【经典】第7章 位移法 习题答案

合集下载

结构力学习题及答案武汉大学

结构力学习题及答案武汉大学

2-7〜2-15试对图示体系进行几何组成分析。

若是具有多余约束的几何不变体系, 则需结构力学习题第2章平面体系的几何组成分析2-1〜2-6试确定图示体系的计算自由度。

指明多余约束的数目。

题2-5图题2-7图题2-9图■/ ED FB Z77 7T1D 题2-14图题2-11图题2-15图题2-17图题2-20图2-1 W 12-1 W 92-3 W 32-4 W 22-5 W 12-6 W 42-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为(a)2-18、2-19瞬变体系 2-20、2-21具有三个多余约束的几何不变体系第3章 静定梁和静定平面刚架的内力分析3-1试作图示静定梁的内力图。

ZOAA' FFF20Jt.¥AJ H H i h i H i HI11 i Hrr誌*毗7cIttkA' tftc AA y BY " D 叮啣-m柿(C) (d)习题3-1图3-2试作图示多跨静定梁的内力图。

I" bi __皿 ■(b)2in20kX 15fc\(C)XV屮........................................................J习题3-2图3-3〜3-9试作图示静定刚架的内力图。

40kV u>L T L Hr.习题3-4图习题3-6图习题3-7图AR GA-A'm--------------------5C习题3-8图习题3-9图3-10试判断图示静定结构的弯矩图是否正确。

EHHUniDn~订H i 卄T 1 nL J\ /I(b)(a)(c) (d)部分习题答案3-1 ( a)M B 80kN m (上侧受拉),F Q R 60kN,F Q B60kN(b)M A 20kN m (上侧受拉),M B40kN m (上侧受拉),F QA 32.5kN,F QA 20kN,F QB47.5kN,F Q B 20kN(c)M e口(下侧受拉),F Q C匸COS4 23-2 (a) M E0,M F40kN m (上侧受拉),M B120kN m (上侧受拉)(b) RM H 15kN m(上侧受拉),M E11.25kN m (下侧受拉)(c) M G29kN m (下侧受拉),M D8.5kN m(上侧受拉),M H 15kN m(下侧受拉)3-3 M CB 10kN m (左侧受拉),M DF 8kN m (上侧受拉),M DE 20kN m (右侧受拉)3- 4 M BA 120kN m (左侧受拉)3-5 M F40kN m (左侧受拉),M DC160kN m (上侧受拉),M EB80kNm(右侧受拉)3- 6 M BA60kN m(右侧受拉),M BD45kN m (上侧受拉),F QBD28.46kN3-7 M 下70kN m (左侧受拉),M DE150kN m (上侧受拉),M EB70kN m(右侧受拉)3-8 M CB 0.36kN m (上侧受拉),M BA 0.36kN m (右侧受拉)3-9 M AB10kN m (左侧受拉),M BC10kN m (上侧受拉)3-10 (a)错误(b)错误(c)错误(d)正确第4章静定平面桁架和组合结构的内力分析4-1试判别习题4-1图所示桁架中的零杆。

位移法习题解答

位移法习题解答

8-2、清华8-2c 试用位移法计算图示结构,并作内力图。

题8-2c (a )方法一:列位移法典型方程解:(1)D 处定向支座与AD 段不平行,视为固定端。

AB 段剪力、弯矩是静定的,弯矩图、剪力图直接可以画出来,DA 杆D 端支座与杆轴线不平行,视为固定端。

结构只有一个转角位移法基本未知量。

基本结构如图(b)。

(2)建立典型方程:11110P k z R ⋅+=(3)画基本结构的P M 、1M 的弯矩图:如图(c) 、(d) 所示。

(4)利用结点的力矩平的平衡求系数:1110;k i =1P R P l =-⋅(5)将系数,自由项代入典型方程得z 1。

110P lz i⋅=(6)利用叠加法求各杆端的最后弯矩,如图(f ):11P M M M z =+⋅30.3()1040.4()20.2()101030.3()10AC AD DA AEP lM i Pl i P l P lM i Pl M i Pl i iP l M i Pl i⋅=+⋅=⋅⋅=+⋅==+⋅=⋅=+⋅=左拉上拉下拉右拉 方法二:转角位移法(c)ACMAB(d)(b)(e)Q ABF Q解:(1)确定结构的基本未知量。

有一个角位移z1,如图所示(b)。

(2)列杆端的转角位移方程:AB段剪力和弯矩静定,DA杆D端支座与杆轴线不平行,视为固定端。

C1111,,3,3,4,2 FAB AB A AE AD DAM Pl M Pl M i z M i z M i z M i z =-=-=⋅=⋅=⋅=⋅(3)根据刚结点的力矩平衡,列位移方程,求未知量z1:111100343010AB AC AD AEPl M M M M M Pl i z i z i z zi =→+++=→-+⋅+⋅+⋅=→=∑(4)将所求位移代回转角位移方程求各杆端力,并作结构的弯矩图,如图(c)所示。

C1111,,330.3,330.3,1010440.4,220.21010FAB ABA AEAD DAM Pl M PlPl PlM i z i Pl M i z i Pli iPl PlM i z i Pl M i z i Pli i=-=-=⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯=讨论;本题将D处的滑动支座改为与杆轴线平行。

结构力学-第7章-位移法习题答案

结构力学-第7章-位移法习题答案



1 2
ql

1 12
ql 2
/ l

7 12
ql
由位移法方程得出:
r11Z1

R1 p

0

Z1

7ql 4 348EI
作出最终 M 图
7-9 试不经计算迅速画出图示结构的弯矩图形。
(a)
B
θA A
(b)
C B
yB
B′
A
C
题 7-9 图 7-10 试计算图示有剪力静定杆的刚架,并绘出 M 图。

13EI l
, r12

r21

3EI l2
r22

18EI l2
R1 p

1 16
ql 2 , R2 p

ql
代入,解得
Z1


66 3600

ql3 EI
,
Z2

211 3600

ql 4 EI
(4)求最终弯矩图
(e)
50kN·m
80kN·m 10kN·m 20kN
A 2EI B EI C
EI
(b)
B
3EI
C
EI
EI
A
D
Δ l
l
解:(1)求 M1, M 2 , M 3, M p 图。
(2)由图可知:
r11
16i, r12

r21

6i, r23

r32


6i l
, r22
16i, r33

24i l
R1 p

0, R2 p

经典位移法习题课

经典位移法习题课

角位移数目: 6 个 线位移数目: 4 个
位移法计算10个未知量 力法计算2个未知量
角位移数目: 4 个 线位移数目: 6 个
B

l
A
Δ
斜杆 AB
al
角位移数目:
t°C
因为温度轴向变形产生的位移不能忽略不计,
所以该结构有 4 个独立的结点线位移。( ×)
MC2 16kN.m
44
↑↑↑↑↑↑
12 24
12
(f)
28
M
(kN.m)
16
用位移法计算图示结构,并绘弯矩图.
40
10kNA/m↓↓↓↓↓↓
10kN/m
↓↓↓↓↓↓↓↓↓↓↓
80
30kN
30kN
EI=C 25 5
25
20
M (kN.m)
10
4m 4m 4m 4m
4m 4m
30kN
B
80kN.m
温度轴向变形引起结点C、D发生水平和竖向位移。但温度 轴向变形产生故端力可事先求出来,该结构只有1个独立结点 线位移。
P
B
A
l/2
l1 l/2
q=3kN/m
a
↓↓↓↓↓↓
Δ
A
B
(a)
q=3kN/m ↓↓↓↓↓↓
(b)
题8-29图
题8-30图
题8-31图
1-29、图示单跨超静定梁的固端弯矩MBA=
√ A -3Pl/16
M本BC未=知4θ量B+)2。θC - 16 =-18
A
D
E1I
E1I
E
MCB=2θB+ 4θC +16 =18

结构力学(5.1.2)--位移法习题及参考答案

结构力学(5.1.2)--位移法习题及参考答案

习 题6-1 试确定图示结构位移法基本未知量的个数。

6-2~6-6作图示刚架的M 图。

(a)(f)习题6-1图(d)习题6-2图习题6-5图习题6-3图(BC 杆件为刚性杆件)习题6-4图6-6 试用位移法计算图示结构,并作内力图。

6-7 试用位移法计算图示结构,并作内力图。

6-8 试用位移法计算图示结构,并作内力图。

EI 为常数。

6-9试用位移法计算图示结构,并作弯矩图。

EI 为常数。

6-10 试用位移法计算图示结构,并作弯矩图(提示:结构对称)。

习题6-9图习题6-7图6-11作图示刚架的体系内力图。

6-12 设支座 B 下沉0.5cm B D =,试作图示刚架的M 图。

6-13如图所示连续梁,设支座C 下沉淀1cm ,试作M 图。

6-14图示等截面正方形刚架,内部温度升高+t°C ,杆截面厚度h ,温度膨胀系数为 ,试作M 图。

10 kN/m( a )( b)40 kN习题6-10图BGH习题6-11图(a )(b )q6-15试作图示有弹性支座的梁的弯矩图,332EIk l=,EI =常数。

6-16 试用弯矩分配法计算图示连续梁,并作M 图。

6-176-18 用力矩分配法计算图示结构,并作M 图。

6-19 已知图示结构的力矩分配系数1238/13,2/13,3/13,A A A m m m ===作M 图。

6-20 求图示结构的力矩分配系数和固端弯矩。

已知q=20kN/m,各杆EI 相同。

习题6-17图习题6-13图习题6-14图6-21~6-22 用力矩分配法计算图示连续梁,作M 图,并计算支座反力。

EI=常数。

6-23~6-25用力矩分配法计算图示刚架,作M 图。

EI=常数。

参考答案6.1 (a) 2 (b) 1 (c) 2 (d) 3 (e) 6 (f) 26.2 15BD M =kN·m (右侧受拉)20kN/m 40kN习题6-22图习题6-21图15kN/m习题6-23图F P =10kN 习题6-24图习题6-25图6.321112AB M ql =(上侧受拉)6.4P 0.4AD M F l =(上侧受拉)6.5150AC M =kN·m (左侧受拉)6.651.3AB M =kN·m (左侧受拉)6.780AB M =kN·m (上侧受拉)6.816.9AB M =kN·m (左侧受拉)6.9 (a) 10.43CA M =kN·m (左侧受拉) (b) 56.84CE M =kN·m (下侧受拉)6.10 (a) 8.5AB M =kN·m (上侧受拉) (b) 34.3AC M =kN·m (左侧受拉)6.11 (a) 20.794DC M ql =(右侧受拉) (b) 6.14GD M q =(右侧受拉)6.1223.68AC M =kN·m (右侧受拉)6.1359.3310BA M =ᅲkN·m (上侧受拉)6.142/M EIt h a =(外侧受拉)6.152/32BA M ql =(下侧受拉)6.1617.5CB M =kN·m (下侧受拉)6.1778.75CD M =kN·m (上侧受拉)6.1827/12AB M ql =(上侧受拉)6.191117.95A M =kN·m (上侧受拉)6.200.34AD m =,13.33AD M =kN·m 6.2142.3BA M =kN·m (上侧受拉)6.2217.35BA M =kN·m (上侧受拉)6.2357.4BA M =kN·m (上侧受拉)6.2428.5BA M =kN·m (上侧受拉)6.2573.8BD M =kN·m (左侧受拉)。

位移法习题答案

位移法习题答案

位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。

2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。

3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。

4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。

5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。

例题:考虑一个简支梁,长度为L,受集中力P作用于中点。

使用位移法求解梁的弯矩和剪力分布。

解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。

接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。

对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。

最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。

结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。

通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。

请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。

在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。

结构力学习题集-矩阵位移法习题及答案

结构力学习题集-矩阵位移法习题及答案

第七章 矩阵位移法一、是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。

2、单元刚度矩阵均具有对称性和奇异性。

3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。

5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。

6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。

7、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。

8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。

9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。

10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。

11、矩阵位移法既能计算超静定结构,也能计算静定结构。

二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下的单元刚度矩阵[]k 66⨯,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。

3、单元i j 在图示两种坐标系中的刚度矩阵相比:A .完全相同;B .第2、3、5、6行(列)等值异号;C .第2、5行(列)等值异号;D .第3、6行(列)等值异号。

xi4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法一、就是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间得关系。

2、单元刚度矩阵均具有对称性与奇异性。

3、局部坐标系与整体坐标系之间得坐标变换矩阵T 就是正交矩阵。

4、结构刚度矩阵反映了结构结点位移与荷载之间得关系。

5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。

6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。

7、结构刚度方程矩阵形式为:,它就是整个结构所应满足得变形条件。

8、在直接刚度法得先处理法中,定位向量得物理意义就是变形连续条件与位移边界条件。

9、等效结点荷载数值等于汇交于该结点所有固端力得代数与。

10、矩阵位移法中,等效结点荷载得“等效原则”就是指与非结点荷载得结点位移相等。

11、矩阵位移法既能计算超静定结构,也能计算静定结构。

二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下得单元刚度矩阵,就其性质而言,就是:A.非对称、奇异矩阵;B.对称、奇异矩阵;C.对称、非奇异矩阵;D.非对称、非奇异矩阵。

3、单元i j 在图示两种坐标系中得刚度矩阵相比:A.完全相同;B.第2、3、5、6行(列)等值异号;C.第2、5行(列)等值异号;D.第3、6行(列)等值异号。

4、矩阵位移法中,结构得原始刚度方程就是表示下列两组量值之间得相互关系:A.杆端力与结点位移;B.杆端力与结点力;C.结点力与结点位移;D.结点位移与杆端力。

位移法例题

位移法例题
0
r21=- 24i/l 2
0
6i/l 6i/l
r12= -24i/l 2
r12
Z2=1
-12i/l 2 -12i/l 2 12i/l 2
-12i/l 2 -12i/l 2 r22=48i/l 2 12i/l 2
r22
6i/l
M 2图
FP
说明:水平杆的M图没画,并不是其M=0,而 是EI无穷大的杆能平衡任何弯矩。
R1P FP
R1P=-FP
0 0 0 0 0
FP
R2P FP MP图
R2P=-FP
0
作用在结点上的外力相当于 支座,故杆件无弯矩。 解得
3FP l 2 Z1 = 24i FP l 2 Z2 = 12i
FPl /4 FPl /4 FPl / 2
FPl / 2
M图
(4) 利用叠加法作出弯矩图
例4:用位移法计算图示结构 ,并作弯矩图.EI= 常数. 4:
l
A l
D
(同济大学,2004年考研题)
Z1 = 1
B 4i A 4i 2i l
C 2i l D
Z2 = 1
6i/l
2i/l
B
C
4i/l
M1 图
A
6i/l
D
l
M2 图
l
Z1 = −ql / ( 84i )
2
Z 2 = ql / ( 3i )
3
M 图(× ql )
2
例2: 位移法求解图示结构。
P
P /2
l A EA = B
Z1
l
l
P
l
注意: M 1图和 M P图的正确作图
例3:用位移法作图示结构的 M 图。EI=常数.

【精选】结构力学-矩阵位移法答案 doc资料

【精选】结构力学-矩阵位移法答案 doc资料

结构力学-矩阵位移法答案第七章 矩阵位移法(参考答案)四、1、[]K i i i i i i i i i =⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥4202224122223333(+) 4(+) 02、[]K i i i i i i i =⎡⎣⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥840012216612 0 对称,i EI l =/ 3、{}P ql ql ql ql =--⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪2222242524248//// 4、{}[]T ql ql pl pl M P 12/)12/8/()8/(22-+-+=5、42.8851.4090(kN m).M6、R ql B=↑067857.() 7、⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡3320392422821θθi i i i⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧39821121i θθ ()()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧01249826221121M M M M8、[]K 2221636003600=⨯⎡⎣⎢⎤⎦⎥ 6104 9、[]K i l i l i l i i i i EI l =-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=366622/// 12 4对称,式中: 10、(0,0)(1,2)(0,3)(0,0)① ② ③{}P =--⋅-⋅⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪ kN 5kN m 16kN m 211、{}[]T P 0 34 7-=12、 {}{}{}{}δδ①②①②=-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎫⎬⎪⎪⎪⎭⎪⎪⎪=-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎫⎬⎪⎪⎪⎭⎪⎪⎪=-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎫⎬⎪⎪⎪⎭⎪⎪⎪=---⎧⎨⎪⎪⎪⎩⎪⎪⎪⎫⎬⎪⎪⎪⎭⎪⎪⎪ , , , 005120512000525252525252525233l EI l EI F F 13、i K l EI i i K l EA k k l i K 4,/,12,/,/361333222====+=14、K EA l EI l K EI l K 223342151260=+==//,/,15、[][][][][][]K K K K K K 222222222421=++=①②③③,16、[][][][][][][][]K K K K K K K K =+++⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥22222112112222①③③③③②④17、[]⎥⎦⎤⎢⎣⎡=336lEI K18、(0,0,0)统一编码如图:① ② ③ (1,0,4)63(0,0,0)1(1,0,2)4(1,0,3)5(0,0,0)219、k k k k k k 221112212222①②②②②③++⎡⎣⎢⎢⎤⎦⎥⎥ 20、21、{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=2kN.m 12kN 2kN 3EP 22、{}P ql ql ql 2E 24=--⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪//22223、P ql P ql P ql 1324224===-,/,[]4 0 4 0 0 46- 0 0 12223⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=l EI l EI l EIl EI l EI l EA K []K =⨯⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1061203003240300300424、{}P ql ql ql =-⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪ ///222524225、P ql P ql P ql 45622212==-=/,/,/26、P p l P P ql P M P l q l 113341282812=-=--=-+,,27、P ql P ql P ql P 327891112220==-=-=/,/,/,28、{}[]P =---6 22 14 5 12 18T29、{}[]P =---4 10 4 0 6 4T30、{}P P P Pl 2 =--⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪///2323431、(0,0,0)(1,4,3)(0,0,0)(1,2,3)1234 {}P =---⋅⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪38170kN kN kN m32、(1,0,2)(3,4,5)(0,6,0,)(0,0,0) {}P ql ql ql ql ql =--⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪⎫⎬⎪⎪⎪⎪⎭⎪⎪⎪⎪ 01112238222//// 33、{}[]P T 40 -32 -14=34、{}P =--⋅⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪ kN 10kN 10kN m 1035、{}TPl ql ql P P ⎥⎦⎤⎢⎣⎡+--=812,2,2,0,0236、{}[]∆=0 0 0 -0.1569 -0.2338 0.4232 0 0 0T,2336.02=②F37、F F 3603330333=⋅=-⋅.,.kN m kN m38、{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧----=kN.m kN kN kN.m kN kN 1321726.193.19561.651726.193.19③F39、40、{}Fql ql ql ql ①分=⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪⎫⎬⎪⎪⎪⎪⎭⎪⎪⎪⎪ 007902340020800575722....() 41、M 28925②=-.kN 42、123①②③ (0,0)(0,0)(0,1)(0,1)(2,3)(2,3)[]K EA l =⨯+-+---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥24221111221111143、{}P =⎧⎨⎩⎫⎬⎭8kN 6kN 44、{}[]kN P T 40,30,20,10--=45、{}F①=-⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪1116011160..kN46、{}∆=(/())1EA ×[]T 1167.111- 137.680-01139.555- 00322.342 {}[]F①=-85581.kN 85.581kN T47、NP ①=3(压 力 )48、{}⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-=0505 kN kN ①F49、l EAlEI K +=3441245=K2134(1,2,3)(10,11,12)(7,8,9)(4,5,6)(4,5,0)①②③(7,8,0)50、(0,0,0)(0,0,0)(1,2,3)(0,0,0)(1,2,0)③①②1352451、K EA l K EI l EA l K EI l 4455366336412==+=/,//,/ 52、积分变换法求解定解问题为了说明傅氏变换法解非齐次方程特别简便,我们特举一强迫弦振动问题: 求解无限长弦的强迫振动方程的初值问题200(,), ()|() |()tt xx t t t u a u f x t x u x u x ϕψ==⎧-=-∞<<∞⎪=⎨⎪=⎩ 【解】 作傅氏变换[(,)](,), [(,)](,),[()](), [()]()u x t U t f x t F t x x ωωϕωψω===Φ=ψF F F F我们容易得到原定解问题可变换为下列常微分方程的问题222200(,)(,)(,)|(),(,)|(),t t t U a U t F t t U t U t ωωωωωωω==⎧∂+=⎪∂⎪⎨=Φ⎪⎪=ψ⎩上述问题的解为01()(,)(,)sin ()d ()cos()sin()t U t F a t at a t a a ωωωτωττωωωωωψ=-+Φ+⎰利用傅氏变换的性质有1 1[(,)](,)1[(,)](,)d i xx F t f x t F f ωωτξτξω--==⎰F F故得到()1i ()1[(,)](,)d i x a t a t x e F t f τωτωξτξω±--±-=⎰F i ()i ()1sin[()][]2i a t a t a t e e ωτωτωτ----=-代入得到()()01(,)[(,)d (,)d ]d 211 [()()]()d 22t x a t x a t x x x atx at u x t f f a x at x at a ττξτξξτξτϕϕψξξ+---+-=-+++-+⎰⎰⎰⎰即得()0()1(,)(,)d d 211 [()()]()d 22t x a t x a t x atx at u x t f ax at x at a ττξτξτϕϕψξξ+---+-=+++-+⎰⎰⎰例15.2 求解无限长细杆的热传导(无热源)问题200, (,0)|() t xx t u a u x t u x ϕ=⎧-=-∞<<∞>⎨=⎩【解】 作傅氏变换,[(,)](,)u x t U t ω=F [()]()x ϕω=ΦF 定解问题变换为22(,)0(,0)()U a U t U ωωωω'⎧+=⎨=Φ⎩ 常微分方程的初值问题的解是22(,)()a tU t e ωωω-=Φ 再进行逆傅里叶变换,22221i i i 1(,)[(,)]()d 2π1 [()d ]d 2πa t x a t x u x t U t e e e e e ωωωξωωωωωϕξξω∞---∞∞∞---∞-∞==Φ=⎰⎰⎰F交换积分次序得22i ()1(,)()[d ]d 2πa t x u x t e e ωωξϕξωξ∞∞---∞-∞=⎰⎰引用积分公式22224d e e eβσωβωσω∞--∞=⎰且令 i()x σβξ==- 以便利用积分公式,即得到天津大学专用纸学院专业班年级学号共 3 页第 1 页。

(整理)位移法习题.

(整理)位移法习题.

位移法一、判断题1.位移法与力法的主要区别是,位移法以结点位移为基本未知量,而力法则以多余未知为基本未知量。

()2. 位移法的基本未知量包括结点转角和独立结点线位移,其中结点转角数等于结构中所有刚结点的数目。

()3.位移法中杆端弯矩正负号的规定与作弯矩图时的规定相同。

()4.利用结点或横梁的平衡条件建立的平衡方程式称作位移法的基本方程。

()5.独立结点线位移的数目,对于多层刚架(无侧向约束)等于刚架的层数,对于复杂刚架等于为使铰化结点后体系成为几何不变体系所需增加的链杆数目。

()6.位移法的基本未知量是结构的多余约束力。

()7.杆端弯矩与结点转角、在垂直杆轴线方向的相对线位移及固端弯矩之间的关系式,称为转角位移方程。

()8.位移法的基本未知量是结构的多余约束力()。

9.用位移法计算图1所示结构时,其基本未知量有3个()。

图 110.位移法只能用来解超静定结构。

()二、选择题1.试确定下面结构的位移法基本未知量的个数:()A.θ=1,Δ=1B.θ=2,Δ=2C.θ=2,Δ=1D.θ=1,Δ=2三、填空题1.力法和位移法是解超静定结构的两种基本方法。

它们的主要区别在于力法是以____________为基本未知量,而位移法则以____________作为基本未知量。

2.位移法基本未知量包括____________和____________。

结点转角未知量的数目等于该结构的____________。

独立结点线位移的数目,对于多层刚架等于刚架的____________ ,对于复杂刚架等于为使铰化结点后体系成为几何不变体所需增加的____________。

3.杆端弯矩与____________及 ____________间的关系式称为转角位移方程。

4.结构的刚结点被固定后,各杆在荷载作用下的杆端弯矩和杆端剪力称为____________和____________。

5.图2所示刚架用力法计算时的基本未知量为____________,用位移法计算时的基本未知量为____________,为了使计算简化应选用____________。

位移法习题答案

位移法习题答案

位移法习题答案位移法是力学中的一种重要方法,用于求解刚体或弹性体的位移和变形。

它通过建立坐标系和运用力平衡条件,将问题转化为求解位移的数学问题。

本文将通过几个典型的位移法习题,来展示位移法的应用和解题思路。

第一个习题是关于简支梁的弯曲变形。

考虑一个长度为L的简支梁,在梁的中点施加一个集中力F。

我们的目标是求解梁的弯曲变形。

首先,我们需要建立坐标系。

假设梁的左端为原点O,梁的水平方向为x轴正方向,竖直向上为y轴正方向。

选择一个合适的参考点A,将其坐标设为(x, y)。

接下来,我们需要运用力平衡条件。

考虑梁上的一个微小段dx,其长度为dl。

由于梁是简支的,我们可以得到以下平衡方程:∑F_x = 0: -N(x+dx) + N(x) + F = 0∑F_y = 0: T(x+dx) - T(x) - dl*w = 0其中,N(x)和T(x)分别表示梁上某一点处的法向力和切向力,w表示单位长度的梁的重力。

将上述方程进行展开,并忽略高阶微小量,我们可以得到:-dN/dx*dx + F = 0dT/dx*dx - dl*w = 0由于dx是一个无穷小量,我们可以将上述方程进行积分,得到:-N(x) + F*x + C_1 = 0T(x) - dl*w*x + C_2 = 0其中,C_1和C_2是积分常数。

接下来,我们需要确定积分常数C_1和C_2。

考虑梁的边界条件,即在梁的两端点处,梁的位移为零。

根据这个条件,我们可以得到:N(0) = 0: C_1 = 0N(L) = 0: -F*L + C_1 = 0解上述方程组,我们可以得到C_1 = 0和C_2 = dl*w*L。

最后,我们可以得到梁上任意一点的位移表达式:y(x) = ∫(0 to x) [T(x')/dl*w*x' - dl*w*x'] dx'将T(x)和C_2的表达式代入,我们可以得到:y(x) = ∫(0 to x) [(dl*w*x' - dl*w*L)/dl*w*x' - dl*w*x'] dx'= ∫(0 to x) (1 - L/x') dx'对上述积分进行计算,我们可以得到:y(x) = x - L * ln(x)通过上述推导,我们成功地求解了简支梁的弯曲变形问题。

高中物理位移蜗牛练习题及讲解

高中物理位移蜗牛练习题及讲解

高中物理位移蜗牛练习题及讲解# 高中物理位移蜗牛练习题及讲解位移是描述物体位置变化的物理量,它是一个矢量,具有大小和方向。

以下是一些关于位移的高中物理练习题,以及相应的讲解。

## 练习题一题目:一辆汽车在直线上以匀速行驶,初速度为20m/s,行驶了10秒后,求汽车的位移。

解答:根据匀速直线运动的位移公式:\[ s = vt \]其中 \( s \) 是位移,\( v \) 是速度,\( t \) 是时间。

将题目中的数据代入公式:\[ s = 20 \, \text{m/s} \times 10 \, \text{s} = 200 \,\text{m} \]所以,汽车的位移是200米。

## 练习题二题目:一个物体从静止开始做匀加速直线运动,加速度为2m/s²,求物体在第3秒内的位移。

解答:首先,我们需要计算物体在前2秒的位移,然后计算物体在前3秒的位移,两者之差即为第3秒内的位移。

前2秒的位移 \( s_1 \) 由公式:\[ s_1 = \frac{1}{2} a t_1^2 \]代入数据:\[ s_1 = \frac{1}{2} \times 2 \, \text{m/s}^2 \times (2 \,\text{s})^2 = 4 \, \text{m} \]前3秒的位移 \( s_2 \) 由公式:\[ s_2 = \frac{1}{2} a t_2^2 \]代入数据:\[ s_2 = \frac{1}{2} \times 2 \, \text{m/s}^2 \times (3 \,\text{s})^2 = 9 \, \text{m} \]第3秒内的位移 \( \Delta s \) 为:\[ \Delta s = s_2 - s_1 = 9 \, \text{m} - 4 \, \text{m} = 5 \, \text{m} \]所以,物体在第3秒内的位移是5米。

## 练习题三题目:一个物体以初速度 \( v_0 \) 做匀减速运动,直到静止。

物理第七章课后习题答案

物理第七章课后习题答案

物理第七章课后习题答案物理是一门关于自然界基本规律的科学,它研究物质和能量之间的相互作用。

在物理学的学习过程中,课后习题是检验学生理解和掌握程度的重要环节。

本文将针对物理第七章的课后习题进行解答,帮助学生更好地理解和掌握这一章节的知识。

第一题:一个质点在匀加速直线运动中,它的速度从10m/s增加到30m/s,所用的时间是2s。

求这个质点在这段时间内所运动的距离。

解答:根据匀加速直线运动的公式,可以得到速度的变化量与时间的关系:v = v0 + at,其中v为末速度,v0为初速度,a为加速度,t为时间。

将已知条件代入公式,可得30 = 10 + 2a,解得a = 10/2 = 5m/s²。

再根据运动学中的位移公式s = v0t + 1/2at²,代入已知条件,可得s = 10 × 2 + 1/2 × 5 × 2² = 20 + 10= 30m。

因此,这个质点在这段时间内所运动的距离为30m。

第二题:一个质点以初速度20m/s做匀减速直线运动,它在4s内停止。

求这个质点的加速度和它在这段时间内所运动的距离。

解答:根据匀减速直线运动的公式,可以得到速度的变化量与时间的关系:v = v0 - at,其中v为末速度,v0为初速度,a为加速度,t为时间。

将已知条件代入公式,可得0 = 20 - 4a,解得a = 20/4 = 5m/s²。

再根据运动学中的位移公式s = v0t - 1/2at²,代入已知条件,可得s = 20 × 4 - 1/2 × 5 × 4² = 80 - 40 = 40m。

因此,这个质点的加速度为5m/s²,它在这段时间内所运动的距离为40m。

第三题:一个质点以初速度10m/s做匀变速直线运动,它在2s内运动了20m。

求这个质点的末速度和加速度。

解答:根据匀变速直线运动的公式,可以得到位移与时间的关系:s = v0t +1/2at²,其中v0为初速度,a为加速度,t为时间。

结构力学第7章课后答案全解

结构力学第7章课后答案全解
解:(1)画出 图
由图可知,得到各系数:
求解得:
(2)求解最终弯矩图
7-11试利用对称性计算图示刚架,并绘出M图。
(a)
解:(1)利用对称性得:
(2)由图可知:
可得:
(3)求最终弯矩图
(b)
解:(1)利用对称性,可得:
(2)由图可知,各系数分别为:
解得:
(3)求最终弯矩图如下
(c)
解:(1)在D下面加一支座,向上作用1个单位位移,由于BD杆会在压力作用下缩短,所以先分析上半部分,如下图。
(a)
解:(1)确定基本未知量和基本结构
有一个角位移未知量,基本结构见图。
(2)位移法典型方程
(3)确定系数并解方程
(4)画M图
(b)
解:(1)确定基本未知量
1个角位移未知量,各弯矩图如下
(2)位移法典型方程
(3)确定系数并解方程
(4)画M图
(c)
解:(1)确定基本未知量
一个线位移未知量,各种M图如下
7-12试计算图示结构在支座位移作用下的弯矩,并绘出M图。
(a)
代入,解得
(4)求最终弯矩图
7-7试分析以下结构内力的特点,并说明原因。若考虑杆件的轴向变形,结构内力有何变化?
(a) (b) (c)
(d) (e) (f)
7-8试计算图示具有牵连位移关系的结构,并绘出M图。
(a)
解:(1)画出 图
由图可得:
由图可知:
(2)列方程及解方程组
解得:
(3)最终弯矩图
(b)
7-2试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?

[整理]位移法习题

[整理]位移法习题

位移法一、判断题1.位移法与力法的主要区别是,位移法以结点位移为基本未知量,而力法则以多余未知为基本未知量。

()2. 位移法的基本未知量包括结点转角和独立结点线位移,其中结点转角数等于结构中所有刚结点的数目。

()3.位移法中杆端弯矩正负号的规定与作弯矩图时的规定相同。

()4.利用结点或横梁的平衡条件建立的平衡方程式称作位移法的基本方程。

()5.独立结点线位移的数目,对于多层刚架(无侧向约束)等于刚架的层数,对于复杂刚架等于为使铰化结点后体系成为几何不变体系所需增加的链杆数目。

()6.位移法的基本未知量是结构的多余约束力。

()7.杆端弯矩与结点转角、在垂直杆轴线方向的相对线位移及固端弯矩之间的关系式,称为转角位移方程。

()8.位移法的基本未知量是结构的多余约束力()。

9.用位移法计算图1所示结构时,其基本未知量有3个()。

图 110.位移法只能用来解超静定结构。

()二、选择题1.试确定下面结构的位移法基本未知量的个数:()A.θ=1,Δ=1B.θ=2,Δ=2C.θ=2,Δ=1D.θ=1,Δ=2三、填空题1.力法和位移法是解超静定结构的两种基本方法。

它们的主要区别在于力法是以____________为基本未知量,而位移法则以____________作为基本未知量。

2.位移法基本未知量包括____________和____________。

结点转角未知量的数目等于该结构的____________。

独立结点线位移的数目,对于多层刚架等于刚架的____________ ,对于复杂刚架等于为使铰化结点后体系成为几何不变体所需增加的____________。

3.杆端弯矩与____________及 ____________间的关系式称为转角位移方程。

4.结构的刚结点被固定后,各杆在荷载作用下的杆端弯矩和杆端剪力称为____________和____________。

5.图2所示刚架用力法计算时的基本未知量为____________,用位移法计算时的基本未知量为____________,为了使计算简化应选用____________。

结构力学课后习题答案(朱慈勉)

结构力学课后习题答案(朱慈勉)
(a)
(b)
(c)
(d)
4-7试绘制图示结构主梁指定量值的影响线,并加以比较。
(a)
(b)
4-8试绘制图示刚架指定量值的影响线。
(a)
(b)
4-9试绘制图示桁架指定杆的内力影响线,分别考虑荷载为上承和下承两种情况。
(a)
下承荷载情况可同样方法考虑
(b)
下称荷载时,用同样方法分析,得到影响线如下
4-13试求图示简支梁在吊车竖向荷载作用下B支座的最大反力。设一台吊车轮压为FP1=FP2=285kN,另一台轮压为FP3=FP4=250kN,轮距及车挡限位的最小车距如图所示。
7-3试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?
7-5试用位移法计算图示结构,并绘出其内力图。
(a)
解:(1)确定基本未知量和基本结构
有一个角位移未知量,基本结构见图。
(2)位移法典型方程
(3)确定系数并解方程
5-6试用积分法计算图示结构的位移:(a) ;(b) ;(c) ;(d) 。
(a)
(b)
(c)
(d)
5-7试用图乘法计算图示梁和刚架的位移:(a) ;(b) ;(c) ;(d) ;(e) ;(f) 。
(a)
(b)
(c)
(e)
5-9图示结构材料的线膨胀系数为α,各杆横截面均为矩形,截面高度为h。试求结构在温度变化作用下的位移:(a)设h=l/10,求 ;(b)设h=0.5m,求 (C、D点距离变化)。
6-15试判断下列超静定结构的弯矩图形是否正确,并说明理由。
(a) (b) (c)

位移法习题与答案

位移法习题与答案

位移法习题与答案位移法是结构力学中常用的一种分析方法,通过计算结构在外力作用下的位移,来求解结构的应力、应变和变形等问题。

在学习位移法时,习题与答案的练习是非常重要的,可以帮助我们加深对位移法的理解和掌握。

下面将给大家介绍一些位移法习题及其答案。

习题一:求解简支梁的弯矩分布已知一根长度为L的简支梁,受到均布载荷q作用,求解弯矩分布。

解答:首先,我们需要根据受力分析确定梁的反力。

对于简支梁,两个支座处的反力相等,且为qL/2。

接下来,我们可以利用位移法求解弯矩分布。

假设梁的弯矩分布为M(x),则根据位移法的基本原理,可以得到以下方程:d2M(x)/dx2 = -q对该方程进行两次积分,得到:M(x) = -q*x^2/2 + C1*x + C2由于梁两端是简支条件,即位移和转角为零,可以得到边界条件:M(0) = 0M(L) = 0代入上述方程,解得C1 = qL/2,C2 = -qL^2/2。

因此,弯矩分布为:M(x) = -q*x^2/2 + qL/2*x - qL^2/2习题二:求解悬臂梁的挠度已知一根长度为L的悬臂梁,受到集中力F作用在悬臂端点,求解梁的挠度。

解答:首先,我们需要根据受力分析确定梁的反力。

对于悬臂梁,端点处的反力只有一个,即为F。

接下来,我们可以利用位移法求解梁的挠度。

假设梁的挠度为δ(x),则根据位移法的基本原理,可以得到以下方程:d2δ(x)/dx2 = -F/(EI)对该方程进行两次积分,得到:δ(x) = -F*x^2/(2EI) + C1*x + C2由于梁端点处的位移为零,可以得到边界条件:δ(0) = 0dδ(x)/dx|_(x=L) = 0代入上述方程,解得C1 = 0,C2 = 0。

因此,梁的挠度为:δ(x) = -F*x^2/(2EI)习题三:求解悬臂梁的最大挠度已知一根长度为L的悬臂梁,受到均布载荷q作用,求解梁的最大挠度。

解答:首先,我们需要根据受力分析确定梁的反力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章位移法习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

l llZ 1M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)解:(1)确定基本未知量1个角位移未知量,各弯矩图如下4m 4m4m1Z =1M 图32EIp M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KN mM ⋅图(c)解:(1)确定基本未知量一个线位移未知量,各种M 图如下6m 6m 9m1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1114,243p p r EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下a 2aa2aaF P11Z=1111r 252/25EA a 简化图1pR pp M(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程11126/,55p p r EA a R F ==- 126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)解:(1)确定基本未知量两个线位移未知量,各种M 图如下l图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程11122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

(a)解:(1)确定基本未知量两个角位移未知量,各种M 图如下23EI 23EI 112121 3r EI r EI⇒==图1M23EI 22116r EI ⇒=6m6m 6m1130 0p p R R ⇒==图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程111221221212,311630,0p p r EI r r EI r EI R R ======代入,解得1215.47, 2.81Z Z =-=(4)画最终弯矩图图M(b)解:(1)确定基本未知量两个位移未知量,各种M 图如下图1MCED 6m6m图2M图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程 111221221211,03430,30p p r i r r ir R KN R KN====-==-代入,解得123011,4011Z Z i i=-⋅=⋅ (4)画最终弯矩图图M 29.09(c)2m2m解:(1)确定基本未知量两个位移未知量,各种M 图如下图p M(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程1112212212311,2640,30p p i r i r r i r R R KN===-===-代入,解得126.31646.316,Z Z EI EI==(4)求最终弯矩图7- 32图M(d)解:(1)确定基本未知量两个位移未知量,各种M 图如下1ll7- 33pM(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程1112212222212133,181,16p p EI EI r r r l l EI r l R ql R ql======-代入,解得341266211,36003600ql ql Z Z EI EI=-⋅=⋅(4)求最终弯矩图图M(e)解:(1)确定基本未知量两个角位移未知量,各种M 图如下8m4m 4m 4m 4m7- 322EI 1M 图p M 图(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程111221221251,447845,0p p r EI r r EI r EIR KN m R =====⋅= 代入,解得1238.18,10.91Z Z =-=(4)求最终弯矩图M 图7-7 试分析以下结构内力的特点,并说明原因。

若考虑杆件的轴向变形,结构内力有何变化? (a) (b) (c)(d) (e)(f)F PF PqEI 1=∞EI对称轴F PF P7- 337-8 试计算图示具有牵连位移关系的结构,并绘出M 图。

(a)解:(1)画出p M M M ,,21图481EI 3EI 由图可得: 1112211124,813r EI r r EI ===1由图可知: 22149r EI= 图20KNp M20kN8m8m 6m3mACD EBFG EI 1=∞EI 1=∞ 3EI3EI3EIEI7- 3212200p p R KN R ⇒=-= (2)列方程及解方程组12121124200813414039EIZ EIZ EIZ EIZ ⎧+-=⎪⎪⎨⎪+=⎪⎩ 解得:121183.38,71.47Z Z EI EI==-(3)最终弯矩图图M(b)解:C 点绕D 点转动,由Cy=1知,45,43==⊥CD x C C 知EIEI EI r r EI EI EI r EIEI EI r r EI r r EI r 16027403323,1098410412833231289,4,3223221331211211-=--===+=-=-=====KN R R m KN R p p p 25.6,0,10321-==⋅= 求33r0=∑DM知4m 6m8m4m 10kN10kN B C ADEI=常数7- 33EI EI EI EI EI EI r 055.081481289128912834031602733=⨯⨯+-++=⎪⎩⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=-+=+-+EIZ EI Z EI Z EIZ Z EIZ EIZ Z EI Z EI EIZ Z EI EIZ /6.285/5.58/9.17025.6055.0160271283016027109401012834321321321321(c) 解:(1)作出各M 图26EI a 1M 图()1133113918018EI EIMr a a a a EI r a =⇒⨯=+⨯∴=∑F P EI 1=∞EIEI D CB Aa 2a 2a a7- 32图p M110022p p aM P R a PR =⇒⋅+⋅==-∑(2)列出位移法方程11110p r Z R +=解得:31Z =(3)最终M 图M 图(d)解:基本结构选取如图所示。

作出1M 及p M 图如下。

l 2l 2 ll7- 332p M 图3222211292/2910810l EI l l EI l EI l l EI l EI r =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+=ql l ql ql R p 127/1212121-=⎪⎭⎫⎝⎛+-=由位移法方程得出: EIql Z R Z r p 34870411111=⇒=+作出最终M 图285348ql M 图7-9 试不经计算迅速画出图示结构的弯矩图形。

(a)(b)题7-9图7-10 试计算图示有剪力静定杆的刚架,并绘出M图。

y Baaa a7- 32解:(1)画出p M M M ,,21图1M 图2M 图p M 图由图可知,得到各系数:222122211211813,858,,7qa R qa R i r i r r i r p p -=-==-=== 求解得:5512,4405321==Z Z (2)求解最终弯矩图7-11 试利用对称性计算图示刚架,并绘出M 图。

(a)解:(1)利用对称性得:6m7- 33p M 图(2)由图可知:m KN R EI r p ⋅-==300,34111 0300341=-∴EIZ可得:EIEI Z 225433001=⨯= (3)求最终弯矩图M 图(b)解:(1)利用对称性,可得:5EI1M 图图p M(2)由图可知,各系数分别为: 02020212020215441111=-⋅-==+=EIZ m KN R EI EI EI r p 4m 3m4m解得:EIZ 214001=(3)求最终弯矩图如下M 图(c)解:(1)在D 下面加一支座,向上作用1个单位位移,由于BD 杆会在压力作用下缩短,所以先分析上半部分,如下图。

1M 图p M 图D 点向上作用1个单位,设B 向上移动x 个单位,则()x l EI x l EI -=112333,得54=x 个单位。

(2)同理可求出Mp 图。

Pl R l EI l EI x l EI r p 54,5132512121332311==+=可得:3331Pl Z -=(3)求最终弯矩图l llC DE图11Pl M(d)(e)解:(1)利用对称性,取左半结构4m 4m4m4m′′3m3m3m 3m′1M 图2M 图1图p M(2)由图可知: KNR R EIr EI r r EI r p p 25,02720,94,382122122111======解得:EIZ EI Z 375,42521-==(3)求得最终弯矩图M 图(f)解:由于Ⅱ不产生弯矩,故不予考虑。

相关文档
最新文档