浙教版九年级数学中考——将军饮马问题专题复习
中考数学专题《将军饮马模型》
是OC上的一点,当△ADE的周长最小时,点E的坐标是( B )
A.(0,4 ) B.(0,5 ) C.(0,2) D.(0,10 )
3
3
3
河边
y
A
C
E E
Bห้องสมุดไป่ตู้
DO
D´ x
针对训练
将军饮马---两定一动
知识点二
如图:已知⊙O的直径CD为2,︵AC的度数为60º,点B是A︵C的中点,在直
径CD上作出点P,使BP+AP的值最小,则BP+AP的最小值为__2___
图形特征:两定一动;适用模型:将军饮马 ;
基本策略:同侧化异侧、折线化直线;
基本方法:N个动点N条河,N次对称跑不脱;
基本原理:两点之间线段最短;
P
A´ PA+PB=_P_A_´_+_P_B_=_A_´_B_.
典例精讲
将军饮马---两定一动
知识点二
【例2】如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E
O 河流 C
N
A2
将军沿A-B-C-A走路程最短
典例精讲
将军遛马---两定两动
知识点三
【例3-1】如图,点A(a,3)B(b,1)都在双曲线 y = 3 上,点C,D分别 x
是x轴,y轴上的动点,则四边形ABCD周长的最小值为( B )
A.5 2 B.6 2 C.2 10 +2 2 D.8 2
河边
A' y A
D
B
D
草地
O CC
x
B'
典例精讲
将军遛马---两定两动
知识点二
【例3-2】如图,∠AOB=45º,点P是∠AOB内一点且OP= 2 ,若点M、N
中考复习:“将军饮马”类题型大全
“将军饮马”类题型大全一.求线段和最值1(一)两定一动型例1:如图,AM⊥EF,BN⊥EF,垂足为M、N,MN=12m,AM=5m,BN=4m, P是EF 上任意一点,则PA+PB的最小值是______m.分析:这是最基本的将军饮马问题,A,B是定点,P是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A关于EF的对称点A’,根据两点之间,线段最短,连接A’B,此时A’P+PB即为A’B,最短.而要求A’B,则需要构造直角三角形,利用勾股定理解决.解答:作点A关于EF的对称点A’,过点A’作A’C⊥BN的延长线于C.易知A’M=AM=NC=5m,BC=9m,A’C=MN=12m,在Rt△A’BC中,A’B=15m,即PA+PB的最小值是15m.变式:如图,在边长为2的正三角形ABC中,E,F,G为各边中点,P为线段EF上一动点,则△BPG周长的最小值为_________.分析:考虑到BG为定值是1,则△BPG的周长最小转化为求BP+PG的最小值,又是两定一动的将军饮马型,考虑作点G关于EF的对称点,这里有些同学可能看不出来到底是哪个点,我们不妨连接AG,则AG⊥BC,再连接EG,根据“直角三角形斜边中线等于斜边的一半”,可得AE=EG,则点A就是点G关于EF的对称点.最后计算周长时,别忘了加上BG的长度.解答:连接AG,易知PG=PA,BP+PG=BP+PA,当B,P,A三点共线时,BP+PG=BA,此时最短,BA=2,BG=1,即△BPG周长最短为3.2(二)一定两动型例2:如图,在△ABC中,AB=AC=5,D为BC中点,AD=5,P为AD上任意一点,E 为AC上任意一点,求PC+PE的最小值.分析:这里的点C是定点,P,E是动点,属于一定两动的将军饮马模型,由于△ABC 是等腰三角形,AD是BC中线,则AD垂直平分BC,点C关于AD的对称点是点B,PC+PE=PB+PE,显然当B,P,E三点共线时,BE更短.但此时还不是最短,根据“垂线段最短” 只有当BE⊥AC时,BE最短.求BE时,用面积法即可.解答:作BE⊥AC交于点E,交AD于点P,易知AD⊥BC,BD=3,BC=6,则AD·BC=BE·AC,4×6=BE·5,BE=4.8变式:如图,BD平分∠ABC,E,F分别为线段BC,BD上的动点,AB=8,△ABC的周长为20,求EF+CF的最小值________.分析:这里的点C是定点,F,E是动点,属于一定两动的将军饮马模型,我们习惯于“定点定线作对称”,但这题这样做,会出现问题.因为点C的对称点C’必然在AB上,但由于BC长度未知,BC’长度也未知,则C’相对的也是不确定点,因此我们这里可以尝试作动点E关于BD的对称点.解答:如图,作点E关于BD的对称点E’,连接E’F,则EF+CF=E’F+CF,当E’,F,C三点共线时,E’F+CF=E’C,此时较短.过点C作CE’’⊥AB于E’’,当点E’ 与点E’’重合时,E’’C最短,E’’C为AB边上的高,E’’C=5.(三)两定两动型例3:如图,∠AOB=30°,OC=5,OD=12,点E,F分别是射线OA,OB上的动点,求CF+EF+DE的最小值.分析:这里的点C,点D是定点,F,E是动点,属于两定两动的将军饮马模型,依旧可以用“定点定线作对称”来考虑.作点C关于OB的对称点,点D关于OA的对称点.解答:作点C关于OB的对称点C’,点D关于OA的对称点D’,连接C’D’. CF+EF+DE=C’F+ EF+D’E,当C’,F, E,D’四点共线时,CF+EF+DE=C’D’最短.易知∠D’OC’=90°,OD’=12,OC’=5,C’D’=13,CF+EF+DE最小值为13.变式:(原创题)如图,斯诺克比赛桌面AB宽1.78m,白球E距AD边0.22m,距CD 边1.4m,有一颗红球F紧贴BC边,且距离CD边0.1m,若要使白球E经过边AD,DC,两次反弹击中红球F,求白球E运动路线的总长度.分析:本题中,点E和点F是定点,两次反弹的点虽然未知,但我们可以根据前几题的经验作出,即分别作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,即可画出白球E的运动路线,化归为两定两动将军饮马型.解答:作点E关于AD边的对称点E’,作点F关于CD边的对称点F’,连接E’F’,交AD于点G,交CD于点H,则运动路线长为EG+GH+HF长度之和,即E’F’长,延长E’E交BC于N,交AD于M,易知E’M=EM=0.22m,E’N=1.78+0.22=2m,NF’=NC+CF’=1.4+0.1=1.5m,则Rt△E’NF’中,E’F’=2.5m,即白球运动路线的总长度为2.5m.小结:以上求线段和最值问题,几乎都可以归结为“两定一动”“一定两动”“两定两动”类的将军饮马型问题,基本方法还是“定点定线作对称”,利用“两点之间线段最短”“垂线段最短”的2条重要性质,将线段和转化为直角三角形的斜边,或者一边上的高,借助勾股定理,或者面积法来求解.当然,有时候,我们也需学会灵活变通,定点对称行不通时,尝试作动点对称.(二)求角度例1:P为∠AOB内一定点,M,N分别为射线OA,OB上一点,当△PMN周长最小时,∠MPN=80°.(1)∠AOB=_____°(2)求证:OP平分∠MPN分析:这又是一定两动型将军饮马问题,我们应该先将M,N的位置找到,再来思考∠AOB 的度数,显然作点P关于OA的对称点P’,关于OB的对称点P’’,连接P’P’’,其与OA交点即为M,OB交点即为N,如下图,易知∠DPC与∠AOB互补,则求出∠DPC的度数即可.解答:(1)法1:如图,∠1+∠2=100°,∠1=∠P’+∠3=2∠3,∠2=∠P’’+∠4=2∠4,则∠3+∠4=50°,∠DPC=130°,∠AOB=50°.再分析:考虑到第二小问要证明OP平分∠MPN,我们就连接OP,则要证∠5=∠6,显然很困难,这时候,考虑到对称性,我们再连接OP’,OP’’,则∠5=∠7,∠6=∠8,问题迎刃而解.解答:(1)法2:易知OP’=OP’’,∠7+∠8=∠5+∠6=80°,∠P’OP’’=100°,由对称性知,∠9=∠11,∠10=∠12,∠AOB=∠9+∠10=50°(2)由OP’=OP’’,∠P’OP’’=100°知,∠7=∠8=40°,∠5=∠6=40°,OP平分∠MPN.变式:如图,在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为________.分析:这又是典型的一定两动型将军饮马问题,必然是作A点关于BC、DE的对称点A′、A″,连接A′A″,与BC、DE的交点即为△AMN周长最小时M、N的位置.解答:如图,∵∠BAE=136°,∴∠MA′A+∠NA″A=44°由对称性知,∠MAA′=∠MA′A,∠NAA″=∠NA″A,∠AMN+∠ANM=2∠MA′A+2∠NA″A=88°思考题:1.(2017·安顺)如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_______.2.(2017·安徽改编)如图,在矩形ABCD中,AB=4,AD=3.P为矩形ABCD内一点,若矩形ABCD面积为△PAB面积的4倍,则点P到A,B两点距离之和PA+PB 的最小值为________.。
【中考数学】最全“将军饮马”类问题(类型大全+分类汇编)总复习
最全“将军饮马”类问题(类型大全+分类汇编)1.1.如图,直线如图,直线如图,直线 l l 和 l 的异侧两点的异侧两点的异侧两点 A A 、B ,在直线,在直线 l l 上求作一点上求作一点上求作一点 P P ,使,使,使 PA+PB PA+PB 最小。
最小。
最小。
2.2.如图,直线如图,直线如图,直线 l l 和 l 的同侧两点的同侧两点的同侧两点 A A 、B ,在直线,在直线 l l 上求作一点上求作一点上求作一点 P P ,使,使,使 PA+PB PA+PB 最小。
最小。
最小。
3.3.如图,点如图,点如图,点 P P 是∠是∠是∠MON MON 内的一点,分别在内的一点,分别在 OM OM ,ON 上作点上作点 A A ,B 。
使△。
使△PAB PAB 的周长最小的周长最小4.4.如图,点如图,点如图,点 P P ,Q 为∠为∠MON MON 内的两点,分别在内的两点,分别在 OM OM ,ON 上作点上作点 A A ,B 。
使四边形 PAQB 的 周长最小。
周长最小。
5.5.如图,点如图,点如图,点 A A 是∠是∠是∠MON MON 外的一点,在射线外的一点,在射线 OM OM 上作点上作点上作点 P P ,使,使,使 PA PA 与点与点与点 P P 到射线到射线到射线 ON ON 的距离的距离之和最小之和最小6. .如图,点如图,点如图,点 A A 是∠是∠是∠MON MON 内的一点,在射线内的一点,在射线 OM OM 上作点上作点上作点 P P ,使,使,使 PA PA 与点与点与点 P P 到射线到射线到射线 ON ON 的距的距离之和最小离之和最小EMME HM30°二、常见题型三角形问题1.如图,在等边△如图,在等边△ABC ABC ABC 中,中,中,AB = 6AB = 6AB = 6,,AD AD⊥⊥BC BC,,E E 是是 AC AC 上的一点,上的一点,上的一点,M M M 是是 AD AD 上的一点,若上的一点,若上的一点,若 AE = 2 AE = 2 AE = 2,求,求,求 EM+EC EM+EC EM+EC 的最小值的最小值 A解:∵点解:∵点 C C C 关于直线关于直线关于直线 AD AD AD 的对称点是点的对称点是点的对称点是点 B B B,,A∴连接∴连接 BE BE BE,交,交,交 AD AD AD 于点于点于点 M M M,则,则,则 ME+MD ME+MD 最小,过点过点 B B B 作作 BH BH⊥⊥AC AC 于点于点于点 H H H,, 则 EH = AH EH = AH –– AE = 3 AE = 3 –– 2 = 1,BH = BC2 - CH2 = 62 - 32 = 3 3在直角△在直角△BHE BHE BHE 中,中,中,BE = BE = BH2 + HE2B=(3 3)2 + 12 = 2 7DCBDC2.如图,在锐角△如图,在锐角△ABC ABC ABC 中,中,中,AB = 4 2AB = 4 2AB = 4 2,∠,∠,∠BAC BAC BAC=45°,∠=45°,∠=45°,∠BAC BAC BAC 的平分线交的平分线交的平分线交 BC BC BC 于点于点于点 D D D,,M 、N N 分别是分别是分别是 AD AD AD 和和 AB AB 上的动点,上的动点,则 BM+MN BM+MN 的最小值是的最小值是 .解:作点解:作点 B B B 关于关于关于 AD AD AD 的对称点的对称点 B'B',,过点过点 B' B' B'作作 B'E B'E⊥⊥AB AB 于点于点 E ,交,交 AD AD AD 于点于点于点 F F F,, 则线段则线段 B'E B'E B'E 的长就是的长就是的长就是 BM BM BM+MN的最小值+MN的最小值 在等腰等腰 Rt Rt Rt△△AEB'AEB'中,中, 根据勾股定理得到,根据勾股定理得到,B'E B'E = 4CB'M FDAN EB3.如图,△如图,△ABC ABC ABC 中,中,中,AB=2AB=2AB=2,∠BAC=30°,若在,∠BAC=30°,若在,∠BAC=30°,若在 AC AC AC、、AB AB 上各取一点上各取一点上各取一点 M M M、、N ,使,使 BM+MN BM+MN BM+MN 的值最小,则这个最小值的值最小,则这个最小值C解:作解:作 AB AB AB 关于关于关于 AC AC AC 的对称线段的对称线段 AB'AB',,过点过点 B' B' B'作作 B'N B'N⊥⊥AB AB,垂足为,垂足为,垂足为 N N N,交,交,交 AC AC AC 于点于点 M , 则 B'N = MB'+MN = MB+MN B'N B'N 的长就是的长就是的长就是 MB+MN MB+MN MB+MN 的最小值的最小值则∠则∠B'AN = 2B'AN = 2B'AN = 2∠∠BAC= 60BAC= 60°,°,°,AB' = AB = 2AB' = AB = 2AB' = AB = 2,, ∠ANB'= 90ANB'= 90°,∠°,∠°,∠B' = 30B' = 30B' = 30°。
2020中考数学总复习:将军饮马型最值问题-解题技巧总结精选全文
图T3-13
1
10
3
3
(3)∵y=- x2+ x,∴抛物线的对称轴为直线 x=5.
∵A,O 两点关于对称轴对称,∴PA=PO,
当 P,O,D 三点在一条直线上时,PA+PD=PO+PD=OD,此时△ PAD 的周长最小.
如图,OD 与对称轴的交点即为满足条件的点 P,
由(2)可知 D 点坐标为(10,5).
1
1
1
∵S△ PAB=3S 矩形 ABCD,∴2AB·h=3AB·AD,
2
∴h=3AD=2,∴动点 P 在与 AB 平行且与 AB 的距离是 2 的线段 l 上,如图,作点 A
关于直线 l 的对称点 A',连接 AA',BA',则 BA'即为所求的最短距离.在 Rt△ ABA'中,
AB=4,AA'=2+2=4,∴BA'= 2 + '2 = 42 + 42 =4 2,即 PA+PB 的最小值为
)
D.80°
[答案]D
[解析]分别作A关于直线BC和CD的对称点A',A″,连接A'A″,交BC于E,交CD于F,则
A'A″长即为△AEF周长的最小值.作DA延长线AH,易知∠DAB=130°,∠HAA'=50°.
又∠EA'A=∠EAA',∠FAD=∠A″,且∠EA'A+∠EAA'=∠AEF,∠FAD+∠A″=
图T3-4
.
[答案] 2 5
[解析]如图,在 CB 上截取 CM=CA,连接 DM.
= ,
在△ CDA 与△ CDM 中, ∠ = ∠,
中考数学常见几何模型最值模型-将军饮马
专题09 最值模型---将军饮马最值问题在中考数学常以压轴题的形式考查,将军饮马问题是由轴对称衍生而来,同时还需掌握平移型将军饮马,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的将军饮马问题进行梳理及对应试题分析,方便掌握。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
模型1.求两条线段和的最小值(将军饮马模型)【模型解读】在一条直线m 上,求一点P ,使PA +PB 最小;(1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧:【最值原理】两点之间线段最短。
上图中A’是A 关于直线m 的对称点。
例1.(2022·湖南娄底·中考真题)菱形ABCD 的边长为2,45ABC ∠=︒,点P 、Q 分别是BC 、BD 上的动点,CQ PQ +的最小值为______.【分析】过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,在直角三角形BEC 中,勾股定理即可求解.m A Bm m A Bm【详解】解:如图,过点C 作CE ⊥AB 于E ,交BD 于G ,根据轴对称确定最短路线问题以及垂线段最短可知CE 为FG +CG 的最小值,当P 与点F 重合,Q 与G 重合时,PQ +QC 最小,菱形ABCD 的边长为2,45ABC ∠=︒,Rt BEC ∴中,EC ==∴PQ +QC 【点睛】本题考查了菱形的性质,勾股定理,轴对称的性质,掌握轴对称的性质求线段和的最小值是解题的关键.例2.(2022·四川眉山·中考真题)如图,点P 为矩形ABCD 的对角线AC 上一动点,点E 为BC的中点,连接PE ,PB ,若4AB =,BC =PE PB +的最小值为________.【答案】6【分析】作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;然后求出B B '和BE 的长度,再利用勾股定理即可求出答案.【详解】解:如图,作点B 关于AC 的对称点B ',交AC 于点F ,连接B E '交AC 于点P ,则PE PB +的最小值为B E '的长度;⊥AC 是矩形的对角线,⊥AB =CD =4,⊥ABC =90°,在直角⊥ABC 中,4AB =,BC =⊥tanAB ACB BC ∠==,⊥30ACB ∠=︒,由对称的性质,得2B B BF '=,B B AC '⊥,⊥12BF BC ==⊥2B B BF '==⊥BE EF ==60CBF ∠=︒,⊥⊥BEF 是等边三角形,⊥BE BF B F '==,⊥BEB '∆是直角三角形,⊥6B E ',⊥PE PB +的最小值为6;故答案为:6.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,直角三角形的性质,特殊角的三角函数值,解题的关键是熟练掌握所学的知识,正确的找到点P 使得PE PB +有最小值.例3.(2022·贵州铜仁·中考真题)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.【答案】85【分析】过点M 作MF ⊥CD 于F ,推出MN +NP 的最小值为MF 的长,证明四边形DEMG 为菱形,利用相似三角形的判定和性质求解即可.【详解】解:作点P 关于CE 的对称点P ′,由折叠的性质知CE 是⊥DCM 的平分线,⊥点P ′在CD 上,过点M 作MF ⊥CD 于F ,交CE 于点G ,⊥MN +NP =MN +NP ′≤MF ,⊥MN +NP 的最小值为MF 的长,连接DG ,DM ,由折叠的性质知CE 为线段 DM 的垂直平分线,⊥AD =CD =2,DE =1,⊥CE⊥12CE ×DO =12CD ×DE , ⊥DO ⊥EO ⊥MF ⊥CD ,⊥EDC =90°,⊥DE ⊥MF ,⊥⊥EDO =⊥GMO ,⊥CE 为线段DM 的垂直平分线,⊥DO =OM ,⊥DOE =⊥MOG =90°,⊥⊥DOE ⊥⊥MOG ,⊥DE =GM ,⊥四边形DEMG 为平行四边形,⊥⊥MOG =90°,⊥四边形DEMG 为菱形,⊥EG =2OE GM = DE =1,⊥CG , ⊥DE ⊥MF ,即DE ⊥GF ,⊥⊥CFG ⊥⊥CDE ,⊥FG CG DE CE =,即1FG = ⊥FG =35,⊥MF =1+35=85, ⊥MN +NP 的最小值为85.故答案为:85. 【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键. 例4.(2022·江苏南京·模拟预测)【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营,A B .他总是先去A 营,再到河边饮马,之后,再巡查B 营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连结AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线l 上另取任一点P ',连结'AP ,BP ',B P '',⊥直线l 是点B ,B '的对称轴,点P ,P '在l 上,(1)⊥PB =__________,P B '=_________,⊥AP PB AP PB '+=+=____________.在AP B ''∆中,⊥AB AP P B ''''<+,⊥AP PB AP P B '''+<+,即AP BP +最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点,A B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中点P 为AB '与l 的交点,即A ,P ,B '三点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(2)如图④,正方形ABCD 的边长为4,E 为AB 的中点,F 是AC 上一动点.求EF FB +的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B 与D 关于直线AC 对称,连结DE 交AC 于点F ,则EF FB +的最小值就是线段ED 的长度,则EF FB +的最小值是__________.(3)如图⑤,圆柱形玻璃杯,高为14cm ,底面周长为16cm ,在杯内离杯底3cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂的最短路程为_____cm .(4)如图⑥,在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到A B D '''∆,分别连接A C ',A D ',B C ',则A C B C ''+的最小值为____________.(4)⊥在边长为2的菱形ABCD 中,60ABC ∠=︒,将ABD ∆沿射线BD 的方向平移,得到模型2.平移型将军饮马(将军过桥模型)【模型解读】已知,如图1将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?考虑MN 长度恒定,只要求AM +NB 最小值即可.问题在于AM 、NB 彼此分离,所以首先通过平移,使AM 与NB 连在一起,将AM 向下平移使得M 、N 重合,此时A 点落在A ’位置(图2 ).问题化为求A ’N +NB 最小值,显然,当共线时,值最小,并得出桥应建的位置(图3).图1 图2 图3【最值原理】两点之间线段最短。
将军饮马基础题
1、在古战场上,将军需从营地A出发,到达河边l饮马,然后返回营地B,以下哪种策略能使将军的总路程最短?A. 直接从A到l,再从l到BB. 选择河边l上离A最近的点饮马C. 选择河边l上使A到该点再到B距离和最小的点饮马(答案)D. 先到B,再从B到l,最后返回A2、将军的营地位于山丘上,他需要下山走到河边饮水,再上山返回另一营地。
为了节省体力,他应该:A. 尽量选择陡峭的路径下山和上山B. 下山时走直线,上山时走曲线C. 利用光的折射原理,选择看似最近的路径D. 找到使上下山总路程最短的点饮水(答案)3、假设河边是一条直线,将军需要从点A到河边饮马,然后到点B,河边的哪个点是他应该选择的?A. AB连线与河边的交点B. A点关于河边的对称点与B连线和河边的交点(答案)C. B点关于河边的对称点与A连线和河边的交点D. 河边中点4、将军的营地A和B分别位于山的两侧,中间隔着一条河。
为了最快回到B营地,他应该:A. 直接游泳过河B. 找到河边使得从A到河边再到B总时间最短的点C. 选择离A营地最近的河边点D. 先走到河边任意点,再根据情况决定下一步(答案:B,若考虑实际情况,可能需要结合游泳速度和行走速度综合考虑最优解,但题目简化为寻找最短路径点)5、在平原上,将军需要从A点出发到直线型的河边l饮马,然后返回B点,他应该:A. 选择离A或B更近的河边点B. 选择AB连线与河边的交点C. 通过作图法找到使总路程最短的河边点(答案)D. 随机选择一个河边点6、将军的营地A和B位于一片广阔的草原上,中间有一条笔直的河流。
为了最快完成饮马并返回,他应该:A. 走到河边中点饮马B. 走到AB连线与河边的交点饮马C. 利用几何知识找到最优饮马点(答案)D. 直接从A走到B,不饮马7、假设将军的营地A和B位于同一高度,中间隔着一条河,为了最快完成饮马任务,他应该:A. 选择离A营地较近的河边点B. 选择离B营地较近的河边点C. 通过计算找到使总时间(考虑行走和饮水时间)最短的点(答案,若题目未明确只考虑路程,则需综合考虑)D. 走到河边任意点饮马8、在山地环境中,将军需要从A点到河边l饮马,然后返回B点,考虑到地形因素,他应该:A. 忽略地形,直接选择AB连线与河边的交点B. 根据地形调整路径,但仍选择AB连线与河边的交点饮马C. 综合考虑地形和路程,找到最优饮马点(答案)D. 选择离A或B营地最近的河边点。
初中数学最值问题01专题-将军饮马模型与最值问题(含答案)
初中数学最值问题专题1 将军饮马模型与最值问题【模型导入】 什么是将军饮马?“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【模型描述】如图,将军在图中点A 处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?【模型抽象】如图,在直线上找一点P 使得P A +PB 最小?这个问题的难点在于P A +PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段. 【模型解析】作点A 关于直线的对称点A ’,连接P A ’,则P A ’=P A ,所以P A +PB =P A ’+PB 当A ’、P 、B 三点共线的时候,P A ’+PB =A ’B ,此时为最小值(两点之间线段最短)B 将军军营河P【模型展示】【模型】一、两定一动之点点在OA 、OB 上分别取点M 、N ,使得△PMN 周长最小.此处M 、N 均为折点,分别作点P 关于OA (折点M 所在直线)、OB (折点N 所在直线)的对称点,化折线段PM +MN +NP 为P ’M +MN +NP ’’,当P ’、M 、N 、P ’’共线时,△PMN 周长最小.【例题】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.BBP OBAMNP''A【模型】二、两定两动之点点在OA 、OB 上分别取点M 、N 使得四边形PMNQ 的周长最小。
考虑PQ 是条定线段,故只需考虑PM +MN +NQ 最小值即可,类似,分别作点P 、Q 关于OA 、OB 对称,化折线段PM +MN +NQ 为P ’M +MN +NQ ’,当P ’、M 、N 、Q ’共线时,四边形PMNQ 的周长最小。
中考复习《轴对称》之“将军饮马”问题
《轴对称》之“将军饮马”问题“将军饮马”的起源:早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.而从此以后,这个被称为“将军饮马”的问题便流传至今.【图示】【分析】我们把俯视图视角的问题抽象化,数学化,将河流看作一条直线l,军营看作一个点,转化为一个路程之和的最短问题.即如下图:直线同侧有两点A,B,在直线上选取一点C,使得AC+BC最短.在思考这个问题之前,我们先来回忆下初一上学期中,涉及线段最短的两个重要结论:1、两点之间,线段最短.2、垂线段最短.请各位同学务必记住,初中阶段的几何最值问题,最后几乎都可以转化为通过这两个结论来求得.如果“将军饮马”问题不能很快回答,那么我们先看这个问题,假如军营A,B在河的两岸,那么这个点C在哪呢?很简单,连接AB,与直线l的交点即为点C.理由,两点之间,线段最短.(当然也可以用三角形一边小于两边之和)那么回到原先的问题,即军营A,B在河的同侧,该如何思考就不难了.根据线段对称性,只需作点A关于直线l的对称点A’,连接A’B,与直线l的交点即为点C.【解答】如图【变式1】若将军骑马从军营出发,先骑马去草地边吃草,再牵马去河边喝水,最后回到军营,问:这位将军怎样走路程最短?【图示】【分析】我们同样把这个问题转化为熟悉的数学问题,把军营看作一个点,而把草地边和河边看作两条直线,当然在图示中,这两条直线相交,形成了一个角.问题即转化为,如下图:在∠MON的部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.若点C位置确定,要求AB+BC最短,同学们肯定已经知道,作点A 关于OM的对称点A’,连接A’C即可,但现在点C的位置不确定,而若点B位置确定,要求AC+BC最短,则作点A关于ON的对称点A’’,连接A’’B即可.想到这,分别作点A关于OM,ON的对称点,问题不就迎刃而解了吗?【解答】如图,作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.【变式2】若将军骑马从军营出发,先骑马去草地边吃草,再牵马去河边喝水,最后把马牵回马厩,步行回到军营,问:这位将军怎样走路程最短?【图示】【分析】首先,将问题转化为如下图:在∠MON的部有点A和点B,在OM 上找一点C,在ON上找一点D,使得四边形ABCD周长最短.从马厩步行回军营,则必然“两点之间,线段最短”,问题转化为求AC+CD+DB的最小值,方法与变式2类似,过点A作OM的对称点,过点B作ON的对称点即可.【解答】如图,作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.【总结&反思】我们已经知道,类似的“将军饮马”问题,最关键的就是要作对称,但怎么做,可能大家并不是十分明确,我们再来好好体会一下:首先,明确定点,定线,动点.军营,马厩,这些不动的点,即为定点.河边,草地边,这些不动的线,即为定线.河边的饮马点,草地边的吃草点等,这些不确定的点,即为动点.1.必然是作定点关于定线的对称点!2.作的次数需要看动点个数!有几个动点在哪些定线上,那么相应的定点就要做关于这些定线的对称点.原题,只要在一条定线(河边)上找一个动点(饮马点),那只需作定点(军营A)关于定线(河边)的一个对称点.变式1,要在两条定线(河边)(草地边)找两个动点(饮马点)(吃草点),则需要作作定点(军营)关于定线(河边) (草地边)的两个对称点,即两次.变式2,要在两条定线(河边)(草地边)找两个动点(饮马点)(吃草点),则需要作作定点(军营)关于定线(河边)的对称点与定点(马厩) 关于定线(草地边)的对称点,也是2个,即2次.3.作完对称点如何连接也需看作对称次数!1. 原题,把对称点直接连接另一个定点(军营B),则连线与定线(河边)上的交点,即为动点(饮马点).2. 变式1,把两个对称点连接,与定线(河边)(草地边)上的交点即为动点(饮马点)(吃草点),分别与定点(军营A)相连.3. 变式2,把两个对称点连接,与定线(河边)(草地边)上的交点即为动点(饮马点)(吃草点),分别与定点(军营)(马厩)相连.如果用口诀来总结,那就是:定点定线作对称,次数就看动点数.一次对称直连定,两次对称先相连.【练习】如图,黑、白两球分别位于长方形台球桌面OMCN上的A、B两点的位置.(1)怎样撞击白球,使白球A碰撞球桌边OM后,反弹击中黑球?(2)怎样撞击白球,使白球A依次碰撞球桌边OM、ON后,反弹击中黑球?。
2023年九年级数学中考专题复习——最值问题(将军饮马,胡不归,阿氏圆)
牛吃草最值问题:1.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为.2.如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为.3.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上一动点,点N(6,0)是OB 上的一定点,点M 是ON 中点,∠AOB=30∘,要使PM+PN 最小,则点P 的坐标为.4.如图,Rt △ABC 中,∠ACB=90º,∠CAB=30º, BC=1,将△ABC 绕点B 顺时针转动, 并把各边缩小为原来的一半,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP+CP 的最小值为 .5.点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA+QB 的值最小的点,则OP OQ ⋅= .N M O P B A Ay6.如图,当四边形PABN 的周长最小时,a =.7.矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为8.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为三角形条件及隐圆最值问题1.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C. 则A′C 长度的最小值是.N (a +2,0)P (a ,0)B (4,-1)A (1,-3)O y x F D C B A x y O E F D C B A x y O E2如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是3.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是.4.如图,AB为直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,取AP中点Q,连CQ,则线段CQ的最大值为5.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BH:CF=6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.7.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF 绕O点旋转时,CD的最小值为________8.如图,点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______9.AB是半圆O的直径,AB=10,弦AC长为8,点D是弧BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是_____10.直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是__________11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是x−3与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、12.如图,已知直线y=34PB.则△PAB面积的最小值是_____.13.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是14.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是15.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕着点A旋转,当∠ABF最大时,S△ADE =17.如图,在直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为18.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是19.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=20..如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是路径问题:1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC 的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是2.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为3.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是4.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.若AF=BE,当点E从点A运动到点C时,则点P经过的路径长为.5.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为6.已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE,以DE 为边在DE 右侧作等边三角形DEF.设△DEF 的中心为O,则点 E 由点 B 向点 A 运动的过程中,点O 运动的路径长为胡不归型问题:当 k≠1 且 k 为正数时,若点 P 在某条直线上运动时,此时所求的最短路径问题称之为“胡不归”问题.那么对于当“PA + k·PB”的值最小时,点 P 的位置如何确定呢?过点 P 作 PQ⊥BN,垂足为 Q,如图3则 k·PB = PB·sin∠MBN = PQ.因此,本题求“PA + k·PB”的最小值转化为求“PA +PQ”的最小值,即 A,P,Q 三点共线时最小.1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+1BM的最小值为.22.在△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是阿氏圆模型问题:已知平面上两点 A,B,则所有满足 PA + k·PB(k≠1,且 k 为正数),若点 P 的轨迹是一个圆,当点 P 在圆周上运动的类型称之为“阿氏圆”(阿波罗尼斯圆)问题.如图所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小1.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上AM的最小值.一动点,求CM+122.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+1BP的最小值为.2旋转最值及路径问题:1.如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA长为半径作⊙O,点M在⊙O上运动,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°,M,B,C三点为逆时针顺序,连接AC,则AC长的取值范围为___________.2.如图,线段AB为⊙O的直径,AB=4,点C为OB的中点,点P在⊙O上运动,连接CP,以CP为一边向上作等边△CPD,连接OD,则OD的最大值为___________.3.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为__________4.如图,在Rt△ABC中,AB=BC=2,点P为AB边上一动点,连接CP,以CP为边向下作等腰RT△CPD,连接BD,则BD的最小值为____________.5..如图,在直角坐标系中,已知点A(4,0),点B为直线y=2上一动点,连接AB,以AB为底边向下做等腰Rt△ABC,∠ACB=90°,连接OC,则OC的最小值为__________6.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上一动点,连接AP,若M为AP的中点,连接OM,则OM的最大值为.7.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是.8.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作.则当点P从点A运动到B点时,点E运动的路径长为DE⊥PD,连接PE,且tan∠DPE=252的一个定点,AC⊥x 轴于点M,交直线y=-x 于点N.若点P 是线段ON 上9.如图,点A 是第一象限内横坐标为3的一个动点,∠APB=30°,BA⊥PA,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是旋转构图法(补形)问题:常见旋转模型:1.如图,在△ABC 中,AB=AC=32,∠BAC=120°,点D ,E 都在BC 上,∠DAE=60°,若BD=2CE ,则DE 的长为_____.2.在四边形ABCD 中,AD=4,CD =3,∠ABC=∠ACB =∠ADC=45°,则BD 的长为;3.如图,在△ABC 中,∠ABC=90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF=2,EF=22,则BC 边的长为____________.A D CB E FDE CB A4.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为5.如图,在△ABC中,∠ABC=30°,AB=4 ,BC=5 , P是△ABC内部的任意一点,连接PA , PB , PC,则PA + PB + PC 的最小值为.。
中考复习专题:中考中“将军饮马”问题的常见模型及典型例题 优质课件
A B′
CO
Px
B
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
数学活动室
1.如图,正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中
点,点M在BC边上,且BM=6.P为对角线BD上一动点,求|PM-PN|
B A
图1
C
图2
D
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
小小设计家
1.如图所示,钱塘江的一侧有A,B两个工厂。现要在江边建造一 个水厂C,把水送到这两个工厂,要使供水管路线最短。这样可
以节省成本。
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
梳理体系
"将军饮马问题”的模型
【将军饮马问题模型6】异侧两点差的最大值问题
A B′ l P B
|PA-PB|最大问题
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
梳理体系
"将军饮马问题”的模型
【将军饮马问题模型5】同侧两点差的最值问题
A
B l
P (1)
|PA-PB|最大问题
A
B
P
l
(2)
|PA-PB|最小问题
中考复习专题:中考中“将军饮马” 问题的 常见模 型及典 型例题 优质课件
将军饮马问题(初三数学最全最短路径问题)
几何模型08——将军饮马问题一、一动两定(和最小) 两种类型:例1.如图,直线m 是△ABC 中BC 边的垂直平分线,点P 是直线m 上的一动点.若 AB =6,AC =4,BC =7,则△APC 周长的最小值是________变式1.如图,在△ABC 中,AB =AC ,AD ,BE 是△ABC 的两条中线,AD=3,BE=4, P 是AD 上的一个动点,则下列线段的长等于CP+EP 最小值的是________变式2.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是________l A B P 图2异侧l 同侧图1A'PB A变式3.如图,在Rt△ABC中,∠ACB=90°,AC=6.AB=12,AD平分∠CAB,点F是AC的中点,点E是AD上的动点,则CE+EF的最小值为________例2.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为________变式1.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_______变式2.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点当PC+PD最小时,∠PCD=_______.变式3.如图,正方形OABC的边长为6,点A、C分别在x轴、y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为_______例3.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P 是直径MN上的一个动点,则PA+PB的最小值为_____变式1.如图,MN是半径为2的⊙O的直径,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为_____变式2.如图,已知⊙O中直径AB=8,半径OC⊥AB,点D是半圆的三等分点,点P是半径OC上的动点,当PB+PD的值最小时,PO的长为_____变式3.如图,MN是⊙O的直径,MN=8,∠AMN=20°,点B为弧的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.例4.如图,点C的坐标为(3,y),使△ABC的周长最短,求y的值.变式1.一次函数y=﹣2x+4的图象与x、y轴分别交于点A(2,0),B(0,4).O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时直线PC与直线AB的交点坐标.变式2.抛物线y=﹣x2﹣2x+3.与x轴交于A(1,0),B(﹣3,0)两点,设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.变式3.如图如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.点D的坐标为(0,2),若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标.变式4.∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM+PN 最小,则点P 的坐标为 .二、一动两定(差最大)PA PB -最大例1.如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点.DN MN -的最大值.变式1.如图,已知△ABC 为等腰直角三角形,AC =BC =4,∠BCD =15°,P 为CD 上的动点,则|PA ﹣PB|的最大值为 .D C N MB A异侧l A'BA PB Al 同侧三、一定两动基本图形:例1.如图,在锐角△ABC 中,AB =,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 .变式1.如图,在锐角三角形ABC 中,BC =4,∠ABC =60°,BD 平分∠ABC ,交AC 于点D ,M ,N 分别是BD ,BC 上的动点,则CM+MN 的最小值是 .变式2.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为 .变式3.如图,∠AOB =60°,点P 是∠AOB 内的定点且,点M ,N 分别是射线OA ,OB 上异于点O 的动点,则△PMN 周长的最小值是 .CB A''A'A变式4.如图,△ABC中,AB=4,∠BAC=30°,若在AC、AB上各取一点M、N 使BM+MN的值最小,则这个最小值为.例2.如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是.变式1.如图,在菱形ABCD中,AB=2,∠DAB=60°,P,E分别是线段AC,AB 上的动点,PE+PB的最小值为.变式2.如图,在四边形ABCD中,∠BAD=110°,∠B=∠D=90°.在BC,CD 上分别找一点M,N,使△AMN周长最小,则∠AMN+∠ANM的度数为.例3.如图,已知正比例函数y =kx (k >0)的图象与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图象上的两个动点,则AM+MP+PN 的最小值为 .变式1.在直角坐标系中有四个点A (﹣6,3),B (﹣2,5),C (0,m ),D (n ,0),当四边形ABCD 周长最短时,则m+n = .四、两定两动模型基本图形:例1.如图,∠MON =20°,A 、B 分别为射线OM 、ON 上两定点,且OA =2,OB =4,点P 、Q 分别为射线OM 、ON 两动点,当P 、Q 运动时,线段AQ+PQ+PB 的最小值NM B'A'B A l 2l 1l 2l 1Q QP P EE B A B A变式1.如图,已知正方形ABCD 边长为3,点E 在AB 边上且BE =1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),则四边形AEPQ 的周长的最小值是 .变式2.如图,若ABCD 是矩形,AB =10cm ,BC =20cm ,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PE 的最小值.五、两定一线基本图形类型一 类型二例1.在平面直角坐标系中,矩形OABC 如图所示.点A 在x 轴正半轴上,点C 在y 轴正半轴上,且OA =6,OC =4,D 为OC 中点,点E 、F 在线段OA 上,点E 在点F 左侧,EF =2.当四边形BDEF 的周长最小时,点E 的坐标是 .N MA'BMNlB''B'NMBACD OyxB A变式1.如图,已知菱形ABCD 的边长为10,E 为AB 中点,对角线BD 上有两个动点P ,Q 总保持PQ =2,若BD =16,则四边形AEPQ 的周长最小值为 .变式2.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在、 x 轴、y 轴的正半轴上A (3,0),B (0,4),D 为边OB 的中点。
专题02 将军饮马(一)-中考数学二次函数压轴题核心考点突破
N
M
B
D
C
【分析】M 点为折点,作 B 点关于 AD 的对称点,即 C 点,连接 CN,即为所求的最小值.
A
N M
B
D
C
过点 C 作 AB 垂线,利用勾股定理求得 CN 的长为 2 倍根号 7.
A
N
H
M
B
D
C
【隐身的等边三角形】 如图,在 Rt△ABD 中,AB=6,∠BAD=30°,∠D=90°,N 为 AB 上一点且 BN=2AN , M 是 AD 上的动点,连结 BM,MN,则 BM+MN 的最小值是___________.
y A
C P
A. (2, 2)
O
B.(5 , 5) 22
D
Bx
C.(8 , 8) 33
D. (3, 3)
【分析】此处点 P 为折点,可以作点 D 关于折点 P 所在直线 OA 的对称:
y D'
A
P
C
也可以作点 C 的对称:
O
D
Bx
y C' A
C P
O
D
Bx
【隐身的正方形】 (2017·辽宁营口)如图,在△ABC 中,AC=BC,∠ACB =90°,点 D 在 BC 上,BD=3,DC=1,
A . 2 13
B . 2 10
C.3 5
D. 41
D
C
P
A
B
【分析】由 SPAB
1 3 S矩形ABCD
可作出 P
点轨迹为直线
M N(A M =B N =2),作点
B
关于
MN 的对称点 B’,
化折线 PA+PB 为 PA+PB’.
初中数学几何最值问题(将军饮马、将军过河、费马点、隐圆、瓜豆、胡不归、阿氏圆)
1、如图,在直线上找一点P使得PA+PB最小?2、【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B3、【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
BB4、【一定两动之点线】在OA、OB上分别取M、N使得PM+MN最小。
BB【将军过桥】1.已知将军在图中点A 处,现要过河去往B 点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?2.已知A 、B 两点,MN 长度为定值,求确定M 、N 位置使得AM +MN +NB 值最小?军营河1.如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.x2.如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.AB CDEFM几何图形中的将军饮马正方形中的将军饮马1. 如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值是___________.NMD CBA2.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)3.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为( )PDCBAA .4B .5C .6D .7三角形中的将军饮马1.如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.A BCDMN2. 如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( )E AFCDBA .3B .4C .33D .233. 如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( )NMDCBAA .3B .2C .23D .44.如图,△ABC 中,∠BAC =75°,∠ACB =60°,AC =4,则△ABC 的面积为_;点D ,点E ,点F 分别为BC ,AB ,AC 上的动点,连接DE ,EF ,FD ,则△DEF 的周长最小值为 .矩形、菱形中的将军饮马1. 如图,在菱形ABCD 中,AC=BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( )EPDCBAMA .6 B.C.D .4.52.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)33.如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B 两点距离之和PA +PB的最小值为( )DCBAPA. B.C.D4.如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )H FGEDCB AA.B. C. D.特殊角的对称1. 如图,∠AOB =60°,点P 是∠AOB 内的定点且OPM 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )ABMOPNABC .6D .32. 如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .x3. 如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为____________.求两线段差的最大值问题基本图形解析:在一条直线m 上,求一点P ,使PA 与PB 的差最大; (1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A-P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
中考专题系列之最值——将军饮马
中考专题系列之最值——将军饮马一、什么是将军饮马?【问题引入】“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。
而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
【问题描述】如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?A B将军军营河【问题简化】如图,在直线上找一点P使得P A+PB最小?【问题分析】这个问题的难点在于P A+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.【问题解决】作点A关于直线的对称点A’,连接P A’,则P A’=P A,所以P A+PB=P A’+PB当A’、P、B三点共线的时候,P A’+PB=A’B,此时为最小值(两点之间线段最短)【思路概述】作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.二、将军饮马模型系列【一定两动之点点】在OA、OB上分别取点M、N,使得△PMN周长最小.B B此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P’M+MN+NP’’,当P’、M、N、P’’共线时,△PMN周长最小.【例题】如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.P O B AMN【分析】△PMN周长即PM+PN+MN的最小值,此处M、N均为折点,分别作点P关于OB、OA对称点P’、P’’,化PM+PN+MN为P’N+MN+P’’M.P''A当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.A【两定两动之点点】在OA、OB上分别取点M、N使得四边形PMNQ的周长最小。
初中将军饮马问题题型总结(全)
初中将军饮马问题题型总结(全)题型一:将军饮马之单动点1.三角形中的将军饮马题目描述:在等腰三角形ABC中,AB=AC,AD、CE是三角形ABC的两条中线,P是AD上的一个动点,则下列线段的长度等于BP+EP最小值的是()解析:连接PC,由于AB=AC,BD=CD,AD垂直于BC,所以PB=PC。
因此,PB+PE=PC+PE,PE+PC>CE,当P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选B.2.等边三角形中的将军饮马题目描述:在等边三角形ABC中,AB=2,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,则PE+PC的最小值为()解析:连接BE交AD于点P',AD、BE分别是等边三角形ABC边BC、AC的垂直平分线,P'B=P'C,P'E+P'C=P'E+P'B=BE。
根据两点之间线段最短,点P在点P'时,PE+PC有最小值,最小值即为BE的长。
因此,BE=BC/2-CE/2=3,所以P'E+P'C的最小值为3,故选C.3.等腰三角形中的将军饮马题目描述:在等腰三角形ABC中,AB=AC,BC=4,面积是16,AC的垂直平分线EF分别交AC、AB边于E、F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()解析:连接AD、AM,由于△ABC是等腰三角形,点D是BC边的中点,AD垂直于BC,所以S△ABC=1/2×4×AD=16,解得AD=8.EF是线段AC的垂直平分线,所以点C关于直线EF的对称点为点A,MA=MC,AD=AM+MD,因此AD的长为CM+MD的最小值。
且AC6,BM3,因为BM AD,故BM AC,所以BM是AC的中线,故CM3。
又因为AC是菱形的对角线,所以AC平分DAB,即DAM30。
又因为AM MD,所以ADM75。
中考线段作图类问题(将军饮马)知识点汇总-学习文档
l Al BAl l BAl Pll A线段作图类问题(将军饮马)知识点汇总“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
模型1 定直线与两定点 模型 作法 结论当两定点A 、B 在直线l 异侧时,在直线l 上找一点P ,使PA+PB 最小。
连接AB 交直线l 于点P ,点P 即为所求作的点。
PA+ PB 的最小。
当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA+PB 最小。
作点B 关于直线l 的对称点B ′,连接AB ′交直线于点P ,点P 即为所求作的点。
PA+PB 的最小值为AB ′。
当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA PB -最大。
连接AB 并延长交直线l 于点P ,点P 即为所求作的点。
PA PB -的最大值为AB 。
当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA PB -最大。
作点B 关于直线l 的对称点B ′,连接AB ′并延长交直线于点P ,点P 即为所求作的点。
PA PB-的最大值为AB ′。
l Al当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使PA PB -最小。
平分线交直线l 于点P ,点P 即为所求作的点。
PA PB-的最小值为0。
模型实例例1.如图,正方形ABCD 的面积是12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,则PD+PE 的最小值为 。
例2.如图,已知△ABC 为等腰直角三角形,AC=BC=4,∠BCD=15°,P 为CD 上的动点,则PA PB -的最大值是多少? 热搜精练 1.如图,在△ABC 中,AC=BC=2,∠ACB-90°,是AB 边 上一动点,则EC+ED 的最小值2.如图,点C 的坐标为(3,y ),当△ABC 的y 的值。