高中数学解题模板与方法专题06 确定抽象函数单调性解函数不等式

合集下载

SXA204高考数学必修_利用函数单调性解抽象函数不等式问题

SXA204高考数学必修_利用函数单调性解抽象函数不等式问题

利用函数单调性解抽象函数不等式问题抽象函数是指没有给出函数的具体解析式,仅含有抽象的函数符号、抽象的函数结构式或抽象的函数关系式的一种函数,特别是抽象函数不等式问题,是抽象函数的最常见题型.下面介绍两例.例1 若()f x 是定义在(0,+∞)上的减函数,且对一切a 、b ∈(0,+∞),都有()a f b=()f a -()f b ,且(4)f = 1,解不等式(6)f x +-1()f x>2. 解:因为()a f b=()f a -()f b ,且(4)f = 1, 所以有(6)f x +-1()f x >2⇒(6)f x +-1()f x>2(4)f ⇒2(6)f x x +-(4)f >(4)f ⇒26()4x x f +>(4)f .由于()f x 是 (0,+∞)上的减函数,因此有210,60,6 4.4x x x x ⎧>⎪⎪+>⎨⎪+⎪<⎩⇒0,6,8 2.x x x >⎧⎪>-⎨⎪-<<⎩⇒0<x <2.故原不等式的解为0<x <2.评注:⑴若函数()f x 在区间D 上单调递增,且x 1、x 2∈D ,则由1()f x <2()f x 可得x 1<x 2;⑵若函数()f x 在区间D 上单调递减,且x 1、x 2∈D ,则由1()f x <2()f x 可得x 1>x 2.利用这两个性质,就能去掉抽象函数中的符号“f ”,将不等式中的函数关系式转化为自变量之间的关系.例2 若非零函数()f x 满足下列三个条件:①对任意实数a 、b 均有()f a b -=()()f a f b ;②当x <0时,()f x >1;③(4)f =116.试解不等式(3)f x -·2(5)f x -≤14. 解:在()f a b -=()()f a f b 中令a = b ,得(0)f = 1,()f b -=(0)f b -=1()f b , 所以()f a b +=[()f a b --=()()f a f b -=()f a ·()f b . 所以()f x =()22x x f +=()2x f ·()2x f =2()2x f >0 (因为()f x ≠0).从而(4)f =2(2)f =116,得(2)f =±14. 又因为对一切x ∈R ,()f x >0,所以(2)f =14. 原不等式可化为(3)f x -·2(5)f x -=[(3)f x -+2(5)]x -≤14=(2)f . 设x 1<x 2,则x 1-x 2<0⇒12()f x x ->1,即12()f x x -=12()()f x f x >1, 又由已知2()f x >0,则1()f x >2()f x ,即y =()f x 是减函数. 所以不等式[(3)f x -+2(5)]x -≤(2)f 可化为x -3+5-x 2≥2,解得0≤x ≤1. 故原不等式的解为0≤x ≤1.评注:解抽象函数不等式,关键步骤为:一是把不等式化为()f x >()f ∆的形式,二是要判断函数的单调性.然后再根据函数的单调性,将抽象函数不等式的符号“f ”去掉,得到具体的不等式求解.。

高考数学解题方法专题讲解(3)抽象函数单调性的判断方法

高考数学解题方法专题讲解(3)抽象函数单调性的判断方法

高考数学解题方法专题讲解专题(三) 抽象函数单调性的判断方法[例] [2021·西安模拟]已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.解题视点:(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本小题的切入点.要构造出f(M)<f(N)的形式.解析:(1)令x=y=0得f(0)=-1.证明如下:在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f((x1-x2)+x2)=f(x1-x2)+f(x2)+1>f(x2),所以,函数f(x)在R上是单调增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解之,得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.答题模板:解函数不等式问题的一般步骤第一步:确定函数f(x)在给定区间上的单调性;第二步:将函数不等式转化为f(M)<f(N)的形式;第三步:运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:解不等式或不等式组确定解集;第五步:反思回顾.查看关键点,易错点及解题规范.答题启示:对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x1,x2在所给区间内比较f(x1)-f(x2)与0的大小,或f(x1),f(x2)同号时比较f(x1)f(x2)与1的大小.有时根据需要,需作适当的变形:如x1=x2·x1x2或x1=x2+x1-x2等.。

第06讲 函数的单调性的判断证明和单调区间的求法高中数学常见题型解法归纳反馈训练及详细解析

第06讲 函数的单调性的判断证明和单调区间的求法高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】一、判断函数单调性的方式判断函数单调性一般有四种方式:单调四法 导数概念复合图像 一、概念法用概念法判断函数的单调性的一般步骤:①取值,设D x x ∈21,,且12x x <;②作差,求)()(21x f x f -;③变形〔归并同类项、通分、分解因式、配方等〕;④判断)()(21x f x f -的正负符号;⑤按照函数单调性的概念下结论.二、复合函数分析法设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,那么[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减〞来肯定,即“里外〞函数增减性一样,复合函数为增函数,“里外〞函数的增减性相反,复合函数为减函数.如下表:3、导数判断法设()f x 在某个区间(,)a b 内有导数()f x ',假设()f x 在区间(,)a b 内,总有()0(()0)f x f x ''><,那么()f x 在区间(,)a b 上为增函数〔减函数〕.4、图像法一般通过条件作出函数图像的草图,若是函数的图像,在某个区间D ,从左到右,逐渐上升,那么函数在这个区间D 是增函数;若是从左到右,是逐渐下降,那么函数是减函数. 二、证明函数的单调性的方式证明函数的单调性一般有三种方式:概念法、复合函数分析法和导数法.由于数学的证明是比拟严谨的,所以图像法只能用来判断函数的单调性,可是不能用来证明. 三、求函数的单调区间求函数的单调区间:单调四法,导数概念复合图像 一、概念法 :由于这种方式比拟复杂,所以一般用的较少.二、复合函数法:先求函数的概念域,再分解复合函数,再判断每一个内层函数的单调性,最后按照复合函数的单调性肯定函数的单调性.3、导数法:先求函数的概念域D ,然后求导()f x ',再解不等式()()0f x '>< ,别离和D 求交集,得函数的递增〔减〕区间 .4、图像法:先利用描点法或图像的变换法作出函数的图像,再观察函数的图像,写出函数的单调区间. 四、一些重要的有效的结论一、奇函数在其对称区间上的单调性一样,如函数xy 1=、x y =和3x y =;偶函数在其对称区间上的单调性相减,如函数2x y =.⨯增函数不必然是增函数,函数x y =和函数3x y =都是增函数,可是它们的乘积函数4x y =不是增函数.3、求函数的单调区间,必需先求函数的概念域,即遵循“函数问题概念域优先的原那么〞.4、单调区间必需用区间来表示,不能用集合或不等式,单调区间一般写成开区间,没必要考虑端点问题. 五、在多个单调区间之间不能用“或〞和“〞()y f x =的增区间为(1,2),(3,5).不要写成(1,2)(3,5).【方式讲评】【例1】证明函数()(0)f x x a x=+>在区间)+∞是增函数. 【点评】〔1〕此题就是利用概念判断函数单调性的典型例题,其中关键是第三步变形,多利用因式分解等知识,可是必然要变形到最后能判断它的符号为止.〔2〕有些同窗在判断)()(21x f x f -的符号时,没有利用到D x x ∈21,,且12x x <,一般情况下是有问题的,必需利用这些条件你才能肯定)()(21x f x f -符号.【反映检测1】讨论函数21)(++=x ax x f )21(≠a 在),2(+∞-上的单调性. 【例2】函数()f x 的概念域是0x ≠的一切实数,对概念域内的任意12,x x ,都有1212()()()f x x f x f x =+,且当1x >时()0f x >,(2)1f =.〔1〕求证()f x 是偶函数;〔2〕()f x 在(0,)+∞上时增函数;〔3〕解不等式2(21)2f x -<. 【解析】12(1)1(1)(1)(1)(1)0x x f f f f ==∴=+∴=令【点评】〔1〕此题是对抽象函数的单调性的判断和证明,其实和具体的函数的单调性的判断和证明的)()(21x f x f -的符号时,难度要大一些,主如果充分利用条件进展变形.(2)此题第2问的关键是对1()f x 的变形,要充分利用条件“1212()()()f x x f x f x =+,且当1x >时()0f x >〞,所以可以这样拆,1122()()x f x f x x =122()()x f x f x =+.〔3〕对于抽象函数的问题,常常利用赋值法解答,即按照解题的需要,给条件中的等式的变量赋适当的值.【反映检测2】()f x 是概念在区间[1,1]-上的奇函数,且(1)1f =,假设,[1,1],0m n m n ∈-+≠时,有()()0f m f n m n +>+.〔1〕解不等式1()(1)2f x f x +<-〔2〕假设2()21f x t at ≤-+对所有[1,1],[1,1]x a ∈-∈-恒成立,求实数t 的取值范围.【例3】函数1ln )1()(2+++=ax x a x f 〔1〕讨论函数)(x f 的单调性;〔2〕设1-<a .若是对任意),0(,21+∞∈x x ,||4)()(|2121x x x f x f -≥-,求a 的取值范围. 〔2〕不妨假设12x x ≥,而a <-1,由〔1〕知在〔0,+∞〕单调减少,从而12,(0,)x x ∀∈+∞,1212()()4f x f x x x -≥-等价于 12,(0,)x x ∀∈+∞,2211()4()4f x x f x x +≥+ ①令()()4g x f x x =+,那么1'()24a g x ax x+=++ ①等价于()g x 在〔0,+∞〕单调减少,即1240a ax x+++≤.从而22222241(21)42(21)2212121x x x x a x x x ------≤==-+++ 故a 的取值范围为(,2]-∞-.【点评】〔1〕函数的问题,必需注意概念域优先的原那么,所以利用导数求函数的概念域也必需先考虑函数的概念域.〔2〕对于参数的问题注意分类讨论和别离参数,第1问利用了分类讨论的数学思想,第2问利用了别离参数的方式. 分类讨论和别离参数是处置参数问题很常常利用的两种重要方式.【反映检测3】函数1()ln 1af x x ax x-=-+-()a R ∈. (1)当12a ≤时,讨论()f x 的单调性; 〔2〕设2()2 4.g x x bx =-+当14a =时,假设对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.【例4】 设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的单调区间与极值. 【点评】对于三角函数,也可以利用求导的方式求函数的单调区间和极值,它们的方式是一样的. 【反映检测4】 某地有三家工厂,别离位于矩形ABCD 的极点,A B 及CD 的中点P 处,20AB km =,10CB km = ,为了处置三家工厂的污水,现要在矩形ABCD 的区域上〔含边界〕,且,A B 与等距离的一点O 处建造一个污水处置厂,并铺设排污管道,,AO BO OP ,设排污管道的总长为y km . 〔1〕按以下要求写出函数关系式:①设()BAO rad θ∠=,将y 表示成θ的函数关系式; ②设OP x =(km ) ,将y 表示成x 的函数关系式.〔2〕请你选用〔1〕中的一个函数关系式,肯定污水处置厂的位置,使三条排污管道总长度最短.【反映检测5】函数()f x 的导函数'()f x ,对x R ∀∈,都有'()()f x f x >成立,假设(ln 2)2f =,那么知足不等式()xf x e >的x 的范围是〔 〕A .1x >B .01x <<C .ln 2x >D .0ln 2x <<【反映检测6】【2021天津,理6】奇函数()f x 在R 上是增函数,()()g x xf x =.假设2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,那么a ,b ,c 的大小关系为〔 〕〔A 〕a b c << 〔B 〕c b a << 〔C 〕b a c <<〔D 〕b c a <<【例5】【2021课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是〔 〕 A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞【点评】〔1〕函数的问题,无论是具体函数,仍是抽象的函数,都要注意“概念域优先〞的原那么.所以求函数的单调区间,首先必需求函数的概念域. 〔2〕分解函数时,要把函数分解成一些初等函数,才能比拟熟练地写出这些内层函数的单调性.【反映检测7】 函数22()sin 3sin sin()2cos 2f x wx wx wx wx π=+++ (0)x R w ∈>,在y 轴右边的第一个最高点的横坐标为6π. (1)求w ;(2)假设将函数()f x 的图象向右平移6π个单位后,再将取得的图象上各点横坐标伸长到原来的4倍,纵坐标不变,取得函数()y g x =的图象,求函数()y g x =的最大值及单调递减区间.方法四 图像法使用情景 函数的图像比拟容易画出.解题步骤一般通过条件作出函数图像的草图,如果函数的图像,在某个区间,从左到右,逐渐上升,那么函数在这个区间是增函数;如果从左到右,是逐渐下降,那么函数是减函数.【例6】求函数2()||f x x x =-+的单调区间. 【点评】函数的同种单调区间之间一般不用“〞连接,一般用“,〞隔开.【反映检测8】 函数),1()(0)(-=≥x x x f x R x f 时上的偶函数,当是定义在 〔1〕求函数)(x f 的解析式;〔2〕假设)(x f =2,求x 的值; 〔3〕画出该函数的图像并按照图像写出单调区间.高中数学常见题型解法归纳及反映检测第06讲: 函数的单调性的判断、证明和单调区间的求法参考答案【反映检测1答案】当12a >时,原函数是增函数;当12a <时,原函数是减函数. 【反映检测2答案】〔1〕104x ≤≤;〔2〕022t t t =≥≤-或或【反映检测2详细解析】212121212121()()(1)1,()()()()()()f x f x x x f x f x f x f x x x x x +->>-∴-=+-=--设1>【反映检测3答案】〔1〕当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减;当102a <<时,函数()f x 在(0,1)单调递减,1(1,1)a-单调递增,1(1,)a -+∞单调递减. 〔2〕17[,)8+∞.【反映检测3详细解析】(1)1()ln 1(0)af x x ax x x-=-+->,所以222l 11()(0)a ax x a f x a x x x x--++-'=-+=>.令2()1(0)h x ax x a x =-+->〔1〕当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.〔2〕当14a =时,()f x 在〔0,1〕上是减函数,在〔1,2〕上是增函数,所以对任意1(0,2)x ∈, 有11()(1)-2f x f ≥=,又存在[]21,2x ∈,使12()()f x g x ≥,所以21()2g x -≥,[]21,2x ∈,〔※〕又22()()4,[1,2]g x x b b x =-+-∈当1b <时,min ()(1)520g x g b ==->与〔※〕矛盾;当[]1,2b ∈时,2min ()(1)40g x g b ==-≥也与〔※〕矛盾;当2b >时,min 117()(2)84,28g x g b b ==-≤-≥. 综上,实数b 的取值范围是17[,)8+∞.【反映检测4答案】(1) 2010sin 10cos y θθ-=+04πθ⎛⎫<< ⎪⎝⎭;)010y x x =+<<.(2) 点P 位于线段AB 的中垂线上,且距离AB km 处. 〔2〕选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----==令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π,当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10y =+这时点P 位于线段AB 的中垂线上,且距离AB 边3km 处. 【反映检测5答案】C【反映检测5详细解析】设()2()'()()'()(),0x x x x x f x f x f x f x f x e e F x F x e e e -='=-=>()() ∴F x ()在概念域R 上单调递增,不等式()xf x e >即1F x >(),(ln 2)2,(ln 2)1f F =∴=即()ln 2,ln 2F F x x >∴>(),选C. 【反映检测6答案】C【反映检测7答案】〔1〕1w =;〔2〕函数取得最大值52,410[4,4]33x k k ππππ∈++,k z ∈为函数的单调递减区间.【反映检测7详细解析】(1)133()2cos 2sin(2)2262f x wx wx wx π=++=++ 262wx ππ+=令,将6x π=代入可得1w =.(2)由(1)得3()sin(2)62f x x π=++.通过题设的转变取得的函数13()sin()262g x x π=-+ 当44,3x k k z ππ=+∈时,函数取得最大值52.令13222262k x k πππππ+≤-≤+, 即410[4,4]33x k k ππππ∈++],k z ∈为函数的单调递减区间. 【反映检测8答案】〔1〕22(0)()(0)x x x f x x x x ⎧+<⎪=⎨-≥⎪⎩; 〔2〕2x =或2x =-;〔3〕函数的单调减区间为11--022∞(,),(,).单调增区间为11(,0),(,22-+∞). 【反映检测8详细解析】20,0,()(1=x x f x x x x x <->∴-=---+(1)设则) 所以函数的单调减区间为11-),(022∞(,-,).单调增区间为11(,0),(,22-+∞)。

抽象函数单调性

抽象函数单调性

x 0时,f (x) 0,f (1) 2(1)令x y 0,则f(0+0)=f (0) f (0),f (0) 0.
(1)求f (0)、f (3)的值; (2)判定f (x)的单调性.
f(1)=2 f(3)=f (2) f (1) f(1+1)+f (1) 3 f (1) 6
f (x2 x1) 0 即f (x1) f (x2 ) f (x)在R上为增函数.
例2、已知定义在0, 上的函数f (x)满足:①对任意的x, y 0, ,
都有f (x y) f (x) f ( y);②当0 x 1时,f (x) 0.
(1)判断并证明的单调性
(2)已知f (9) 2,且f ( 1) f (x), x
f (x1) f (x2 x1) f (x1)-1
f (x2 x1)+1 x2 x1 0,当x 0时, f (x) 1
f (x2 x1)+1 0 即f (x1) f (x2 ) f (x)在R上为增函数.
(2)解: f (4) f (2)+f (2)-1,f (4)=5 5 2 f (2) 1,f (2)=3
2、如何判断抽象函数的单调性. 判断抽象函数的单调性,仍然要紧扣单调性的定义,并且适当
运用题设条件. 一般地,若f(x)满足:
f (x y) f (x) f ( y), 则f (x1) f (x1 x2 x2 ) f (x1 x2 ) f (x2 );
f (x y)
f (x)
f ( y), 则f (x1)
(3)求不等式f (x 1) 6的解集(. 2)任取x1, x2 R,且x1 x2
f (x1) f (x2 ) f (x1) f (x2 x1 x1)

高中数学破题致胜微方法(函数的单调性):根据函数单调性解不等式

高中数学破题致胜微方法(函数的单调性):根据函数单调性解不等式

高中阶段我们学习过解不等式的方法,但遇到一些函数不等式,或复杂的不等式,原来的方法可能并不适用了,这时我们就需要将借助函数的观点来看待问题,将不等式问题转化为比较函数值大小,进而转化为比较自变量大小的问题,来帮助我们解决问题。

先看例题: 例:解不等式12log (31)3x->-整理:若y =f (x )在区间D 上是增(减)函数,则对于12,x x D ∈,有:()()()11212112121122221212()()()()()()( (3))()x x x x x x x f f x f f x f f x x x x x x x x x ⇔⇔⇔<<>===>><对于单调函数,函数值的大小与相应的自变量的大小具有等价性例:已知f (x )为R 上的减函数,则满足1(||)(1)f f x <的实数x 的取值范围是()()()()()().1,1.0,1.1,00,1.(,11,)A B C D --⋃-∞-⋃+∞练:已知f (x )在它的定义域 [-17,+∞)上是增函数, f (3)=0,试解不等式f (x 2-7x -5)<0. 解:题目中函数为抽象函数,但是已知其在某区间的单调性,且知道f (3)=0, 所以可以改写不等式为:2(75)(3)0f x x f --<=所以有2753x x --<,解得:18x -<<再由函数定义域有:27517x x --≥-解得:43x x ≥≤或两个解集做交集,得:1348x x -<≤≤<或所以不等式的解集为:{|1348}x x x -<≤≤<或总结:1.根据函数单调性解不等式的本质在于,利用单调性脱掉函数符号,将比较函数值的大小转化为比较自变量的大小。

2.单调函数,函数值的大小与相应的自变量的大小具有等价性,要明确增函数减函数的特性。

练习:1.定义在(0,+∞)上的单调函数f (x ),(0,)x ∀∈+∞,f [f (x )-log 2x ]=3,求f (x )的解析式.2. 已知定义在R 上的函数||()21x m f x -=- (m 为实数)为偶函数,记0.52log 3,(log 5),(2)a b f c f m === ,则a,b,c 的大小关系为( )A .a<b<cB .a<c<bC .c<a<bD .c<b<a。

归类题库——高一函数——抽象函数单调性奇偶性及解不等式题型解答题

归类题库——高一函数——抽象函数单调性奇偶性及解不等式题型解答题

抽象函数单调性奇偶性解不等式题型例1.函数y=f (x )的定义域为R ,且对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),且x >0时,f (x )<0恒成立.(1)证明函数y=f (x )是R 上的单调性;(2)讨论函数y=f (x )的奇偶性;(3)若f (x 2﹣2)+f (x )<0,求x 的取值范围.解析:(1)证明:设x 1>x 2,则x 1﹣x 2>0,而f (a +b )=f (a )+f (b )∴f (x 1)﹣f (x 2)=f ((x 1﹣x 2)+x 2)﹣f (x 2)=f (x 1﹣x 2)+f (x 2)﹣f (x 2)=f (x 1﹣x 2),又当x >0时,f (x )<0恒成立,∴f (x 1)<f (x 2),∴函数y=f (x )是R 上的减函数;(2)由f (a +b )=f (a )+f (b ),得f (x ﹣x )=f (x )+f (﹣x ),即f (x )+f (﹣x )=f (0),而f (0)=0,∴f (﹣x )=﹣f (x ),即函数y=f (x )是奇函数.(3)(方法一)由f (x 2﹣2)+f (x )<0,得f (x 2﹣2)<﹣f (x ),又y=f (x )是奇函数,即f (x 2﹣2)<f (﹣x ),又y=f (x )在R 上是减函数,∴x 2﹣2>﹣x 解得x >1或x <﹣2.(方法二))由f (x 2﹣2)+f (x )<0且f (0)=0,得f (x 2﹣2+x )<f (0),又y=f (x )在R 上是减函数,∴x 2﹣2+x >0,解得x >1或x <﹣2.变式:1.已知函数y=f (x )满足f (x +y )=f (x )+f (y )对任何实数x ,y 都成立.(1)求证:f (2x )=2f (x );(2)求f (0)的值;(3)求证f (x )为奇函数.证明:(1)∵(x +y )=f (x )+f (y ),令y=x ,得f (x +x )=f (x )+f (x ),即f (2x )=2f (x );(2)令y=x=0,∵f (x +y )=f (x )+f (y ),∴f (0+0)=f (0)+f (0),即f (0)=2f (0),∴f (0)=0.(3)证明:由已知得定义域为R .满足若x ∈R ,则﹣x ∈R .令y=﹣x ,∵f (x +y )=f (x )+f (y ),∴f (0)=f (x )+f (﹣x ).∵f (0)=0,∴f (x )+f (﹣x )=0,即f (﹣x )=﹣f (x ).∴f (x )为奇函数.2.设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且(2)1f =,当0x >时,()0f x >(1).求(0)f 的值; (2).判断函数()f x 的奇偶性;(3).如果()(2)2f x f x ++<,求x 的取值范围. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,(0)0f ∴=;(2)()()()f x y f x f y -=- (0)(0)()f x f f x ∴-=-,由(1)值(0)0f =,()()f x f x ∴=-- (0)0f =,∴函数()f x 是奇函数(3)设12,x x R ∀∈,且12x x >,则120x x ->,1212()()()f x x f x f x -=-当0x >时,()0f x >,12()0f x x ∴->,即12()()0f x f x ->,12()()f x f x ∴>∴函数()f x 是定义在R 上的增函数()()()f x y f x f y -=- ,()()()f x f y f x y ∴=+-211(2)(2)(2)(42)(4)f f f f f ∴=+=+=--= ()(2)2f x f x ++< ,()(2)(4)f x f x f ∴++<,(2)(4)()(4)f x f f x f x ∴+<-=-函数()f x 是定义在R 上的增函数,24x x ∴+<-,1x ∴<,∴不等式()(2)2f x f x ++< 的解集为{|1}x x <3.已知函数f(x)的定义域为R,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x<0时,f(x)>0.(1)求证:f(x)是奇函数;(2)判断f(x)在R上的单调性,并加以证明;(3)解关于x的不等式f(x2)+3f(a)>3f(x)+f(ax),其中常数a∈R.解:(1)∵f(x)对一切x,y∈R都有f(x+y)=f(x)+f(y),令x=y=0,得:f(0)=f(0)+f(0),∴f(0)=0,令y=﹣x,得f(x﹣x)=f(x)+f(﹣x)=f(0)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.(2)∵f(x)对一切x,y∈RR都有f(x+y)=f(x)+f(y),当x<0时,f(x)>0.令x1>x2,则x2﹣x1<0,且f(x2﹣x1)=f(x2)+f(﹣x1)>0,由(1)知,f(x2)﹣f(x1)>0,∴f(x2)>f(x1).∴f(x)在R上是减函数.(3)f(2x)=f(x)+f(x)=2f(x),f(3x)=f(2x+x)=f(2x)+f(x)=3f(x),则不等式f(x2)+3f(a)>3f(x)+f(ax),等价为f(x2)+f(3a)>f(3x)+f(ax),即f(x2+3a)>f(3x+ax),∵f(x)在R上是减函数,∴不等式等价为x2+3a<3x+ax,即(x﹣3)(x﹣a)<0,当a=3时,不等式的解集为∅,当a>3时,不等式的解集为(3,a),当a<3时,不等式的解集为(a,3).单调+奇偶性+带常数的不等式例2.已知f(x)的定义域为R,且满足对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,且f(1)=﹣3;(1)求f(0)与f(3);(2)判断f(x)的奇偶性;(3)判断f(x)的单调性;(4)解不等式f(x2+1)+f(x)≤﹣9.【解答】解:(1)令y=0,则由条件得f(x+0)=f(x)+f(0),即f(0)=0,当x=y=1时,f(2)=f(1)+f(1)=2f(1)=2×(﹣3)=﹣6,f(3)=f(1+2)=f(1)+f(2)=﹣3﹣6=﹣9;(2)∵f(0)=0,∴令y=﹣x,得f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),则f(x)是奇函数;(3)设x1<x2,则设x2﹣x1>0,此时f(x2﹣x1)<0,即f(x2﹣x1)=f(x2)+f(﹣x1)<0,即f(x2)﹣f(x1)<0,则f(x2)<f(x1),即f(x)的单调递减;(4)不等式f(x2+1)+f(x)≤﹣9等价为f(x2+1)+f(x)≤f(3),即f(x2+1+x)≤f(3),∵f(x)的单调递减,∴x2+1+x≥3,即x2+x﹣2≥0,解得x≥1或x≤﹣2,即不等式的解集为{x|x≥1或x≤﹣2}.变式:1.已知函数f(x)的定义域为R,对于任意实数a,b∈R都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0,f (1)=﹣2,试判断f(x)在[﹣3,3)上是否有最大值和最小值?如果有,求出最大值和最小值,若没有,说明理由.解:令a=b=0知f(0)=0,令a=x,b=﹣x,则f(x)+f(﹣x)=0,∴f(x)为奇函数.任取两个自变量x1,x2且﹣∞<x1<x2<+∞,则f(x2)﹣f(x1)=f(x2﹣x1),∵x2>x1,∴x2﹣x1>0知f(x2﹣x1)<0,即f(x2)﹣f(x1)<0,故f(x2)<f(x1),∴f(x)在(﹣∞,+∞)上是减函数.因此f(x)在[﹣3,3)上有最大值f(﹣3),由于x≠3,则f(3)取不到,无最小值.由于f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3f(1)=﹣6,故最大值为f(﹣3)=﹣f(3)=6.2.设函数f(x)的定义域为R,对于任意实数x,y都有f(x+y)=f(x)+f(y),又当x>0时,f(x)<0且f(2)=﹣1.试问函数f(x)在区间[﹣6,6]上是否存在最大值与最小值?若存在,求出最大值、最小值;如果没有,请说明理由.解:令x=y=0知f(0)=0,令x+y=0知f(x)+f(﹣x)=0,∴f(x)为奇函数.任取两个自变量x1,x2且﹣∞<x1<x2<+∞,则f(x2)﹣f(x1)=f(x2﹣x1),∵x2>x1,∴x2﹣x1>0知f(x2﹣x1)<0,即f(x2)﹣f(x1)<0,故f(x2)<f(x1),∴f(x)在(﹣∞,+∞)上是减函数.因此f(x)在[﹣6,6]上有最大值和最小值最小值为f(6)=f(4)+f(2)=f(2)+f(2)+f(2)=3f(2)=﹣3;最大值为f(﹣6)=﹣f(6)=3.3.已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求函数f(x)在区间[﹣2,4]上的值域.解:(1)证明:∵f (x )的定义域为R ,令x=y=0,则f (0+0)=f (0)+f (0)=2f (0),∴f (0)=0.令y=﹣x ,则f (x ﹣x )=f (x )+f (﹣x ),即f (0)=f (x )+f (﹣x )=0.∴f (﹣x )=﹣f (x ),故f (x )为奇函数.(2)证明:任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)﹣f (x 1)=f (x 2)+f (﹣x 1)=f (x 2﹣x 1).又∵x 2﹣x 1>0,∴f (x 2﹣x 1)<0,∴f (x 2)﹣f (x 1)<0,即f (x 1)>f (x 2).故f (x )是R 上的减函数.(3)∵f (﹣1)=2,∴f (﹣2)=f (﹣1)+f (﹣1)=4.又f (x )为奇函数,∴f (2)=﹣f (﹣2)=﹣4,∴f (4)=f (2)+f (2)=﹣8.由(2)知f (x )是R 上的减函数,所以当x=﹣2时,f (x )取得最大值,最大值为f (﹣2)=4;当x=4时,f (x )取得最小值,最小值为f (4)=﹣8.所以函数f (x )在区间[﹣2,4]上的值域为[﹣8,4].4.设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=﹣4.(1)证明:函数f (x )为奇函数;(2)证明:函数f (x )在(﹣∞,+∞)上为减函数.(3)求f (x )在区间[﹣9,9]上的最大值与最小值.【解答】(1)证明:令x=y=0知f (0)=0,令x +y=0知f (x )+f (﹣x )=0,∴f (x )为奇函数.(2)证明:任取两个自变量x 1,x 2且﹣∞<x 1<x 2<+∞,则f (x 2)﹣f (x 1)=f (x 2﹣x 1),∵x 2>x 1,∴x 2﹣x 1>0知f (x 2﹣x 1)<0,即f (x 2)﹣f (x 1)<0,故f (x 2)<f (x 1),∴f (x )在(﹣∞,+∞)上是减函数.(3)解:∵f (x )在(﹣∞,+∞)上是减函数∴f (x )在[﹣9,9]上有最大值和最小值最小值为f (9)=f (6)+f (3)=f (3)+f (3)+f (3)=3f (3)=﹣12;最大值为f (﹣9)=﹣f (9)=12.5.已知函数f (x )对一切实数x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (3)=﹣2.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)求f (x )在[﹣12,12]上的最大值和最小值.解 (1)令x=y=0,得f (0+0)=f (0)=f (0)+f (0)=2f (0),∴f (0)=0.令y=﹣x ,得f (0)=f (x )+f (﹣x )=0,∴f (﹣x )=﹣f (x ),∴f (x )为奇函数.(2)任取x 1<x 2,则x 2﹣x 1>0,∴f (x 2﹣x 1)<0,∴f (x 2)﹣f (x 1)=f (x 2)+f (﹣x 1)=f (x 2﹣x 1)<0,即f (x 2)<f (x 1),∴f (x )为R 上的减函数,(3)∵f (x )在[﹣12,12]上为减函数,∴f (12)最小,f (﹣12)最大,又f (12)=f (6)+f (6)=2f (6)=2[f (3)+f (3)]=4f (3)=﹣8,∴f (﹣12)=﹣f (12)=8,∴f (x )在[﹣12,12]上的最大值是8,最小值是﹣86.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=﹣.(1)求证:f (x )在R 上是减函数.(2)求函数在[﹣3,3]上的最大值和最小值.解:(1)证明:令x=y=0,则f (0)=0,令y=﹣x 则f (﹣x )=﹣f (x ),在R 上任意取x 1,x 2,且x 1<x 2,则△x=x 2﹣x 1>0,△y=f (x 2)﹣f (x 1)=f (x 2)+f (﹣x 1)=f (x 2﹣x 1)∵x 2>x 1,∴x 2﹣x 1>0,又∵x >0时,f (x )<0,∴f (x 2﹣x 1)<0,即f (x 2)﹣f (x 1)<0,有定义可知函数f (x )在R 上为单调递减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[﹣3,3]上也是减函数.又f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=3×(﹣)=﹣2, 由f (﹣x )=﹣f (x )可得f (﹣3)=﹣f (3)=2,故f (x )在[﹣3,3]上最大值为2,最小值为﹣2.7. 是定义在R 上的函数,对都有,且当时,。

高一数学利用函数单调性与奇偶性解不等式

高一数学利用函数单调性与奇偶性解不等式

利用函数单调性与奇偶性解不等式三种单调性的表达方法:1,当x1>x2,f(x1)>f(x2)恒成立⇔f(x)单调递增。

2,(x1−x2)【f(x1)-f(x2)】>0⇔f(x)单调递增。

{x1>x2f(x1)>f(x2)或者{x1<x2f(x1)<f(x2)同号意味着单调递增3、f(x1)−f(x2)(x1−x2)>0 ⇔f(x)单调递增( 2、3等价)(纯粹单调性)例1、已知函数f(x)定义域为R,且对任意两个不相等的实数a,b都有(a-b)[f(a)-f(b)]>0,则不等式f(3x-1)>f(5+x)的解集为___________.解:由题目条件(a-b)[f(a)-f(b)]>0⇔{a>bf(a)>f(b)或者{a<bf(a)<f(b)∵x1−x2与f(x1)-f(x2)同号∴f(x)在R上为增函数∵f(3x-1)>f(5+x)⇔3x-1>x+5∴3x-1>x+52x>6x>3∴不等式f(3x-1)>f(5+x)的解集为(3,+∞)(利用奇函数加单调性)2、已知定义在R上的奇函数y=f(x)在区间(−∞,0]上单调递减,若f(2m2+m)+f(2m-2)≧f(0),则实数m的取值范围__________.(假设函数草图)解:由题意可知,f(x)在R上是奇函数,定义域关于原点(0,0)对称,∴f(0)=0,且f(-x)+f(x)=0.∵f(x)在(-∞,0)是单调递减的,函数关于原点(0,0)对称,所以f(x)在(0,+∞)上单调递减,从而f(x)在R上单调递减。

即{x1<x2f(x1)>f(x2)或者{x1>x2f(x1)<f(x2)由题可知:f(2m2+m)+f(2m-2)≧f(0)∵f(0)=0,∴f(2m2+m)+f(2m-2)≧0⇒f(2m2+m)≧-f(2m-2)∵f(x)是奇函数,所以分(-x)=-f(x),∴-f(2m-2)=f(2-2m)∴f(2m2+m)≧f(2-2m)又∵x1−x2与f(x1)-f(x2)异号∴2m2+m ≤2-2m2m2+3m-2≤0(m+2)(2m-1)≤0⇒-2≤m≤12(利用偶函数加单调性)不完全单调性3、已知y=f(x)是定义域为R的偶函数,且f(x)在[0,+∞)上单调递增,则不等式f(2x+1)>f(x+2)的解集为__________.解:由题意可知f(x)是定义在R上的偶函数,定义域关于原点对称,所以f(x)=f(-x),f(x)在[0,+∞)上单调递增,由函数图像的对称性可知f(x)在(-∞,0]单调递减,对称轴是Y轴(x=0),不等式f(2x+1)>f(x+2)的问题即是横坐标距离Y轴距离的绝对值大小的问题,即|2x+1-0|>|x+ 2−0|,(假设函数草图如下所示)。

小专题之抽象函数的单调性

小专题之抽象函数的单调性
解:(1)令 a b 0 ,得 f (0) f (0) f (0) 2024 解得 f (0) 2024.
(2)任取 x 1 x 2 ,令 a x 1 x 2 ,b x 2 , 得 f (x1 x2 x2) f (x1 x2) f (x2) 2024 , 化简得 f (x1) f (x1 x 2 ) f (x 2 ) 2024 , 即 f (x1) f (x 2) f (x1 x 2) 2024 , 因为 x 1 x 2 0 ,所以 f (x 1 x 2 ) 2 0 2 4, 所以 f (x1) f (x 2 ) 0,故有 f (x 1) f (x 2 ) , 所以 f (x) 在 R 上单调递增.
解:(1)令 a b 0 ,得 f (0) f (0) f (0) 1 解得 f (0) 1 .
(2)任取 x 1 x 2 ,令 a x 1 x 2 ,b x 2 , 得 f (x1 x 2 x 2) f (x1 x 2) f (x 2) 1 , 化简得 f (x1) f (x1 x 2 ) f (x 2 ) 1 , 即 f (x1) f (x 2) f (x1 x 2) 1 , 因为 x 1 x 2 0 ,所以 f (x 1 x 2 ) 1 , 所以 f (x1) f (x 2 ) 0,故有 f (x 1) f (x 2 ) , 所以 f (x) 在 R 上单调递增.
(3)因为 f (1) 2025 ,所以 f (2) f (1) f (1) 2024 2026 , 所以 f (x 2 x) 2026 就等价于 f (x 2 x) f (2) , 由(2)知 f (x) 在 R 上单调递增,
所以有 x 2 x 2 ,解得 1 x 2 , 所以解集为 (1,2) .
解:(1)令 x y 0 ,得 f (0) f (0) f (0) 解得 f (0) 0 或 f (0) 1 , 若 f (0) 0 ,令 x 1,y 0 ,则 f (1) f (1) f (0) 0 ,矛盾 所以 f (0) 1 .

高中数学常见题型解法归纳 抽象函数的图像和性质问题的处理方法

高中数学常见题型解法归纳 抽象函数的图像和性质问题的处理方法

高中数学常见题型解法归纳 抽象函数的图像和性质问题的处理方法【知识要点】一、抽象函数的考查常常表现在求函数的定义域、值域、单调性、奇偶性和周期性等方面.二、抽象函数虽然不是具体函数,但是它的图像和性质的研究方法和具体函数仍然是一样的,只不过是函数没有解析式,比较抽象. 【方法点评】【例1】已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域.【点评】这类问题的一般形式是:已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.【反馈检测1】若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域.【例2】 设函数()f x 定义于实数集上,对于任意实数x y 、,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域.【点评】在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段.【反馈检测2】已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥;(2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-.(I)求(0)f 的值;(II)求()f x 的最大值.【例3】已知函数)0)((≠∈x R x x f ,对任意不等于零的实数21x x 、都有)()()(2121x f x f x x f +=⋅,试判断函数()f x 的奇偶性.【点评】(1)抽象函数奇偶性的判断证明和具体函数是一致的,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数. (2)要判断抽象函数的奇偶性,多用赋值法,给已知的等式中的变量取恰当的值,如,,0,1,1x x --等,有时需要多次赋值,才能达到解题目标.【反馈检测3】定义域为R 的函数)(x f 满足:对于任意的实数,x y 都有()()()f x y f x f y +=+成立,且当0x >时)0f x <(恒成立.(1)判断函数)(x f 的奇偶性,并证明你的结论;(2)证明)(x f 为减函数;若函数)(x f 在[3,3)-上总有)6f x ≤(成立,试确定(1)f 应满足的条件.【例4】 设)(x f 定义于实数集上,当0>x 时,1)(>x f ,且对于任意实数,x y ,有)()()(y f x f y x f ⋅=+,求证:)(x f 在R 上为增函数.设+∞<<<∞-21x x ,则1)(01212>->-x x f x x ,所以1211211121()f(x )()[()]()()()f x f x f x x x f x f x f x x -=-+-=--121()(1())f x f x x =--因为121()01()0f x f x x >--< 所以12()()f x f x < 所以)(x f y =在R 上为增函数.【点评】(1)抽象函数虽然没有解析式,但是在判断证明函数的单调性的方法上是一致的,同样利用函数的单调性的定义.(2)利用单调性的定义时,关键在于分解化简,1211211121121()f(x )()[()]()()()()(1())f x f x f x x x f x f x f x x f x f x x -=-+-=--=--这是解答的关键,想方设法把变量1x 或2x ,按照已知条件拆开,并严格说明它的符号.【反馈检测4】已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=∙,且当0x >时,0()1f x <<.(1)证明:(0)1,0f x =<且时,f(x)>1; (2)证明: ()f x 在R 上单调递减.【反馈检测5】函数()f x 对于0x >有意义,且满足条件(2)1,f =()()(),()f xy f x f y f x =+是减函数.(1)证明:(1)0f =;(2)若()(3)2f x f x +-≥成立,求x 的取值范围.【例5】设()f x 是定义在(0,)+∞上的增函数,且()()()xf x f f y y=+,若(2)1f =,则(8)f = .【点评】(1)抽象函数的性质往往是从常见的正比例函数、指数函数、对数函数和幂函数中抽象出来的,所以在解答抽象函数的客观题时,可以根据抽象函数的性质寻找对应的函数模型,再利用具体函数来解答.(2)常见的模型有:()()()()(0)f x y f x f y f x kx k ±=±⇒=≠正比例函数,()()()f x y f x f y +=⇒()(0,1)x f x a a a =>≠指数函数且,(xy)f a f =⇒(x)f(y)幂函数f(x)=x ,(xy)f f =(x)+f(y)()log (0,1)a f x x a a ⇒=>≠对数函数且.【反馈检测6】已知函数()f x 满足(1)2f =,且对任意,x y R ∈都有()()()f x f x y f y -=,记 101211,(6)nin i i aa a a f i ===⋅⋅-=∏∏ 则 .【例6】已知函数()f x 是定义域为R 的奇函数,且它的图象关于直线1x =对称. (1)求(0)f 的值; (2)证明: 函数()f x 是周期函数;(3)若()(01),f x x x =<≤求当x R ∈时,函数()f x 的解析式,并画出满足条件的函数()f x 至少一个周期的图象.(3)当[)1,3x ∈-时,(11)()2(13)x x f x x x -≤≤⎧=⎨-+<<⎩当4141k x k -≤≤+时,()4f x x k =-,k Z ∈ 当4143k x k +<<+时,()24f x x k =-+-,k Z ∈∴4(4141)(),24(4143)x k k x k f x z R x k k x k --≤≤+⎧=∈⎨-+-+<<+⎩ 图象如下:【点评】对于抽象函数的周期性,一般如果1不是它的周期,就猜想2是它的周期,如果2不是它的周期,就猜4是它的周期(偶数倍),再证明. 【反馈检测7】已知函数()f x 满足1()(1)1()f x f x f x ++=-,若(0)2004f =,试求(2005)f .参考答案【反馈检测1答案】),21(]31,(+∞--∞【反馈检测1详细解析】由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=xf y 而言,有1124x-≤+<,解之得:),21(]31,(+∞--∞∈ x .所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞【反馈检测2答案】(1)(0)=2f ;(2)max ()(1)3f x f ==【反馈检测2详细解析】(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤ 由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥ max ()(1)3f x f ∴==【反馈检测3答案】(1)奇函数;(2)(1)2f ≥-.【反馈检测4答案】(1)见解析;(2)见解析.【反馈检测5答案】(1)见解析;(2)13x -≤≤.【反馈检测5详细解析】(1)证明:令1x y ==,则(11)(1)(1)f f f ⨯=+,故(1)0f = (2)∵(2)1f =,令2x y ==,则(22)(2)(2)2f f f ⨯=+=, ∴(4)2f =()(3)2f x f x +-≥⇒22[(3)](4)(3)(4)3414f x x f f x x f x x x -≥⇒-≥⇒-≤⇒-≤≤∴()(3)2f x f x +-≥成立的x 的取值范围是13x -≤≤. 【反馈检测6答案】32【反馈检测6详细解析】设1()(0,1)(1)22()2x x f x a a a f a a f x =>≠=∴==∴= 且 所以1054454341(6)222232i f i -++++-=-=⋅⋅==∏ ,故填32.【反馈检测7答案】(2005)f =-20052003【反馈检测7详细解析】()f x 为周期函数且周期为4×1=4∵1(1)(2)[(1)1]1(1)f x f x f x f x +++=++=-+=)(1)(11)(1)(11x f x f x f x f -+--++=-)(1x f∴1(4)[(2)2]()(2)f x f x f x f x +=++==+⇒f (x +4)=()f x∴()f x 是以4为周期的周期函数 又∵(2)2004f = ∴1(2004)(2005)(20041)1(2004)f f f f +=+=-=1(0)1(0)f f +-=1200412004+-=-20052003∴(2005)f =-20052003。

专题06 函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【解析版】

专题06  函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【解析版】

【热点聚焦】函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f(x)=|x|,x ∈[0,2]与函数f(x)=|x|,x∈[-2,0].2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.常见函数定义域的求法类型x满足的条件n f x(n∈N*)f(x)≥02()(n∈N*)f(x)有意义21()n f x1与[f(x)]0f(x)≠0f x()log a f(x)(a>0且a≠1)f(x)>0a f(x)(a>0且a≠1)f(x)有意义tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型 ④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃ 【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可.因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤. 即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .222⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313xf x =-+,()30,x ∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈22⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<,所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。

高考数学专题06确定抽象函数单调性解函数不等式黄金解

高考数学专题06确定抽象函数单调性解函数不等式黄金解

专题06 确定抽象函数单调性解函数不等式【高考地位】函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。

而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。

因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。

【方法点评】确定抽象函数单调性解函数不等式使用情景:几类特殊函数类型解题模板:第一步 (定性)确定函数)(x f 在给定区间上的单调性和奇偶性; 第二步 (转化)将函数不等式转化为)()(N f M f <的形式;第三步 (去f )运用函数的单调性“去掉”函数的抽象符号“f ”,转化成一般的不等式或不等式组;第四步 (求解)解不等式或不等式组确定解集;第五步 (反思)反思回顾,查看关键点,易错点及解题规范.例 1 已知函数()f x 是定义在R 上的奇函数,若对于任意给定的实数12,x x ,且12x x ≠,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,则不等式()()1120x f x +-<的解集为__________.【答案】11,2⎛⎫- ⎪⎝⎭.例2.已知定义为R 的函数()f x 满足下列条件:①对任意的实数,x y 都有:()()()1f x y f x f y +=+-;②当0x >时,()1f x >.(1)求()0f ;(2)求证:()f x 在R 上增函数;(3)若()67,3f a =≤-,关于x 的不等式()()223f ax f x x -+-<对任意[)1,x ∈-+∞恒成立,求实数a 的取值范围.【答案】(1)()01f =;(2)证明见解析;(3)(]5,3--.即()2130x a x -++>在[)1,x ∈-+∞上恒成立,令()()213g x x a x =-++,即()min 0g x >成立即可.①当112a +<-,即3a <-时,()g x 在[)1,x ∈-+∞上单调递增, 则()()()min 11130g x g a =-=+++>解得5a >-,所以53a -<<-,②当112a +≥-即3a ≥-时,有()()2min 111130222a a a g x g a +++⎛⎫⎛⎫==-++> ⎪ ⎪⎝⎭⎝⎭解得231231a -<<,而2313-<-,所以3231a -≤<, 综上,实数a 的取值范围是(]5,3-- 【变式演练1】设奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-.当[1,1]x ∈-时,函数2()21f x t at ≤-+,对一切[1,1]a ∈-恒成立,则实数t 的取值范围为( )A.22t -≤≤B.2t ≤-或2t ≥C.0t ≤或2t ≥D.2t ≤-或2t ≥或0t = 【答案】D 【解析】试题分析:由奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-,所以在区间[1,1]x ∈-的最大值为1,所以2121t at ≤-+当0t =时显然成立,当0t ≠时,则220t at -≥成立,又[1,1]a ∈-,令()22,[1,1]g a at t a =-∈-,当0t >时,()g a 是减函数,故令()10g ≥,解得2t ≥;当0t <时,()g a 是增函数,故令()10g -≥,解得2t ≤-,综上所述,2t ≥或2t ≤-或0t =,故选D. 考点:函数的单调性与函数的奇偶性的应用.【变式演练2】已知定义在R 上的函数()f x 为增函数,当121x x +=时,不等式()()()()1201f x f f x f +>+恒成立,则实数1x 的取值范围是( )A. (),0-∞B. 10,2⎛⎫ ⎪⎝⎭C. 1,12⎛⎫⎪⎝⎭D. ()1,+∞ 【答案】D【变式演练3】定义在非零实数集上的函数()f x 满足()()()f xy f x f y =+,且()f x 是区间(0,)+∞上的递增函数.(1)求(1),(1)f f -的值; (2)求证:()()f x f x -=; (3)解不等式1(2)()02f f x +-≤.【答案】(1)(1)0f =,(1)0f -=;(2)证明见解析;(3)⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡1,2121,0 .考点:抽象函数及应用.【变式演练4】定义在(1,1)-上的函数()f x 满足下列条件:①对任意,(1,1)x y ∈-,都有()()()1x yf x f y f x y++=++;②当(1,0)x ∈-时,有()0f x >,求证:(1)()f x 是奇函数; (2)()f x 是单调递减函数; (3)21111()()()()1119553f f f f n n +++>++,其中*n N ∈. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】试题分析:(1)由奇函数的定义及特殊值0)0(=f 即可证明;(2)由单调性的定义,做差证明;(3)先由题(3)211()1(3)(2)23()[][]1155(2)(3)11()23n n n n f f f n n n n n n +-+-+++==++++-+-++ 1111()()()()2323f f f f n n n n =+-=-++++∴2111()()()111955f f f n n +++++111111[()()][()()][()()]344523f f f f f f n n =-+-++-++ 1111()()()()3333f f f f n n =-=+-++∵1013n <<+,∴1()03f n ->+,∴111()()()333f f f n +->+.故21111()()()()1119553f f f f n n +++>++.考点:1.抽象函数;2.函数的单调性,奇偶性;3.数列求和. 【高考再现】1.【2017全国卷一理】函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是() A .[]22-, B .[]11-, C .[]04, D .[]13,【答案】D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 又()f x 在()-∞+∞,单调递减 121x ∴--≤≤3x ∴1≤≤故选D2.【2017天津理】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C3. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.4. 【2015高考北京,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.5. 【2014高考陕西版理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =【答案】D6. 【2014辽宁理12】已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12 B .14 C .12π D .18【答案】B 【解析】考点:1.抽象函数问题;2.绝对值不等式.【名师点睛】本题考查抽象函数问题、绝对值不等式、函数的最值等.解答本题的关键,是利用分类讨论思想、转化与化归思想,逐步转化成不含绝对值的式子,得出结论.本题属于能力题,中等难度.在考查抽象函数问题、绝对值不等式、函数的最值等基础知识的同时,考查了考生的逻辑推理能力、运算能力、分类讨论思想及转化与化归思想.7. 【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(2)a f f ->,则a 的取值范围是______.【答案】13(,)22考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化. 【反馈练习】1. 【2017-2018学年河北省邢台市高一上学期第一次联考数学试题】函数()y f x =在R 上为增函数,且()()29f m f m >+,则实数m 的取值范围是( )A. ()9+∞,B. [)9+∞,C. (),9-∞-D. (]9-∞, 【答案】A2.【2018届河南省林州市第一中学高三10月调研数学(理)试题】设奇函数()f x 在()0,+∞上为增函数,且()20f =,则不等式()()0f x f x x--<的解集为()A. ()()2,02,-⋃+∞B. ()(),20,2-∞-⋃C. ()(),22,-∞-⋃+∞D. ()()2,00,2-⋃【答案】D 【解析】函数()f x 为奇函数,则()()f x f x -=-,()()0f x f x x--< ,化为()20f x x< ,等价于()0xf x <,当0x >时,解得02x <<,当0x <时, 20x -<<,不等式的解集为: ()()2,00,2-⋃,选D.3.【2018届河南省南阳市第一中学高三上学期第三次考试数学(文)试题】已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是( )A. B. C. D.【答案】C4.【2017届天津市滨海新区高三上学期八校联考(理科)数学试卷】已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x -<-,记()0.20.24.14.1f a =, ()2.12.10.40.4f b =,()0.20.2log 4.1log4.1f c =,则( )A. a c b <<B. a b c <<C. c b a <<D. b c a << 【答案】A【解析】设120x x << ,则()()()()122112120f x f x x f x x f x x x ->⇒>所以函数()()f x g x x=在()0,+∞ 上单调递减,因为()f x 是定义在R 上的奇函数,所以()g x 是定义在R 上的偶函数,因此()0.20.24.14.1f a =()()0.24.11g g =< , ()2.12.10.40.4f b =()()()2.120.40.40.5g g g =>> , ()0.20.2log 4.1log 4.1f c =()()()0.251log 4.1log 4.11,2g g g g ⎛⎫⎛⎫==∈⎪ ⎪⎝⎭⎝⎭,即a c b << ,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行 5.【2017届广西省高三教育质量诊断性联合考试数学(文)试卷】已知定义在R 上的奇函数()f x 在[)0,+∞上递减,若()()321f x x a f x -+<+对[]1,2x ∈-恒成立,则a 的取值范围为( ) A. ()3,-+∞ B. (),3-∞- C. ()3,+∞ D. (),3-∞ 【答案】C7.【2018届江西省六校高三上学期第五次联考理数试卷】已知函数是上的奇函数,当时为减函数,且,则=( )A. B.C. D.【答案】A【解析】∵奇函数满足f (2)=0, ∴f (−2)=−f (2)=0.对于{x |f (x −2)>0},当x −2>0时,f (x −2)>0=f (2), ∵x ∈(0,+∞)时,f (x )为减函数, ∴0<x −2<2, ∴2<x <4.当x −2<0时,不等式化为f (x −2)<0=f (−2), ∵当x ∈(0,+∞)时,f (x )为减函数, ∴函数f (x )在(−∞,0)上单调递减, ∴−2<x −2<0,∴0<x <2.综上可得:不等式的解集为{x ∣∣0<x <2或2<x <4} 故选D. 8.【2017—2018学年江苏省扬州市邗江区公道中学高一数学第二次学情测试题】()f x 是定义在R 上的偶函数,且对任意的(]0a b ∈-∞,,,当a b ≠时,都有()()0f a f b a b->-.若()()121f m f m +<-,则实数m 的取值范围为_________. 【答案】(0,2)9. 【2017届江苏省南京师范大学附属中学高三高考模拟考试二数学试题】已知()f x 是定义在区间[]1,1-上的奇函数,当0x <时, ()()1f x x x =-.则关于m 的不等式()()2110f m f m -+-<的解集为__________.【答案】[)0,1【解析】当0x >时,则()()()0,11x f x x x x x -<-=---=+,即()()1f x x x -=+,所以()()1f x x x =-+,结合图像可知:函数在[]1,1-单调递减,所以不等式()()2110f m f m -+-<可化为2220{111 111m m m m -->-≤-≤-≤-≤,解之得01m ≤<,应填答案[)0,1。

判断抽象函数单调性的四种策略

判断抽象函数单调性的四种策略

判断抽象函数单调性的四种策略抽象函数问题是指没有明确给出具体函数表达式的问题。

这类问题对开展学生思维能力,进展数学思想方法的渗透有较好的作用。

本文准备就四种常见的抽象函数单调性的判断策略做一小结,供大家解题时参考。

1 凑差策略紧扣单调函数的定义,利用赋值,设法从题设中“凑出〞“f(x1)-f(x2)〞,然后判断符号。

例1函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,试判断函数f(x)的单调性。

解:由f(x+y)=f(x)+f(y)得,f(x+y)-f(x)=f(y)令x+y=x2,x=x1,且x1<x2,如此有f(x2)-f(x1)=f(y)∵y=x2-x1>0,∴f(y)=f(x2-x1)>0,即f(x1)<f(x2),因此f(x)为增函数。

例2设函数f(x)的定义域为〔0,+∞〕,对任意正实数x、y均有f(xy)=f(x)+f(y),且当x>1时f(x)>0,判断函数f(x)的单调性并说明理由。

解:由f(xy)=f(x)+f(y)得,f(xy)-f(x)=f(y)令x+y=x1,x=x2,且x1>x2>0,如此有f(x1)-f(x2)=f(y),∵,∴即f(x1)>f(x2),因此f(x)为增函数。

2 添项策略瞄准题设中的结构特点,采用加减添项或乘除添项,以到达确定“f(x1)-f(x2)〞的符号的目的。

例3〔题同例1〕解:设x1<x2,如此x2-x1>0,∵当x>0时,f(x)>0,∴f(x2-x1)>0∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0即f(x1)<f(x2),因此f(x)为增函数。

例4〔题同例2〕解:设0<x1<x2<+∞,如此∵当x>1时f(x)>0,∴∴即f(x2)>f(x1),因此f(x)为增函数。

函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】

函数专题:利用函数单调性与奇偶性解不等式的6种常见考法-【题型分类归纳】

函数专题:利用函数单调性与奇偶性解不等式的6种常见考法一、单调性定义的等价形式(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、定义法判断函数奇偶性判断()f x -与()f x 的关系时,也可以使用如下结论:如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 三、利用单调性、奇偶性解不等式原理 1、解()()<f m f n 型不等式(1)利用函数的单调性,去掉函数符号“f ”,将“抽象”的不等式问题转化为“具体”的不等式问题求解;(2)若不等式一边没有函数符号“f ”,而是常数(如()<f m a ),那么我们应该将常数转化带有函数符号“f ”的函数值再解。

运用函数单调性与奇偶性解抽象函数不等式

运用函数单调性与奇偶性解抽象函数不等式

运用函数单调性与奇偶性解抽象函数不等式【典例1】函数()f x 是R 上的单调函数,满足()()21f f >,且()()2f m f m >-,求实数m 的取值范围;【问题解决】由已知函数()f x 是R 上的单调函数,且满足()()21f f >, 得函数是R 上的单调递增函数,又()()2f m f m >-,所以2m m >-,解得10m m <->或所以实数m 的取值范围是10m m <->或;【典例2】已知奇函数()f x 的定义域为[2,2]-,且在区间[2,0]-内单调递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围.【问题解决】∵()f x 的定义域为[2,2]-,∴有2212212m m -≤-≤⎧⎨-≤-≤⎩,解得1m -≤≤①由2(1)(1)0f m f m -+-<∴2(1)(1)f m f m -<--又由()f x 为奇函数,得22(1)(1)f m f m --=- ∴2(1)(1)f m f m -<-又()f x 为奇函数,且在[2,0]-上单调递减,∴()f x 在[2,2]-上单调递减.(要证明)∴211m m ->-.即21m -<< ②综合①②,可知11m -≤<.【牛刀小试】1、已知函数f (x )=⎩⎨⎧ x 2+4x (x ≥0),4x -x 2 (x <0),若f (2-a 2)>f (a ),则实数a 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 答案:C2、设定义在[-2,2]上的偶函数()f x 在区间[0,2]上单调递减,若(1)()f m f m -<,求实数m 的取值范围. 答案:112m -≤<。

3、函数()f x 对任意的a ,b ∈R ,都有()()()1f a b f a f b +=+-,并且当0x >时,()1f x >,若(4)5f =,解不等式2(32)3f m m --<。

高考技巧大全之高中数学黄金解题模板:专题06 确定抽象函数单调性解函数不等式

高考技巧大全之高中数学黄金解题模板:专题06 确定抽象函数单调性解函数不等式
专题6确定抽象函数单调性解函数不等式
【高考地位】
函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。而抽象函数的单调性解函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。因此,我们应该掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。
【方法点评】
确定抽象函数单调性解函数不等式
使用情景:几类特殊函数类型
解题模板:第一步 (定性)确定函数 在给定区间上的单调性和奇偶性;
第二步 (转化)将函数不等式转化为 的形式;
第三步 (去 )运用函数的单调性“去掉”函数的抽象符号“ ”,转化成一般的不等式或不等式组;
第四步 (求解)解不等式或不等式组确定解集;
【解析】
试题分析:(1)利用赋值法即可求 , , 的值;(2)结合函数单调性以及抽象函数的关系将不等式进行转化即可.
试题解析:(1)令 ,则 ,所以 .
令 ,则 ,所以 .
故 , .
(2)因为 ,所以
由 是定义在 上的减函数,
得 解得 ,即 .
故 的取值范围为 .
考点:抽象函数的应用.
【高考再现】
1.【2016高考新课标2理数】已知函数 满足 ,若函数 与 图像的交点为 则 ( )
,又
在 上恒成立,令 ,即 成立即可.然后对 取值进行分类讨论可得:实数 的取值范围是 .
试题解析:(1)令 ,恒等式可变为 ,解得
(2)任取 ,则 ,由题设 时, ,可得 ,
∵ ,∴ ,
所以 是 上增函数.
即 在 上恒成立,
令 ,即 成立即可.
①当 ,即 时, 在 上单调递增,
则 解得 ,所以 ,
(1)求 的值;
(2)求证: ;

判断抽象函数单调性的四种策略

判断抽象函数单调性的四种策略

判断抽象函数单调性的四种策略抽象函数问题是指没有明确给出具体函数表达式的问题。

这类问题对发展学生思维能力,进行数学思想方法的渗透有较好的作用。

本文准备就四种常见的抽象函数单调性的判断策略做一小结,供大家解题时参考。

1 凑差策略紧扣单调函数的定义,利用赋值,设法从题设中“凑出”“f(x 1)-f(x 2)”,然后判断符号。

例1 已知函数f(x)对任意实数x 、y 均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,试判断函数f(x)的单调性。

解:由f(x+y)=f(x)+f(y)得,f(x+y)-f(x)=f(y)令x+y=x 2,x=x 1,且x 1<x 2,则有f(x 2)-f(x 1)=f(y)∵y=x 2-x 1>0,∴f(y)=f(x 2-x 1)>0,即f(x 1)<f(x 2),因此f(x)为增函数。

例2 设函数f(x)的定义域为(0,+∞),对任意正实数x 、y 均有f(xy)=f(x)+f(y),且当x>1时f(x)>0,判断函数f(x)的单调性并说明理由。

解:由f(xy)=f(x)+f(y)得,f(xy)-f(x)=f(y)令x+y=x 1,x=x 2,且x 1>x 2>0,则有f(x 1)-f(x 2)=f(y),∵121>=x x y ,∴0)()(21>=x x f y f 即f(x 1)>f(x 2),因此f(x)为增函数。

2 添项策略瞄准题设中的结构特点,采用加减添项或乘除添项,以达到确定“f(x 1)-f(x 2)”的符号的目的。

例3(题同例1)解:设x 1<x 2,则x 2-x 1>0,∵当x>0时,f(x)>0,∴f(x 2-x 1)>0∴f(x 2)-f(x 1)=f[(x 2-x 1)+x 1]-f(x 1)=f(x 2-x 1)+f(x 1)-f(x 1)=f(x 2-x 1)>0 即f(x 1)<f(x 2),因此f(x)为增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11 19
n2 + 5n + 5
3
n∈ N*
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
- 4 - / 13
试题分析:(1)由奇函数的定义及特殊值 f (0) = 0即可证明;(2)由单调性的定义,做差证明;(3)先由题
(3) f (n2
1 )= + 5n + 5
f [ (n + 3) − (n + 2) ] = (n + 2)(n + 3) −1
A. −2 ≤ t ≤ 2 C.t ≤ 0 或t ≥ 2 【答案】D
B.t ≤ −2 或t ≥ 2 D.t ≤ −2 或t ≥ 2 或t = 0
【解析】
试题分析:由奇函数 f (x) 在区间[−1,1]上是增函数,且 f (−1) = −1,所以在区间 x ∈[−1,1]的最大值为1,
所以1 ≤ t2 − 2at +1当t = 0 时显然成立,当t ≠ 0时,则t2 − 2at ≥ 0 成立,又 a ∈[−1,1],
②当 即 时,有 a +1 ≥ −1 a ≥ −3 2
g ( x) min
=
g
a
+1 2
a +12 = 2
− (a +1)
a +1+3 > 2
0
解得 ,而 ,所以 , −2 3 −1 < a < 2 3 −1 −2 3 −1 < −3
−3 ≤ a < 2 3 − 1 [来源:]
f (x) + f ( y) = f ( x + y ) ;②当 x ∈ (−1,0) 时,有 f (x) > 0 ,求证: 1+ x+ y
(1) f (x) 是奇函数; (2) f (x) 是单调递减函数;
(3) ,其中 . f ( 1 ) + f ( 1 ) +L+ f ( 1 ) > f (1)
令 g (a) = 2at − t2, a ∈[−1,1] ,当t > 0 时,g (a) 是减函数,故令 g (1) ≥ 0,解得t ≥ 2;当t < 0 时,g (a)
是增函数,故令 g (−1) ≥ 0 ,解得t ≤ −2 ,综上所述,t ≥ 2或t ≤ −2 或t = 0,故选 D. 考点:函数的单调性与函数的奇偶性的应用. 【 变 式 演 练 2 】 已 知 定 义 在 R 上 的 函 数 f (x) 为 增 函 数 , 当 x1 + x2 =1 时 , 不 等 式
例 1 已知函数 f (x) 是定义在 R 上的奇函数,若对于任意给定的实数 x1, x2 ,且 x1 ≠ x2 ,不等式
恒成立,则不等式 的解集为 . x1 f ( x1) + x2 f ( x2 ) < x1 f ( x2 ) + x2 f ( x1)
( x +1) f (1− 2x) < 0
__________
- 2 - / 13
综上,实数 a 的取值范围是 ( −5, −3] 【变式演练 1】
设奇函数 f (x) 在区间[−1,1]上是增函数,且 f (−1) = −1.当 x ∈[−1,1] 时,函数 f (x) ≤ t2 − 2at +1,对一
切 a∈[−1,1]恒成立,则实数t 的取值范围为( )
【答案】
ቤተ መጻሕፍቲ ባይዱ
−1,
1 2
.
例 2.已知定义为 R 的函数 f (x)满足下列条件:①对任意的实数 x, y 都有:
- 1 - / 13
f ( x + y) = f ( x) + f ( y) −1;②当 x > 0 时, f ( x) >1. (1)求 f (0) ; (2)求证: f (x) 在 R 上为增函数; (3)若 f (6) = 7,a ≤ −3,关于 x 的不等式 f (ax − 2) + f (x − x2 ) < 3 对任意 x∈[−1,+∞) 恒成立,求实数 a 的取值范围. 【答案】(1) f (0) =1;(2)证明见解析;(3)(−5,−3].
高中数学解题模板与方法
【高考地位】
函数的单调性是函数的一个非常重要的性质,也是高中数学考查的重点内容。而抽象函数的单调性解
函数不等式问题,其构思新颖,条件隐蔽,技巧性强,解法灵活,往往让学生感觉头痛。因此,我们应该
掌握一些简单常见的几类抽象函数单调性及其应用问题的基本方法。
【方法点评】
确定抽象函数单调性解函数不等式
使用情景:几类特殊函数类型
解题模板:第一步
(定性)确定函数
f
(
x)
在给定区间上的单调性和奇偶性; [来源:学科网]
第二步 (转化)将函数不等式转化为 f (M ) < f (N) 的形式;
第三步 (去 f )运用函数的单调性“去掉”函数的抽象符号“ f ”,转化成一般的不等式或不
等式组; 第四步 (求解)解不等式或不等式组确定解集; 第五步 (反思)反思回顾,查看关键点,易错点及解题规范.
即 x2 − (a +1) x + 3 > 0 在 x∈[−1,+∞) 上恒成立,
令 g ( x) = x2 − (a +1) x + 3 ,即 g ( x) > 0 成立即可. min
①当 a +1 < −1,即 a < −3时, g ( x) 在 x∈[−1,+∞) 上单调递增, 2
则 g ( x) = g (−1) =1+ (a +1) + 3 > 0 解得 a > −5,所以 −5 < a < −3, min
- 3 - / 13
(1)求 f (1), f (−1) 的值; (2)求证: f (−x) = f (x) ;
(3)解不等式 f (2) + f (x − 1) ≤ 0 . 2
【答案】(1)
f
(1)
=
0
,
f
(−1)
=
0
;(2)证明见解析;(3)
0,
1 2
U
1 2
,1

考点:抽象函数及应用. 【 变 式 演 练 4 】 定 义 在 (−1,1) 上 的 函 数 f (x) 满 足 下 列 条 件 : ① 对 任 意 x, y ∈(−1,1) , 都 有
f (x1) + f (0) > f (x2 ) + f (1) 恒成立,则实数 x1 的取值范围是( )
A. (−∞, 0)
【答案】D
B.
0,
1 2
C.
1 2
,1
D. (1, +∞)
【变式演练 3】定义在非零实数集上的函数 f (x) 满足 f (xy) = f (x) + f (y) ,且 f (x) 是区间(0,+∞) 上的 递增函数.
相关文档
最新文档