关于平行四边形的证明题例析

合集下载

判定平行四边形的五种方法

判定平行四边形的五种方法

判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

下面以近几年的中考题为例说明如何证明四边形是平行四边形。

一、两组对边分别平行如图1,已知△ ABC是等边三角形,D、E分别在边BC AC上,且CD=CE连结DE并延长至点F,使EF=AE连结AF、BE和CF(1)请在图中找出一对全等三角形,并加以证明;⑵ 判断四边形ABDF是怎样的四边形,并说明理由,解:(1)选证△ BDE^A FEC证明:•••△ ABC是等边三角形,••• BC=ACZ ACD=60v CD=CE二BD=AEA EDC是等边三角形••• DE二EC/ CDEH DEC=60•••/ BDE/ FEC=120又v EF=AE 二BD二FE 二△ BDE^A FEC(2)四边形ABDF是平行四边形理由:由(1)知,△ ABC △ EDC △ AEF都是等边三角形v/ CDE/ABC/ EFA=60 ••• AB// DE BD// AF v四边形ABDF是平行四边形点评:当四边形两组对边分别被第三边所截,易证截得的同位角相等,内错角相等或同旁内角相等时,可证四边形的两组对边分别平行,从而四边形是平行四边形。

二、一组对边平行且相等例2已知:如图2,在正方形ABCD中, G是CD上一点,延长BC到E,使CE=CG连结BG并延长交DE于F⑴求证:△ BCG^^DCE(2)将厶DCE绕点D顺时针旋转90°得到△ DAE,判断四边形E‘ BGD是什么特殊四边形并说明理由。

分析:(2)由于ABCD是正方形,所以有AB// DC又通过旋转CE=AE已知CE=CG所以E A=CG这样就有BE =GD可证E BGD是平行四边形。

解:( 1)v ABCD是正方形,•••/ BCDM DCE=90 又T CG=C,△ BCG^ DCE(2)v^ DCE绕D顺时针旋转90°得到△ DAE,••• CE=AE,T CE=CG 二CG=AE,•••四边形ABCD是正方形••• BE // DG AB=CD••• AB- AE 二CDCG,即卩BE =DG•••四边形DE BG是平行四边形点评:当四边形一组对边平行时,再证这组对边相等,即可得这个四边形是平行四边形三、两组对边分别相等例3如图3所示,在△ ABC中,分别以AB AC BC为边在BC的同侧作等边△ ABD等边△ ACE等边△ BCF求证:四边形DAEF是平行四边形;分析:利用证三角形全等可得四边形DAEF的两组对边分别相等,从而四边形DAEF是平行四边形。

数学平行四边形证明题技巧思路与方法

数学平行四边形证明题技巧思路与方法

数学平行四边形证明题技巧思路与方法
证明平行四边形的一般方法是使用平行线的性质和几何定理,以下是一些常用的技巧思路和方法:
1. 平行线的性质:平行线具有许多重要的性质,例如对应角相等、内错角相等、同旁内角互补等等。

可以利用这些性质来推导出平行四边形的相关结论。

2. 逆向思维:当需要证明一个四边形是平行四边形时,可以从相反的方向思考。

即首先假设该四边形不是平行四边形,然后推导出矛盾结论,从而得出原命题的正确性。

3. 利用已知条件:观察已知条件,比如已知两条边平行或已知两条边等长,然后利用这些已知条件进行推导证明。

例如,通过使用平行线的性质证明两组对应边相等等。

4. 使用平行四边形的定义:平行四边形的定义是对角线互相平分,可以利用这一定义来证明平行四边形的性质。

例如,通过证明对角线的中点连线平行于两边,或证明对角线互相垂直等。

5. 利用其他几何定理:除了平行线的性质外,还可以利用其他几何定理来证明平行四边形的性质。

例如,利用三角形的一些性质或相似三角形的性质来推导出平行四边形的相关结论。

总的来说,证明平行四边形的关键是灵活运用几何定理和性质,善于利用已知条件进行推导,并运用逆向思维来证明。

在证明
过程中,需要详细演算和陈述每一步的推导过程,注重逻辑严密和证明的完整性。

平行四边形的性质及判定典型例题

平行四边形的性质及判定典型例题

平行四边形的性质及判定〔典型例题〕1.平行四边形及其性质例1 如图,O是ABCD对角线的交点.△OBC的周长为59,BD=38,AC=24,那么AD=____假设△OBC与△OAB的周长之差为15,那么AB=ABCD的周长=____.分析:AC,可得BC,再由平行四边形对边相等知AD=BC,由平行四边形的对角线互相平分,可知△OBC与△OAB的周长之差就为BC与AB之差,可得AB,进而可得ABCD的周长.对角线互相平分)∴△OBC的周长=OB+OC+EC=19+12+BC=59∴BC=28ABCD中,∴BC=AD(平行四边形对边相等)∴AD=28△OBC的周长-△OAB的周长=(OB+OC+BC)-(OB+OA+AB)=BC-AB=15∴AB=13∴ABCD的周长=AB+BC+CD+AD=2(AB+BC)=2(13+28)=82说明:此题条件中的“△OBC占△OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15.例2 判断题(1)两条对边平行的四边形叫做平行四边形.( )(2)平行四边形的两角相等.( )(3)平行四边形的两条对角线相等.( )(4)平行四边形的两条对角线互相平分.( )(5)两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.( )(6)平行四边形的邻角互补.( )分析:根据平行四边形的定义和性质判断.解:(1)错“两组对边分别平行的四边形叫做平行四边形〞是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD∥BC.显然四边形ABCD不是平行四边形.(2)错平行四边形的性定理1,“平行四边形的对角相等.〞对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3)错平行四边形的性质定理3,“平行四边形的对角线互相平分.〞一般地不相等.(矩形的两条对角线相等).(4)对根据平行四边形的性质定理3可判断是正确的.(5)错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6)对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在ABCD中,E、F是AC上的两点.且AE=CF.求证:ED∥BF.分析:欲址DE∥BF,只需∠DEC=∠AFB,转证=∠ABF≌△CDF,因ABCD,那么有AB CD,从而有∠BAC=∠CDA.再由AF=CF得AF=CE.满足了三角形全等的条件.证明:∵AE=CFAE+EF=CF+EF∴AF=CE在ABCD中AB∥CD(平行四边形的对边平行)∴∠BAC=∠DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)∴△ABF≌△CDE(SAS)∴∠AFB=∠DCE∴ED∥BF(内错角相等两直线平行)说明:解决平行四边形问题的根本思想是化为三角形问题不处理.例4 如图在△ABC中DE∥BC∥FG,假设BD=AF、求证;DE+FG=BC.分析1:要证DE+FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH∥AB(或DM ∥AC),得到DE=BH、只需证HC=FG,因AF=BD=EH,∠CEH=∠A.∠AGF=∠C所以△AFG≌∠EHC.此方法称为截长法.分析2:过C点作CK∥AB交DE的延长线于K,只需证FG=EK,转证△AFG≌△CKE.证法1:过E作EH∥AB交于H∵DE∥BC∴四边形DBHE是平行四边形(平行四边形定义) ∴DB=EHDE=BH(平行四边形对边也相等)又BD=AF∴AF=EH∵BC∥FG∴∠AGF=∠C(两直线平行同位角相等)同理∠A=∠CEH∴△AFG≌△EHC(AAS)∴FG=HC∴BC=BH+HC=DE=FG即CE+FG=BD证法2:. 过C作CK∥AB交DE的延长线于K.∵DE∥BC∴四边形DBCK是平行四边形(平行四边形定义) ∴CK=BD DK=BC(平行四边形对边相等)又BD=AF∴AF=CK∵CK∥AB∴∠A=∠ECK(两直线平行内错角相等)∵BC∥FG∴∠AGF=∠AED(两直线平行同位角相等)又∠CEK=∠AED(对顶角相等)∴∠AGF=∠CEK∴△AFG≌△CKE(AAS)FG=EKDE+EK=BC∴DE+FG=BC例5 如图ABCD中,∠ABC=3∠A,点E在CD上,CE=1,EF⊥CD交CB延长线于F,假设AD=1,求BF的长.分析:根据平行四边形对角相等,邻角互补,可得∠C=∠F=45°进而由勾股定理求出CF,再根据平行四边形对边相等,得BF的长.解:在ABCD中,AD∥BC∴∠A+∠ABC=180°(两直线平行同旁内角互补)∵∠ABC=3∠A∴∠A=45°,∠ABC=135°∴∠C=∠A=45°(平行四边形的对角相等)∴EF⊥CD∴∠F=45°(直角三角形两锐角互余)∴EF=CE=1∵AD=BC=1例6 如图1,ABCD中,对角线AC长为10cm,∠CAB=30°,AB长为6cm,求ABCD的面积.解:过点C作CH⊥AB,交AB的延长线于点H.(图2)∵∠CAB=30°∴S ABCD=AB·CH=6×5=30(cm2)答:ABCD的面积为30cm2.说明:由于=底×高,题设中AB的长,须求出与底AB相应的高,由于此题条件的制约,不便于求出过点D的高,应选择过点C作高.例7 如图,E、F分别在ABCD的边CD、BC上,且EF∥BD 求证:S△ACE=S△ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.ABCD DE∥AB∴∠DEG=∠BHF(两直线平行同位角相等)∠GDE=∠DAB(同上)AD∥BC∴∠DAB=∠FBH(同上)∴∠GDE=∠FBH∵DE∥BH,DB∥EH∴四边形BHED是平行四边形∵DE=BH(平行四边形对边相等)∴△GDE≌△FBH(ASA)∴S△GDE=S△FBH(全等三角形面积相等)∴GE=FH(全等三角形对应边相等)∴S△ACE=S△AFH(等底同高的三角形面积相等)∴S△ADE=S△ABF说明:平行四边形的面积等于它的底和高的积.即S=a·ha.a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,说明它所对应的底是a.例8 如图,在ABCD中,BE平分∠B交CD于点E,DF平分∠D交AB于点F,求证BF=DE.证明:∵四边形ABCD是平行四边形∴DE∥FB,∠ABC=∠ADC(平行四边形的对边也平行对角相等) ∴∠1=∠3(两直线平行内错角相等)∴∠1=∠2∴∠2=∠3∴DF∥BE(同位角相等两条直线平行)∴四边形BEDF为平行四边形(平行四边形定义)∴BF=DE.(平行四边形的对边相等)说明:此例也可通过△ADF≌△CBE来证明,但不如上面的方法简捷.例9 如图,CD的Rt△ABC斜边AB上的高,AE平分∠BAC交CD 于E,EF∥AB,交BC于点F,求证CE=BF.分析作EG∥BC,交AB于G,易得EG=BF.再由根本图,可得EG=EC,从而得出结论.证明:过E点作EG∥BC交AB于G点.∴∠EGA=∠B∵EF∥AB∴EG=BF∵CD为Rt△ABC斜边AB上的高∴∠BAC+∠B=90°.∠BAC+∠ACD=90°∴∠B=∠ACD∴∠ACD=∠EGA∵AE平分∠BAC∴∠1=∠2又AE=AE∴△AGE≌△ACE(AAS)∴CE=EG∴CE=BF.说明:(1)在上述证法中,“平移〞起着把条件集中的作用.(2)此题也可以设法平移AE.(连F点作FG∥AE,交AB于G)例10 如图,ABCD的周长为32cm,AB∶BC=5∶3,AE⊥BC 于E,AF⊥DC于F,∠EAF=2∠C,求AE和AF的长.分析:从化简条件开场①由ABCD的周长及两邻边的比,不难得到平行四边形的边长.②∠EAF=2∠C告诉我们什么?这样,立即可以看出△ADF、△AEB都是有一个锐角为30°的直角三角形.再由勾股定理求出解:ABCD的周长为32cm即AB+BC+CD+DA=32∵AB=CD BC=DA(平行四边形的对边相等)又AB∶BC=5∶3∠EAF+∠AFC+∠C+∠CEA=360°(四边形内角和等于360°) ∵AE⊥BC ∠AEC=90°AF⊥DC ∠AFC=90°∴∠EAF+∠C=180°∠EAF=2∠C∴∠C=60°∵AB∥CD(平行四边形的对边平行)∴∠ABE=∠C=60°(两直线平行同位角相等)同理∠ADF=60°说明:化简条件,化简结论,总之,题目中哪一局部最复杂就从化简那一局部开场,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开场.它虽简单,却很有效.2.平行四边形的判定例1 填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,那么四边形AEFD是__,理由是__(2) 如图2,D、E分别在△ABC的边AB、AC上,DE=EF,AE=EC,DE∥BC那么四边形ADCF是__,理由是__,四边形BCFD是__,理由是___分析:判定一个四边形是平行四边形的方法较多,要从条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC,DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD∥CF即BD∥CF,再由条件,可得四边形BCFD 是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行四边形,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例2 如图,四边形ABCD中,AB=CD.∠ADB=∠CBD=90°.求证:四边形ABCD是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法,这三类也是按边、角和对角线分类,具体的五个方法如下表:因此必须根据条件与图形构造特点,选择判定方法.证法一:∵AB=CD.∠ADB=∠CBD=90°,BD=DB.∴Rt△ABD≌Rt△CDB.∴∠ABD=∠CDB,∠A=∠C.∴∠ABD+∠CBD=∠CDB+∠ADB即∠ABC=∠CDA.∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:∵∠ADB=∠CBD=90°,AB=CD、BD=DB.∴Rt△ABD≌Rt△CDB.∴∠ABD=∠CDB.∴AB∥CD.(内错角相等两直线平行)∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt△ABD≌Rt△CDB.∴DA=BC又∵AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比拟,选择最简捷的证题思路.此题三种证法中,证法二与证法三比拟简捷,此题还可用定义来证明.例3 如图,ABCD中,E、G、F、H分别是四条边上的点,且AE=CF,BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG、GF、FH、HE.∵四边形ABCD是平行四边形∴∠A=∠C,AD=CB.∵BG=DH∴AH=CG又AE=CF∴△AEH≌△CFG(SAS)∴HE=GF同理可得EG=FH∴四边形EGFH是平行四边形(两组对边分别相等的四边形是平行四边形)∴EF与GH互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题根本方法.例4 如图,ABCD中,AE⊥BD于E,CF⊥BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ABE≌△CDF∴AE= CF进而可得四边形AECF是平行四边形.证明:ABCD中,AB CD(平行四边形的对边平行,对边相等)∴∠ABD=∠CDB(两直线平行内错角相等)AE⊥BD、CF⊥BD∴AE∥CF∠AEB=∠CFD=90°∴△ABE≌△CDF(AAS)∴AE=CF∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5 如图,ABCD中,E、F分别在AD、BC上,且AE=CF,AF、BE相交于G,CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF∥EC,BE∥DF,从而四边形GEHF为平行四边形.证明:ABCD中,AD BC(平行四边形对边平行且相等)∵AE=CF∴DE=BF∵四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)∴AF∥CE,BE∥DF(平行四边形对边平行)∴四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)∴GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6 如图,ABCD中,EF在BD上,且BE=DF,点G、H在AD、CB上,且有AG=CH,GH与BD交于点O,求证EG HF分析:证EF、GH互相平分GEHF为平行四边形.证明:连BG、DH、GF、EH∵ABCD为平行四边形.∴AD BC又AG=HC∴DG BH∴四边形BGDH为平行四边形(一组对边平行且相等的四边形是平行四边形)∴HO=GO,DO=BO(平行四边形的对角线互相平分)又BE=DF∴OE=OF∴四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)∴EG HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7 如图,ABCD中,AE⊥BD于E,CF⊥BD于F,G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH,HF、FG、GE,只须证明EHFG为平行四边形.证法一:连结EH,HF、FG、GE∵AE⊥BD,G是AD中点.∠GED=∠GDE同理可得∵四边形ABCD是平行四边形∴AD BC,∠GDE=∠HBF∴GE=HF,∠GED=∠HFB∴GE∥HF∴四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)∴EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明△ABE≌△CDF∴BE=DF∵四边形ABCD为平行四边形∴AD BC∵G、H分别为AD、BC的中点∴DG BH∴四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)∴BD和GH互相平分(平行四边形对角线互相平分)∴OG=OH,OB=OD又BE=DF∴OE=OF∴EF和GH互相平分.例8 如图,线段a、b与∠α,求作:ABCD,使∠ABC=∠α,AB=a,BC=b,分析:两边与夹角,可先确定△ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1)作∠EBF=∠α,(2)在BE、BF上分别截取BA=a,BC=b,(3)分别为A、C为圆心,b,a为半径作弧,两弧交于点D,∴四边形ABCD为所求.*证明:由作法可知AB=CD=aBC=AD=b∴四边形ABCD为平行四边形(两组对边分别相等的四边形为平行四边形)且∠ABC=∠α,AB=a,BC=b∴ABCD为所求说明:常见的平行四边形作图有以下几种:(1)两邻边(AB、BC)和夹角(∠B).(2)一边(BC)和两条对角线(AC,BD).(3)一边(BC)和这条边与两条对角线的夹角(如∠DBC,∠ACB).(4)一边(CD)和一个内角(∠ABC)以及过这个角的顶点的一条对角线(BD,且BD>CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,表达了把平行四边形的问题化归为三角形问题的思想方法.。

平行四边形的判定证明题

平行四边形的判定证明题

四、运用判定3“对角线互相平分的四边形是平行四边形” 判定,证对角线互相平分。 1、如图,在平行四边形ABCD中,E、F在对角线AC上,且 AE=CF,试说明四边形DEBF是平行四边形.
解:连接BD交AC于点O. ∵四边形ABCD是平行四边形, ∴AO=CO,BO=DO. 又AE=CF, ∴AO-AE=CO-CF, 即EO=FO. ∴四边形DEBF是平行四边形.(对角线互相平分 的四边形是平行四边形)
证明:∵四边形ABCD是正方形,
∴AB = CD,AD = BC, ∠A =∠C =∠ABC =∠ADC =90° ∵AE = AD ,CF = BC,
∴AE = CF. ∴△ABE≌△CDF. ∴∠ABE =∠CDF,∠AEB =∠CFD. ∴∠BED =∠DFB. ∴∠EBF =∠EDF. ∴四边形BFDE是平行四边形. (两组对角 分别相等的四边形是平行四边形)
例2、已知:如图,在△ABC中,AB=AC,E是AB的中 点,D在BC上,延长ED到F,使ED = DF = EB. 连结FC. 求证:四边形AEFC是平行四边形.
证明:∵AB=AC, ∴∠B =∠ACB. ∵ED = EB, ∴∠B =∠EDB. ∴∠ACB =∠EDB. ∴EF∥AC. ∵E是AB的中点, ∴BD = CD. ∵∠EDB =∠FDC,ED = DF, ∴△EDB≌△FDC. ∴∠DEB =∠F. ∴AB∥CF. ∴四边形AEFC是平行四边形. (两组对边
证明:∵四边形ABCD 是平行四边形, ∴∠DAB=∠BCD, 又∵∠1= ∠DAB,∠2= ∠BCD,
∴∠1=∠2, ∵AB//CD, ∴∠3=∠1,∠4=∠2, ∴∠3=∠4, ∴∠5=∠6, ∴四边形AECF是平行四边形.(两组对角分 别相等的四边形是平行四边形)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)一、综合题1.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,点F在AC的延长线上,∠FEC=∠B.(1)求证:DE=CF;(2)若AC=6cm,AB=10cm,求四边形DCFE的面积.2.已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)若AD与⊙O相切,求∠B.3.已知:如图,点D在ΔABC的边AB上,CF//AB,DF交AC于E,EA=EC.(1)如图1,求证:CD=AF;(2)如图2,若AD=BD,请直接写出和ΔBDC面积相等的三角形.4.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF//BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4√2,则▱ABCD的面积是.5.已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.6.如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.7.如图,在ΔABC中,点D、E、F分别在AB、AC、BC上,DE // BC,EF // AB.(1)求证:ΔADE∽ΔEFC;(2)如果AB=6,AD=4,求SΔADESΔEFC的值.8.如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.BC,9.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=12连接CD和EF .(1)求证:DE=CF;(2)求EF的长.10.如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.11.已知锐角△ABC内接于⊙O,AD⊥BC于点D,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,CE⊥AB于点E,交AD于点F,过点O作OH⊥BC于点H,求证:AF=2OH;,BC=2√15,求AC的长.(3)如图3,在(2)的条件下,若AF=AO,tan∠BAO=1312.如图,抛物线y=x2+bx+c与x轴交于点A(−1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.13.如图,CD是⊙O的直径,点A是⊙O外一点,AD与⊙O相切于点D,点B是⊙O上一点(点B不与点C,D重合),连接AO,AB,BC .(1)当BC与AO满足什么位置关系时,AB是⊙O的切线?请说明理由;(2)在(1)的条件下,当∠DAO=度时,四边形AOCB是平行四边形.(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足14.如图,已知函数y= kx为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点EOD,求a、b的值;(1)若AC= 32(2)若BC∥AE,求BC的长.15.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.16.如图.在一次数学研究性学习中,小华将两个全等的直角三角形纸片Rt△ABC和Rt△DEF拼在一起,使点A与点F重合,点C与点D重合(如图),其中∠ACB=∠DFE=90°,发现四边形ABDE是平行四边形.如图,小华继续将图中的纸片Rt△DEF沿AC方向平移,连结AE,BD,当点F与点C重合时停止平移.(1)请问:四边形ABDE是平行四边形吗?说明理由.cm时,请判断四边形ABDE的形(2)如图,若BC=EF=6cm,AC=DF=8cm,当AF=92状,并说明理由.参考答案与解析1.【答案】(1)证明:在△CDE 和△ECF 中,∵∠ACB=∠ECF=90°,点D 、E 是分别是AB 、BC 的中点.∴CD=BD=AD ,∴∠B=∠DCE ,∠CED=∠ECF=90°, 又∵∠FEC=∠B ..∠FEC=∠DCE ,又∵CE=EC .∴△CDE ≌△ECF (ASA ),∴DE=CF ;(2)解:在Rt △ABC 中,∵∠ACB=90°,∴BC=√AB 2−AC 2=√102−62=8cm , ∵点D 、E 分别是AB 、BC 的中点,∴DE ∥CF ,又DE=CF , ∴四边形DCFE 是平行四边形,∴DE=12AC=12×6=3cm ,CE=12BC=12×8=4cm , ∴S 四边形DCFE =DE ×CE=3×4=12cm . 2.【答案】(1)证明:∵OA =OC =AD , ∴∠OCA =∠OAC ,∠AOD =∠ADO , ∵OD ∥AC , ∴∠OAC =∠AOD ,∴180°﹣∠OCA ﹣∠OAC =180°﹣∠AOD ﹣∠ADO , 即∠AOC =∠OAD , ∴OC ∥AD , ∵OD ∥AC ,∴四边形OCAD 是平行四边形;(2)解:∵AD 与⊙O 相切,OA 是半径, ∴∠OAD =90°, ∵OA =OC =AD , ∴∠AOD =∠ADO =45°,∵OD∥AC,∴∠OAC=∠AOD=45°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=45°.3.【答案】(1)证明:∵CF//AB∴∠DFC=∠ADF,∠DAC=∠ACF又∵EA=EC∴ΔADE≌ΔCFE(AAS)∴CF=AD又∵CF//AD∴四边形ADCF为平行四边形∴DC=AF(有一组对边平行且相等的四边形为平行四边形)(2)解:ΔADC,ΔADF,ΔCFD,ΔCFA∵AD=BD,∴SΔADC=SΔBDC (等底等高面积相等)∵四边形ADCF是平行四边形,∴SΔADC=SΔCDF=SΔADF=SΔACFF (等底等高面积相等) .故与ΔBDC面积相等的三角形为:ΔADC,ΔADF,ΔCFD,ΔCFA.4.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF//BE,∴∠DFA=∠BEC,∵DF=BE,∴ΔADF≅ΔCBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD//CB,四边形ABCD是平行四边形(2)245.【答案】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中{DF=BE∠DFA=∠BECAF=CE,∴△AFD≌△CEB(SAS).(2)解:四边形ABCD是平行四边形,理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.6.【答案】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=12OA=12OC=OF,∴四边形DEBF是平行四边形,∴BE=DF .(2)解:由(1)已证:四边形DEBF是平行四边形,要使平行四边形DEBF是矩形,则BD=EF,∵OE=12OA=12OC=OF,∴EF=OE+OF=12OA+12OC=OA=12AC,即AC=2EF,∴k=ACBD =2EFEF=2,故当k=2时,四边形DEBF是矩形. 7.【答案】(1)证明:∵DE//BC,EF//AB,∴∠A=∠CEF,∠AED=∠C,∴△ADE∽△EFC.(2)解:∵AB=6,AD=4,∴DB=6-4=2,∵DE//BC,EF//AB,∴四边形DBFE是平行四边形,∴EF=DB=2,∵△ADE∽△EFC,SΔADE SΔEFC =(ADEF)2=(42)2=4.8.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行)。

平行四边形经典证明题例题讲解

平行四边形经典证明题例题讲解

--经纬教育平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形AB CD 中,A B∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FAD CB连接∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.【关键词】多边形的内角和【答案】设xA=∠(度),则20+=∠xB,xC2=∠.根据四边形内角和定理得,360602)20(=++++xxx.解得,70=x.∴︒=∠70A,︒=∠90B,︒=∠140C.4.(如图,E F,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE==,,∥.ACAB CD∥DCABAC∠=∠B D AC CA∠=∠=,ABC△CDA△36AB CD BC AD====,ABCD183262=⨯+⨯=BDAB CD∥CDBABD∠=∠ABC CDA∠=∠ADBCBD∠=∠AD BC ABCD36AB CD BC AD====,ABCD183262=⨯+⨯=A DCBA DCB----求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=°12∠=∠ABDEFCADCBEBCE DA F PF90DAM ABE DA AB∠=∠==°,DAM ABE∴△≌△DM AE∴=AE EP=DM PE∴=∴四边形DMEP是平行四边形.解法②:在AB边上存在一点M,使四边形DMEP是平行四边形证明:在AB边上取一点M,使AM BE=,连接ME、MD、DP.90AD BA DAM ABE=∠=∠=,°Rt RtDAM ABE∴△≌△14DM AE∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM∴⊥AE EP⊥DM EP∴⊥∴四边形DMEP为平行四边形6.(2009年广州市)如图9,在ΔABC中,D、E、F分别为边AB、BC、CA的中点。

利用平行四边形的性质解(证)题

利用平行四边形的性质解(证)题

利用平行四边形的性质解(证)题平行四边形具有:对边平行、对角相等、对边相等、对角线互相平分等性质,因此这些性质为我们提供了证线段平行、相等,角相等,两线段互相平分的新方法,在证明这些问题时,可证他们所在的四边形是平行四边形.下面举例说明平行四边形的性质在解(证)题中的应用。

一、求角度例1.平行四边形ABCD 中, ∠A-∠B=025,则∠A=_____;∠B=______; ∠C=_____;∠D=_____.分析:设∠B 为x ,则∠A 为025+x.∵ABCD 是平行四边形,∴∠A+∠B=0180即x+025+x=0180.∴x=05.77∴∠A=05.102,∠B=05.77.由于平行四边形对角相等,所以∠C=05.102, ∠D=05.77.评注:(1)在解决求平行四边形的内角的度数问题时,应注意抓住两个等量关系:①平行四边形对角相等②平行四边形邻角互补(2)当题目未明确等价角的度数,而是给了两个角的关系时,应注意运用方程来求解.二、求线段长例2.如图1,在□ABCD 中,如果AB =5,AD =9,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF =_______.分析:观察图形,容易看出DF =CF -CD.又,CD =AB =5,那么要求DF 的长,应先确定CF 的长.解:在□ABCD 中,F因为AB ∥CF ,所以∠ABE =∠F.因为BE 平分∠B =∠ABC ,所以∠CBF =∠ABE =∠F.所以CF =BC =AD =9.所以DF =CF -CD =4.评注:本题的解答过程中,运用了平行四边形的对边平行和对边相等的性质.三、求周长例3.已知:如图2,在□ABCD 中,BE ⊥CD ,BF ⊥AD , ∠EDF=030, BE=8,BF=14,求□ABCD 的周长.分析:平行四边形的周长是相邻两边长度之和的2倍,因而只要利用平行四边形的性质求出相邻两边的长,问题即可解决.解:∵ABCD 是平行四边形,∴CD ∥AB.∵∠CDF=030, ∴∠A=∠CDF=030.∵BF ⊥AD ,BF=14,∴AB=2BF=28.∵∠A=∠C(平行四边形的对角相等)∴∠C =030.∵BE ⊥CD ,BE=8,∴BC=2BE=16.∴平行四边形ABCD 的周长为:2(AB+BC)=2(28+16)=88.评注:在平行四边形的解题过程中,要善于联系以往学习的有关知识,如此题用到了在直角三角形中,030角所对的直角边是斜边的一半的知识.四、求线段的取值范围例4.如图3,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12, BD =10, AB =m ,那么m 的取值范围是( )(A )10<m <12 (B )2<m <22 (C )1<m <11 (D )5<m <6.图2分析:要求m 的取值范围,应考虑与AB 有关的三角形的三边之间的不等关系.结合题中条件,应考虑△OAB 三边之间的不等关系.解:在平行四边形ABCD 中,因为对角线AC 和BD 相交于点O ,所以OA =12AC =6,OB =12BD =5. 因为OA -OB <AB <OA +OB ,所以1<m <11.评注:本题的解答过程中,运用了平行四边形的对角线互相平分的性质.五、证明线段相等例5.如图4,已知AD 为△ABC 的中线,E 为AC 上一点,连结BE 交AD 于F ,且AE =FE .则BF =AC .说明理由分析:延长AD 到N ,使DN =AD ,构造出平行四边形ABNC .证明:延长AD 到N ,使DN =AD ,连结BN 、CN ,则四边形ABNC 为平行四边形.∴BN =AC ,BN ∥AC ,∴∠1=∠4.∵AE =FE ,∴∠1=∠2.∵∠2=∠3,∠1=∠4,∴∠3=∠4.∴BN =BF ,∴BF =AC .评注:当题目中有三角形中线时,常利用加倍中线构造平行四边形,然后再应用平行四边形的知识证题,用这种方法比利用加倍中线构造全等三角形要方便、简捷.图4O A CB图3六、证明线段的不等关系例6.如图5,已知△ABC 中,AB=AC ,D 是AB 上的一点,E 是AC 延长线上的一点,且DB=CE ,试说明DE>BC .解析:因为DE 、BC 不在同一三角形中,其大小不好比较,把DE 沿着AB 平移到BF ,连结CF 、EF ,则可得四边形BDEF 为平行四边形,从而得出∠BFE=∠BDE ,EF=BD=CE ,∠CFE=∠FCE ,又因为∠BCF=∠BCE-∠FCE ,∠BFC=∠BFE-∠CFE ,而由∠ABC=∠ACB ,因∠ABC+∠CBF+∠BDE=∠BCE+∠ACB ,由此可得∠BCE>∠BDE ,所以∠BCF>∠BFC ,依据三角形的边角之间的不等关系可得:BF>BC ,即DE>BC .评注:本题借助构造平行四边形并利用平行四边形的性质将欲比较的线段放在同一三角形中,再通过三角形三边之间的不等关系简洁的使问题得证.七、求面积例7.如图6,□ABCD 中,点E 在AC 上,AE=2EC ,点F 在AB 上,BF=2AF.如果△BEF 的面积为2,求平行四边形ABCD 的面积.分析:根据等高的两个三角形面积的比等于它们的底的比,求出△AEF 的面积和△BEF 的面积,再根据平行四边形的对角线把平行四边形分成两个面积相等的两个三角形,从而求出平行四边形的面积.解:∵四边形ABCD 是平行四边形,AC 是对角线∴ABC S S ∆=2平行四边形∵点F 在AB 上,BF=2AF ,∴△BEA 和△BEF 是过E 点的高相等的两个三角形,BEF BEA S S ∆∆=23 图6 D FE C B A图5同理BEF BEA ABC S S S ∆∆∆==4923因此)(平行四边形2924922cm S S ABC =⨯⨯==∆. 评注:本题考查面积问题中的面积变换,面积变换具有下列的特征:等底或同底且高相等的两个三角形的面积相等;等底或等高的两个三角形的面积比等于它们的高或底的比;此题将平行四边形的面积与三角形的面积进行了整合.。

2020中考数学 专题练习:平行四边形(解析版)

2020中考数学 专题练习:平行四边形(解析版)

2020中考数学专题练习:平行四边形(解析版)【例题1】如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE 的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【例题2】如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB 延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;(2)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.【例题3】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.【例题4】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(,t),求出直线AD的解析式为y=﹣x+6,把G(,t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(,t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或巩固练习一、选择题:1.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.18【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=20.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=22.故选:C.【点评】本题考查平行四边形的性质、等腰三角形的判定;根据题意判断出AB=BE是解答本题的关键.2.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠EAC,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.3.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.4.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO=C.AF=D.四边形AFCE的面积为【分析】根据正方形的性质求出AO的长,用勾股定理求出EO的长,然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF 的长,再一一计算即可判断.【解答】解:∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=,∠ABF=∠ADE=135°,在Rt△AEO中,EO===,∴DE=,故A错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°,∴∠BAF=∠AED,∴△ABF∽△EDA,∴=,∴=,∴BF=,在Rt△AOF中,AF===,故C正确,tan∠AFO===,故B错误,∴S四边形AECF=•AC•EF=××=,故D错误,故选C.5.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE ≌△DCF (SAS ),∴∠ABE=∠DCF ,在△ADG 和△CDG 中,,∴△ADG ≌△CDG (SAS ),∴∠DAG=∠DCF ,∴∠ABE=∠DAG ,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG ⊥BE ,故③正确,同法可证:△AGB ≌△CGB ,∵DF ∥CB ,∴△CBG ∽△FDG ,∴△ABG ∽△FDG ,故①正确,∵S △HDG :S △HBG =DG :BG=DF :BC=DF :CD=tan ∠FCD ,又∵∠DAG=∠FCD ,∴S △HDG :S △HBG =tan ∠FCD ,tan ∠DAG ,故④正确取AB 的中点O ,连接OD 、OH ,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O 、D 、H 三点共线时,DH 最小,DH 最小=2﹣2.无法证明DH 平分∠EHG ,故②错误,故①③④⑤正确,故选C.二、填空题:6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AB的中点,OE=5cm,则AD的长是10cm.【分析】根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD 的中位线,则AD=2OE,继而求出答案.【解答】解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABD的中位线,∴AD=2OE,∵OE=5cm,∴AD=10cm.故答案为:10.7.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E 重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.8.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为4或2.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.9. 如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为10﹣10cm.【分析】分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC 为底.分别求出PD的最小值,即可判断.【解答】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC 相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10﹣10;③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC 上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为10﹣10(cm);故答案为:10﹣1.10.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是①②③(填序号)【分析】由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.【解答】解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正确.故答案为:①②③.三、解答题:1.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6,.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.【分析】(1)由已知条件易证△AOD≌△COB,由此可得OD=OB,进而可证明四边形ABCD是平行四边形;(2)由(1)和已知条件可证明四边形ABCD是菱形,由菱形的面积公式即可得解.【解答】解:(1)∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴▱ABCD的面积=AC•BD=24.2.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS 证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.3.如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由光杆司令求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x ﹣x2=﹣(x﹣2)2+1,由二次函数的最大值求出AE的最大值为1,得出MN 的最大值=即可.【解答】(1)解:∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=;故答案为:;(2)①证明:∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②解:连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==4,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)解:设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE=x﹣x2=﹣(x﹣2)2+1,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.4.【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N 分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【分析】【探索发现】:由中位线知EF=BC、ED=AB、由=可得;【拓展应用】:由△APN∽△ABC知=,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQ•PN═﹣(x﹣)2+,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC 知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.【解答】解:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则===,故答案为:;【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴=,即=,∴PN=a﹣PQ,设PQ=x,=PQ•PN=x(a﹣x)=﹣x2+ax=﹣(x﹣)2+,则S矩形PQMN∴当PQ=时,S最大值为,矩形PQMN故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.。

备战中考数学培优(含解析)之平行四边形附答案解析

备战中考数学培优(含解析)之平行四边形附答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.【答案】(1)45°;(2)BP+DP2AP,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=12∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt△ABC中,AB=BC2,∴AC22(2)(2)2+=,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】 本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.已知:如图,在平行四边形ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连结BE ,DF .(1)求证:△DOE ≌△BOF .(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.【答案】(1)证明见解析;(2)当∠DOE =90°时,四边形BFED 为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE ≌△BOF (ASA );(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD 是平行四边形,进而利用垂直平分线的性质得出BE=ED ,即可得出答案.试题解析:(1)∵在▱ABCD 中,O 为对角线BD 的中点,∴BO=DO ,∠EDB=∠FBO ,在△EOD 和△FOB 中,∴△DOE ≌△BOF (ASA );(2)当∠DOE=90°时,四边形BFDE 为菱形,理由:∵△DOE ≌△BOF ,∴OE=OF ,又∵OB=OD ,∴四边形EBFD 是平行四边形, ∵∠EOD=90°,∴EF ⊥BD ,∴四边形BFDE 为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.3.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF ,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题4.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=3FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,DHG GHFDH GHJDH FGH∠∠⎧⎪⎨⎪∠∠⎩===,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,BI MJB MBF IM⎧⎪∠∠⎨⎪⎩===,∴△BIF≌△MJI,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC . (1)求证:△AEF ≌△DCE .(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.6.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的关系是___;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.试题解析:解:(1)FG=CE,FG∥CE;(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.7.点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系;(2)当点P 运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P 在射线OA 上运动,恰好使得∠OEF =30°时,猜想此时线段CF ,AE ,OE 之间有怎样的数量关系,直接写出结论不必证明.【答案】(1)OE =OF .理由见解析;(2)补全图形如图所示见解析,OE =OF 仍然成立;(3)CF =OE+AE 或CF =OE ﹣AE .【解析】【分析】(1)根据矩形的性质以及垂线,即可判定()AOE COF AAS ∆≅∆,得出OE =OF ; (2)先延长EO 交CF 于点G ,通过判定()AOE COG ASA ∆≅∆,得出OG =OE ,再根据Rt EFG ∆中,12OF EG =,即可得到OE =OF ; (3)根据点P 在射线OA 上运动,需要分两种情况进行讨论:当点P 在线段OA 上时,当点P 在线段OA 延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可.【详解】(1)OE =OF .理由如下:如图1.∵四边形ABCD 是矩形,∴ OA =OC .∵AE BP ⊥,CF BP ⊥,∴90AEO CFO ∠=∠=︒.∵在AOE ∆和COF ∆中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AOE COF AAS ∆≅∆,∴ OE =OF ;(2)补全图形如图2,OE =OF 仍然成立.证明如下:延长EO 交CF 于点G .∵AE BP ⊥,CF BP ⊥,∴ AE //CF ,∴EAO GCO ∠=∠.又∵点O 为AC 的中点,∴ AO =CO .在AOE ∆和COG ∆中,EAO GCO AO CO AOE COG ∠=∠⎧⎪=⎨⎪∠=⎩,∴()AOE COG ASA ∆≅∆,∴ OG =OE ,∴Rt EFG ∆中,12OF EG =,∴ OE =OF ; (3)CF =OE +AE 或CF =OE -AE . 证明如下:①如图2,当点P 在线段OA 上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,由(2)可得:OF =OG ,∴OGF ∆是等边三角形,∴ FG =OF =OE ,由(2)可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF +CG ,∴ CF =OE +AE ;②如图3,当点P 在线段OA 延长线上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,同理可得:OGF ∆是等边三角形,∴ FG =OF =OE ,同理可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF -CG ,∴ CF =OE -AE .【点睛】本题属于四边形综合题,主要考查了矩形的性质、全等三角形的性质和判定以及等边三角形的性质和判定,解决问题的关键是构建全等三角形和证明三角形全等,利用矩形的对角线互相平分得全等的边相等的条件,根据线段的和差关系使问题得以解决.8.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD ,CF BD ⊥,CF AG ∴⊥,又D 为AC 的中点, 1DF AC 2∴=, 又1BD AC 2=, BD DF ∴=,()2证明:BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC 中,222(2x)(7)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=,∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.9.如图1,若分别以△ABC 的AC 、BC 两边为边向外侧作的四边形ACDE 和BCFG 为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C =90°时,求证:△ABC 与△DCF 的面积相等.(2)引申:如果∠C ≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等;(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因为S△ABC=12 BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×12×3×4=18.(1)证明:在△ABC与△DFC中,∵{AC DCACB DCFBC FC∠∠===,∴△ABC≌△DFC.∴△ABC与△DFC的面积相等;(2)解:成立.理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE,BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴{APC DQCACP DCQAC CD∠∠∠∠===,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.∴S 阴影部分面积和=3S △ABC =3×12×3×4=18. 考点:四边形综合题10.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =.(1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数.(2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)①25;②25【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可; ②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB ,AD=AC ,∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC ,∠DAB=∠DAC+∠BAC ,∴∠EAC=∠DAB ,在△AEC和△ABD中{AE ABEAC BAD AC AD=∠=∠=∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120°,故答案为120°;(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴22EC BC-2264-∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,∴AH=1 2∴S△ABC=1 2考点:全等三角形的判定与性质;等腰三角形的性质。

《平行四边形的判定》典型例题

《平行四边形的判定》典型例题

《平行四边形的判定》典型例题例1如图,△ DAB、△ EBC、△ FAC都是等边三角形,试说明四边形AFED 是平行四边形.例2如图,E、F分别是二ABCD边AD和BC上的点,并且AE=CF,AF和BE相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由.例3如图,在平行四边形ABCD中,A i、A2、A3、A4和B i、B2、B3、B4 分别是AB 和DC的五等分点,C i、C2和D i、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD.例4已知:如图,E,F分别为一「ABCD的边CD,AB上一点,AE // CF,BE,CF 分别交CF,AE 于H,G.求证:EG=FH.例5如图,已知:四边形ABCD中,AE丄BD , CF丄BD , E, F为垂足, 且AE=CF,/ BAC=DCA.求证:四边形ABCD是平行四边形.又、;AE^P":参考答案例1分析要证四边形AFED是平行四边形,应观察:两组对边是否相等、两组对角是否相等,或一组对边是否平行且相等、对角线是否相互平分.但在本题中没有对角线,也没有明显的对角之间的关系,因此可以先考虑去证明四边形AFED的对边是否相等.事实上,AD=AB=BD,EF是否能等于这三条边中的一条呢?可以看到丄二二三丄EF=AB=BD .同理DE=AC=AF,因此,所要证的四边形AFED 是平行四边形.证明■:= = ,且召U 二丑匚二FC.•.込C 三随EC AS二EF.又丄二丄.丄厶「,同理J7 = Z'S .. AFED是平行四边形.例2分析若EF、GH互相平分,那么四边形EGFH应是平行四边形.观察已知条件,可以证明四边形EGFH是平行四边形.证明•…口二是平行四边形,.AE= FC, AH “ FG且ED 壮辄ED=BF..四边形AECF是平行四边形,•••又四边形EDFB是平行四边形,•壬三''■巴二,• ?s ' ■在四边形GEHF 中, ,•四边形GEHF是平行四边形,• EF和GH互相平分.说明:本题中多次使用了平行四边形的性质:对边平行且相等以及平行四边形的判断方法:对边平行且相等的四边形是平行四边形. 通过解题应熟悉平行四边形的性质及判别.例3 分析平行四边形ABCD被■- - 宀和一】分别成15个相等的小平行四边形。

平行四边形证明经典有详解

平行四边形证明经典有详解
4.在 中, , , , 是 中点, 于 .
(1)求 的度数.
(2)求四边形 的面积.
5.已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
6.已知:如图,E,F是▱ABCD的对角线AC上两点,且AE=CF.求证:BE=DF.
(2)求四边形ABCD的面积;
(3)设P点在线段BC上的运动时间为t秒,当P运动时,△APB可能是等腰三角形吗?如能,请求出t的值;如不能,请说明理由
27.如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.
(1)求证:DE=EF;
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6 ,AF=4 ,求AE的长.
24.如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.
(1)求证:△ABE≌△DFE;
(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.
25.(8分)如图所示在 中, 是 的延长线上一点, 与 交于点 , .
39.(1)在图1中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),请写出图中的顶点C的坐标(_________,_________).
(2)在图2中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),求出图中的标点C的坐标,并说明理由(C点坐标用含c,d,e的代数式表示).
归纳与发现
(3)通过对图1,2的观察,你会发现:图3中的平行四边形ABCD的顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则横坐标a,c,m,e之间的等量关系为_________.

中考数学模拟题汇总《平行四边形的证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的证明》专项练习(附答案解析)一、综合题1.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.2.如图,平形四边形ABCD中,E,F分别是边BC,AD的中点,∠BAC=90°(1)求证:四边形AECF是菱形;(2)若BC=4,∠B=60°,求四边形AECF的面积3.四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)如图1,求证:四边形AEFD是平行四边形;(2)如图2,若E是线段BC中点,连接AF、ED,在不添加任何辅助线和字母的情况下,请直接写出图2中面积是△ABE的面积2倍的三角形.4.如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为8√3,求AC的长.5.如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.6.如图,将▱ABCD的边DC延长到点E,使得CE=DC,连接AE,交BC于点FBC;(1)求证:BF=12(2)若∠AFC=2∠D,连接AC,BE,求证:四边形ABEC是矩形7.已知:平行四边形ABCD,过点A、C分别作AD、BC的垂线,交BD于E、F 两点,连接AF、CE.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,当点F为DE中点时,请直接写出图2中与四边形AECF面积相等的所有三角形.8.如图,四边形ABCD中,对角线相交于点O,E,F,G,H分别是AD,BD,BC,AC的中点.(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论. 9.已知如图所示,与关于点成中心对称,连接,.(1)求证:四边形是平行四边形;(2)若的面积为15 ,求四边形的面积.10.如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,F是BC延长线上的一点,且 BC.CF= 12(1)求证:DE=CF;(2)求证:BE=EF.x+3与x轴、y轴分别交于点B、A,动点C以每秒2 11.在平面直角坐标系中,直线y=12个单位长度的速度从点B向终点O运动,过点C作∠BCD=∠ABO,交直线AB于点D.设∠BDC=α°,将CD绕点C顺时针旋转α°得到线段CE,连接DE .设四边形BCED与ΔABO的重叠部分面积为S(平方单位),S>0,点C的运动时间为t秒.(1)求AB的长;(2)求证:四边形BCED是平行四边形;(3)求S与t的函数关系式,并直接写出自变量取值范围.12.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin ∠CAE的值.13.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.14.如图是边长为1的小正三角形组成的网格.(1)在网格中画出一个以AB为边的▱ABCD,使BC的长为无理数且C,D均在格点(即每个小正三角形的顶点)上.(2)针对你所画的平行四边形(不添加任何条件),请你编制一个计算题,并直接写出答案.15.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ//DB,且CQ= DP,连接AP,BQ,PQ .(1)求证:AP=BQ;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.16.如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.参考答案与解析1.【答案】(1)解:∵将△ABC 绕点C 顺时针旋转180°得到△EFC ,∴△ABC ≌△EFC ,∴CA=CE ,CB=CF ,∴四边形ABEF 是平行四边形;(2)解:当∠ABC=60°时,四边形ABEF 为矩形,理由是:∵∠ABC=60°,AB=AC ,∴△ABC 是等边三角形,∴AB=AC=BC . ∵CA=CE ,CB=CF ,∴AE=BF .∵四边形ABEF 是平行四边形,∴四边形ABEF 是矩形. 2.【答案】(1)证明:∵□ABCD , ∴BC =AD ,BC ∥AD. 又∵E ,F 分别是边BC ,AD 的中点, ∴EC = 12 BC ,AF = 12 AD , ∴ECAF ,∴四边形AECF 为平行四边形.在Rt △ABC 中,∠BAC =90°,E 是BC 边中点, ∴AE =EC ,∴四边形AECF 是菱形(2)解:如图,连接EF 交AC 于点O , 在Rt △ABC 中,∠BAC =90°,∠B =60°,BC =4, ∴AB =2,AC = 2√3 . ∵四边形AECF 是菱形, ∴AC ⊥EF ,OA =OC ,OE =OF , ∴OE 是△ABC 的中位线, ∴OE = 12 AB =1, ∴EF =2,∴S 菱形AECF = 12 AC •EF = 12 × 2√3 ×2= 2√3 3.【答案】(1)证明: ∵ 四边形 ABCD 是矩形,∴AB=DC,∠ABE=∠DCF=90°∵BE=CF∴△ABE≅△DCF(SAS)∴AE=DF,∠AEB=∠DFC∴AE//DF∴四边形AEFD是平行四边形;(2)解:有△AED,△AEF,△ADF,△EDF4.【答案】(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形;(2)解:∵∠ACB=30°,∴∠DCO=90°﹣30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=OC,设CF=x,则OC=2x,AC=4x.2,在Rt△DFC中,tan60°=AEEC∴DF=√3 x.∴OC•DF=8 √3.∴x=2.∴AC=4×2=8.5.【答案】(1)证明:∵D,E,F分别是边AB、BC、CA的中点,∴DE,EF是△ABC的中位线,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形.(2)解:∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DEF=∠DHF=∠AHF+∠AHD=70°.6.【答案】(1)证明:因为四边形ABCD是平行四边形所以AB//CD,AB=CD∵CE=DC∴AB=EC所以四边形ABEC是平行四边形,∴BF=1BC .2(2)证明:由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC 因为四边形ABCD是平行四边形,∴∠ABC=∠D∵∠AFC=2∠ADC ∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB∴FA=FE=FB=FC,∴AE=BC所以四边形ABEC是矩形.7.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠ADE=∠CBD∵EA⊥AD,EC⊥BC,∴∠EAD=∠FCB=90°,∴△EAD≌△FCB,∴EA=FC,∠AED=∠CFB∴EA//FC.∴四边形AECF是平行四边形.(2)解:∵点F为DE中点时,∴EF=FD,由(1)得△EAD≌△FCB,∴ED=BF,∴BE=DF,∴BE=EF=FD,∴S△ABE=S△AEF=S△AFD,同理可证S△BEC=S△CEF=S△CFD,∵四边形AECF是平行四边形,∴S△AEF=S△CEF,∴S△ABE=S△AEF=S△AFD = S△BEC=S△CEF=S△CFD∴正确的三角形有△ABF,△ADE,△BCF,△DCE.8.【答案】(1)解:通过G、H分别为BC、AC中点,可以推出EF∥AB,进而求出EF∥GH.(2)解:∵E、F分别是AD,BD的中点,G、F分别是BC,AC的中点,∴EF=12AB,FG=12CD,∵AB=CD,∴EF=FG,∴平行四边形EFGH是菱形9.【答案】(1)证明:∵与关于点成中心对称,∴即四边形的对角线互相平分,∴四边形是平行四边形.(2)解:记底边上的高为h,那么平行四边形ABCD底边AB上的为2h,因为的面积为15,所以,所以2ABh=60,所以平行四边形ABCD的面积为60 .10.【答案】(1)证明:∵D,E分别为AB,AC的中点,∴DE为中位线,∴DE∥BC,且DE= 12BC,又∵CF= 12BC,∴DE=CF(2)证明:连接DC,由(1)可得DE∥CF,且DE=CF,∴四边形DCFE为平行四边形,∴EF=DC,∵AB=AC,且DE为中位线,∴四边形DBCE为等腰梯形,又∵DC,BE为等腰梯形DBCE的对角线,∴DC=BE,∴BE=EF.x+3与x轴、y轴分别交于点B、A 11.【答案】(1)解:∵直线y=12∴A(0,3),B(−6,0)∴OA=3,OB=6∴AB=3√5(2)解:∵∠DBC=∠DCB∴DB=DC由旋转知CD=CE,∠BDC=∠DCE∴BD∥CE,BD=CE∴四边形ABCD是平行四边形x+3与x轴、y轴分别交于点B、A(3)解:∵直线y=12∴A(0,3),B(−6,0)∴tan∠ABO=12过点D作DH⊥BC于点HBC=t∵BD=CD∴BH=12t∴DH=tan∠DBH⋅BH=12t=t2∴当0<t≤2时s=2t⋅12当2<t≤3时∵OM=12t∴AM=3−12t∵DE∥OB∴∠ADE=∠ABC∴tan∠ADE=tan∠ABC=12∴AMDM =3−12tDM=12∴DM=6−t∴EM=2t−(6−t)=3t−6∵平行四边形ABCD∴∠ABC=∠E∴tan∠E=tan∠ABC=12∴NM=tan∠E⋅ME=32t−3∴SΔMNE=12×12(3t−6)2=94t2−9t+9∴S=−54t2+9t−9∴S={t2(0<t≤2)−54t2+9t−9(2<t≤3)12.【答案】(1)证明:连接OD与BD.∵△BDC是Rt△,且E为BC中点,∴∠EDB=∠EBD.又∵OD=OB且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE是⊙O的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED是平行四边形,则DE∥AB,D为AC中点,又∵BD⊥AC,∴△ABC为等腰直角三角形.∴∠CAB=45°.过E作EH⊥AC于H,设BC=2k,则EH= √22K,AE=√5K,∴sin∠CAE= EHAE =√1010.13.【答案】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形(2)1;214.【答案】(1)解:画出其中一个即可.(2)解:问题:求CD的长;求∠ABC的度数或∠BAD的度数;求BC的长等.求平行四边形ABCD的面积或周长;求AB,CD之间的距离或AD,BC之间的距离;求某个锐角的三角函数值等.图1中,CD=1,∠ABC=30°,BC=√3,周长=2+2√3,AB,CD之间的距离为√32,面积=√32.图2中,CD=1,∠ABC=30°,BC=√3,周长=2+2√3,AB,CD之间的距离为√3,面积=√3 .图3与图4中,CD=1,BC=√7,周长=2+2√7,AB,CD之间的距离为3√32,面积=3√32.图3中,tan∠ABC=3√3,sin∠ABC=314√21,cos∠ABC=114√7 .15.【答案】(1)证明:∵CQ//DB,CQ=DP ∴四边形DCQP是平行四边形∴PQ//CD,PQ=CD∵四边形ABCD是平行四边形∴AB//CD,AB=CD∴AB//PQ,AB=PQ∴四边形ABQP是平行四边形∴AP=BQ(2)证明:∵CQ//DB∴∠DBQ+∠BQC=180°∵∠ABP+∠BQC=180°∴∠ABP=∠QBP由(1)知:四边形ABQP是平行四边形,AB//PQ∴∠ABP=∠QPB∴∠QBP=∠QPB∴BQ=PQ∴四边形ABQP为菱形16.【答案】(1)证明:∵在梯形ABCD中,AB=DC,∴∠B=∠C.∵GF=GC,∴∠C=∠GFC,∴∠B=∠GFC∴AB∥GF,即AE∥GF.∵AE=GF,∴四边形AEFG是平行四边形(2)证明:∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.。

专题8 平行四边形的性质及应用

专题8  平行四边形的性质及应用

专题8 平行四边形的性质及应用知识要点1.平行四边形的定义:两组对边分别平行的四边形是平行四边形.(注意定义的双向性)2.平行四边形的性质,如图8-1所示.3.证明平行四边形的边、角、对角线的性质时,我们常用的策略是构造全等三角形.4.平行四边形与等腰三角形的知识联系,如图8-2所示.典例精析例1如图8-3,在□ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长度是多少?【分析】通过平行四边形与平分线的条件,可以找到题中的“知二得一”,利用这个结论即可证明.【解】∵四边形ABCD是平行四边形,∴AB=CD=4 cm,BC=AD=7 cm.∴AB∥CD.∴∠ABF=∠F.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠FBC=∠F.∴BC=CF=7cm.∴DF=CF -CD=3 cm.【点评】角平分线,平行线与等腰三角形的“知二得一”是非常重要的基本图形,是解决很多带有这种模型的关键突破口.我们要能在各种背景下识别这样的基本图形.拓展与变式1如图8-4,四边形ABCD是平行四边形,AE=3,BE平分∠ABC且交AD于点E,DF∥BE且交BC于点F.求CD+CF的长.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC.∵BE平分∠ABC,∴∠ABE=∠EBC=∠AEB.∴AB=AE=3,CD=3.∵BE∥DF,∴四边形EBFD是平行四边形.∴ED=BF.∴CF=AE=3.∴CD+CF=6.拓展与变式2 如图8-5,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB 的中点,AB=6,BC=4,则AE∶EF∶FB为().A.1∶2∶3 B.2∶1∶3 C.3∶2∶1 D.3∶1∶2解:B【反思】正确识别和应用基本图形是提高解题效率的基本能力要求.例2□ABCD的对角线AC,BD相交于点O,且AC+BD=34,AB=11,求△OCD 的周长.【分析】本题没有图形,我们要根据题意先将图形画出来,再利用平行四边形的对角线互相平分来解决问题.【解】如图8-6,∵四边形ABCD是平行四边形,∴OC=12AC,OD=12BD.∴OC+OD=12(AC+BD)=17.∵CD=AB=11,∴△OCD的周长为OC+OD+CD=28.【点评】根据题意画出正确的图形是三种语言转化的基本要求,而平行四边形的对角线互相平分的性质又是在遇到平行四边形带有对角线时的首要解题策略.拓展与变式3 □ABCD的顶点A,C在□DEBF的对角线EF上.求证:AE=CF.证明:如图D8-1,连接BD交AC于点O.∵四边形ABCD是平行四边形,∴AO=CO.∵四边形DEBF是平行四边形,∴EO=FO.∴EO-AO=FO-CO.∴AE=CF.拓展与变式4□ABCD的周长为26 cm,AC与BD相交于点O,△AOB的周长比△OBC的周长大4 cm,那么AB等于___________.解:8.5 cm拓展与变式5如图8-7,在周长是12 cm的□ABCD中,AB≠AD,AC与BD相交于点O,点E在AD边上,且OE⊥BD,则△ABE的周长是___________.解:6 cm【反思】灵活运用平行四边形的对角线互相平分的性质对于更好地理解平行四边形的性质是很重要的.例3在□ABCD中,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F.若AD=11,EF=5,则AB的长为多少?【分析】本题依然需要根据题意画出图形,但这里点E和点F的顺序不能确定,所以本题要分类讨论.【解】分两种情况讨论:①如图8-8,当AE与DF相交时,在□ABCD中,BC∥AD,∴∠DAE=∠AEB,∠ADF=∠CFD.∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF.∴∠BAE=∠AEB,∠CFD=∠CDF.∴AB=BE,CF=CD.∴BE=AB=CD=CF.∵EF=5,BC=AD=11,∴BC=BE+CF-EF=2AB-EF=2AB-5=11.∴AB=8.②如图8-9,当AE与DF不相交时,同理可得BC=BE+CF+EF=2AB+EF=2AB+5=11,∴AB=3.【点评】分类讨论是重要的思想方法,而在题目没有给出确定的图形时,一定要有分类讨论的意识,才能正确并完整地解决问题.拓展与变式6若以A(-2,0),B(1,0),C(0,1)三点为顶点画平行四边形,那么第四个顶点不可能在第________象限.解:四拓展与变式7在面积为15的□ABCD中,过点A作AE垂直BC于点E,作AF垂直CD于点F.若AB=5,BC=6,求CE+CF的长.解:①如图D8-2,当∠BAD是钝角时,∵AE⊥BC,AF⊥CD,∴S□ABCD=AE·BC=15.∴AE=2.5.同理AF=3.∵∠AEB=90°,∴BE DF∵>56,∴DF>DC,BE<BC.∴点E在BC上,点F在DC延长线上.∴CE+CF=BC-BE+DF-DC.∴CE+CF=1.②如图D8-3,当∠BAD为锐角时,同①理,BE DF=,点E,F均在□ABCD的外部,∴CE+CF=CB+BE+CD+DF.∴CE+CF=11.综上所述,CE+CF的长为111.【反思】分类讨论是贯穿于数学学习的重要思想方法,我们在解决需要自行画图的问题时,应特别注意这种思想方法的应用.专题突破1.如图8-10,在□ABCD中,已知AD=8 cm,AB=6 cm,DE平分∠ADC交BC边于点E,则BE等于____________.解:2 cm2.如图8-11,在□ABCD中,点O是对角线AC,BD的交点,AC⊥BC,且AB=10 cm,AD=6 cm,则AO=__________cm.解:43.如图8-12,在□ABCD中,对角线AC和BD交于点O.若AC=8,AB=6,BD =m,那么m的取值范围是________________.解:4<m<204.BD为□ABCD的对角线,O为BD的中点,EF⊥BD于点O,与AD,BC分别交于点E,F.求证:DE=DF.证明:如图D8-4,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠EDO=∠FBO.∵O为BD的中点,∴OB=OD.∴∠EOD=∠FOB,∴△EOD≌△FOB.∴EO=FO.又EF⊥BD,∴DE=DF.5.已知□ABCD的对角线AC与BD相交于点O,∠AOB=120°,AC=6.当△ADC是直角三角形时,求AD的长.解:分三种情况讨论:①如图D8-5,当∠CAD=90°时,若A在C上方,∵四边形ABCD是平行四边形,∴AO=12AC=3.∵∠AOB=120°,∴∠ADO=30°.∴OD=2AO=6.∴AD.②如图D8-6,当∠ACD=90°时,若A在C下方,同理可以求出CD=,∴AD③如图D8-7,当∠ADC=90°时,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠ADC+∠BCD=180°,∴∠ADC=∠BCD.∵CD=CD,∴△BCD≌△ADC.∴BD=AC.∴AO=OC=OB=OD.∴∠ACD=30°.∴AD=12AC=3.综上所述,AD的长是或3.。

平行四边形经典证明题例题讲解

平行四边形经典证明题例题讲解

经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴ 又∵∴∴∥即得是平行四边形∴ ∴四边形的周长解法二:连接∵∴又∵ ∴≌∴ ∴四边形的周长解法三:连接∵∴又∵ ∴∴∥即是平行四边形∴ ∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC AB CD ∥DCA BAC ∠=∠B DAC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FADCBAD CBAD CB解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△ DM AE ∴= AE EP = DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥ABDEFCA DCBEBCEDA F PF∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。

判定平行四边形的五种方法

判定平行四边形的五种方法

判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明.一、运用“两条对角线互相平分的四边形是平行四边形”判别例1 如图1,在平行四边形ABCD中,E、F 在对角线AC上,且AE=CF,试说明四边形DEBF 是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD.解:连接BD交AC于点O.因为四边形ABCD是平行四边形,所以AO=CO,BO=DO. 又AE=CF,所以AO-AE=CO-CF,即EO=FO.所以四边形DEBF是平行四边形.二、运用“两组对边分别相等的四边形是平行四边形”判别例2 如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,图1AB C DEF并说明理由.分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别.解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC=1,所以四边形ABCF是平行四边形.同样可知四边形FCDE、四边形ACDF都是平行四四边形.因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形.三、运用“一组对边平行且相等的四边形是平行四边形”判别例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形.分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判图3别平行四边形所需的“一组对边平行且相等”的条件.解:因为DF∥BE,所以∠AFD=∠CEB.因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF=BE,所以△ADF≌△CBE,所以AD=BC,∠DAF=∠BCE,所以AD∥BC.所以四边形ABCD是平行四边形.四、运用“两组对边分别平行的四边形是平行四边形”判别例 4 如图4,在平行四边形ABCD中,∠DAB、∠BCD的平分线分别交BC、AD边于点E、F,则四边形AECF是平行四边形吗?为什么?分析:由平行四边形的性质易得AF∥EC,又题目中给出的是有关角的条件,借助角的条件可得到平行线,故本题应考虑运用“两组对边分别平行的四边形是平行四边形”进行判别.解:四边形AECF是平行四边形.AB CDEF图41 32理由:因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠DAB=∠BCD ,所以AF ∥EC.又因为∠1=21∠DAB ,∠2=21∠BCD ,所以∠1=∠2.因为AD ∥BC ,所以∠2=∠3, 所以∠1=∠3,所以AE ∥CF.所以四边形AECF 是平行四边形.判定平行四边形的五种方法平行四边形的判定方法有:(1)证两组对边分别平行;(2)证两组对边分别相等;(3)证一组对边平行且相等;(4)证对角线互相平分;(5)证两组对角分别相等。

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC中, ∠ACB=90°, BC的垂直平分线DE交BC于D, 交AB于E, F在DE上, 并且AF=CE.(1)求证: 四边形ACEF是平行四边形;(2)当∠B满足什么条件时, 四边形ACEF是菱形?请回答并证明你的结论.2.(2019•福建模拟)已知: 如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.求证: 四边形BCFE是菱形.3.(2019•深圳一模)如图, 四边形ABCD中, AB∥CD, AC平分∠BAD, CE∥AD交AB于E.(1)求证: 四边形AECD是菱形;(2)若点E是AB的中点, 试判断△ABC的形状, 并说明理由.4.(2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证: EB=EC.5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α, 且cosα= , AB=4, 则AC的长为多少?6. (2019春•宿城区校级月考)如图, 四边形ABCD是矩形, 对角线AC、BD相交于点O, BE ∥AC交DC的延长线于点E. 求证:BD=BE.7.(2019•雅安)如图:在▱ABCD中, AC为其对角线, 过点D作AC的平行线及BC的延长线交于E.(1)求证: △ABC≌△DCE;(2)若AC=BC, 求证: 四边形ACED为菱形.8.(2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)若BC=8, AC=6, 求四边形ABCF的周长.9.(2019•遂宁)已知:如图, 在矩形ABCD中, 对角线AC、BD相交于点O, E是CD中点, 连结OE.过点C作CF∥BD交线段OE的延长线于点F, 连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10. (2019•宁德)如图, 在梯形ABCD中, AD∥BC, 点E是BC的中点, 连接AC, DE, AC=AB, DE∥AB. 求证: 四边形AECD是矩形.11. (2019•钦州)如图, 在正方形ABCD中, E、F分别是AB、BC上的点, 且AE=BF. 求证:CE=DF.12.(2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E 作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;(2)当AB=2时, 求BE2的值.13.(2019•吴中区一模)已知:如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF;(2)若AE垂直平分BC, AF垂直平分CD, 求证: △AEF为等边三角形.14. (2019•新乡一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形, 点C在AF上, 点E, G分别在BC, CD上, 若∠BAD=135°, ∠EAG=75°, AE=100cm, 求菱形ABCD的边长.15. (2019•槐荫区三模)如图, 菱形ABCD的边长为1, ∠D=120°. 求对角线AC的长.16. (2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm, AE ⊥BC于点E, 求AE的长.17.(2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC、FC(1)求证: EC=FC;(2)若AE=2, ∠A=60°, 求△AEF的周长.18.(2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证: 四边形ADEF是菱形.19. (2019春•防城区期末)如图, 已知四边形ABCD是平行四边形, DE⊥AB, DF⊥BC, 垂足分别是为E, F, 并且DE=DF. 求证:四边形ABCD是菱形.20.(2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH的面积.21.(2019•顺义区二模)如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 过点C 作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若CE=4, ∠BCF=120°, 求菱形BCFE的面积.22.(2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE∥AC, CE∥BD.(1)求证: 四边形OCED是菱形.(2)若AB=6, BC=8, 求四边形OCED的周长.23. (2019•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点, 且AD=DE, 连结BE交CD于点O, 求证:△AOD≌△BOC.24.(2019•东海县二模)已知:如图, 在正方形ABCD中, 点E、F在对角线BD上, 且BF=DE, (1)求证: 四边形AECF是菱形;(2)若AB=2, BF=1, 求四边形AECF的面积.25.(2019•玉溪模拟)如图, 正方形ABCD的边CD在正方形ECGF的边CE上, 连接BE、DG.求证: BE=DG.26.(2019•工业园区一模)已知:如图正方形ABCD中, E为CD边上一点, F为BC延长线上一点, 且CE=CF(1)求证: △BCE≌△DCF;(2)若∠FDC=30°, 求∠BEF的度数.27.(2019•深圳模拟)四边形ABCD是正方形, E、F分别是DC和CB的延长线上的点, 且DE=BF, 连接AE、AF、EF.(1)求证: △ADE≌△ABF;(2)若BC=8, DE=6, 求△AEF的面积.28. (2019•碑林区校级模拟)在正方形ABCD中, AC为对角线, E为AC上一点, 连接EB、ED. 求证:∠BEC=∠DEC.29.(2019•温州一模)如图, AB是CD的垂直平分线, 交CD于点M, 过点M作ME⊥A C, MF ⊥AD, 垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°, 求证: 四边形AEMF是正方形.30.(2019•湖里区模拟)已知:如图, △ABC 中, ∠ABC=90°, BD 是∠ABC 的平分线, DE⊥AB 于点E, DF ⊥BC 于点F .求证:四边形DEBF 是正方形.初中数学 特殊平行四边形的证明参考答案及试题解析一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC 中, ∠ACB=90°, BC 的垂直平分线DE 交BC 于D, 交AB 于E, F 在DE 上, 并且AF=CE .(1)求证: 四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF是菱形?请回答并证明你的菱形的判定;线段垂直平分线的性质;平行四边形的判定. 菁优网版权所有结论.考点:考点:专题:证明题.(1)ED是BC的垂直平分线, 根据中垂线的性质: 中垂线上的分析:点线段两个端点的距离相等, 则EB=EC, 故有∠3=∠4, 在直角三角形ACB中, ∠2及∠4互余, ∠1及∠3互余, 则可得到AE=CE, 从而证得△ACE和△EFA都是等腰三角形, 又因为FD⊥BC, AC⊥BC, 所以AC∥FE, 再根据内错角相等得到AF∥CE, 故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形, 当∠1=60°时△ACE是等边三角形, 有AC=EC, 有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解: (1)∵ED是BC的垂直平分线解答:∴EB=EC, ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2及∠4互余, ∠1及∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时, 四边形ACEF是菱形. 证明如下: ∵∠B=30°, ∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解, 有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2. (2019•福建模拟)已知: 如图, 在△ABC中, D.E分别是AB.AC 的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.菱形的判定. 菁优网版权所有求证:四边形BCFE是菱形.考点:考点:专题:证明题.分析:由题意易得, EF 及BC 平行且相等, ∴四边形BCFE 是平行四边形.又EF=BE, ∴四边形BCFE 是菱形.解答: 解: ∵BE=2DE, EF=BE,∴EF=2DE. (1分)∵D.E 分别是AB.AC 的中点,∴BC=2DE 且DE ∥BC. (2分)∴EF=BC. (3分)又EF ∥BC,∴四边形BCFE 是平行四边形. (4分)又EF=BE,∴四边形BCFE 是菱形. (5分)∴四边形BCFE 是菱形.(5分)点评: 此题主要考查菱形的判定, 综合利用了平行四边形的性质和判定.3. (2019•深圳一模)如图, 四边形ABCD 中, AB ∥CD, AC 平分∠BAD, CE ∥AD 交AB 于E.(1)求证: 四边形AECD 是菱形;菱形的判定及性质. 菁优网版权所有(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:考点:几何图形问题.专题:(1)利用两组对边平行可得该四边形是平行四边形, 进而证明分析:一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等, 进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.解: (1)∵AB∥CD, CE∥AD,解答:∴四边形AECD为平行四边形, ∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由: ∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定及性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4. (2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证:矩形的性质;全等三角形的判定及性质. 菁优网版权所有EB=EC.考点:考点:专题: 证明题.分析: 利用矩形的性质结合全等三角形的判定及性质得出△ABE ≌△DCE(SAS), 即可得出答案.解答: 证明: ∵四边形ABCD是矩形,∴AB=DC, ∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.∴EB=EC.点评: 此题主要考查了全等三角形的判定及性质以及矩形的性质, 得出△ABE≌△DCE是解题关键.矩形的性质. 菁优网版权所有5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α,且cosα= ,AB=4, 则AC的长为多少?考点:分析: 根据等角的余角相等, 得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答: 解: ∵四边形ABCD是矩形,∴∠ABC=90°, AD∥BC,∴∠EAD=∠ACB,∵在△ABC及△AED中,∵DE⊥AC于E, ∠ABC=90°∴∠BAC=∠ADE=α.∴cos∠BAC=cosα= ,∴AC= = .∴AC==.点评: 此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.矩形的性质;平行四边形的判定及性质. 菁优网版权所有6.(2019春•宿城区校级月图, 四边形ABCD是矩形, 对角线AC.BD相交于点O,BE∥AC交DC的延长线于点E. 求证:BD=BE.考点:考点:专题: 证明题.分析: 根据矩形的对角线相等可得AC=BD, 对边平行可得AB∥CD,再求出四边形ABEC 是平行四边形, 根据平行四边形的对边相等可得AC=BE, 从而得证.解答: 证明: ∵四边形ABCD 是矩形,∴AC=BD, AB ∥CD,又∵BE ∥AC,∴四边形ABEC 是平行四边形,∴AC=BE,∴BD=BE.∴BD=BE.点评: 本题考查了矩形的性质, 平行四边形的判定及性质, 熟记各性质并求出四边形ABEC 是平行四边形是解题的关键.7. (2019•雅安)如图: 在▱ABCD 中, AC 为其对角线, 过点D 作AC 的平行线及BC 的延长线交于E.(1)求证: △ABC ≌△DCE ;(2)若AC=BC, 求证:四边形ACED为菱菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形.考点:考点:专题: 证明题.分析: (1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形, 然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答: 证明: (1)∵四边形ABCD为平行四边形,∴AB∥CD, AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC及△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评: 本题考查了菱形的判定等知识, 解题的关键是熟练掌握菱形的判定定理, 难度不大.8. (2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)菱形的判定及性质;旋转的性质. 菁优网版权所有若BC=8,AC=6,求四边形ABCF的周长.考点:考点:几何综合题.专题:(1)根据旋转可得AE=CE, DE=EF, 可判定四边形ADCF是平行分析:四边形, 然后证明DF⊥AC, 可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长, 再根据中点定义可得AD=5, 根据菱形的性质可得AF=FC=AD=5, 进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(1)证明: ∵将△ADE绕点E旋转180°得到△CFE,解答:∴AE=CE, DE=EF,∴四边形ADCF是平行四边形,∵D.E分别为AB, AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解: 在Rt△ABC中, BC=8, AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.∴四边形ABCF的周长为8+10+5+5=28.此题主要考查了菱形的判定及性质, 关键是掌握菱形四边相点评:等, 对角线互相垂直的平行四边形是菱形.9. (2019•遂宁)已知: 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, E是CD中点, 连结OE. 过点C作CF∥BD交线段OE的延长线于点F, 连结DF. 求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形. 考点: 考点:矩形的性质;全等三角形的判定及性质;菱形的判定. 菁优网版权所有专题: 证明题.分析: (1)根据两直线平行, 内错角相等可得∠ODE=∠FCE, 根据线段中点的定义可得CE=DE, 然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC, 再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形, 根据矩形的对角线互相平分且相等可得OC=OD, 然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.解答: 证明: (1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中, OC=OD,∴四边形ODFC是菱形.∴四边形ODFC是菱形.点评: 本题考查了矩形的性质, 全等三角形的判定及性质, 菱形的判定, 熟记各性质及平行四边形和菱形的判定方法是解题的关键.10.矩形的判定. 菁优网版权所有(2019•宁德)如图, 在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.考点:考点:专题: 证明题.分析: 先判断四边形AECD为平行四边形, 然后由∠AEC=90°即可判断出四边形AECD是矩形.解答: 证明: ∵AD∥BC, DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC, 点E是BC的中点,∴AE⊥BC, 即∠AEC=90°.∴▱AECD是矩形.∴▱AECD是矩形.点评: 本题考查了梯形和矩形的判定, 难度适中, 解题关键是掌握平行四边形和矩形的判定定理.正方形的性质;全等三角形的判定及性质. 菁优网版权所有11.(2019•钦州)如图,在正方形ABCD中, E、F分别是AB.BC上的点, 且AE=BF.求证:CE=DF.考点:考点:专题: 证明题.分析: 根据正方形的性质可得AB=BC=CD, ∠B=∠BCD=90°, 然后求出BE=CF, 再利用“边角边”证明△BCE和△CDF全等, 根据全等三角形对应边相等证明即可.解答: 证明: 在正方形ABCD中, AB=BC=CD, ∠B=∠BCD=90°, ∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.∴CE=DF.点评: 本题考查了正方形的性质, 全等三角形的判定及性质, 熟记性质并确定出三角形全等的条件是解题的关键.12. (2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;正方形的性质;角平分线的性质;勾股定理. 菁优网版权所有(2)当AB=2时,求BE2的值.考点:考点:(1)连接CF, 根据“HL”证明Rt△CDF和Rt△CEF全等, 根分析:据全等三角形对应边相等可得DF=EF, 根据正方形的对角线平分一组对角可得∠EAF=45°, 求出△AEF是等腰直角三角形, 再根据等腰直角三角形的性质可得AE=EF, 然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC, 然后求出AE, 过点E作EH⊥AB于H, 判断出△AEH是等腰直角三角形, 然后求出EH=AH= AE, 再求出BH, 然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH= AE,再求出BH,然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.(1)证明: 如图, 连接CF,解答:在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解: ∵AB=2,∴AC= AB=2 ,∵CE=CD,∴AE=2 ﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH= AE= ×(2 ﹣2)=2﹣,∴BH=2﹣(2﹣)= ,在Rt△BEH中, BE2=BH2+EH2=()2+(2﹣)2=8﹣4 .本题考查了正方形的性质, 全等三角形的判定及性质, 等腰直点评:角三角形的判定及性质, 勾股定理的应用, 作辅助线构造出全等三角形和直角三角形是解题的关键.13. (2019•吴中区一模)已知: 如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF ;(2)若AE 垂直平分BC, AF 垂直平分CD, 求证:△AEF 为等边三角形.考点:考点:菱形的性质;全等三角形的判定及性质;等边三角形的判定. 菁优网版权所有专题:证明题. 分析:(1)首先利用菱形的性质得出AB=AD, ∠B=∠D, 进而得出△ABE ≌△ADF (ASA ), 即可得出答案;(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形, 进而得出∠EAF=∠CAE+∠CAF=60°, 求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.解答: (1)证明: ∵四边形ABCD 是菱形,∴AB=AD, ∠B=∠D,又∵∠BAF=∠DAE,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解: 连接AC,∵AE垂直平分BC, AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形,∴∠CAE=∠BAE=30°, ∠CAF=∠DAF=30°,∴∠EAF=∠CAE+∠CAF=60°,又∵AE=AF,∴△AEF是等边三角形.点评: 此题主要考查了等边三角形的判定及性质以及全等三角形的判定及性质等知识, 熟练掌握全等三角形的判定方法是解题关键.14. (2019•新乡菱形的性质. 菁优网版权所有一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形,点C在AF上, 点E, G分别在BC,CD上, 若∠BAD=135°, ∠EAG=75°,AE=100cm, 求菱形ABCD的边长.考点:考点:分析: 根据菱形的性质可得出∠BAE=30°, ∠B=45°, 过点E作EM⊥AB于点M, 设EM=x, 则可得出AB、AE的长度, 继而可得出的值, 求出AB即可.解答: 解: ∵∠BAD=135°, ∠EAG=75°, 四边形ABCD及四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°, ∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M, 设EM=x,在Rt△AEM中, AE=2EM=2x, AM= x,在Rt△BEM中, BM=x,则= = ,∵AE=100cm, ∴AB=50(+1)cm,∴菱形ABCD的边长为:50(+1)cm.点评: 本题考查了菱形的性质及解直角三角形的知识, 属于基础题, 关键是掌握菱形的对角线平分一组对角.15. (2019菱形的性质. 菁优网版权所有•槐荫区三模)如图,菱形ABCD的边长为1, ∠D=120°.求对角线AC的长.考点:考点:分析: 连接BD及AC交于点O, 根据菱形的性质可得AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD, 然后判断出△ABD是等边三角形, 根据等边三角形的性质求出AO, 再根据AC=2AO计算即可得解.解答: 解: 如图, 连接BD及AC交于点O,∵四边形ABCD是菱形,∴AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形,∴AO=AD×sin∠ADB= ,∴AC=2AO= .点评: 本题考查了菱形的性质, 等边三角形的判定及性质, 熟记性质并作辅助线构造出等边三角形是解题的关键.16.菱形的性质;勾股定理. 菁优网版权所有(2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E, 求AE的长.考点:分析: 根据菱形的对角线互相垂直平分求出CO、BO, 再利用勾股定理列式求出BC, 然后利用菱形的面积等于底乘以高和对角线乘积的一半列出方程求解即可.解答: 解: ∵四边形ABCD是菱形,∴CO= AC=3cm, BO= BD=4cm, AO⊥BO,∴BC= = =5cm,∴S菱形ABCD= =BC•AE,即×6×8=5•AE,解得AE= cm.答:AE的长是cm.答: AE的长是cm.答:AE 的长是cm.点评: 本题考查了菱形的性质, 勾股定理, 熟记菱形的对角线互相垂直平分是解题的关键, 难点在于利用菱形的面积列出方程.17. (2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC.FC(1)求证: EC=FC;(2)若菱形的性质;全等三角形的判定及性质. 菁优网版权所有∠A=60°,求△AEF的周长.考点:考点:分析: (1)连接AC, 根据菱形的对角线平分一组对角可得∠CAE=∠CAF, 然后利用“边角边”证明△ACE和△ACF全等, 根据全等三角形对应边相等可得EC=FC;(2)判断出△AEF是等边三角形, 然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.解答: (1)证明: 如图, 连接AC,∵四边形ABCD是菱形,∴∠CAE=∠CAF,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS),∴EC=FC;(2)解: 连接EF,∵AE=AF, ∠A=60°,∴△AEF是等边三角形,∴△AEF的周长=3AE=3×2=6.点评: 本题考查了菱形的性质, 全等三角形的判定及性质, 等边三角形的判定及性质, 熟记各性质并作出辅助线是解题的关键.18. (2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证:菱形的判定;三角形中位线定理. 菁优网版权所有四边形ADEF是菱形.考点:专题: 证明题.分析: 利用三角形中位线的性质得出DE AC, EF AB, 进而得出四边形ADEF 为平行四边形., 再利用DE=EF 即可得出答案.解答: 证明: ∵D.E 、F 分别是△ABC 三边的中点,∴DE AC, EF AB,∴四边形ADEF 为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF 为菱形.∴四边形ADEF 为菱形.点评: 此题主要考查了三角形中位线的性质以及平行四边形的判定和菱形的判定等知识, 熟练掌握菱形判定定理是解题关键.19. (2019春•防城区期末)如图, 已菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形ABCD是平行四边形, DE⊥AB,DF⊥BC, 垂足分别是为E, F,并且DE=DF.求证:四边形ABCD是菱形.考点:考点:专题: 证明题.分析: 首先利用已知条件和平行四边形的性质判定△ADE≌△CDF, 再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.解答: 证明: 在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB, DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.∴平行四边形ABCD是菱形.点评: 本题考查了平行四边形的性质, 全等三角形的判定和性质以及菱形的判定方法, 解题的关键是熟练掌握各种图形的判定和性质.20. (2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH 的面积.考点:考点:菱形的判定及性质;正方形的判定及性质;中点四边形. 菁优网版权所有分析: (1)利用三角形的中位线定理可以证得四边形EGFH 的四边相等, 即可证得;(2)根据平行线的性质可以证得∠GFH=90°, 得到菱形EGFH 是正方形, 利用三角形的中位线定理求得GE 的长, 则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.解答: (1)证明: ∵四边形ABCD中, E、F、G、H分别是AD.BC.BD.AC 的中点,∴FG= CD, HE= CD, FH= AB, GE= AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解: ∵四边形ABCD中, G、F、H分别是BD.BC.AC的中点,∴GF∥DC, HF∥AB.∴∠GFB=∠DCB, ∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG= AB= .∴正方形EGFH的面积=()2= .点评: 本题考查了三角形的中位线定理, 菱形的判定以及正方形的判定, 理解三角形的中位线定理是关键.21. (2019•顺义区二模)如图, 在△ABC中, D.E分别是AB.AC的中点, BE=2DE, 过点C作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若菱形的判定及性质. 菁优网版权所有CE=4, ∠BCF=120°,求菱形BCFE的面积.考点:考点:分析: (1)由题意易得, EF及BC平行且相等, 故四边形BCFE 是平行四边形. 又麟边EF=BE, 则四边形BCFE是菱形;(2)连结BF, 交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度, 则BF=2BO.利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O. 利用菱形的性质和等边三角形的判定推知△BCE是等边三角形. 通过解直角△BOC求得BO的长度,则BF=2BO. 利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE•BF进行解答.解答: (1)证明: ∵D.E分别是AB.AC的中点,∴DE∥BC, BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE, BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解: 连结BF, 交CE于点O.∵四边形BCFE是菱形, ∠BCF=120°,∴∠BCE=∠FCE=60°, BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评: 此题主要考查菱形的性质和判定以及面积的计算, 使学生能够灵活运用菱形知识解决有关问题.22. (2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE ∥AC, CE∥BD.矩形的性质;菱形的判定. 菁优网版权所有(1)求证: 四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.考点:考点:分析: (1)根据矩形性质求出OC=OD, 根据平行四边形的判定得出四边形OCED是平行四边形, 根据菱形判定推出即可;(2)根据勾股定理求出AC, 求出OC, 得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.解答: (1)证明: ∵四边形ABCD是矩形,∴AC=2OC, BD=2OD, AC=BD,∴OD=OC,∵DE∥AC, CE∥BD,∴四边形OCED是菱形.(2)解: ∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6, BC=8,∴在Rt△ABC中, 由勾股定理得: AC=10,即OC= AC=5,∵四边形OCED是菱形,∴OC=OD=DE=CE=5,∴四边形OCED的周长是5+5+5+5=20.∴四边形OCED的周长是5+5+5+5=20.。

如何利用平行四边形的性质与判定解(证)题

如何利用平行四边形的性质与判定解(证)题

A日 , 口


. .
图3
解: 如图 3 , 由点 c作 C E / / A B交 A D于 ,

1 < < 4 .
乙A七 LB =1 8 0 。 o  ̄ o AD f BC,

故答 案 为 : 1 < <4 .
图5
・ .
四边 形 BC E是 平 行 四边 形 .
平行 四边形是一类特殊的四边形 ,它的 特殊性体现在对边相等、对角相等、邻角互 补、 对 角 线 互 相 平分 , 因此 , 由平 行 四边 形 可 以得到很多的相等线 i 段 -、 相等角. 同学们要学 会 用对 比的方法 区分 平行 四边形 的判 定 定理 和性 质定 理 ,正确地 运用 相关 的定 理解 决 相
‘ . . ’
. .


‘ .


DB:DC , . 厶 DBC_ - DCB=6 5 o, CE J - 曰D , 。 ‘ . CEB=9 0。 , 厶 BCE=9 o o 一/ E BC=9 0 o -6 5 。 =2 5 。

‘ .



 ̄DF =3 0。 .. ’ . A CDF =3 0。 . BFJ - AD, , BF=1 4 , . ‘ . AB=2 BF=28 . ‘ = C’ . . . / C=3 0 。 BE 上 CD, BE=8, . ’ . BC=2 BE=1 6.
4 . 求线段的取值范围 例 4 如图 5 ,在 平 行 四边 形 A B C D中, 对角线 A C 、 B D交 于 O点 , AC = 6 , B D = I O , E、 F C= 1 5 0  ̄ , 求A D 的长. 图2 分 别 是 、 D 曰的 中点 , 设E F的长 为 , 则 分析 : 要求A D的长度 , 需要 借 助 辅 助 线 把 — . 问题 进 行 转 化 , 由 厶 4和 的 关 系 可 以判 定 的取值范围是 — 解: ・ . ‘ 在平行 四边形 A B C D 中 ,对 角 线 A D/ / B C , 过 点 c作 A 日的平 行 线 , 就 构成 一 个 AC、 B D 交于 D点 , AC = 6 , B D=1 0 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于平行四边形的证明题例析
平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的证明与研究上有着广泛的应用.例1如图所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分.
分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.
证明因为ABCD是平行四边形,所以
AD BC,AB CD,∠B=∠D.
又AE⊥BC,CF⊥AD,所以AECF是矩形,从而
AE=CF.
所以
Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以
△BEM≌△DFN(SAS),
ME=NF.①
又因为AF=CE,AM=CN,∠MAF=∠NCE,所以
△MAF≌△NCE(SAS),
所以MF=NF.②
由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.
例2如图所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.
分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.
证明作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而
△ABG≌△HBG(AAS),
所以AB=HB.①
在△ABE及△HBE中,
∠ABE=∠CBE,BE=BE,
所以△ABE≌△HBE(SAS),
所以AE=EH,∠BEA=∠BEH.
下面证明四边形EHCF是平行四边形.
因为AD∥GH,所以
∠AEG=∠BGH(内错角相等).②
又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以
∠AGB=∠GEH.
从而
EH∥AC(内错角相等,两直线平行).
由已知EF∥HC,所以EHCF是平行四边形,所以
FC=EH=AE.
说明本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE ≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.
人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.例3如图所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.分析由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.
证明延长EM交DC的延长线于F,连接DM.在□ABCD中,AB∥CD,则
∠F=∠BEM,∠MCF=∠B,CM=BM,所以
△MCF≌△MBE(AAS),
所以M是EF的中点.又DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM 为斜边的中线,由直角三角形斜边中线的性质知,MF=MD
∠F=∠MDC,
又由已知MC=CD,所以
∠MDC=∠CMD,

∠MCF=∠MDC+∠CMD=2∠F.
从而
∠EMC=∠F+∠MCF=3∠F=3∠BEM.
练习:
1.如图1所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是
平行四边形.
2.如图2所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.
3.如图3所示.ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:
BE=CF.
温馨提示:
1、由∠ADB=∠DBC可得AD∥BC,则∠DAE=∠BCF,再证明△AED≌△CFB(AAS),从而得AD=BC,利用一组对边平行且相等的四边形是平行四边形即可得证.
2、易知,AB=CD=EF,FB=FC,∠FCB+∠CBA=180°,60°-∠1+120°-∠2=180°。

得∠1=∠2。

证得,△EBF≌△DCF,得EF=DF,∠EFB=∠DFC,∠EFB-∠DFB=∠DFC-∠DFB ,即∠EFD=∠BFC=60°。

由一个角是60°的等腰三角形是等边三角形得△DEF是等边三角形。

3、
提示:由平行四边形可得,AD∥BC,知,∠2=∠F,又∠1=∠2,所以∠1=∠F,AB=BF;又DE⊥AF,∠BAD+∠ADC=180°,所以∠3=∠4。

同理可得,EC=DC,又AB=DC,所以EC=BF,得BE=CF。

相关文档
最新文档