西城初一数学期末试卷附加题及答案
2023北京西城区初一(上)期末数学答案
学年度第一学期期末试卷 第1页(共5页)北京市西城区2022—2023学年度第一学期期末试卷七年级数学答案及评分参考 2023.1一、选择题(共16分,每题2分)二、填空题(共16分,每题2分)9.4.07. 10.125. 11.9−. 12.答案不唯一,如:4−a b .13.3. 14.5−. 15.(0.950)−a . 16.3三、解答题(共68分,第17题18分,第18-19题,每题6分,第20题11分,第21题6分,第22-24题,每题7分)17.解:(1)12(6)(28)−+−−−=18(28)−−− ······································································································· 2分 =10. ·················································································································· 4分(2)815()(9)54−⨯÷− =8151549⨯⨯ ·········································································································· 3分 =23. ···················································································································· 4分 (3)375()(48)16246−−+⨯− =91440+− ········································································································· 3分 =17−. ················································································································ 5分(4)2273(1)(2)8−+−⨯− =19()48−+−⨯ ····································································································· 3分学年度第一学期期末试卷 第2页(共5页)=192−− ··············································································································· 4分 =192−. ··············································································································· 5分 18.解:(1)点C 在直线AB 外; ································ 1分(2)如图所示; ················································ 3分(3)∵DC =AD +AC ,AD =AB ,∴DC =AB +AC .∵AB +AC > BC ,( 两点之间,线段最短 )∴DC > BC . ····························································································· 6分19.解:2223(2)(37)10−−++x y y x y222363710=−−−+x y y x y ························································································ 2分24=−+x y . ················································································································· 4分 当14=−x ,5=y 时, 原式214()54=−⨯−+ ···································································································· 5分 125=+26=. ··················································································································· 6分20.(1)7202(33)−=−x x解:去括号,得 72066−=−x x . ·············································································· 1分移项,得 76620+=+x x . ·················································································· 3分合并同类项,得 1326=x . ·················································································· 4分系数化1,得 2=x . ····························································································· 5分(2)2331152−−=+x x 解:去分母,得 2(23)5(31)10−=−+x x . ································································ 2分去括号,得 4615510−=−+x x . ······································································· 3分学年度第一学期期末试卷 第3页(共5页)移项,得 4156510−=−+x x . ··········································································· 4分合并同类项,得 1111−=x . ················································································· 5分系数化1,得 1=−x . ··························································································· 6分21.解:(1)①如图所示; ············································ 1分②∵∠EOD =90°,∴∠EOC +∠ COD =90°. ············ 2分∵∠AOB =∠COD ,∴∠EOC +∠ AOB =90°. ············ 3分∵∠AOC =90°,∴∠EOC +∠AOE =90°.∴∠ AOB =∠ AOE .( 同角的余角相等 ) ······································· 5分∴OA 平分∠EOB .(2)OC ,EOD . ······································································································ 6分22.方法一:3x ,4(2)+x ; ································································································ 2分解:设每台A 型机器一天生产x 件产品.依题意列方程,得 34(2)57+=x x . ······································································ 4分 解得 40=x . ·········································································································· 5分所以3245=x .·········································································································· 6分 答:每台A 型机器一天生产40件产品,每箱装24件产品. ··································· 7分方法二:5x ,7x ; ········································································································ 2分解:设每箱装x 件产品.依题意列方程,得 57234+=x x .········································································· 4分 解得 24=x . ·········································································································· 5分所以5403=x .·········································································································· 6分 答:每台A 型机器一天生产40件产品,每箱装24件产品. ··································· 7分学年度第一学期期末试卷 第4页(共5页)23.解:(1)①∵∠AOB =∠AOC +∠BOC ,∠AOC =4∠BOC ,∴∠AOB =4∠BOC +∠BOC =5∠BOC .∵∠AOB =75°,∴5∠BOC =75°.∴∠BOC =15°. ································ 2分②∵∠EOC 与∠DOB 互余,∴∠EOC +∠DOB =90°. ········································································ 3分∵OE 平分∠DOC ,∴∠DOC =2∠EOC . ·················································································· 4分∴∠DOB =∠DOC +∠BOC =2∠EOC +15°.∴∠EOC +2∠EOC +15°=90°.∴∠EOC =25°. ························································································ 5分(2)(902−n )°或 (902+n )°. ············································································· 7分 24.解:(1)1; ······················································································································ 1分(2)∵点D 是点B 关于点A 的“k 倍分点”,∴DB =kDA .∵AD =10,点A 表示的数是4−,∴当点D 在线段BA 的延长线上时,点D 表示的数是14−.此时DB =2(14)−−=16,则k =DB DA =85. ·········································· 3分 当点D 在线段AB 的延长线上时,点D 表示的数是6.此时DB =62−=4,则k =DB DA =25. ∴k =85或25. ·································································································· 4分 (3)12,23,6,8. ································································································· 7分学年度第一学期期末试卷 第5页(共5页)四、选做题(共10分,第25题4分,第26题6分)25.解:(1)正,负, ············································································································ 1分 用较大的绝对值减去较小的绝对值; ···························································· 2分(2)①8−; ·············································································································· 3分 ②答案不唯一.如:[(1)(1)](3)0(3)3−⊗+⊗+=⊗+=+,(1)[(1)(3)](1)(2)1−⊗+⊗+=−⊗+=−,所以[(1)(1)](3)(1)[(1)(3)]−⊗+⊗+≠−⊗+⊗+.此时()()⊗⊗=⊗⊗a b c a b c 不成立. ······················································ 4分26.解:(1)①∵AB =1,∴b =a +1.∵m =5,∴BC =m +3=8,∴c =a +1+8=a +9. ················································································ 1分②∵CD =m +4=9,∴d =a +9+9=a +18.∴a +b +c +d =a +(a +1)+(a +9)+(a +18)=4a +28=4(a +7).∵a 为整数,∴a +b +c +d 能被4整除. ······································································· 2分(2)①B ,D ; ·········································································································· 4分 ②a =52−−m 或42−−m . ··············································································· 6分。
答案西城区-学年度第二学期期末七年级数学试题答案.7
七年级数学参考答案及评分标准一、选择题(本题共30分,每小题3分)三、解答题(本题共27分,第21、23题每小题6分,其余每小题5分)19. 2311,54.3x x x x +<+⎧⎪+⎨>⎪⎩解:解不等式①,得8x <. …………………………………………………………2分解不等式②,得2x >-. …………………………………………………………4分 把不等式①和②的解集在数轴上表示出来.所以原不等式组的解集为28x -<<. …………………………………………5分20.解:(1) ……………………………2分(2)2(21)(21)(3)x x x +---22(2)1(69)x x x =---+ ……………………………………………………4分224169x x x =--+-23610x x =+-. ……………………………………………………………5分21.解:(1)①右,3,上,5; ……………………………………………………………2分 ②(6,3); …………………………………………………………………4分 (2)如图,过点B 作BD ⊥x 轴于点D ,则点D 的坐标为(6,0).∵点A ,B ,C 的坐标分别为(0,4),(6,3),(4,0),∴ABC AOC BCD AODB S S S S ∆∆∆=--梯形① ②111()222AO BD OD AO OC CD BD =+⋅-⋅-⋅111(43)644(64)3222=⨯+⨯-⨯⨯-⨯-⨯10=. ………………………………6分 22.解:∵AD 是△ABC 的角平分线,∴∠1=∠2. ………………………………1分 ∵DE ∥AB ,∴∠1=∠3. ………………………………2分 ∴∠2=∠3. ………………………………3分 ∵∠DEC 是△ADE 的外角,∴∠DEC =∠2+∠3=2∠3. ………………………………………………………4分 ∵∠DEC =100°,∴∠3=50°,即∠ADE =50°. ……………………………………………………5分23.解:(1)12,8; ………………………………………………………………………2分(2)设购进A 型电动汽车x 辆.根据题意,得 (16.816)(29.428)(20)19.3x x -+-->. …………………4分解得 1142x <. (5)分∵x 为正整数,∴x 最大为14. ……………………………………………6分 答:A 型电动汽车最多购进14辆.四、解答题(本题共19分,第26题7分,其余每小题6分) 24.解:(1)6%,5%; ..............................................................................2分 (2)补全折线图如图所示; (4)分(3)答案不唯一,理由支撑相应数据即可. ……………………………………6分如:180,预计2017至2018增长的倍数与之前相比可能会减小.解:(1)如图1所示; …………………………………………………………………4分 (说明:画对1~3块,每对1块得1分;全部画对得4分)(2)答案不唯一.如:图2所示. ………………………………………………6分2014~2017年除夕微信红包收发总量统计图图1 图2解:(1)- ………………………………………………………………………2分(2)17-; …………………………………………………………………………4分(3)∵1(34)4(1) 5m n n -<---<. ∴1 3mn <<.∵m ,n 都为整数, ∴2mn =. ∴3m n +=或3-. …………………………………………………………6分 26.解:(1)①补全图形如图1所示; ………………1分 ②30; ………………………………………2分(2)如图2.∵∠CDA =∠CAB ,∠CDF =∠CAD ,∴∠CDA —∠CDF =∠CAB —∠CAD ,即∠1=∠2. ………………………………3分∴FD ∥AB .∴∠AFD +∠FAB =180°. ………………4分(3)∵在△CAB 中,∠CAB +∠CBA +∠C =180°, 在△CAD 中,∠CAD +∠CDA +∠C =180°,又∵∠CDA =∠CAB , ∴∠CAD =∠CBA .①当点P 在线段AB 上时,如图3.∵在△DPB 中,∠DPB +∠DBP +∠BDP =180°,∴∠DPB +∠CAD +∠BDP =180°. ………………………………………6分②当点P 在线段AB 的延长线上时,如图4. ∵在△DPB 中,∠DBA =∠BDP +∠DPB ,∴∠CAD =∠BDP +∠DPB . ……………………………………………7分图1图2图4《。
北京市西城区 2017—2018 学年度第二学期期末试卷 七年级数学附加题
5 12 22 35
70 ������
(1) 请你将第 6 个“三角形数”ꎬ第 6 个“四边形数”ꎬ第 6 个“五边形数”ꎬ填写在上面的表格中ꎻ
(2) 若第 k 个“三角形数” 为 aꎬ第 k 个“四边形数” 为 bꎬ请用含 aꎬb 的代数式表示第 k 个 “五边形数” 并填入表格中.
七年级期末 数学附加题 第 1 页(共 3 页)
下表给出了甲、乙、丙三种原料中的维生素 AꎬB 的含量( 单位:单位 / kg) .
维生素 A 的含量( 单位 / kg)
原料甲 400
原料乙 600
原料丙 400
维生素 B 的含量( 单位 / kg)
800
200
400
将甲、乙、丙三种原料共 100 kg 混合制成一种新食品ꎬ其中原料甲 x kgꎬ原料乙 y kgꎬ
(3) 当 xN = 0 时ꎬyN ≤ - 1 - 2 或 yN ≥ - 1 + 2 ꎻ 当 xN = 2 时ꎬyN ≤ - 3 - 2 或 yN ≥ - 3 + 2 . ������������������������������������������������������������������������������ 6 分
单位.
七年级期末 数学附加题 第 2 页(共 3 页)
3. 在平面直角坐标系 xOy 中ꎬ对于给定的两点 PꎬQꎬ若存在点 Mꎬ使得 △MPQ 的面积等于 1ꎬ即 S△ MPQ = 1ꎬ则称点 M 为线段 PQ 的“ 单位面积点” . 解答下列问题: 如图ꎬ在平面直角坐标系 xOy 中ꎬ点 P 的坐标为(1ꎬ0) . (1) 在点 A(1ꎬ2) ꎬB( - 1ꎬ1) ꎬC( - 1ꎬ - 2) ꎬD(2ꎬ - 4) 中ꎬ线段 OP 的“ 单位面积点” 是 . (2) 已知点 E(0ꎬ3) ꎬF(0ꎬ4) ꎬ将线段 OP 沿 y 轴向上平移 t( t > 0) 个单位长度ꎬ使得线段 EF 上存在线段 OP 的“单位面积点”ꎬ求 t 的取值范围ꎻ (3) 已知点 Q(1ꎬ - 2)ꎬH(0ꎬ - 1)ꎬ点 MꎬN 是线段 PQ 的两个“单位面积点”ꎬ且点 M 在 HQ
2022-2023学年北京市西城区七年级(下)期末数学试卷【答案版】
2022-2023学年北京市西城区七年级(下)期末数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个。
1.实数3.1415,√23,−57,√9中,无理数是( ) A .3.1415B .√23C .−57D .√92.若m <n ,则下列各式中正确的是( ) A .m ﹣n >0B .m ﹣9>n ﹣9C .m +n <2nD .−m 4<−n 43.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠DOE =37°,∠COB 的大小是( )A .53°B .143°C .117°D .127°4.下列命题中,是假命题的是( )A .如果两个角相等,那么它们是对顶角B .同旁内角互补,两直线平行C .如果a =b ,b =c ,那么a =cD .负数没有平方根5.在平面直角坐标系中,点A (1,5),B (m ﹣2,m +1),若直线AB 与y 轴垂直,则m 的值为( ) A .0B .3C .4D .76.以下抽样调查中,选取的样本具有代表性的是( ) A .了解某公园的平均日客流量,选择在周末进行调查 B .了解某校七年级学生的身高,对该校七年级某班男生进行调查C .了解某小区居民坚持进行垃圾分类的情况,对小区活动中心的老年人进行调查D .了解某校学生每天体育锻炼的时长,从该校所有班级中各随机选取5人进行调查7.以某公园西门O 为原点建立平面直角坐标系,东门A 和景点B 的坐标分别是(6,0)和(4,4).如图1,甲的游览路线是:O →B →A ,其折线段的路程总长记为l 1,如图2,景点C 和D 分别在线段OB ,BA 上,乙的游览路线是:O →C →D →A ,其折线段的路程总长记为l 2,如图3,景点E 和G 分别在线段OB ,BA 上,景点F 在线段OA 上,丙的游览路线是:O →E →F →G →A ,其折线段的路程总长记为l 3.下列l 1,l 2,l 3的大小关系正确的是( )A .l 1=l 2=l 3B .l 1<l 2且l 2=l 3C .l 2<l 1<l 3D .l 1>l 2且l 1=l 38.有8张形状、大小完全相同的小长方形卡片,将它们按如图所示的方式(不重叠)放置在大长方形ABCD 中,根据图中标出的数据,1张小长方形卡片的面积是( )A .72B .68C .64D .60二、填空题(共16分,每题2分)9.若{x =3y =−2是方程ax +y =10的解,则a 的值为 .10.在平面直角坐标系中,已知点P 在第四象限,且点P 到两坐标轴的距离相等,写出一个符合条件的点P 的坐标: . 11.若一个数的平方等于964,则这个数是 .12.如图,在三角形ABC 中,∠C =90°,点B 到直线AC 的距离是线段 的长,BC <BA 的依据是 .13.点M ,N ,P ,Q 在数轴上的位置如图所示,这四个点中有一个点表示实数√5−1,这个点是 .14.解方程组{3x +4y =16①5x −6y =33②,小红的思路是:用①×5﹣②×3消去未知数x ,请你写出一种用加减消元法消去未知数y 的思路:用 消去未知数y .15.如图,四边形纸片ABCD ,AD ∥BC ,折叠纸片ABCD ,使点D 落在AB 上的点D 1处,点C 落在点C 1处,折痕为EF .若∠EFC =102°,则∠AED 1= °.16.小明沿街心公园的环形跑道从起点出发按逆时针方向跑步,他用软件记录了跑步的轨迹,他每跑1km 软件会在运动轨迹上标注相应的路程,前5km 的记录如图所示.已知该环形跑道一圈的周长大于1km . (1)小明恰好跑3圈时,路程是否超过了5km ?答: (填“是”或“否”); (2)小明共跑了14km 且恰好回到起点,那么他共跑了 圈.三、解答题(共68分,第17题6分,第18题14分,第19题7分,第20题9分,第21-24题,每题8分)解答应写出文字说明、演算步骤或证明过程。
2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析
2023-2024学年北京市西城区七年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的绝对值是.()A.3B.C.D.2.特色产业激发乡村发展新活力.据报道,截至2023年10月9日,全国已建设180个优势特色乡村产业集群,全产业链产值超过4600000000000元,辐射带动1000多万户农民.数字4600000000000用科学记数法表示为.()A. B. C. D.3.下图是某个几何体的展开图,则这个几何体是。
()A.三棱柱B.圆柱C.四棱柱D.圆锥4.下列各式计算中正确的是.()A. B.C. D.5.如果一个角等于它的余角的2倍,那么这个角的度数是.()A. B. C. D.6.有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A. B. C. D.7.下列解方程的变形过程正确的是()A.方程,移项得B.方程,系数化为1得C.方程,去括号得D.方程,去分母得8.如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和每户所有居民均需要计算最小,则便民服务点M应建在.()A.A处B.B处C.C处D.D处二、填空题:本题共8小题,每小题2分,共16分。
9.如果向东走5米记作米,那么向西走10米可记作__________米.10.比较大小:__________11.如图所示的网格是正方形网格,则__________填“>”“<”“=”12.如果单项式与单项式的和仍是单项式,那么m的值是__________,n的值是__________.13.若是关于x的方程的解,则a的值为__________.14.若代数式的值为2,则代数式的值为__________.15.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设有x间客房,可列方程为:__________.16.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________,的值是__________.三、计算题:本大题共2小题,共20分。
2018-2019年北京市西城区初一数学上学期期末附加题及答案
(2) ①EꎬG. ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 3 分
2014 年 12 月 28 日起ꎬ北京轨道交通( 不包括机场线 ) 调整具体为 6 公里 ( 含 ) 内
七年级期末㊀ 数学附加题㊀ 第㊀2 页( 共 3 页)
㊀ ㊀ 他又在 北京地铁官方网站 上查得 北京地铁 2 号线线路图 及 北京地铁 2 号线相邻站 间距信息统计表 . ( 地铁 2 号线上行或下行时ꎬ相邻站间距相同)
北京市西城区 2018
七年级数学附加题
试卷满分:20 分
2019 学年度第一学期期末试卷
2019. 1
一㊁ 填空题( 本题 6 分)
观察下列各图及表格中相对应的等式ꎬ并完成表格: ∙∙
图序号 图1 图2 图3 图4 图5 图n 二㊁ 操作题( 本题 6 分) ������ ( ( (
图中小等边三角形的个数满足的等式 1 = 12 1 + 3 = 22 1 + 3 + 5 = 32 ������
(3)
七年级期末㊀ 数学附加题㊀ 第㊀3 页( 共 3 页)
北京市西城区 2018
一㊁ 填空题( 本题 6 分)
2019 学年度第一学期期末试卷
七年级数学附加题参考答案及评分标准
2019. 1
1. 解: 1 + 3 + 5 + 7 = 4 2 . ������������������������������������������������������������������������������������������������������������������������������������������������������������ 2 分 1 + 3 + 5 + 7 + 9 + ������ + (2n - 1) = n 2 . ������������������������������������������������������������������������������������������������������ 6 分 2. 解:(1)25. ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 1 分 ② 答案不唯一ꎬ例如: 二㊁ 操作题( 本题 6 分) 1 + 3 + 5 + 7 + 9 = 5 2 . ������������������������������������������������������������������������������������������������������������������������������������������������ 4 分
2020-2021学年北京市西城区七年级下学期期末数学试题(含答案)
3月至4月,100-95=5千瓦时;4月至5月,100-90=10千瓦时,
所以,相邻两个月中,用电量变化最大的是2月至3月.故选B
8.A
解: ,
移项,得: ,
系数化为1,得: ,
由题图可知, ,
,
解得, .
故选:A
9.π﹣3.
17. .
【分析】
求出不等式组中各个不等式的解集,再求出这些解集的公共部分即可.
解:
解不等式①,得 ,
解不等式②,得
所以不等式组的解集为 .
【点睛】
本题考查了不等式组的求解问题,解题的关键是:掌握求解不等式组中各个不等式的解集的基本方法,取这些解集的公共部分即可.
18.
【分析】
根据两直线平行,同位角相等可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行判断出DG∥AB,然后根据两直线平行,同旁内角互补解答即可.
解:(1)过点 作 ,
∵AB∥CD,
∴AB∥EF∥CD,
, ,
.
(2)
,
,
又∵∠BED=∠BEF+∠DEF,
.
【点睛】
本题考查了平行线的性质和平行公理的推论,熟练掌握平行线的性质是解题的关键.
23.(1)① ;②见解析;(2) ,见解析
【分析】
(1)①根据三角形的内角和定理和角平分线的定义即可得到结论;
efbc?90efc????90ccef??????90a???90cabc??????cefabc????1802aef?????2cef????2abc????bdq是abc的角平分线12abdabc??????abdm????bdme?
2023北京西城区初一(上)期末数学答案
学年度第一学期期末试卷 第1页(共5页)北京市西城区2022—2023学年度第一学期期末试卷七年级数学答案及评分参考 2023.1一、选择题(共16分,每题2分)二、填空题(共16分,每题2分)9.4.07. 10.125. 11.9−. 12.答案不唯一,如:4−a b .13.3. 14.5−. 15.(0.950)−a . 16.3三、解答题(共68分,第17题18分,第18-19题,每题6分,第20题11分,第21题6分,第22-24题,每题7分)17.解:(1)12(6)(28)−+−−−=18(28)−−− ······································································································· 2分 =10. ·················································································································· 4分(2)815()(9)54−⨯÷− =8151549⨯⨯ ·········································································································· 3分 =23. ···················································································································· 4分 (3)375()(48)16246−−+⨯− =91440+− ········································································································· 3分 =17−. ················································································································ 5分(4)2273(1)(2)8−+−⨯− =19()48−+−⨯ ····································································································· 3分学年度第一学期期末试卷 第2页(共5页)=192−− ··············································································································· 4分 =192−. ··············································································································· 5分 18.解:(1)点C 在直线AB 外; ································ 1分(2)如图所示; ················································ 3分(3)∵DC =AD +AC ,AD =AB ,∴DC =AB +AC .∵AB +AC > BC ,( 两点之间,线段最短 )∴DC > BC . ····························································································· 6分19.解:2223(2)(37)10−−++x y y x y222363710=−−−+x y y x y ························································································ 2分24=−+x y . ················································································································· 4分 当14=−x ,5=y 时, 原式214()54=−⨯−+ ···································································································· 5分 125=+26=. ··················································································································· 6分20.(1)7202(33)−=−x x解:去括号,得 72066−=−x x . ·············································································· 1分移项,得 76620+=+x x . ·················································································· 3分合并同类项,得 1326=x . ·················································································· 4分系数化1,得 2=x . ····························································································· 5分(2)2331152−−=+x x 解:去分母,得 2(23)5(31)10−=−+x x . ································································ 2分去括号,得 4615510−=−+x x . ······································································· 3分学年度第一学期期末试卷 第3页(共5页)移项,得 4156510−=−+x x . ··········································································· 4分合并同类项,得 1111−=x . ················································································· 5分系数化1,得 1=−x . ··························································································· 6分21.解:(1)①如图所示; ············································ 1分②∵∠EOD =90°,∴∠EOC +∠ COD =90°. ············ 2分∵∠AOB =∠COD ,∴∠EOC +∠ AOB =90°. ············ 3分∵∠AOC =90°,∴∠EOC +∠AOE =90°.∴∠ AOB =∠ AOE .( 同角的余角相等 ) ······································· 5分∴OA 平分∠EOB .(2)OC ,EOD . ······································································································ 6分22.方法一:3x ,4(2)+x ; ································································································ 2分解:设每台A 型机器一天生产x 件产品.依题意列方程,得 34(2)57+=x x . ······································································ 4分 解得 40=x . ·········································································································· 5分所以3245=x .·········································································································· 6分 答:每台A 型机器一天生产40件产品,每箱装24件产品. ··································· 7分方法二:5x ,7x ; ········································································································ 2分解:设每箱装x 件产品.依题意列方程,得 57234+=x x .········································································· 4分 解得 24=x . ·········································································································· 5分所以5403=x .·········································································································· 6分 答:每台A 型机器一天生产40件产品,每箱装24件产品. ··································· 7分学年度第一学期期末试卷 第4页(共5页)23.解:(1)①∵∠AOB =∠AOC +∠BOC ,∠AOC =4∠BOC ,∴∠AOB =4∠BOC +∠BOC =5∠BOC .∵∠AOB =75°,∴5∠BOC =75°.∴∠BOC =15°. ································ 2分②∵∠EOC 与∠DOB 互余,∴∠EOC +∠DOB =90°. ········································································ 3分∵OE 平分∠DOC ,∴∠DOC =2∠EOC . ·················································································· 4分∴∠DOB =∠DOC +∠BOC =2∠EOC +15°.∴∠EOC +2∠EOC +15°=90°.∴∠EOC =25°. ························································································ 5分(2)(902−n )°或 (902+n )°. ············································································· 7分 24.解:(1)1; ······················································································································ 1分(2)∵点D 是点B 关于点A 的“k 倍分点”,∴DB =kDA .∵AD =10,点A 表示的数是4−,∴当点D 在线段BA 的延长线上时,点D 表示的数是14−.此时DB =2(14)−−=16,则k =DB DA =85. ·········································· 3分 当点D 在线段AB 的延长线上时,点D 表示的数是6.此时DB =62−=4,则k =DB DA =25. ∴k =85或25. ·································································································· 4分 (3)12,23,6,8. ································································································· 7分学年度第一学期期末试卷 第5页(共5页)四、选做题(共10分,第25题4分,第26题6分)25.解:(1)正,负, ············································································································ 1分 用较大的绝对值减去较小的绝对值; ···························································· 2分(2)①8−; ·············································································································· 3分 ②答案不唯一.如:[(1)(1)](3)0(3)3−⊗+⊗+=⊗+=+,(1)[(1)(3)](1)(2)1−⊗+⊗+=−⊗+=−,所以[(1)(1)](3)(1)[(1)(3)]−⊗+⊗+≠−⊗+⊗+.此时()()⊗⊗=⊗⊗a b c a b c 不成立. ······················································ 4分26.解:(1)①∵AB =1,∴b =a +1.∵m =5,∴BC =m +3=8,∴c =a +1+8=a +9. ················································································ 1分②∵CD =m +4=9,∴d =a +9+9=a +18.∴a +b +c +d =a +(a +1)+(a +9)+(a +18)=4a +28=4(a +7).∵a 为整数,∴a +b +c +d 能被4整除. ······································································· 2分(2)①B ,D ; ·········································································································· 4分 ②a =52−−m 或42−−m . ··············································································· 6分。
学年北京市西城区(北区)七年级上学期期末考试数学试题(含附加题及答案)
(试卷满分100分,考试时间100分钟)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.6-的绝对值等于( ).A. 6-B. 6C. 16-D. 162.根据北京市公安交通管理局网站的数据显示,截止到2012年2月16日,北京市机动车保有量比十年前增加了3 439 000 辆,将3 439 000 用科学记数法表示应为( ).A .70.343 910⨯B .63.43910⨯C .73.43910⨯D .534.3910⨯3.下列关于多项式22521ab a bc --的说法中,正确的是( ). A.它是三次三项式 B.它是四次两项式 C.它的最高次项是22a bc - D.它的常数项是14.已知关于x 的方程72kx x k -=+的解是2x =,则k 的值为( ).A.3-B.45C. 1D.545. 下列说法中,正确的是( ).A .任何数都不等于它的相反数B .互为相反数的两个数的立方相等C .如果a 大于b ,那么a 的倒数一定大于b 的倒数A B C D 7.下列关于几何画图的语句正确的是 A .延长射线AB 到点C ,使BC =2ABB .点P 在线段AB 上,点Q 在直线AB 的反向延长线上C .将射线OA 绕点O 旋转180︒,终边OB 与始边OA 的夹角为一个平角D . 已知线段a ,b 满足20a b >>,在同一直线上作线段2AB a =,BC b =,那么线段2AC a b =-8.将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是A B CDA.①,④B. ①,③C. ②,③D. ②,④10.右图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几 何体应是二、填空题(本题共20分,11~14题每小题2分,15~18题每小题3分)13.一件童装每件的进价为a 元(0a >),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.14.将长方形纸片ABCD 折叠并压平,如图所示,点C ,点D 的对应点分别为点C ',点D ',折痕分别交AD ,BC 边于点E ,点F .若30BFC '∠=︒,则CFE ∠= °.15.对于有理数a,b ,我们规定a b a b b ⊗=⨯+.(1)(3)4-⊗= ; (2)若有理数x 满足 (4)36x -⊗=,则x 的值为 . 16.如图,数轴上A ,B 两点表示的数分别为2-和6,数轴A B C D上的点C 满足AC BC =,点D 在线段AC 的延长线上, 若32AD AC =,则BD = ,点D 表示的数为 .17.右边球体上画出了三个圆,在图中的六个□里分别填入1,2,3,4,5,6,使得每个圆周上四个数相加的和都相等. (1)这个相等的和等于 ; (2)在图中将所有的□填完整.18.如图,正方形ABCD 和正方形DEFG 的边长都是3 cm ,点P 从点D 出发,先到点A ,然后沿箭头所指方向运动 (经过点D 时不拐弯),那么从出发开始连续运动2012 cm 时,它离点 最近,此时它距该点 cm .三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:20.3212(3)4()23-÷⨯-.解:21.211312()49(5)64828-⨯+-÷-.解:四、先化简,再求值(本题5分)22.222225(3)(3)2a b ab ab a b ab --++,其中21=a ,3b =. 解:五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-. 解:24.231445 6.x y x y +=⎧⎨-=⎩,解:六、解答题(本题4分)25. 问题:如图,线段AC 上依次有D ,B ,E 三点,其中点B 为线段AC 的中点,AD BE =, 若4DE =,求线段AC 的长. 请补全以下解答过程.解:∵ D ,B ,E 三点依次在线段AC 上, ∴ DE BE =+. ∵ AD BE =,∴ DE DB AB =+=. ∵ 4DE =, ∴ 4AB =.∵ , ∴ 2 AC AB ==. \七、列方程(或方程组)解应用题(本题共6分)26. 有甲、乙两班学生,已知乙班比甲班少4人,如果从乙班调17人到甲班,那么甲班人数比乙班人数的3倍还多2人,求甲、乙两班原来各有多少人. 解:八、解答题(本题共13分,第27题6分,第27题7分)27.已知当1x =-时,代数式3236mx nx -+的值为17.(1)若关于y 的方程24my n ny m +=--的解为2y =,求n m 的值;(2)若规定[]a 表示不超过a 的最大整数,例如[]4.34=,请在此规定下求32n m ⎡⎤-⎢⎥⎣⎦的值.解:28.如图,50DOE ∠=︒,OD 平分∠AOC ,60AOC ∠=︒,OE 平分∠BOC .(1)用直尺、量角器画出射线OA ,OB ,OC 的准确位置; (2)求∠BOC 的度数,要求写出计算过程;(3)当DOE α∠=,2AOC β∠=时(其中0βα︒<<,090αβ︒<+<︒),用α,β的代数式表示∠BOC 的度数.(直接写出结果即可) 解:北京市西城区(北区)2012— 2013学年度第一学期期末试卷EOD七年级数学附加题2013.1(试卷满分20分)一、填空题:(本题6分)1.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形再分割成四个面积相等的小正方形纸片,如此分割下去.第6次分割后,共有正方形纸片_______个,第n次分割后(n为正整数),共有正方形纸片_______个.二、操作题(本题7分)2.如图,已知图形A,B,C,D,E,F分别是由3,4,5,6,7,8个“单位正方形”(每个小正方形的边长为1)组成的图形,它们之中的五个..可以拼成一个大正方形.(1)填空:能拼成的大正方形的面积等于,多余的那一个图形的编号是(从A,B,C,D,E,F中选择一个);(2)请在下图中画出拼接正方形的方法,要求:标注所使用五个图形的编号,并用实粗线画出边界线.(说明:所使用的五个图形可以旋转,也可以翻转)解:(1)能拼成的大正方形的面积等于,多余的那一个图形的编号是.(2)三、解决问题(本题7分)3.小刘为自己的文件设了一个五位数的密码,这个五位数的前三位数字组成的数与后两位数字组成的数之和等于155;这个五位数的前两位数字组成的数与后三位数字组成的数之和等于434,你知道小刘设的密码是多少吗?写出你的求解过程.解:北京市西城区(北区)2012— 2013学年度第一学期期末试卷七年级数学参考答案及评分标准 2013.1一、选择题(本题共30分,每小题3分)阅卷说明:15~18题中,第一个空为1分,第二个空为2分;17题第(2)问其他正确答案相应给分.三、计算题(本题共12分,每小题4分)19.2742()(12)(4)32⨯-÷--÷-. 解:原式2242337=-⨯⨯- ………………………………………………………………2分83=-- ………………………………………………………………………3分 11=-.…………………………………………………………………………4分20.3212(3)4()23-÷⨯-.解:原式2227()99=-⨯⨯- ………………………………………………………………3分113=. …………………………………………………………………………4分(阅卷说明:写成43不扣分)21.211312()49(5)64828-⨯+-÷-.解:原式1125(1212)(50)2564828=-⨯-⨯--÷11(2)(2)428=---- ……………………………………………………… 2分1122428=---+114()428=---3414=--3414=-. ………………………………………………………………………4分四、先化简,再求值(本题5分)22.解: 222225(3)(3)2a b a b a b a b a b--++ 22222(155)(3)2a b ab ab a b ab =--++2222215532a b ab ab a b ab =---+ ………………………………………………… 2分 (阅卷说明:去掉每个括号各1分)22124a b ab =-. ……………………………………………………………………3分 当21=a ,3b =时, 原式221112()34322=⨯⨯-⨯⨯ …………………………………………………… 4分9189=-=-. …………………………………………………………………5分 五、解下列方程(组)(本题共10分,每小题5分)23.321123x x x --+=-.解:去分母,得 3(3)2(21)6(1)x x x -+-=-. …………………………………… 2分去括号,得 394266x x x -+-=-.…………………………………………… 3分 移项,得 346926x x x +-=+-. …………………………………………… 4分 合并,得 5x =. ………………………………………………………………… 5分24.231445 6.x y x y +=⎧⎨-=⎩,① ②解法一:由①得 2143x y =-.③ ………………………………………………… 1分把③代入②,得 2(143)56y y --=.………………………………………2分去括号,得 28656y y --=.移项,合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分把2y =代入③,得 28x =.系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩, ……………………………………………5分 解法二:①×2得 4628x y +=.③ ………………………………………………… 1分③-②得 6(5)286y y --=-.………………………………………………2分合并,得 1122y =.系数化为1,得 2y =. …………………………………………………… 3分把2y =代入①,得 28x =.系数化为1,得 4.x = ………………………………………………………4分所以,原方程组的解为 42.x y =⎧⎨=⎩, ……………………………………………5分 六、解答题(本题4分)25.解:∵ D ,B ,E 三点依次在线段AC 上,∴ DE DB BE =+. ………………………………………………………… 1分 ∵ AD BE =,∴ DE DB AD AB =+=. …………………………………………………… 2分 ∵ 4DE =,∴ 4AB =.∵ 点B 为线段AC 的中点 , …………………………………………………… 3分 ∴ 2 8 AC AB ==. ……………………………………………………………4分七、列方程(或方程组)解应用题(本题共6分)26.解:设甲班原来有x 人.……………………………………………………………… 1分 则乙班原来有 (4)x -人.依题意得 []173(4)172x x +=--+.…………………………………………… 3分 去括号,得 17312512x x +=--+.移项,合并,得 278x =.系数化为1,得 39x =.……………………………………………………………4分 439435x -=-=. ……………………………………………………………… 5分答:甲班原来有39人,乙班原来有35人.……………………………………………6分八、解答题(本题共13分,第27题6分, 第28题7分)27.解:∵ 当1x =-时,代数式3236mx nx -+的值为17,∴ 将1x =-代入,得 23617m n -++=.整理,得 3211n m -=. ① ……………………………………………………1分(1)∵ 关于y 的方程24my n ny m +=--的解为 2y =,∴ 把2y =代入以上方程,得 442m n n m +=--.整理,得 534m n +=. ② ……………………………………………… 2分由①,②得 321153 4.n m m n -=⎧⎨+=⎩, ②-①,得77m =-.系数化为1,得1m =-.把1m =-代入①,解得 3n =.∴ 原方程组的解为 13.m n =-⎧⎨=⎩, ……………………………………………… 4分 此时3(1)1n m =-=-.…………………………………………………………5分(2)∵ 3211n m -=,[]a 表示不超过a 的最大整数,∴ []32311 5.56222n m n m -⎡⎤⎡⎤⎡⎤-==-=-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.………………………… 6分 阅卷说明:直接把第(1)问的1m =-,3n =代入得到第(2)问结果的不 给第(2)问的分.28.解:(1)①当射线OA 在DOE ∠外部时,射线OA ,OB ,OC 的位置如图1所示.②当射线OA 在DOE ∠内部时,射线OA ,OB ,OC 的位置如图2所示.……………………………………………………………………… 2分 (阅卷说明:画图每种情况正确各1分,误差很大的不给分)(2)①当射线OA 在DOE ∠外部时,此时射线OC 在DOE ∠内部,射线OA ,OD ,OC ,OE ,OB 依次排列,如图1.∵ OD 平分∠AOC ,60AOC ∠=︒,① ②∴ 1302DOC AOC ∠=∠=︒.…………………………………………… 3分∵ 此时射线OA ,OD ,OC ,OE ,OB 依次排列,∴ DOE DOC COE ∠=∠+∠.∵ 50DOE ∠=︒,∴ 503020COE DOE DOC ∠=∠-∠=︒-︒=︒.∵ OE 平分∠BOC ,∴ 222040BOC COE ∠=∠=⨯︒=︒.…………………………………… 4分②当射线OA 在DOE ∠内部时,此时射线OC 在DOE ∠外部,射线OC ,OD ,OA ,OE ,OB 依次排列,如图2.∵ OD 平分∠AOC ,60AOC ∠=︒,∴ 1302COD AOC ∠=∠=︒. ∵ 此时射线OC ,OD ,OA ,OE ,OB 依次排列,50DOE ∠=︒,∴ 305080COE COD DOE ∠=∠+∠=︒+︒=︒.∵ OE 平分∠BOC ,∴ 2280160BOC COE ∠=∠=⨯︒=︒.………………………………… 5分阅卷说明:无论学生先证明哪种情况,先证明的那种情况正确给2分,第二种 情况正确给1分.(3)当射线OA 在DOE ∠外部时,22BOC αβ∠=-;当射线OA 在DOE ∠内部时,22BOC αβ∠=+.……………………………………………7分阅卷说明:两种情况各1分;学生若直接回答22BOC αβ∠=-或22αβ+不扣分.北京市西城区(北区)2012— 2013学年度第一学期期末试卷 七年级数学附加题参考答案及评分标准 2013.1一、填空题:(本题6分)1.19,(31)n +.(各3分)二、操作题(本题7分)2.解:(1)能拼成的大正方形的面积等于 25 ,………………………………………… 2分 多余的那一个图形的编号是 F .…………………………………………4分(2)两种正确的拼接方法如下图所示.……………………………………………………………………… 7分 阅卷说明:其他正确拼接方法相应给分.三、解决问题(本题7分)3.解:小刘设的密码是13421,解答过程如下:设这个五位数的前两位数字组成的数为a ,第三位数字为b ,后两位数字组成的数为c . …………………………………………………………………………………… 1分 由题意得10≤a ≤99,10≤c ≤99,1≤b ≤9,且a ,b ,c 都为整数.依题意得 10155 100434.a b c a b c ++=⎧⎨++=⎩,①②②-①,得 999279b a -=.化简,得 1131b a -=.…………………………………………………………… 3分由“10≤a ≤99,10≤c ≤99,1≤b ≤9”可知,整数b 最小为4.∴ 4,5,6,7,8,9,13,24,35,46,57,68.b b b b b b a a a a a a ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩(说明:学完一元一次不等式组可以将a ,b 的范围缩小简化求解过程)∵ 由①可知10a 不超过150,∴ a 不超过15.∴ 13a =,4b =.………………………………………………………………… 5分 ∴ 15510155130421c a b =--=--=. ……………………………………… 6分 ∴ 小刘设的密码是13421.………………………………………………………… 7分 答:小刘设的密码是13421.阅卷说明:其他解法相应给分.或。
1.2020.1西城初一数学期末试题(含附加)
北京市西城区2019—2020学年度第一学期期末试卷七年级数学 2020.1一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有一个. 1.4-的倒数是 A .14 B .14- C .4 D .4- 2.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示应为 A .0.3369×107 B .3.369×106 C .3.369×105 D .3369×103 3.下列计算中正确的是A .5611a b ab +=B .98a a -=C .2334a a a +=D .347ab ab ab +=4.如图,点A ,B 在直线l 上,点C 是直线l 外一点, 可知CA +CB >AB ,其依据是 A .两点之间,线段最短B .两点确定一条直线C .两点之间,直线最短D .直线比线段长 5.下列解方程的步骤中正确的是A .由57x -=,可得75x =-B .由82(31)x x -+=,可得862x x --=C .由116x =-,可得16x =- D .由1324x x-=-,可得2(1)3x x -=- 6.已知231a a -=,则代数式2625a a --的值为A .3-B .4-C .5-D .7-7.有理数a ,b ,c 在数轴上的对应点的位置如图所示,有如下四个结论:①3a >;②0ab >;③0b c +<;④0b a ->. 上述结论中,所有正确结论的序号是 A .①② B .②③ C .②④ D .③④8.下列说法中正确的是x=,那么x一定是7B.a-表示的数一定是负数A.如果7C.射线AB和射线BA是同一条射线90°9A B C D10.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如下图所示:根据上图提供的信息,下列推断中不.合理的是A.2018年12月的增长率为0.0%,即与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是-0.4%D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大精确到千分位,所得到的近似数为.13.已知x =3是关于x 的一元一次方程ax +b =0的解,请写出一组满足条件的a ,b 的值:a = ,b = .14.若2(1)20200x y ++-=,则y x = .15.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章. 《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何? 其译文是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为 . 16.我们把a cb d 称为二阶行列式,且 ac b d=ad bc -.如:1 21(4)32103 4=⨯--⨯=--. (1)计算:2 63 5-=_________;(2)若 4 72 m -=6,则m 的值为__________.17.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =13BC ,点E 是线段CD 的中点.(1)依题意补全图形;(2)若AB 的长为30,则BE 的长为__________.18.一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a ,则商品包装盒的长为____________,图2中阴影部分的周长与图3中阴影部分的周长的差为________.(都用含a 的式子表示)图1 图2 图3三、计算题(本题共16分,每小题8分)19.计算:(1)(5)12(8)21-+---; (2)13(16)(1)45⨯-÷-.20.计算:(1)3778(1)()48127-+⨯-; (2)28[(3)(0.75)19](4)3---⨯-⨯-.四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分) 21.先化简,再求值:33364(2)2(3)y x xy y xy +---,其中2x =-,3y =.22.解方程:3221153x x +-=+.23.解方程组:436,28.x y x y +=⎧⎨-=⎩24.已知:如图,O 是直线AB 上一点,OD 是∠AOC 的平分线,∠COD 与∠COE 互余.求证:∠AOE 与∠COE 互补. 请将下面的证明过程补充完整:证明:∵O 是直线AB 上一点,∴∠AOB =180°.∵∠COD 与∠COE 互余, ∴∠COD +∠COE =90°.∴∠AOD +∠BOE =_______°. ∵OD 是∠AOC 的平分线, ∴∠AOD =∠_________. (理由:_______________________________________) ∴∠BOE =∠COE . (理由:_______________________________________)∵∠AOE +∠BOE =180°.∴∠AOE +∠COE =180°. ∴∠AOE 与∠COE 互补.25.某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i 行,第j 列表示的数字记为ij a (其中i ,j =1,2,3,4),如图1中第2行第1列的数字210a =;对第i 行使用公式1234842i i i i i A a a a a =+++进行计算,所得结果1A 表示所在年级,2A 表示所在班级,3A 表示学号的十位数字,4A 表示学号的个位数字.如图1中,第二行280412015A =⨯+⨯+⨯+=,说明这个学生在5班.图1 图2(1)图1代表的学生所在年级是__________年级,他的学号是__________; (2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案.26.学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元. (1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销,所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元,请直接写出学校购买篮球和足球的个数各是多少.27.点O 为数轴的原点,点A ,B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为________;(2)若线段BM 的长为4.5,则线段AC 的长为__________; (3)若线段AC 的长为x ,求线段BM 的长(用含x 的式子表示).北京市西城区2019—2020学年度第一学期期末试卷七年级数学附加题2020.1一、填空题(本题6分)1.观察下列等式,探究其中的规律并解答问题:2=,112++=,23432++++=,3456752++++++=,45678910k……(1)第4个等式中,k=_______;(2)第5个等式为:______________________________________;(3)第n个等式为:_______________________________________(其中n为正整数).二、解答题(本题共14分,每小题7分)2.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示).图1 图2(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为_____________;(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法;(要求:画出各块拼板的轮廓)(3)随着七巧板的发展,出现了一些形式不同的七巧板.如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形:大正方形的中间去掉一个小正方形.请在图4中画出拼图方法.(要求:画出各块拼板的轮廓)图3 图43.对于平面内给定射线OA ,射线OB 及∠MON ,给出如下定义:若由射线OA ,OB 组成的∠AOB 的平分线OT 落在∠MON 的内部或边OM ,ON 上,则称射线OA 与射线OB 关于∠MON 内含对称.例如,图1中射线OA 与射线OB 关于∠MON 内含对称.已知:如图2,在平面内,∠AOM=10°, ∠MON=20°.(1)若有两条射线OB 1,OB 2的位置如图3所示,且∠B 1OM=30°,∠B 2OM=15°,则在这两条射线中,与射线OA 关于∠MON 内含对称的射线是 ;图2 图3 图4(2)射线OC 是平面上绕点O 旋转的一条动射线,若射线OA 与射线OC 关于∠MON内含对称,设∠COM=x °,求x 的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH =20°.现将射线OH 绕点O 以每秒1°的速度顺时针旋转,同时将射线OE 和OF 绕点O 都以每秒3°的速度顺时针旋转.设旋转的时间为t 秒,且0<t <60.若∠FOE 的内部及两边至少存在一条以O 为顶点的射线与射线OH 关于∠MON 内含对称,直接写出t 的取值范围.图1。
2019.1-西城七年级第一学期数学附加题及答案
1 + 3 + 5 + 7 + 9 + ������ + (2n - 1) = n 2 . ������������������������������������������������������������������������������������������������������ 6 分
扫描右侧微信二维码获取更多
七年级数学附加题参考答案及评分标准㊀ 第㊀2 页( 共 2 页)
京城名师汇聚
助力名校启航
北京市西城区 2018
七年级数学附加题
试卷满分:20 分
2019 学年度第一学期期末试卷
2019. 1
一㊁ 填空题( 本题 6 分)
观察下列各图及表格中相对应的等式ꎬ并完成表格: ∙∙
图序号 图1 图2 图3 图4 图5 图n 二㊁ 操作题( 本题 6 分) ������ ( ( (
(1) 将站间距离数据( 单位:米) 填入 北京地铁 2 号线线路图 中的相关路段ꎻ
请你利用以上信息解决下列问题:
(2) 计算从 阜成门 站到 鼓楼大街 站单程的地铁里程( 单位:公里) 以及单程的票价ꎻ (3) 根据优惠政策计算:小明妈妈使用同一张市政交通一卡通每年乘坐地铁上下班的费 解:(1) 在图中填空. (2) 用是多少元. ( 按 每月 22 个工作日ꎬ每个工作日上下班两次乘坐地铁 计算)
1 + 3 + 5 + 7 + 9 = 5 2 . ������������������������������������������������������������������������������������������������������������������������������������������������ 4 分
1.2020.1西城区初一数学期末试题答案(含附加)
北京市西城区2019—2020学年度第一学期期末试卷七年级数学答案及评分参考2020.1一、选择题(本题共30分,每小题3分)三、计算题(本题共16分,每小题8分)19.解:(1)(5)12(8)21-+---=512821-++-………………………………………………………………1分=2620-+……………………………………………………………………3分=6-.…………………………………………………………………………4分(2)13(16)(1) 45⨯-÷-=181645⨯÷……………………………………………………………………2分=151648⨯⨯……………………………………………………………………3分=52.……………………………………………………………………………4分20.解:(1)3778 (1)() 48127-+⨯-=7778()()48127-+⨯-…………………………………………………………1分=2213-+-……………………………………………………………………3分=213 -.………………………………………………………………………4分(2)28[(3)(0.75)19](4)3---⨯-⨯-=(9219)(4)+-⨯-……………………………………………………………2分=(8)(4)-⨯-…………………………………………………………………3分=32.…………………………………………………………………………4分四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分) 21.解:33364(2)2(3)y x xy y xy +---=33364862y x xy y xy +--+ ……………………………………………………2分 =346x xy -. ………………………………………………………………………3分 当2x =-,3y =时,原式=34(2)6(2)3⨯--⨯-⨯ ………………………………………………………4分 =4. ……………………………………………………………………………5分22.3221153x x +-=+解:去分母,得 3(32)155(21)x x +=+-. ……………………………………………1分去括号,得 9615105x x +=+-. …………………………………………………2分 移项,得 9101556x x -=--. ……………………………………………………3分 合并,得 4x -=. ……………………………………………………………………4分 系数化为1,得 4x =-. ……………………………………………………………5分23.436,28.x y x y +=⎧⎨-=⎩解:由②得28y x =-.③ …………………………………………………………………1分 把③代入①,得43(28)6x x +-=. ……………………………………………………2分解得3x =. ………………………………………………………………………………3分 把3x =代入③,得2y =-. …………………………………………………………4分所以,原方程组的解为3,2.x y =⎧⎨=-⎩………………………………………………………5分24.证明:∵O 是直线AB 上一点,∴∠AOB =180°.∵∠COD 与∠COE 互余, ∴∠COD +∠COE =90°.∴∠AOD +∠BOE = 90 °. …………………………………………………1分 ∵OD 是∠AOC 的平分线, ∴∠AOD =∠ COD .(理由: 角平分线的定义 )…………………………3分 ∴∠BOE =∠COE .(理由: 等角的余角相等 ) ……………………………4分∵∠AOE +∠BOE =180°,∴∠AOE +∠COE =180°. ∴∠AOE 与∠COE 互补.① ②25.解:(1)七,28; ………………………………………………………………………3分 (5分 26.解:(y 元. ……………………………………1分根据题意,得5101150,961170.x y x y +=⎧⎨+=⎩ ……………………………………………3分解得80,75.x y =⎧⎨=⎩…………………………………………………………………4分答:篮球单价为80元,足球单价为75元.(2)购买5个篮球,24个足球;或购买20个篮球,8个足球.………………6分27.解:(1)1-; …………………………………………………………………………1分(2)2或16; ………………………………………………………………………3分 (3)①当点C 在点A 的右侧(或重合)时,如图1,点C 表示的数为5x +.∵M 为线段OC 的中点, ∴点M 表示的数为52x+.∴BM =5(1)2x +--=72x+. ②当点C 在点A 的左侧时,点C 表示的数为5x -,∴点M 表示的数为52x-.ⅰ)若点M 在点B 的右侧(或重合),如图2,则BM =5(1)2x ---=72x-. ⅱ)若点M 在点B 的左侧,如图3 则BM =512x ---=72x -.北京市西城区2019—2020学年度第一学期期末试卷七年级数学附加题答案及评分参考2020.1一、填空题(本题6分) 1.(1)7; ………………………………………………………………………………… 2分 (2)256789101112139++++++++=; ………………………………………… 4分 (3)2(1)(2)(32)(21)n n n n n ++++++-=-. ………………………………… 6分二、解答题(本题共14分,每小题7分) 2.解:(1)8; ……………………………………………………………………………… 2分(2)答案不唯一,如: (3)答案不唯一,如:……………………………… 4分…………………………… 7分3.解:(1)OB 2; …………………………………………………………………………… 2分(2)当∠AOC 的平分线与OM 重合时,如图1. ∵OM 平分∠AOC , ∴∠COM =∠AOM . ∵∠AOM=10°, ∴∠COM =10°. ……………………………… 3分当∠AOC 的平分线与ON 重合时,如图2.∵ON 平分∠AOC , ∴∠CON =∠AON .∵∠AON=∠AOM +∠MON =10°+20°=30°, ∴∠CON =30°.∴∠COM =∠CON +∠MON =30°+20°=50°.…………………………………………………… 4分 ∵射线OA 与射线OC 关于∠MON 内含对称,∴x 的取值范围是10≤x ≤50. …………… 5分(3)20≤t ≤32.5. ………………………………………………………………… 7分图2。
北京市西城区七年级(下)期末数学试卷
(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实 现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)
六、解答题(共 4 小题,满分 24 分) 24.(6 分)解决下列问题: 甲、乙两所学校的同学一起去北京农业职业学院参加学农教育实践活动,活动结
束时,两校各派出一些志愿者协助老师布置闭营成果展示会活动现场.老师 先派了 9 名甲校志愿者搬运物品,发现此时剩下的甲校志愿者是乙校志愿者 的一半,根据需要又派了 14 名乙校志愿者也去搬运,这时剩下的甲校志愿者 比剩下的乙校志愿者少 7 人.问:甲、乙两所学校各有志愿者多少人? 25.(6 分)如图,在平面直角坐标系 xOy 中,几段 圆弧(占圆周的 的圆弧)
北京市西城区七年级(下)期末数学试卷
参考答案
一、选择题(本题共 29 分,第 1~9 题每小题 3 分,第 10 题 2 分)下面各题均
有四个选项,其中只有一个是符合题意的.
1.B; 2.D; 3.C; 4.A; 5.B; 6.D; 7.B; 8.B; 9.A; 10.A;
二、填空题(本题共 25 分,第 13 题 2 分,第 12、17 题各 4 分,其余每小题 3
对于二元一次方程组
,我们可以将 x,y 的系数和相应的常数项排成
第8页(共10页)
一个数表
,求得的一次方程组的解
,用数表可表示为
.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:
从而得到该方程组的解为 x=
,y=
.
(2)仿照(1)中数表的书写格式写出解方程组
的过程.
30.如图,在平面直角坐标系 xOy 中,点 A,B 分别为 x 轴正半轴和 y 轴正半轴 上的两个定点,点 C 为 x 轴上的一个动点(与点 O,A 不重合),分别作∠OBC 和∠ACB 的角平分线,两角平分线所在直线交于点 E,直接回答∠BEC 的度数 及点 C 所在的相应位置.