m 的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v 1,则mgh=mg·2R+ 1/2mv 12 F n +mg= mv 12/R 得:F n =40 N②小球刚好通过最高点时速度为v 2,则mg= mv 22/R 又mgh′=mg2R+1/2 mv 22/R 得h′=2.5R 答案:40 N;2.5R匀速圆周运动典型问题剖析1. 基本概念、公式的理解和运用[例2] 在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
高一物理专题训练:向心力(带答案)
高一物理专题训练:向心力一、单选题1.在光滑圆锥形容器中,固定了一根光滑的竖直细杆,细杆与圆锥的中轴线重合,细杆上穿有小环(小环可以自由转动,但不能上下移动),小环上连接一轻绳,与一质量为m的光滑小球相连,让小球在圆锥内做水平面上的匀速圆周运动,并与圆锥内壁接触.如图所示,图a中小环与小球在同一水平面上,图b中轻绳与竖直轴成θ(θ<90°)角.设图a和图b中轻绳对小球的拉力分别为T a和T b,圆锥内壁对小球的支持力分别为N a和N b,则在下列说法中正确的是()A.T a一定为零,T b一定为零B.T a、T b是否为零取决于小球速度的大小C.N a一定不为零,N b可以为零D.N a、N b的大小与小球的速度无关2.甲、乙两名滑冰运动员,M甲=60kg,M乙=40kg,面对面拉着弹簧测力计做圆周运动进行滑冰表演,如图所示.两人相距0.8m,弹簧测力计的示数为9.2N,下列判断中正确的是()A.两人的运动半径不同,甲为0.32m,乙为0.48mB.两人的运动半径相同,都是0.45mC.两人的线速度相同,约为40m/sD.两人的角速度相同,约为6rad/s3.变速自行车变换齿轮组合来改变行驶速度.如图所示是某一变速自行车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该自行车可变换两种不同挡位B.当B轮与C轮组合时,两轮的线速度之比本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
C.当A轮与D轮组合时,两轮的角速度之比D.当A轮与C轮组合时,两轮上边缘点M和N的向心加速度之比4.水平放置的三个不同材料制成的圆轮A、B、C,用不打滑皮带相连,如图所示(俯视图),三圆轮的半径之比为R A∶R B∶R C=3∶2∶1,当主动轮C匀速转动时,在三轮的边缘上分别放置一相同的小物块(可视为质点),小物块均恰能相对静止在各轮的边缘上,设小物块所受的最大静摩擦力等于滑动摩擦力,小物块与轮A、B、C接触面间的动摩擦因数分别为μA、μB、μC,A、B、C三轮转动的角速度分别为ωA、ωB、ωC,则( )A.μA∶μB∶μC=2∶3∶6 B.μA∶μB∶μC=6∶3∶2C.ωA∶ωB∶ωC=1∶2∶3 D.ωA∶ωB∶ωC=6∶3∶25.如图所示,轻杆长为L,一端固定在水平轴上的O点,另一端固定一个小球(可视为质点)。
高一物理向心力--习题、答案
向心力习题1.在匀速圆周运动中,下列物理量不变的是( )A .向心加速度B .线速度C .向心力D .角速度 2.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 ( ) A .物体除其他的力外还要受到—个向心力的作用 B .物体所受的合外力提供向心力 C .向心力是一个恒力D .向心力的大小—直在变化 3.下列关于向心力的说法中正确的是( )A .物体受到向心力的作用才可能做圆周运动B .向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出C .向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力D .向心力只改变物体运动的方向,不改变物体运动的快慢4. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是( )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。
5.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是 ()A .重力B .弹力C .静摩擦力D .滑动摩擦力6.如图所示,一圆盘可绕通过圆盘中心O 且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A ,它随圆盘一起做匀速圆周运动。
则关于木块A 的受力,下列说法正确的是( )A .木块A 受重力、支持力和向心力B .木块A 受重力、支持力和静摩擦力,静摩擦力的方向指向圆心C .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相反D .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相同7.甲、乙两个物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相同时间里甲转过60°角,乙转过45°角。
则它们的向心力之比为( )A .1∶4B .2∶3C .4∶9D .9∶168.如图所示,长为L 的悬线固定在O 点,在O 点正下方2L处有一钉子C ,把悬线另一端的小球m 拉到跟悬点在同一水平面上无初速度释放,小球到悬点正下方时悬线碰到钉子,则小球的( )A .线速度突然增大B .角速度突然增大(第5题)(第4题)(第6题)C .向心加速度突然增大D .悬线拉力突然增大9.如图是用以说明向心力和质量、半径之间关系的仪器,球P 和Q 可以在光滑杆上无摩擦地滑动,两球之间用一条轻绳连接,m P =2m Q ,当整个装置以ω匀速旋转时,两球离转轴的距离保持不变,则此时( )A .两球受到的向心力大小相等B .P 球受到的向心力大于Q 球受到的向心力C .r P 一定等于2Q rD .当ω增大时,P 球将向外运动10.如图所示,质量为m 的滑块与轨道间的动摩擦因数为μ,当滑块从A 滑到B 的过程中,受到的摩擦力的最大值为F μ,则( )A .F μ=μmgB .F μ<μmgC .F μ>μmgD .无法确定F μ的值11.如图所示,在半径为R 的半球形碗的光滑内表面上,一质量为m 的小球以角速度ω在水平平面上做匀速圆周运动。
高一物理__向心力_习题、答案
向心力习题1.在匀速圆周运动中,下列物理量不变的是( )A .向心加速度B .线速度C .向心力D .角速度 2.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 ( ) A .物体除其他的力外还要受到—个向心力的作用 B .物体所受的合外力提供向心力 C .向心力是一个恒力D .向心力的大小—直在变化 3.下列关于向心力的说法中正确的是( )A .物体受到向心力的作用才可能做圆周运动B .向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出C .向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力D .向心力只改变物体运动的方向,不改变物体运动的快慢4. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是( )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。
5.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是 ()A .重力B .弹力C .静摩擦力D .滑动摩擦力6.如图所示,一圆盘可绕通过圆盘中心O 且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A ,它随圆盘一起做匀速圆周运动。
则关于木块A 的受力,下列说法正确的是( )A .木块A 受重力、支持力和向心力B .木块A 受重力、支持力和静摩擦力,静摩擦力的方向指向圆心C .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相反D .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相同7.甲、乙两个物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相同时间里甲转过60°角,乙转过45°角。
则它们的向心力之比为( )A .1∶4B .2∶3C .4∶9D .9∶168.如图所示,长为L 的悬线固定在O 点,在O 点正下方2L 处有一钉子C ,把悬线另一端的小球m 拉到跟悬点在同一水平面上无初速度释放,小球到悬点正下方时悬线碰到钉子,则小球的( )A.线速度突然增大(第5题)(第4题)(第6题)(第8题)B .角速度突然增大C .向心加速度突然增大D .悬线拉力突然增大9.如图是用以说明向心力和质量、半径之间关系的仪器,球P 和Q 可以在光滑杆上无摩擦地滑动,两球之间用一条轻绳连接,m P =2m Q ,当整个装置以ω匀速旋转时,两球离转轴的距离保持不变,则此时( )A .两球受到的向心力大小相等B .P 球受到的向心力大于Q 球受到的向心力C .r P 一定等于2Q rD .当ω增大时,P 球将向外运动10.如图所示,质量为m 的滑块与轨道间的动摩擦因数为μ,当滑块从A 滑到B 的过程中,受到的摩擦力的最大值为F μ,则( )A .F μ=μmgB .F μ<μmgC .F μ>μmgD .无法确定F μ的值11.如图所示,在半径为R 的半球形碗的光滑内表面上,一质量为m 的小球以角速度ω在水平平面上做匀速圆周运动。
高一物理向心力公式试题答案及解析
高一物理向心力公式试题答案及解析1.关于向心加速度的物理意义,下列说法正确的是A.它描述的是线速度方向变化的快慢B.它描述的是线速度大小变化的快慢C.它描述的是角速度变化的快慢D.以上说法都不正确【答案】A【解析】圆周运动的向心加速度只改变速度的方向,不改变速度大小,向心加速度描述的是线速度方向变化的快慢的物理量,A正确。
【考点】考查了对向心加速度的理解2.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿光滑圆台形表演台的侧壁高速行驶,在水平面内做匀速圆周运动。
图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h。
如果增大高度h,则下列关于摩托车说法正确的是A.对侧壁的压力N增大B.做圆周运动的周期T不变C.做圆周运动的向心力F增大D.做圆周运动的线速度增大【答案】D【解析】摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作出力图.设圆台侧壁与竖直方向的夹角为α,侧壁对摩托车的支持力不变,则摩托车对侧壁的压力不变.故A错误.如图向心力,m,α不变,向心力大小不变.C错误;根据牛顿第二定律得,h越高,r越大,不变,则T越大.故C正确.根据牛顿第二定律得,h越高,r越大,不变,则v越大.故D正确.【考点】考查了匀速圆周运动;向心力.3.有一种杂技表演叫“飞车走壁”.由杂技演员驾驶摩托车沿圆台形表演台的侧壁做匀速圆周运动.下图中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h ,则下列说法中正确的是()A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的向心力将越大C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的线速度将越大【答案】CD【解析】试题分析:设圆台侧壁与竖直方向的夹角为α,摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作出力图.侧壁对摩托车的支持力,则摩托车对侧壁的压力不变.故A错误;向心力,向心力大小不变.故B错误;根据向心力公式得,h越高,r越大,则T越大.故C 正确;根据向心力公式得,h越高,r越大,则T越大.故D正确。
高一物理向心力典型例题(含答案)全解
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmr ω2,故. 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B 点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M 甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙.则F向=M甲ω2r甲=M乙ω2r乙=9.2 N ①r甲+r乙=0.9 m ②由①②两式可解得只有D正确答案:D7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G与摩擦力F,是一对平衡力,在向心力方向上受弹力F N.根据向心力公式,可知F N=mω2r,当ω增大时,F N增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A、B错误.周期不变时,绳长易断,故D正确.由,当线速度不变时绳短易断,C错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/πa=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v1,则mgh=mg·2R+ 1/2mv12F n+mg= mv12/R 得:F n=40 N②小球刚好通过最高点时速度为v2,则mg= mv22/R又mgh′=mg2R+1/2 mv22/R得h′=2.5R答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
高一物理上学期-向心力知识习题及答案
向心力一、向心力1.定义:做匀速圆周运动的物体产生向心加速度的原因是它受到了指向____________,这个合力叫做向心力.2.方向:始终沿着_______指向________.3.表达式:(1)F n=m v2r(2)F n=_________4.向心力是根据力的__________来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二、变速圆周运动和一般的曲线运动1.变速圆周运动的合力:变速圆周运动的合力产生两个方向的效果,如图所示.(1)跟圆周相切的分力F t:产生_____加速度,此加速度描述线速度______变化的快慢.(2)指向圆心的分力F n:产生______加速度,此加速度描述线速度_______改变的快慢.2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是_____也不是________的曲线运动.(2)处理方法:可以把曲线分割成许多很短的小段,每一小段可看做一小段_______.研究质点在这一小段的运动时,可以采用圆周运动的处理方法进行处理.【例1】如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A受摩擦力增大,B受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴【答案】B【解析】物块A受到的摩擦力充当其向心力;物块B受到重力、支持力、A对物块B的压力、A对物块B的沿半径向外的静摩擦力和圆盘对物块B的沿半径向里的静摩擦力,共5个力的作用;当转速增大时,A、B所受摩擦力都增大;A对B 的摩擦力方向沿半径向外.【规律总结】向心力与合外力的关系(1)向心力是按力的作用效果来命名的,它不是某种确定性质的力,可以由某个力来提供,也可以由某个力的分力或几个力的合力来提供.(2)对于匀速圆周运动,合外力提供物体做圆周运动的向心力,对于非匀速圆周运动,其合外力不指向圆心,它既要改变线速度大小,又要改变线速度方向,向心力是合外力的一个分力.【例2】如图所示,已知绳长为L=20 cm,水平杆长为L′=0.1 m,小球质量m =0.3 kg,整个装置可绕竖直轴转动.g取10 m/s2,问:(结果保留两位小数) (1)要使绳子与竖直方向成45°角,试求该装置必须以多大的角速度转动才行?(2)此时绳子的张力为多大?【答案】 (1)6.44 rad/s (2)4.24 N【解析】小球绕竖直轴做圆周运动,其轨道平面在水平面内,对小球受力分析如图所示,设绳对小球拉力为F T,小球重力为mg,则绳的拉力与重力的合力提供小球做圆周运动的向心力.对小球利用牛顿第二定律可得:mg tan 45°=mω2r①r=L′+L sin 45°②联立①②两式,将数值代入可得ω≈6.44 rad/sFT =mgcos 45°≈4.24 N.【规律总结】向心力的分析思路1.确定物体在哪个平面内做圆周运动,明确圆心和半径r,确定a、v、ω等物理量中什么是已知或要求的.2.对物体进行受力分析,确定向心力来源及大小.3.根据牛顿第二定律F合=F向列方程,求解.1.(多选)对于做匀速圆周运动的物体,下列判断正确的是( )A.合力的大小不变,方向一定指向圆心B.合力的大小不变,方向也不变C.合力产生的效果既改变速度的方向,又改变速度的大小D.合力产生的效果只改变速度的方向,不改变速度的大小2.如图所示,一圆盘可绕过圆盘的中心O且垂直于盘面的竖直轴转动,在圆盘上放一小木块A,它随圆盘一起运动——做匀速圆周运动,则关于木块A的受力,下列说法中正确的是( )A.木块A受重力、支持力和向心力B.木块A受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相反C.木块A受重力、支持力和静摩擦力,摩擦力的方向指向圆心D.木块A受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同3.(多选)在光滑的水平面上,用长为l的细线拴一质量为m的小球,以角速度ω做匀速圆周运动,下列说法中正确的是( )A.l、ω不变,m越大线越易被拉断 B.m、ω不变,l越小线越易被拉断C.m、l不变,ω越大线越易被拉断 D.m不变,l减半且角速度加倍时,线的拉力不变4.如图所示,在水平冰面上,狗拉着雪橇做匀速圆周运动,O点为圆心.能正确表示雪橇受到的牵引力F及摩擦力F f的图是( )5.如图所示为“感受向心力”的实验,用一根轻绳,一端拴着一个小球,在光滑桌面上抡动细绳,使小球做圆周运动,通过拉力来感受向心力.下列说法正确的是( )A.只减小旋转角速度,拉力增大 B.只加快旋转速度,拉力减小C.只更换一个质量较大的小球,拉力增大 D.突然放开绳子,小球仍做曲线运动6.洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图2所示,则此时( )A.衣物受到重力、筒壁的弹力和摩擦力的作用B.衣物随筒壁做圆周运动的向心力是由摩擦力提供的C.筒壁对衣物的摩擦力随转速增大而减小D.筒壁对衣物的摩擦力随转速增大而增大7.一辆满载新鲜水果的货车以恒定速率通过水平面内的某转盘,角速度为ω,其中一个处于中间位置的水果质量为m,它到转盘中心的距离为R,则其他水果对该水果的作用力为( )A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R28.质量不计的轻质弹性杆P插在桌面上,杆端套有一个质量为m的小球,今使小球沿水平方向做半径为R的匀速圆周运动,角速度为ω,如图所示,则杆的上端受到的作用力大小为( )A.mω2R B.m2g2-m2ω4R2C.m2g2+m2ω4R2D.不能确定9.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F.(g取10 m/s2,结果可用根式表示)求:T(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.10.如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5 m,离水平地面的高度H=0.8 m,物块平抛落地过程水平位移的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ.参考答案【知识梳理】一、1.圆心的合力.2.半径、圆心.3.(2)mω2r4.作用效果.二、1.(1)切向、大小.(2)向心、方向.2.(1)直线、圆周.(2)圆孤.【强化训练】1.【答案】AD【解析】物体做匀速圆周运动时,合力充当向心力,方向一定指向圆心,大小不变,且只改变速度的方向不改变速度的大小.2.【答案】 C【解析】由于圆盘上的木块A在竖直方向上没有加速度,所以,它在竖直方向上受重力和支持力的作用而平衡.而木块在水平面内做匀速圆周运动,其所需向心力由静摩擦力提供,且静摩擦力的方向指向圆心O,故选C.3.【答案】AC【解析】在光滑水平面上的物体的向心力由绳的拉力提供,由向心力公式F=mω2l,得选项A、C正确.4.【答案】C【解析】由于雪橇在冰面上滑动,其滑动摩擦力方向必与运动方向相反,即沿圆的切线方向;因雪橇做匀速圆周运动,合力一定指向圆心.由此可知C正确.5.【答案】C【解析】由题意,根据向心力公式F向=mω2r、牛顿第二定律,则有T拉=mω2r,只减小旋转角速度,拉力减小,只加快旋转速度,拉力增大,只更换一个质量较大的小球,拉力增大,故A、B错误,C正确;突然放开绳子,小球受到的合力为零,将沿切线方向做匀速直线运动,故D错误.6.【答案】 A【解析】衣物受到重力、筒壁的弹力和摩擦力三个力的作用,其中支持力提供其做圆周运动的向心力,A正确,B错误;由于重力与静摩擦力保持平衡,所以摩擦力不随转速的变化而变化,C、D错误.7.【答案】C【解析】处于中间位置的水果在水平面内随车转弯,做水平面内的匀速圆周运动,合外力提供水平方向的向心力,则F向=mω2R,根据平衡条件及平行四边形定则可知,其他水果对该水果的作用力大小为F=(mg)2+(mω2R)2,选项C正确,其他选项均错误.8.【答案】C【解析】小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆的作用力:F=(mg)2+F2向=m2g2+m2ω4R2,根据牛顿第三定律,小球对杆的上端的反作用力F′=F,C正确.9.【答案】 (1)522rad/s (2)2 5 rad/s【解析】 (1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿第二定律及向心力公式得:mg tan θ=mω2l sin θ解得:ω02=gl cos θ即ω0=gl cos θ=522rad/s.(2)当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.10.【答案】3.14 rad/s 1.53 m 15.1 m/s2【解析】男女运动员的转速、角速度是相同的,由ω=2πn得ω=2×3.14×30/60 rad/s=3.14 rad/s.由v=ωr得r=vω=4.83.14m=1.53 m.由a =ω2r 得a =3.142×1.53 m/s 2=15.1 m/s 2. 10.【答案】(1)1 m/s (2)0.2【解析】(1)物块做平抛运动,在竖直方向上有H =12gt 2①在水平方向上有s =v 0t②由①②式解得v 0=sg 2H代入数据得v 0=1 m/s.③(2)物块离开转台时,最大静摩擦力提供向心力,有f m =m v 20R④ f m =μN =μmg⑤由③④⑤式解得 μ=v 20gR代入数据得μ=0.2.。
高中物理第五章九向心力一练习新人教必修
练习九向心力(一)1.如图,细线吊着一个小球,使小球在水平面内做匀速圆周运动.关于小球的受力情况,正确的是( )A.重力B.重力、绳的拉力C.重力、绳子的拉力、向心力D.以上说法均不正确2.如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动。
若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是( )A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力减小D.物体所受弹力增大,摩擦力不变3.用长短不同、材料和粗细均相同的两根绳子各拴着一个质量相同的小球,在光滑的水平面上做匀速圆周运动,则( )A.若两个小球以相同的角速度运动,则长绳容易断B.若两个小球以相同的角速度运动,则短绳容易断C.若两个小球以相同的线速度运动,则长绳容易断D.若两个小球以相同的线速度运动,则短绳容易断4.如图所示,光滑杆偏离竖直方向的夹角为α,杆以O为支点绕竖直线旋转,质量为m的小球套在杆上可沿杆滑动,当杆角速度为ω1时,小球旋转平面在A处,当杆角速度为ω2时,小球旋转平面在B处,设杆对小球的支持力在A、B处分别为F N1、F N2,则有( )A.F N1=F N2 B.F N1>F N2 C.ω1<ω2 D.ω1>ω25.有A,B,C三个物体放在水平圆形平台上,它们与平台的摩擦因数相同,它们的质量之比为3∶2∶1,它们与转轴之间的距离之比为1∶2∶3,当平台以一定的角速度旋转时,它们均无滑动,它们受到静摩擦力分别为f A,f B,f C,则 ( )A.f A<f B<f C;B.f A>f B>f C; C.f A=f B<f C; D. f A=f C<f B.6.游客乘坐过山车,在圆弧轨道最低点处获得向心加速度达20 m/s2,g取10 m/s2,那么此位置的座椅对游客的作用力相当于游客重力的( )A.1倍B.2倍C.3倍D.4倍7.质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,如图所示,则杆的上端受到球对其作用力的大小为( )A.mω2R B.m g2-ω4R2C.m g2+ω4R2D.不能确定8.如图所示,是双人花样滑冰运动中男运动员拉着女运动员做圆锥摆运动的精彩场面,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.若女运动员做圆锥摆运动时和竖直方向的夹角约为θ,女运动员的质量为m ,转动过程中女运动员的重心做匀速圆周运动的半径为r,求:(1)男运动员对女运动员拉力的大小;(2)男运动员转动的角速度9.原长为L的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO′上,弹簧的劲度系数为k,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L/4,现将弹簧长度拉长到6L/5后,把小铁块放在圆盘上,在这种情况下,圆盘绕其中心轴OO′以一定角速度匀速转动,如图所示,已知小铁块的质量为m,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少?10.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A.B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmrω2,故. 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M 甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙.则F向=M甲ω2r甲=M乙ω2r乙=9.2 N ① r甲+r乙=0.9 m ②由①②两式可解得只有D正确答案:D7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G与摩擦力F,是一对平衡力,在向心力方向上受弹力F N.根据向心力公式,可知F N=mω2r,当ω增大时,F N增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A、B错误.周期不变时,绳长易断,故D正确.由,当线速度不变时绳短易断,C错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零 C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/π a=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ 即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v1,则mgh=mg·2R+ 1/2mv12 F n+mg= mv12/R 得:F n=40 N②小球刚好通过最高点时速度为v2,则mg= mv22/R又mgh′=mg2R+1/2 mv22/R得h′=2.5R答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
(一)运动学特征及应用匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。
为了描述其运动的特殊性,又引入周期(T )、频率(f )、角速度(ω)等物理量,涉及的物理量及公式较多。
因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。
1. 基本概念、公式的理解和运用[例1] 关于匀速圆周运动,下列说法正确的是( )A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
[例2] 在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
解析:A 、B 两点做圆周运动的半径分别为R R r A 2130sin =︒= R R r B 2360sin =︒= 它们的角速度相同,所以线速度之比3331====B A B A B A r r r r v v ωω加速度之比3322==B B A A B A r r a a ωω 2. 传动带传动问题[例3] 如图2所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。
求:(1)=B C ωω: ;(2)=B C v v : ;(3)=B C a a : 。
解析:A 、C 两点在同一皮带轮上,它们的角速度相等,即C A ωω=,由于皮带不打滑,所以A 、B 两点的线速度大小相等,即B A v v =。
(1)根据r v =ω知21===A B B A B C r r ωωωω (2)根据ωr v =知21====A B A C A C B C r r r r v v v v (3)根据ωv a =知412121=⨯==B B C C B C v v a a ωω 点评:共轴转动的物体上各点的角速度相同,不打滑的皮带传动的两轮边缘上各点线速度大小相等,这样通过“角速度”或“线速度”将比较“遥远”的两个质点的运动学特点联系在一起。
(二)动力学特征及应用物体做匀速圆周运动时,由合力提供圆周运动的向心力且有222)2(Tmr mr r v m ma F F πω=====向向合 方向始终指向圆心1. 基本概念及规律的应用[例4] 如图3所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时求杆OA 和AB 段对球A 的拉力之比。