人教版高中数学选修1-2知识点汇总
高中数学选修1-2知识点总结
知识点总结选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
数学选修1至2知识点总结
数学选修1至2知识点总结一、选修11. 一次函数一次函数是数学中的一种基本类型的函数,其一般形式为y=ax+b,其中a,b为常数且a≠0。
一次函数的图像是一条通过原点的直线,斜率a表示直线的倾斜程度,常数b表示直线与y轴的交点。
在数学上,一次函数是一种简单串直线函数,但它在实际应用中有着广泛的用途,如经济学、物理学等领域均可利用一次函数来描述问题。
2. 二次函数二次函数是一种常见的函数类型,其一般形式为y=ax²+bx+c,其中a,b,c为常数且a≠0。
二次函数的图像是一条开口向上或向下的抛物线,其开口方向取决于a的正负。
二次函数对应的抛物线有着许多特性,如顶点坐标、对称轴、焦点、直焦距等,这些特性能够帮助我们更好地理解二次函数的性质。
3. 多项式函数多项式函数是由常数组成的数列f(n),在数学中,n是一个变量,它的值可以是实数或者复数,但不是整数或负数,并有定义域。
封闭整数或负数的情况是另一种基于变量方面的数列。
4. 分式函数分式函数是由两个多项式相除而得到的函数,分母不能取0。
5. 指数函数、对数函数指数函数和对数函数是常见的特殊函数类型,它们在数学和实际应用中都有着重要的作用。
指数函数的一般形式是y=a^x,其中a为底数,x为指数,而对数函数的一般形式是y=loga(x),其中a为底数,x为真数。
指数函数和对数函数之间存在着互为反函数的关系,它们在代数、几何、概率等方面均有广泛的应用。
6. 三角函数三角函数是用于描述角度与变化的函数,常见的三角函数包括正弦函数、余弦函数、正切函数等,它们在三角学和实际问题中都有着重要的应用。
三角函数不仅能够描述角度的变化,还能够描述周期性的现象,如振动、波动等。
7. 数列与数学归纳法数列是由一系列按照一定规律排列的数构成的序列,数学归纳法是一种证明数学命题的常用方法。
数列与数学归纳法是数学中重要的概念和方法,它们在数学分析、组合数学、离散数学等领域都有着广泛的应用。
人教版高中 数学选修二 全册知识点 归纳总结3篇
人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。
第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。
人教版高中数学知识点汇总(全册版)
① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.
高中数学选修1-1、1-2、4-4知识点高考复习总结
选修1-1、1-2数学知识点 选修1-1数学知识点第一章 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线与方程1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)
人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。
2.理解复数相等的充要条件。
3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。
4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。
5. 会进行复数乘法和除法运算。
【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。
要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。
2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。
全体复数所成的集合叫做复数集,用字母C 表示。
要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。
分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。
) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。
人教版高中数学【选修1-2】[知识点整理及重点题型梳理]框图(1)
⼈教版⾼中数学【选修1-2】[知识点整理及重点题型梳理]框图(1)⼈教版⾼中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习框图【学习⽬标】1.通过具体实例,进⼀步认识程序框图,了解⼯序的流程图。
2.能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作⽤。
3. 能画出简单问题的结构图,能解读结构图。
【要点梳理】要点⼀、框图的分类本节概念分类如右图:要点⼆、流程图的概念、分类及其关系1. 流程图:由⼀些图形符号和⽂字说明构成的图⽰称为流程图,它常⽤来表⽰⼀些动态过程,通常会有⼀个“起点”,⼀个或多个“终点”.2. 流程图的分类:流程图可分为程序框图与⼯序流程图.3. 程序框图:程序框图就是算法步骤的直观图⽰,算法的输⼈、输出、条件、循环等基本单元构成了程序框图的基本要素,基本要素之间的关系由流程线来建⽴。
要点诠释:程序框图主要⽤于描述算法,⼀个程序的流程图要基于它的算法。
在设计流程图的时候要分步进⾏,把⼀个⼤的流程图分割成⼩的部分,按照三个基本结构,即顺序结构、选择结构、循环结构来局部安排,最后把流程图进⾏部分之间的组装,从⽽完成完整的程序流程图.4.⼯序流程图:流程图可⽤于描述⼯业⽣产的流程,这样的流程图称为⼯序流程图.要点诠释:⼯序流程图(统筹图)⽤于描述⼯业⽣产流程。
每⼀个矩形框代表⼀道⼯序,流程线则表⽰两相邻⼯序之间的关系,这是⼀个有向线,⽤于指⽰⼯序进展的⽅向,因此画图时要分清先后顺序,判断是⾮区别,分清流向.特别注意:在程序框图中可以有⾸尾相接的圈图或循环回路,⽽在⼯序流程图上,不允许出现⼏道⼯序⾸尾相接的圈图或循环回路.要点三、程序框图、⼯序流程图的画图与识图1.程序框图的画法:最基本的程序框有四种:起⽌框,输⼊输出框,处理框(执⾏框),判断框.画法要求:(1)使⽤标准的框图符号;(2)框图⼀般按照从上到下、从左到右的顺序画;(3)除判断框外,⼤多数程序框只有⼀个进⼊点和⼀个退出点,判断框是具有超过⼀个退出点的唯⼀符号;(4)⼀种判断框是“是”与“否”两分⽀的判断,⽽且有且仅有两个结果;另⼀种是多分⽀判断,有⼏种不同的结果;(5)在框图符号内描述的语⾔要⾮常简练、清楚.2.⼯序流程图的画法:将⼀个⼯作或⼯程从头⾄尾依先后顺序分为若⼲道⼯序(即⾃顶向下),每⼀道⼯序⽤矩形框表⽰,并在该矩形框内注明此⼯序的名称或代号.两相邻⼯序之间⽤流程线相连.有时为合理安排⼯程进度,还要在每道⼯序框上注明完成该⼯序所需的时间.开始时⼯序流程图可以画得粗疏,然后再对每⼀框逐步细化。
人教版高中数学选修1-2知识点汇总
人教版高中数学选修1-2知识点第一章统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系;③线性回归方程:a bx y +=∧(最小二乘法)。
其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()()((注意:(1)r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;(2)①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率.记为P (A |B ),其公式为P (A |B )=P (AB )P (A )4.相互独立事件(1)一般地,对于两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到下表所示数据:并将形如此表的表格称为2×2列联表(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验。
(3)统计量χ2的计算公式:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章推理与证明1.推理(1)合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
高中数学选修1-2知识点总结61389
知识点总结选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关; ⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法:它是一个递推的数学论证方法. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础; B.假设在n=k 时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
数学选修1-2知识点及习题 (2)
选修1-2知识点第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。
2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.回归分析中回归效果的判定:⑴总偏差平方和:∑=-ni i y y 12)(;⑵残差:∧∧-=i i i y y e ; ⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R 12122)()(1 。
注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。
4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。
第二章 推理与证明一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
人教版数学选修1-2知识点总结(K12教育文档)
(完整word版)人教版数学选修1-2知识点总结(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)人教版数学选修1-2知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)人教版数学选修1-2知识点总结(word版可编辑修改)的全部内容。
数学 选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。
2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()())((注:⑴r 〉0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率。
记为P (A |B ) , 其公式为P (A |B )=错误! 4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立. (2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). (3)如果A ,B 相互独立,则A 与错误!,错误!与B ,错误!与错误!也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表 设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B = 通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验 根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=错误!第二章 框图1。
数学选修1-2知识点及习题(2)
选修1-2知识点第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。
}2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni i ini i iy y x xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.回归分析中回归效果的判定:⑴总偏差平方和:∑=-ni i y y 12)(;⑵残差:∧∧-=i i i y y e ; ⑶残差平方和:21)(∑=∧-ni yi yi ;⑷回归平方和:∑=-ni iy y 12)(-21)(∑=∧-ni yi yi ;⑸相关指数∑∑==∧---=ni i ini i iy yy y R 12122)()(1 。
注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好;②2R 越接近于1,,则回归效果越好。
:4.独立性检验(分类变量关系):随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。
第二章 推理与证明一.推理: $⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
最新人教版高中数学选修1-2《数系的扩充和复数的概念》教材梳理
庖丁巧解牛知识·巧学一、虚数单位i在实数集R 中添加新数i,规定i 2=-1,其中i 叫做虚数单位;虚数单位可与实数进行四则运算,且原有的加法运算和乘法运算仍然成立.深化升华 由于i 与实数进行四则运算,且对加法、乘法的运算仍然成立,从而这些结果都可以写成a+bi(a 、b ∈R )的形式,再注意到实数a 和数i,也可以看作是a+bi(a 、b ∈R )的这样的数的特殊形式,所以实数系经过扩充后得到的新数集应该是C ={a+bi|a 、b ∈R }.二、复数的概念我们把集合C ={a+bi|a 、b ∈R }中的数,即形如a+bi(a 、b ∈R )的数叫做复数.其中i 叫做虚数单位.全体复数所构成的集合C 叫做复数集.复数通常用字母z 来表示,即z=a+bi(a 、b ∈R ),这一表示形式叫做复数的代数形式.其中a 与b 分别叫做复数z 的实部与虚部.对于复数a+bi,当且仅当b=0时,它是实数;当且仅当a=b=0时,它是实数0;当b≠0时,叫做虚数;当a=0且b≠0时,叫做纯虚数.复数的分类:复数a+bi(a 、b ∈R )⎪⎩⎪⎨⎧⎩⎨⎧≠≠≠=≠=)0,0()0,0()0()0(b a b a b b 非纯虚数纯虚数虚数实数深化升华 (1)实数集R 和虚数集都是复数集C 的真子集,且R ∪{虚数集}=C ,R ∩{虚数集}=∅;(2)z=a+bi(a 、b ∈R )的虚部是b,而不是bi;(3)实数也是复数,但是复数不一定是实数,它可能是虚数.三、复数相等的条件在复数集C ={a+bi|a 、b ∈R }中任取两个数a+bi,c+di(a 、b 、c 、d ∈R ),我们规定:a+bi 与c+di 相等的充要条件是a=c 且b=d.根据两个复数相等的定义知,在a=c 且b=d 两式中,如果有一个不成立,那么a+bi≠c+di.如果两个复数都是实数,则可以比较大小;否则不能比较大小.复数相等的充要条件是把复数问题转化为实数问题的重要依据,是复数问题实数化这一重要数学思想方法的体现.四、复数的向量表示及几何意义根据复数相等的定义,复数z=a+bi 被一个有序实数对(a,b)所唯一确定,而每一个有序实数对(a,b),在平面直角坐标系中又唯一确定一点Z(a,b)(或一个向量OZ).这就是说,每一个复数,对应着平面直角坐标系中唯一的一个点(或一个向量);反过来,平面直角坐标系中每一个点(或每一个向量),也对应着唯一的一个有序实数对.这样我们通过有序实数对,可以建立复数z=a+bi 和点Z(a,b)(或向量OZ )之间的一一对应关系.点Z(a,b)或向量OZ 是复数z 的几何表示(如图).复数z=a+bi −−−→←一一对应有序实数对(a,b) −−−→←一一对应点Z(a,b).建立了直角坐标系来表示复数的平面叫做复平面.在复平面内,x 轴叫做实轴,y 轴叫做虚轴.x 轴的单位是1,y 轴的单位是i.设OZ =a+bi,则向量OZ 的长度叫做复数a+bi 的模,记作|a+bi|.由向量长度的计算公式得|a+bi|=22b a +.如果两个复数的实部相等,而虚部互为相反数,则这两个复数叫做互为共轭复数.复数z 的共轭复数用z 表示.即当z=a+bi 时,z =a-bi.当复数z=a+bi 的虚部b=0时,有z=z ,也就是说任一实数的共轭复数仍是它本身.显然,在复平面内,表示两个共轭复数的点关于实轴对称(如图),并且它们的模相等.知识拓展 互为共轭复数的常用性质:(1)z+z =2a,z-z =2bi;(2)复数z ∈R ⇔z=z ;(3)z ∈{纯虚数}⇔z+z=0且z≠0.问题·探究问题1 含有参数形式的复数何时表示实数、虚数、纯虚数?导思:此类问题涉及到复数的分类及概念,在理解的基础上注意它们的联系与区别,以此作为判断它们为实数、虚数、纯虚数的条件.探究:注意到:复数z=a+bi 当且仅当b≠0时为虚数;当且仅当b=0时为实数,当且仅当a=0,b≠0为纯虚数;当且仅当a=0,b=0时为0.下面以3m+9+(m 2+5m+6)i 为例说明,m 为何值时表示实数、虚数、纯虚数?若表示实数,则m 2+5m+6=0(即虚部必须为零);若表示虚数,则m 2+5m+6≠0(即虚部不能为零);若表示纯虚数,则3m+9=0且m 2+5m+6≠0(即实部必须为零,虚部不能为零).问题2 两个复数相等的充要条件是什么?应用时应特别注意什么问题?导思:因为复数可以用向量来表示,所以可以结合向量相等来理解.在向量坐标表示中,两个向量要相等则对应坐标要相等.探究:两个复数相等的充要条件是实部与虚部分别相等.在两个复数相等的充要条件中,注意前提条件是a 、b 、c 、d ∈R ,即当a 、b 、c 、d ∈R 时, a+bi=c+di ⇔⎩⎨⎧==.,d b c a 但忽略条件后,则不能成立,因此解决复数相等问题,一定要把复数的实部与虚部分离出来,再利用复数相等的充要条件,化复数问题为实数问题.问题3 为什么两个复数不全是实数就不能比较大小?导思:因为复数可以用向量来表示,所以可以结合向量来理解.探究:因为复数与向量是一一对应的,向量是既有大小又有方向的,因此两个复数不全是实数就不能比较大小,即两个复数能比较大小的充要条件是它们的虚部为零.典题·热题例1如果用C 、R 和I 分别表示复数集、实数集和纯虚数集,其中C 为全集,那么有( )A.C =R ∪IB.R ∩I ={0}C.R =C ∩ID.R ∩I =∅ 思路解析:复数系的构成是复数z=a+bi(a 、b ∈R ).⎪⎩⎪⎨⎧⎩⎨⎧≠=≠=)0()0()0()0(a a b b 非纯虚数纯虚数虚数实数 由此不难判断正确答案为D.答案:D例2设m ∈R ,复数z=(2+i)m 2-3(1+i)m-2(1-i).(1)若z 为实数,则m=_________________;(2)若z 为纯虚数,则m=_________________.思路解析:本题主要考查复数为实数和纯虚数的充要条件,分别为b=0与a=0,b≠0.解:(1)z=(2+i)m 2-3(1+i)m-2(1-i)=(2m 2-3m-2)+(m 2-3m+2)i.由题意知:m 2-3m+2=0,即m=1或m=2时,z 是实数.(2)依题意⎪⎩⎪⎨⎧≠+-=--.023,023222m m m m 解得m=-21,所以当m=-21时,z 是纯虚数. 答案:(1)1或2 (2)-21 方法归纳 注意此处空半格对于本题复数用非标准形式给出,应先化成标准形式a+bi 的形式,使复数问题实数化,这是解复数问题的基本思想,也是化归思想的重要表现.复数为纯虚数的充要条件是a=0且b≠0二者缺一不可.例3(2005北京春季高考,理1)i-2的共轭复数是( )A.2+iB.2-iC.-2+iD.-2-i思路解析:本题考查复数及共轭复数的概念,应首先分清谁为虚部,谁为实部;次之,互为共轭的复数实部相等,虚部互为相反数.答案:D例4当实数m 为何值时,复数(m 2-8m+15)+(m 2+3m-28)i 在复平面中的对应点,(1)位于第四象限;(2)位于x 轴的负半轴上.思路解析:复数a+bi(a 、b ∈R )在复平面内的对应点,对于(1)应满足⎩⎨⎧<>,0,0b a 对于(2)应满足⎩⎨⎧=<.0,0b a 解:(1)由已知⎪⎩⎪⎨⎧<-+>+-.0283,015822m m m m ∴⎩⎨⎧<<-><.47,53m m m 或∴-7<m <3. (2)由已知⎪⎩⎪⎨⎧=-+<+-.0283,015822m m m m 解之,得m=4. 例5如果复数z 满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是 ( )A.1B.2C.2D.5思路解析:由复数模的几何意义知|z+i|+|z-i|=2表示复平面上以点A(0,1)、B(0,-1)为端点的线段AB 上的点,从而|z+i+1|=|z-(-1-i)|表示线段AB 上的点Z到点C(-1,-1)的距离.∴|z+i+1|的最小值为|BC|=1.答案:A例6已知复数z 1=i(1-i)3,(1)求|z 1|;(2)若|z|=1,求|z-z 1|的最大值.思路解析:(1)求模应求出复数的实部与虚部再利用|a+bi|=22b a +得出;(2)是考查复数几何意义的应用.解:(1)z 1=i(1-i)3=i(-2i)(1-i)=2(1-i),∴|z 1|=222222=+.(2)|z|=1可看成半径为1圆心为(0,0)的圆,而z 1可看成在坐标系中的点(2,-2), ∴|z-z 1|的最大值可以看成点(2,-2)到圆上点距离的最大值,由图可知|z-z 1|max =22+1.变式方法:|z|=1,∴设z=cosθ+isinθ,|z-z 1|=|cosθ+isinθ-2+2i|=)4sin(249)2(sin )2(cos 22πθθθ--=++-. 当sin(θ-4π)=-1时,|z-z 1|2取得最大值249+. 从而得到|z-z 1|的最大值为122+.方法归纳 注意此处空半格在设复数的过程中常设为z=a+bi(a 、b ∈R );在有关的解决轨迹问题中常设z=x+yi 从而与解析几何联系起来;当复数的模为1时也可以设为z=cosθ+isinθ用三角函数解决相关最值等.例7(2005上海春季高考)证明:在复数范围内,方程|z|2+(1-i)z -(1+i)z=ii +-255(i 为虚数单位)无解.思路解析:将已知条件化简后再由复数相等来解.解:原方程化简为|z|2+(1-i)z -(1+i)z=1-3i.设z=x+yi(x 、y ∈R ),代入上述方程得x 2+y 2-2xi-2yi=1-3i. ∴⎩⎨⎧=+=+)2.(322)1(,122y x y x将②代入①,整理得8x2-12x+5=0.∵Δ=-16<0,∴方程f(x)无实数解.∴原方程在复数范围内无解.方法归纳注意此处空半格复数相等是解决复数问题常用的方法,这是一个将复数问题实数化的过程,转化后再用实数范围内的相关方法来解.。
高中数学文科选修1-2知识点总结2
高中数学文科选修1-2知识点总结2-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中数学选修1-2知识点总结第一章 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i ni i x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x .2.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率. 记为P (A |B ) , 其公式为P (A |B )=P (AB )P (A )4相互独立事件(1)一般地,对于两个事件A ,B ,如果_ P (AB )=P (A )P (B ) ,则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=_ P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系):(1)2×2列联表设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量121:,;B B B B =通过观察得到右表所示数据:并将形如此表的表格称为2×2列联表.(2)独立性检验根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验.(3) 统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )第四章 复数 必背结论1.(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔z=z ⇔ z 2≥0; (2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0; (4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R ); 2.复数的代数形式及其运算设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则: (1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1·z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ; (3) z 1÷z 2 ==-+-+))(())((di c di c di c bi a i d c ad bc d c bd ac 2222+-+++ (z 2≠0) ; 3.几个重要的结论(1) i i 2)1(2±=±; ;11;11i ii i i i -=+-=-+(2) i 性质:T=4;i i i i i i n n n n -=-===+++3424144,1,,1;;03424144=++++++n n n i i i i(3) zz z z z 111=⇔=⇔=。
高二数学选修一二第一章知识点
高二数学选修一二第一章知识点一、函数和映射关系函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
数学中函数的表示通常用字母来表示,如f(x)或者y=f(x)。
其中,f表示函数名称,x表示自变量,f(x)表示函数的值或者因变量。
二、函数的定义域和值域函数的定义域指的是自变量的取值范围,而函数的值域指的是因变量的取值范围。
在定义函数时,需要确定函数的定义域,以确保函数有意义。
三、函数的性质1. 奇偶性:如果对于任意实数x,有f(-x)=f(x),则函数为偶函数;如果对于任意实数x,有f(-x)=-f(x),则函数为奇函数。
2. 单调性:如果对于任意实数x1和x2,有x1<x2,且f(x1)<f(x2),则函数为递增函数;如果对于任意实数x1和x2,有x1<x2,且f(x1)>f(x2),则函数为递减函数。
3. 周期性:如果存在一个正数T,使得对于任意实数x,有f(x+T)=f(x),则函数具有周期T。
4. 对称性:如果对于任意实数x,有f(x+a)=f(x-a),则函数具有轴对称性。
四、函数的图像与性质函数的图像是函数在坐标平面上的表现形式,通过绘制函数的图像,我们可以更直观地理解函数的性质。
函数的图像可以用于分析函数的增减性、最值、零点等重要特征。
五、一次函数和二次函数1. 一次函数:一次函数是形如f(x) = kx + b的函数,其中k和b 为常数。
一次函数的图像通常是一条直线,它的特点是斜率k表示函数的增长速度,截距b表示函数与y轴的交点。
2. 二次函数:二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b和c为常数且a不等于0。
二次函数的图像是一个抛物线,它的特点是开口方向由a的正负决定,对称轴由函数的顶点确定。
六、函数的复合与反函数1. 函数的复合:对于两个函数f(x)和g(x),它们的复合函数表示为f(g(x))或者g(f(x)),表示先对x进行g(x)的运算,再对结果进行f(x)的运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学选修1-2知识点
第一章统计案例
1.线性回归方程
①变量之间的两类关系:函数关系与相关关系;
②制作散点图,判断线性相关关系;
③线性回归方程:a bx y +=∧(最小二乘法)。
其中,1
22
1n
i i i n
i
i x y nx y b x nx a y bx
==⎧
-⎪
⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x .
2.相关系数(判定两个变量线性相关性):∑∑∑===----=
n
i n
i i
i
n
i i i
y y
x x
y y x x
r 1
1
2
2
1
)()
()((注意:
(1)r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;
(2)①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。
3.条件概率
对于任何两个事件A 和B ,在已知B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率.记为P (A |B ),其公式为P (A |B )=P (AB )P (A )
4.相互独立事件
(1)一般地,对于两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A 、B 相互独立.(2)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).(3)如果A ,B 相互独立,则A 与B -,A -与B ,A -与B -也相互独立.5.独立性检验(分类变量关系)
:
(1)2×2列联表
设,A B 为两个变量,每一个变量都可以取两个值,变量121:,;A A A A =变量
121:,;
B B B B =通过观察得到下表所示数据:并将形如此表的表格称为2×2列联表
(2)独立性检验
根据2×2列联表中的数据判断两个变量A ,B 是否独立的问题叫2×2列联表的独立性检验。
(3)统计量χ2的计算公式:χ2=
n (ad -bc )2(a +b )(c +d )(a +c )(b +d )
第二章推理与证明
1.推理
(1)合情推理:
归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理
由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
归纳推理是由部分到整体,由个别到一般的推理。
②类比推理
由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
类比推理是特殊到特殊的推理。
(2)演绎推理
从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
演绎推
理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:(1)大前提:已知的一般结论;(2)小前提:所研究的特殊情况;(3)结论:根据一般原理,对特殊情况得出的判断。
2.证明
(1)直接证明
①综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
综合法又叫顺推法或由因导果法。
②分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。
分析法又叫逆推证法或执果索因法。
(2)间接证明:反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
第三章复数
1.虚数单位i:
i=-
它的平方等于-1,即21
2.i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i
3.i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1
4.复数的定义:形如(,)
+∈的数叫复数,a叫复数的实部,b叫复数的虚
a bi a
b R
部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,)
=+∈
z a bi a b R
5.复数与实数、虚数、纯虚数及0的关系:对于复数(,)
+∈,当且仅当
a bi a
b R
b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.
5.复数集与其它数集之间的关系:N Z Q R C.
6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di⇔a=c,b=d
一般地,两个复数只能说相等或不相等,而不能比较大小。
如果两个复数都是实数,就可以比较大小。
当两个复数不全是实数时不能比较大小。
7.复平面、实轴、虚轴:
点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数。
(1)实轴上的点都表示实数(2)虚轴上的点都表示纯虚数(3)原点对应的有序实数对为(0,0)
设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,8.复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .9.复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .10.复数z 1与z 2的乘法运算律:z 1·z 2=(a +bi )(c +di )=(ac -bd )+(bc +ad )i .11.复数z 1与z 2的除法运算律:z 1÷z 2=(a +bi )÷(c +di )=i d c ad
bc d c bd ac 2
222+-+++(分母实数
化)
12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。
虚部不等于0的两个共轭复数也叫做共轭虚数。
通常记复数z 的共轭复数为z 。
例如z =3+5i 与z =3-5i 互为共轭复数13.共轭复数的性质
(1)实数的共轭复数仍然是它本身(2)2
2
Z
Z
Z Z ==⋅(3)两个共轭复数对应的点关于实轴对称14.复数的两种几何意义:
15几个常用结论
(1)()i i 212=+,(2)()i i 212-=-,(3)i i -=1,(4)i i i =-+11,(5)i i
i
-=+-11(6)()()22b a bi a bi a +=-+16.复数的模:
复数bi a Z +=的模2
2b a Z +=有关计算:
(1)n i ()*n N ∈怎样计算?(先求n 被4除所得的余数,r r k i i =+4()*,k N r N ∈∈)
(2)i i 2
3
21232121--=+-=ωω、是1的两个虚立方根,并且:
1
3
231==ωω221ωω=1
2
2ωω=2
1
1
ωω=1
2
1
ωω=21ωω=12ωω=1
21-=+ωω(3)复数集内的三角形不等式是:212121z z z z z z +≤±≤-,其中左边在复数z 1、z 2对应的向量共线且反向(同向)时取等号,右边在复数z 1、z 2对应的向量共线且同向(反向)时取等号。
(4)z z ⋅=2
z 。
(5)复平面内复数z 对应的点的几个基本轨迹:
↔=-是正的常数)r r z z (0轨迹是一个圆。
↔-=-)(2121是复常数、z z z z z z 轨迹是一条直线。
点)
,(b a Z 向量OZ
一一对应
一一对应
一一对应
复数()
R b a bi a Z
∈+=
,
↔=-+-是正的常数)是复常数,、a z z a z z z z 2121(2轨迹有三种可能情形:a)
当212z z a ->时,轨迹为椭圆;b)当212z z a -=时,轨迹为一条线段;c)当
212z z a -<时,轨迹不存在。
↔=---)(221是正的常数a a z z z z 轨迹有三种可能情形:a)当212z z a -<时,
轨迹为双曲线;b)当212z z a -=时,轨迹为两条射线;c)当212z z a ->时,轨迹不存在。
第四章框图
1.流程图
流程图是由一些图形符号和文字说明构成的图示。
流程图是表述工作方式、工艺流程的一种常用手段,它的特点是直观、清晰。
2.结构图
一些事物之间不是先后顺序关系,而是存在某种逻辑关系,像这样的关系可以用结构图来描述.常用的结构图一般包括层次结构图,分类结构图及知识结构图等。