第4章智能高分子材料

合集下载

清华大学《工程材料》第5版教材简介

清华大学《工程材料》第5版教材简介

清华大学《工程材料》第5版教材简介《工程材料》第5版教材由清华大学材料学院朱张校教授、姚可夫教授主编,清华大学出版社出版。

《工程材料》第5版教材目录如下:绪论0.1中华民族对材料发展的重大贡献0.2材料的结合键0.3工程材料的分类第1章材料的结构与性能特点1.1金属材料的结构与组织1.2金属材料的性能特点1.3高分子材料的结构与性能特点1.4陶瓷材料的结构与性能特点第2章金属材料组织和性能的控制2.1纯金属的结晶2.2合金的结晶2.3金属的塑性加工2.4钢的热处理2.5钢的合金化2.6表面技术第3章金属材料3.1碳钢3.2合金钢3.3铸钢与铸铁3.4有色金属及其合金第4章高分子材料4.1工程塑料4.2合成纤维4.3合成橡胶第5章陶瓷材料5.1普通陶瓷5.2特种陶瓷第6章复合材料6.1复合材料的复合原则6.2复合材料的性能特点6.3非金属基复合材料6.4金属基复合材料第7章功能材料及新材料7.1电功能材料7.2磁功能材料7.3热功能材料7.4光功能材料7.5隐形材料及智能材料7.6纳米材料第8章零件失效分析与选材原则8.1机械零件的失效8.2机械零件失效分析8.3机械零件选材原则第9章典型工件的选材及工艺路线设计9.1齿轮选材9.2轴类零件选材9.3弹簧选材9.4刃具选材第10章工程材料的应用10.1汽车用材10.2机床用材10.3仪器仪表用材10.4热能设备用材10.5化工设备用材10.6航空航天器用材附录1金属材料室温拉伸试验方法新、旧国家标准性能名称和符号对照表附录2金属热处理工艺的分类及代号(摘自GB/T 12603—2005) 附录3常用钢的临界点附录4钢铁及合金牌号统一数字代号体系(摘自GB/T 17616—1998)附录5国内外常用钢号对照表附录6常用铝及铝合金状态代号与说明(摘编自GB/T 16475—2008)附录7若干物理量单位换算表附录8工程材料常用词汇中英文对照表参考文献本教材有以下特点:(1)体系科学合理,内容丰富新颖,实例丰富。

功能高分子材料第四章《光敏高分子材料》预习题(一)

功能高分子材料第四章《光敏高分子材料》预习题(一)

1. 哪些结构或基团具有光敏活性?(1)具有光敏活性的结构有:PN 结、羰⾮那烯-2,3-⼆腈⻣架、树脂等;(2)具有光敏活性的基团有:偶氮基、重氮基、叠氮基、烯基、⾁桂酰基、⾁桂叉⼄酰基、苄叉苯⼄酮基、苯⼄烯基吡啶基、α-苯基⻢来酰亚胺基、丙烯酸酯基、卟啉类低聚物(⽐如⾎卟啉、原卟啉、铁卟啉等)、呫吨类染料(⽐如荧光素、曙红、藻红、玫瑰红等)、⼀些特定的醌类化合物(⽐如苝醌类 PQP)等。

2. 光化学反应包括哪些反应?光化学反应范围很⼴,分为化合、分解、氧化、还原等化学反应,主要有光合作⽤和光解作⽤两种,其次还有光交联、光聚合、光氧化还原、光⼆聚、光分解、光异构化反应等。

(1)有机合成中的光化学反应有机合成中常⻅的光化学反应有光氧化反应、光还原反应、光聚合反应和光取代反应等。

①光氧化反应是在光照射、光敏剂作⽤下,有机物分⼦与氧繁盛的加成反应。

②光还原反应是在光催化下,有机物分⼦从供氧体中抽取氢分⼦⽽发⽣的还原反应。

③光聚合反应是单体分⼦借光的引发(或⽤光敏剂)活化成⾃由基⽽进⾏的连锁聚合。

④光取代反应常⻅的是脂肪烃的光滤代制氯代烃。

(2)环境化学中的光化学反应环境化学中的光化学反应主要有光氧化反应、光降解反应和光氧-微⽣物降解反应。

①光氧化降解反应是在光作⽤下,氧化将有机物分⼦如芳醛、芳醇和芳烃氧化为氢过氧化物。

②光氧-微⽣物降解反应需要具有光敏基团或易与微⽣物作⽤的结构。

3. 感光⾼分⼦应具备哪些性能?(1)图像特性:感光度,分光感光度,解像⼒,反差,显影性,S/N ⽐,光照时空⽓的影响;(2)涂层特性:粘着性,膜厚均⼀性,尺⼨稳定性,柔软性,⽓孔,易成膜性,耐药品性,耐电镀性,耐热性,耐⽓候性,耐刷性,印刷油墨粘附性 ;(3)化学特性:保存稳定性,组成均⼀性,不纯物含量,⽓味,安全性,易得性,可加⼯性,经济性⽔分含量,废料处理简单。

清华大学工程材料第五版第四章

清华大学工程材料第五版第四章

二、按使用范围分类
1. 通用塑料 应用范围广、生产量大的塑料品种。 聚氯乙烯、聚苯乙烯、聚烯烃、酚醛塑料 2. 工程塑料 和氨基塑料等,产量约占塑料总产量的四分之 综合工程性能(机械性能、耐热耐寒性能、 三以上。 耐蚀性和绝缘性能等)良好的各种塑料。
如聚甲醛、聚酰胺、聚碳酸酯和 ABS等。 3. 耐热塑料 能在较高温度(100 ℃~200 ℃)工作。 聚四氟乙烯、聚三氟氯乙烯、有机硅树 脂、环氧树脂等。
七、氨纶 化学名称为聚氨酯纤维,商品名称为氨纶。 由聚酯、芳香族二异氰酸酯聚合,用脂肪族二 胺交联而成。 1、特点 ●高弹性。伸长600%~750%时,回弹率达 95%以上。 2、应用 用作运动衣、游泳衣。与涤纶混纺后,制 作夏季衣服。
4.3
合成橡胶
橡胶 具有极高弹性的高分子材料。
●性能特点 弹性变形量可达100%~1000%,而且回 弹性好,回弹速度快。 橡胶还有一定的耐磨性,很好的绝缘性和 不透气、不透水性。
聚酰胺的应用: 制造耐磨耐蚀零件,如轴承、齿轮、
尼龙轴套
尼龙拉杆
7. 聚碳酸酯(PC) 聚碳酸酯誉称"透明金属", ●具有优良的综合性能。冲击韧性和延 性突出,在热塑性塑料中是最好的;弹性模 量较高,不受温度的影响; ●抗蠕变性能好,尺寸稳定性高; ●透明度高,可染成各种颜色; ●吸水性小; ●绝缘性能优良,在10 ℃~130 ℃间介 电常数和介质损耗近于不变。
有机玻璃顶棚
二、热固性塑料 1. 酚醛塑料(PE) 由酚类和醛类缩聚合成酚醛树脂,再加入 添加剂而制得。一般为热固性塑料。 ●具有一定的机械强度和硬度, 耐磨性好; ●绝缘性良好, 耐热性较高,耐蚀性优良。 ●缺点是性脆,不耐碱。
酚醛塑料的应用:

4.高分子材料性能与表征

4.高分子材料性能与表征
Maxwell模型的应力松弛方程 模型的应力松弛方程
σ(t) σ(0)
模拟线形聚合物的应力松驰行为 模拟线形聚合物的应力松驰行为 线形聚合物
t
线形聚合物产生应力松弛的原因: 线形聚合物产生应力松弛的原因:试样所承受的应力 逐渐消耗于克服链段及分子链运动的内摩擦阻力 内摩擦阻力上 逐渐消耗于克服链段及分子链运动的内摩擦阻力上.
4.1.1粘弹性力学模型 粘弹性力学模型
可以得到聚合物粘弹性总的,定性的概括. 可以得到聚合物粘弹性总的,定性的概括. 基本元件: 基本元件: 弹簧: 弹簧: 理想弹性体) (理想弹性体) σ=Eε ε
粘壶: 粘壶: 理想粘性体) (理想粘性体)
dε σ=η dt
1. Maxwell 模型 一个弹簧与一个粘壶串联 串联组成 一个弹簧与一个粘壶串联组成
σ 对假塑性流体 η0 随 γ , 而 ,下降的程度与聚合物 下降的程度与聚合物 种类,分子量及分布有关. 种类,分子量及分布有关.
1~1.5 MMc 时 有 η0∝ Mw
MMc 时 有
3 η0∝ Mw.4
2 ) 与温度有关
η = A e
E
RT
T
η
式中,A为与剪切速率,剪切力和分子结构有关的常数; 式中, 为与剪切速率,剪切力和分子结构有关的常数; 为与剪切速率 E为粘性流动活化能.如果 为粘性流动活化能. 越敏感. 为粘性流动活化能 如果E ,则 η 对T越敏感. 越敏感
可由服从虎克定律的线性弹性行为和服从牛顿定律 的线性粘性行为的组合来描述的粘弹性. 的线性粘性行为的组合来描述的粘弹性. 粘弹性 蠕变,应力松弛属于静态粘弹性; 蠕变,应力松弛属于静态粘弹性;滞后现象属于动 态粘弹性. 态粘弹性. 通过对粘弹性的研究:首先为聚合物的加工和应用 提供力学方面的理论依据.其次还可从其中获得分 提供力学方面的理论依据. 子结构和分子运动的信息(平均分子量; 子结构和分子运动的信息(平均分子量;交联和支 结晶和结晶状态;共聚结构;增塑;分子取向; 化;结晶和结晶状态;共聚结构;增塑;分子取向; 填充;与上述因素有关的运动学问题. 填充;与上述因素有关的运动学问题.

ch4高分子材料详解

ch4高分子材料详解


侧基上有苯环
➢ 性能:无色透明,几乎不吸水;耐蚀性、电绝缘性好。
➢ 缺点:抗冲击性差,易脆裂、耐热性不高,耐油性有限。
➢ 用途:灯罩、透明窗,电工绝缘材料等。
➢聚苯乙烯泡沫塑料,相对密度(0.033g/cm3)很小 ,用作 隔音、包装及救生材料。
(5)ABS塑料 丙烯腈、丁二烯和苯乙烯的三元共聚物,分子结构式:
1、树脂型胶粘剂
(1)热塑性树脂胶粘剂 以线型热塑性树脂为基料,与溶剂配制成溶液
或直接通过熔化的方式进行胶接。
例:普通胶水,聚乙烯醇水溶液 木工用乳胶,聚醋酸乙烯酯胶粘剂 双面贴,聚丙烯酸酯压敏胶,压敏型胶粘剂 502胶,主要成分是α-氰基丙烯酸酯,快速粘合, 又称瞬干胶。 哥俩好胶,甲基丙烯酸脂为基体,反应型结构胶粘剂
(6)氯纶 聚氯乙烯纤维 优点:难燃、保暖、耐晒、耐磨、弹性好。 缺点:耐热性差,染色性差,热收缩大。
4.3 合成橡胶
性能特点:极高弹性(100~1000%)、回弹性好,回 弹速度快。耐磨,很好绝缘性和不透气、不透水性。
用途:弹性、密封、减震防震和传动材料
一、橡胶的分类和橡胶制品的组成
1.橡胶的分类
二、塑料的分类
1.按树脂的性质分类
(1)热塑性塑料 加热时软化并熔融,可塑造成形,冷却后成型并
保持既得形状,该过程可反复进行。 ➢线型和支化型分子链构成的聚合物 ➢优点:加工成形简便,较高的机械性能 ➢缺点:耐热性和刚性比较差
(2)热固性塑料 初加热时软化,可塑造成型,但固化后再加热将
不再软化,也不溶于溶剂。 ➢体型分子链构成的聚合物 ➢优点:耐热性高,受压不易变形 ➢缺点:机械性能不好 ➢例:酚醛、环氧、胺基、不饱和聚酯
补鞋胶,氯丁橡胶胶粘剂 双面贴,压敏型胶粘剂,早期为增粘的天然橡 胶及丁苯橡胶

第4章-甲壳素和壳聚糖-天然高分子材料资料讲解

第4章-甲壳素和壳聚糖-天然高分子材料资料讲解
• 晶型:属正交晶系。分子链以反平行的方式排列。
-甲壳素是聚N-乙酰胺基-D-葡萄糖胺的螺旋型物,每个
单元晶胞含有两条旋向相反的链,每条链均由两个卷曲相
连的N-乙酰胺基-D-葡萄糖胺单元构成。
14
Biopolymers: Chitin & Chitosan
• 型结晶中,两个相连的葡萄糖胺的C3及C5原子以及 乙酰胺基的N、H原子间存在着氢键,使甲壳素型结 晶的结构紧密。
7
Biopolymers: Chitin & Chitosan
• 二级结构:甲壳素分子链上的羟基、N-乙酰胺基和氨
基形成的各种分子内和分子间氢键。 • 这些氢键的存在,阻抑了邻近的糖残基沿糖苷键的旋
转,同时,相邻糖环之间的空间位阻降低了糖残基旋 转的自由度,从而限制了旋转角的大小,这样就构成 了刚性长链分子。
16
• 在从甲壳素制备壳聚糖时,在相同的碱浓度和相同的温度下 制备同样脱乙酰度的壳聚糖,在相同的反应时间下,-甲壳 素的脱乙酰度远远高于-甲壳素。说明-甲壳素结晶度很高, 分子间具有非常强的作用。
• 在相同的脱乙酰度下, -壳聚糖具有很高的结晶度,但是壳聚糖主要表现为无定型结构。
虾-甲壳素和-甲壳素在30% NaOH中100ºC下的脱乙酰化反应
Biopolymers: Chitin & Chitosan
在1600-1500 cm-1之间是C=O的 氨基的伸缩振动区,此处-甲壳 素和-甲壳素的峰位有区别:
•对-甲壳素,酰胺I带被分成两个 峰,分别为1656cm-1和1621cm-1; 而对-甲壳素,只有1626cm-1这一 个峰。
•-甲壳素的酰胺II带峰在1556cm1,-甲壳素的酰胺II带峰在 1560cm-1。

材料化学-第四章高分子材料化学习题及答案

材料化学-第四章高分子材料化学习题及答案

第四章高分子材料化学习题:1、高聚物相对分子质量有哪些测试方法?分别适用于何种聚合物分子,获得的相对分子质量有何不同?(10分)答:测定高聚物相对分子质量的方法:渗透压、光散射、粘度法、超离心法、沉淀法和凝胶色谱法等。

这些方法中,有些方法偏向于较大的聚合物分子,有的方法偏向于较小的聚合物分子。

聚合物相对分子质量实际是指它的平均相对分子质量。

(1)数均相对分子质量( Mn ) 采用冰点降低、沸点升高、渗透压和蒸气压降低等方法测定的数均相对分子质量,即总质量除以样品中所含的分子数。

(2)质均相对分子质量( Mω) 采用光散射等方法测定质均相对分子质量。

(3)粘均相对分子质量( Mη) 采用粘度法测定粘均相对分子质量。

2、详述高分子聚合物的分类及各自的特征并举例。

(20分)答:高分子化合物常以形状、合成方法、热行为、分子结构及使用性能进行分类。

1、按高聚物的热行为分类(1) 热固性高聚物高聚物受热变成永久固定形状的高聚物(有些不需加热)。

不可再熔融或再成型。

结构:加热时,线型高聚物链之间形成永久的交联,产生不可再流动的坚硬体型结构,继续加热、加压只能造成链的断裂,引起性质的严重破坏。

利用这一特性,热固性高聚物可作耐热的结构材料。

典型的热固性高聚物有环氧树脂、酚醛树脂、不饱和聚酯树脂、有机硅树脂、聚氨酯等。

(2) 热塑性高聚物熔融状态下使它成型(塑化),冷却后定型,但是可以再加热又形成一个新的形状,可以多次重复加工。

结构:没有大分子链的严重断裂,其性质也不发生显著变化,称为热塑性高聚物。

根据这一特性,可以用热塑性高聚物碎屑进行再生和再加工。

聚乙烯、聚氯乙烯、ABS树脂、聚酰胺等都属于热塑性高聚物。

2、按高聚物的分子结构分类(1) 碳链高聚物大分子主链完全由碳原于组成,绝大部分烯类聚合物属于这一类。

如聚乙烯、聚苯乙烯、聚丁二烯等。

(2) 杂链高聚物大分子主链中除碳原子外,还有氧、氮、硫等杂原子。

如聚醚、聚酯、聚硫橡胶等。

食品行业智能包装与物流解决方案

食品行业智能包装与物流解决方案

食品行业智能包装与物流解决方案第1章智能包装技术概述 (4)1.1 智能包装的定义与分类 (4)1.1.1 传感器型智能包装:通过内置传感器,实时监测食品的温度、湿度、压力等环境参数,为食品保鲜、质量控制提供数据支持。

(4)1.1.2 执行器型智能包装:通过内置执行器,如微型泵、阀门等,实现对包装内部环境的调控,延长食品保质期。

(4)1.1.3 信息处理型智能包装:利用微处理器、无线通信等技术,对采集到的数据进行处理和分析,实现食品质量、物流过程的实时监控。

(5)1.1.4 用户交互型智能包装:通过二维码、RFID、NFC等技术,实现与消费者的互动,提高消费者对食品的信任度和购买体验。

(5)1.2 智能包装材料与工艺 (5)1.2.1 纳米材料:具有独特的物理、化学功能,可应用于传感器、执行器等装置的制造。

(5)1.2.2 导电材料:用于制作传感器、电极等,实现数据采集和传输。

(5)1.2.3 智能高分子材料:通过改变高分子材料的结构、组成和功能,实现对环境刺激的响应,如温度、湿度等。

(5)1.2.4 纤维素材料:具有可再生、可降解等特点,可用于制备环保型智能包装。

(5)1.2.5 印刷工艺:通过丝网印刷、柔版印刷等技术,将传感器、执行器等装置集成到包装材料上。

(5)1.2.6 贴合工艺:将智能材料与普通包装材料进行贴合,实现包装的智能化。

(5)1.2.7 激光加工工艺:利用激光技术精确加工包装材料,提高智能包装的精度和可靠性。

(5)1.3 智能包装技术的发展趋势 (5)1.3.1 功能多样化:智能包装技术逐渐从单一功能向多功能方向发展,如集成了温湿度监测、防伪、溯源等功能。

(5)1.3.2 系统集成化:将智能包装技术与物联网、大数据等技术相结合,实现食品从生产到消费的全过程监控。

(5)1.3.3 环保可持续:发展可降解、可回收的智能包装材料,降低对环境的影响。

(5)1.3.4 成本降低:生产技术的进步,智能包装的成本逐渐降低,有利于其在食品行业的广泛应用。

高分子材料加工原理(第四章)

高分子材料加工原理(第四章)
2、动态流动曲线

从动态实验不仅能表征粘弹流体的频率依赖性 粘度,而且能表征其弹性。测定值是复数粘度。
* () i ()
( )
G ( )
G ( ) ( )
——非牛顿流体粘性的表征 ——弹性的表征
第一节 聚合物流体的非牛顿剪切粘性
第一节 聚合物流体的非牛顿剪切粘性
(3)可预示某些聚合物流体的可纺性
d lg a d 1 / 2

2 10
结构黏度指数▣可用来表 征聚合物浓溶液结构化的 程度。▣越大,表明聚合 物流体的结构化程度越大。
第一节 聚合物流体的非牛顿剪切粘性



第一节 聚合物流体的非牛顿剪切粘性
②切力增稠的原因: 增加到某数值时,流体中有新的结构的形成。 大多数胀流型流体为多分散体系,固体含量较多,且浸润 性不好。静止时,流体中的固体粒子堆砌得很紧密,粒子 间空隙小并充满了液体,这种液体有一定的润滑作用。 较低时,固体粒子就在剪切力的作用下发生了相对滑 当 动,并且能够在原有堆砌密度大致保持不变的情况下,使 得整个悬浮体系沿力的方向发生移动,这时候表现为牛顿 流动; 增加到一定值时,粒子间碰撞机会增多,阻力增大; 当 同时空隙增大,悬浮体系总体积增加,液体已不能再充满 空隙,粒子间移动时的润滑作用减小,阻力增大,所以 a 增大。
点;
3、掌握聚合物流体切力变稀的原因;
本节作业
1、P118-1(1、2、3、5、9)、2、4、7
第一节 聚合物流体的非牛顿剪切粘性
【教学内容导读】 流体的粘性和牛顿粘性定律 非牛顿流体的流动行为及粘性表征
影响聚合物流体剪切粘性的因素
【课时安排】4课时

第四章 智能材料 电流变液

第四章 智能材料 电流变液

●聚合物电解质粒子: 含易极化极性基团。
●聚合物半导体粒子: 含大π键电子共轭结构, 属电子导电型材料 。
●复合材料粒子:由两种或两种以上不同 性质材料组成。
11 ●复合材料粒子
典型结构:核—壳结构 核—导电或半导电材料—导电层
外壳—绝缘材料—绝缘层或控制层;
12 对分散介质的要求:
a.绝缘性良好(高电阻和低电导率),耐高压,抗 击穿性能好;
●通过电流变液的电流密度:应<20uA/cm2 (电场强度3kV/mm);
8 对电流变液的性能要求:
●稳定性:好; 化学性能十分稳定; 悬浮稳定性好:基础液与固体颗粒的比重最好 接近;
●工作温度范围:-30~140℃ 甚至更宽;
●无毒、无污染、无腐蚀性; ●易于大批量生产制造、价格低廉; ●无水型;
(ii)表面改性
对材料进行表面改性
26
改善材料的表面状态 (如表面电荷分布、与基液的润湿性等)
改变材料的介电性质或物化性质
提高ER效应,降低颗粒的沉降性。
表面改性方法:氧化处理、吸附、包覆、接枝等。 优点: 制备简便,材料性质较易控制;
无机-有机复合界面状态更加模糊,材 料性能可持久不变。
27
4.3 影响电流变效应的主要因素
加电场时:通过阀的电流变液的表观粘度可由电场 无级调节,从而实现流量的无级调节。
电极间的流体固化时:阀门即“关上”。
特 点:不需要具有相对运动的零件; 不需要精密的机械加工; 流量和压力可以直接用信号控制
4 电流变效应的特征
a.流体粘度随场强连续地无级变化直至固化,可实 现在液态和固态或在液体属性和固体属性相间快 速和可控的转换;
b.液态和固态的转换是完全可逆的; c.控制信号简单:场强或电压信号,可人控或自控;

高分子材料思考题答案

高分子材料思考题答案

《高分子材料导论》思考题第一章材料科学概述1.试从不同角度把材料进行分类,并阐述三大材料的特性。

按化学组成分类:金属材料无机材料.有机材料(高分子材料)按状态分类:气态。

固态:单晶.多晶.非晶.复合材料.液态按材料作用分类:结构材料,功能材料按使用领域分类:电子材料。

耐火材料。

医用材料。

耐蚀材料。

建筑材料三大材料:(1)金属材料富于展性和延性,有良好的导电及导热性、较高的强度及耐冲击性。

(2)无机材料一般硬度大、性脆、强度高、抗化学腐蚀、对电和热的绝缘性好。

(3)高分子材料的一般特点是质轻、耐腐蚀、绝缘性好、易于成型加工,但强度、耐磨性及使用寿命较差。

2.说出材料、材料工艺过程的定义。

材料——具有满足指定工作条件下使用要求的形态和物理性状的物质。

由化学物质或原料转变成适用于一定用场的材料,其转变过程称为材料化过程或材料工艺过程。

3.原子之间或分子之间的结合键一般有哪些形式?试论述各种结合键的特点。

离子键:无方向性,键能较大。

由离子键构成的材料具有结构稳定、熔点高、硬度大、膨胀系数小的特点。

共价键:具有方向性和饱和性两个基本特点。

键能较大,由共价结合而形成的材料一般都是绝缘体。

金属键:无饱和性和方向性。

具有良好的延展性,并且由于自由电子的存在,金属一般都具有良好的导电、导热性能。

4.何为非晶态结构?非晶态结构材料有何共同特点?原子排列近程有序而远程无序的结构称为非晶态结构或无定形结构,非晶态结构又称玻璃态结构。

共同特点是:结构长程无序,物理性质一般是各向同性的;没有固定的熔点,而是一个依冷却速度而改变的转变温度范围;塑性形变一般较大,导热率和热膨胀性都比较小。

5.材料的特征性能主要哪些方面?热学、力学、电学、磁学、光学、化学等性能6.什么是材料的功能物性?材料的功能物性包括哪些方面?功能物性,是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一形式功能的性质。

包括:1热电转换性能2光-热转换性能3光-电转换性能4力-电转换性能5磁-光转换性能6电-光转换性能7声-光转换性能7.材料工艺与材料结构及性能有何关系?材料工艺,包括材料合成工艺及材料加工工艺,影响材料的组织结构,因而对材料的性能有显著的影响。

第4章智能高分子材料课件

第4章智能高分子材料课件

质子化程度相应改变,导致聚合物网络
结构单元的离子键或氢键状态改变;
18
(1) pH敏感性凝胶 ★聚丙烯酸(羧基电离) 高pH值:溶胀 低pH值:收缩 ★壳聚糖 (CS - NH2) 与聚丙二醇聚醚 (PE) 的半 互穿聚合物
冷却 加热
混浊
★离子化的部分水解聚丙烯酰胺凝胶置于水-丙酮溶 液中 随溶剂浓度和温度变化,凝胶溶胀或收缩数倍。
新的研究领域:灵巧凝胶、智能凝胶
4
智能高分子材料的研究内容:
(1)智能高分子凝胶 ——刺激响应性高分子凝胶 受到环境刺激时会随之响应,发生结构、物
理性质、化学性质变化的凝胶。
单一响应性 —— 压力、温度、光强、电 ( 磁 ) 场、 组成、pH值、离子强度、特异 的化学物质刺激; 双(多)重响应性——热-光、磁-热、pH值-离 子刺激等。
13
(2)光敏感性凝胶Fra bibliotek由于光辐射(光刺激)而发生体积相转变的凝胶
机理一:聚合物链上的光敏感分子的经光辐照后 发生光异构化,伴随几何结构的改变, 发生不连续的相转变。
机理二:光敏感分子发生光解离作用 ( 即遇光分解 产生的离子化 ) ,使凝胶内外离子浓度差 改变,造成凝胶渗透压突变,促使凝胶发 生溶胀做出光响应。
接触电场:部分水解的聚丙烯酰胺凝胶浸入50% 的丙酮水溶液中 非接触电场:聚乙烯醇(PVA)与聚丙烯酸(PAA) 共混物弯曲
应用:化学开关、药物释放体系、人工肌肉 17
4.3.2 化学刺激响应性
(1) pH敏感性凝胶
随pH值的变化发生溶胀或收缩的凝胶。 结构特征:网络中含有大量易水解或质子化的 酸、碱基团(如羧基或氨基)。 机理:随外界 pH 值变化,酸、碱基团的解离或

高分子材料基础大纲

高分子材料基础大纲

第1章材料科学概述1 简要说明材料与物质的区别。

2 举例说明材料的主要类别。

3 举例说明功能材料与结构材料。

4 举例说明材料的特征性能与功能物性。

5 简要说明相变及其类型。

6 举例简要说明材料的性能—结构—加工工艺之间的相互关系。

7 简要说明金属材料的塑性形变与位错及滑移运动间的关系。

8 写出锗、碳和氧原子的电子结构。

9 假设晶体的格点是等体积硬球,试证明体心结构和面心立方结构的堆砌因子分别为0.68及0.74。

10 证明滑移形变时的分剪切应力τ1遵从Schmid定律:τ1=σcosφcosλ,且在λ=45o的方向上τ1最大,式中为滑移方向与作用力之间的夹角, 为滑移面法线和作用力之间的夹角。

第2章高分子材料的制备反应1 写出聚氯乙烯、聚苯乙烯、聚丁二烯和尼龙-6,6的分子式。

2 写出以下单体的聚合方式,并写出单体和聚合物的名称(1) CH2=CHCl(2) CH2=C(CH3)2(3) HO(CH2)5COOH(4) NH2(CH2)6NH2 + HOOC(CH2)4COOH3 下列烯类单体适于何种聚合:自由基聚合、阳离子聚合或阴离子聚合?并说明理由。

(1) CH2=CHCl(2) CH2=CCl2(3) CH2=CHCN(4) CH2=C(CN)2(5) CH2=CHCH3(6) CH2=C(CH3)2(7) CH2=CHC6H5(8) CF2=CF2(9) CH2=C(CH3)—CH=CH24 以偶氮二异丁腈为引发剂,写出氯乙烯聚合历程中各基元反应式。

5 对于双基终止的自由基聚合,设每一大分子含有1.30个引发剂残基,假定无链转移反应,试计算歧化终止和偶合终止的相对量。

6 用过氧化二苯甲酰为引发剂,苯乙烯聚合时各基元反应活化能分别为Ed=125.6 kJ•mol-1、Ep=32.6 kJ•mol-1、Et=10 kJ•mol-1,试比较反应温度从50oC增至60oC以及从80oC增至90oC,总反应速率常数和聚合度变化的情况;光引发时的情况又如何?7 何谓链转移反应?有几种形式?对聚合速率和产物分子量有何影响?什么是链转移常数?8 聚氯乙烯的分子量为什么与引发剂浓度基本上无关,而仅取决于温度?氯乙烯单体链转移常数CM与温度的关系如下:CM=12.5exp(30.5/RT),试求40oC、50oC、55oC及60oC下,聚氯乙烯的平均聚合度。

材料科学与工程学导论—第四章—功能材料

材料科学与工程学导论—第四章—功能材料


Cd,Pb
……
……
Cu-O

……
……

功能材料
超导材料
?

(K)

180

160

140
Ba-Ca-Cu-O# Hg-Ba-Ca-Cu-O
Hg-Ba-Ca-Cu-O 甲烷
Tc
120
Tl-Ba-Ca-Cu-O
Ba-Ca-Cu-O

100
Bi-Sr-Ca-Cu-O

转变温度,TC

80
Y-Ba-Cu-O
功能材料
纳 米 材 料 的 应 用
纳米材料
纳米TiO2光催化 纳米Ag的消毒杀菌
功能材料
约200年
约25 年 约50年
石油 天然气
煤炭
按2000年需求,主要 能源预计可开采年限
能源材料
能源危机
新能源
功能材料
能源材料
材料在新能源发展中的作用
把习用已久的能源变为新能源; 提高储能和能量转化效果; 确保新能源系统运行的安全和环境保 护,尤指核反应堆的安全和废料处理; 决定新能源的投资和运行成本;



球磨法

球磨法可以降低粉粒尺寸,固态合金化、混合或
融合,以及改变粉粒的形状。球磨法可以制备纳
米晶纯金属、不互溶体系的固溶体纳米晶、纳米
非晶、纳米金属间化合物以及纳米金属-陶瓷复
合材料等。
功能材料
纳米材料
纳 非晶晶化法


先将原料用急冷技术制成非晶薄带或薄膜,控

制晶化退火时间和温度,使非晶全部或部分晶

功能高分子材料知识点

功能高分子材料知识点

第一章1.什么是材料的功能,什么是材料的性能,举例说明。

第1页材料的功能,从本质上来说是向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性。

如化学性、导电性、磁性、光敏性、生物活性等。

材料的性能是指材料对外部作用的表征与抵抗的特性,如对外里的抵抗表现为强度、模量,对热的抵抗表现为耐热性,对光、电、化学药品的抵抗表现为材料的耐光性、绝缘性、耐化学药品性等。

2.功能高分子材料的制备方法以及各自的特点。

第4页方法:(1)功能性小分子的高分子化,高分子化学反应引入预期的功能基团。

功能性小分子的高分子化主要优点在于可以使生成的功能高分子功能基团分布均匀,生成的聚合物结构可以通过小分子分析和聚合机理加以预测,产物的稳定性高,但这种方法需在功能性小分子中引入可聚单体,从而使反应较为复杂,同时在反应中反应条件对功能基团会产生一定的影响,需对功能集团加以保护,使材料的成本增加。

例如,高吸水性树脂可以通过将亲水性基团的丙烯酸钠进行自由基聚合实现。

利用高分子化学反应制备功能高分子的主要优点在于合成或天然高分子骨架是现成的,可选择的高分子母体多,来源广,价格低廉。

但是在进行高分子化学反应时,反应不可能100%完成,尤其是在多不得高分子化学反应中,制的的产物中含有未反应的官能团,即功能集团较少,功能基团在分子链上的分布也不均匀。

例如聚苯乙烯、尼龙、淀粉都可以作为高分子母体。

(2)通过特殊加工赋予高分子的功能特性。

许多聚合物通过特定的加工方法和加工工艺,可以较精确地控制其聚集状态结构及宏观状态,从而使之体现出一定的功能性。

例如,许多塑料可以经过适当的制膜工艺,制成具有分离功能的多孔膜和致密膜。

(3)通过普通聚合物与功能材料的复合,制成复合型功能高分子材料。

这种制备方法简便快速,不受场地和设备限制,不受聚合物和功能性化合物官能团反应活性的影响,适用范围宽,功能基团的分布较均匀。

但其共混体不稳定,在使用条件下(如溶胀、成膜等)功能聚合物易由于功能小分子的流失而逐步失去活性,如固定化酶。

第四章材料改性技术

第四章材料改性技术
ABS树脂较PS具有耐热、抗冲击强度高、表面硬度高、尺寸稳定、耐
化学药品性及电性能良好等特点。
第33页,共108页。
ABS树脂是—个两相体系,连续相为丙烯腈和苯乙 烯的共聚物AS树脂,分散相为接枝橡胶。由于ABS
具有多元组成,因而它综合了多方面的优点。
控制A、B、S的比例可以调节其性能,以适应各
种应用的需要。如可用于航空、汽车、机械制造、电气 、仪表以及作输油管等。
(2)在极性溶剂(乙醚及三乙胺)中,苯乙烯的活性有所提高,r1、r2 值与自由基共聚合时的相近(自由基共聚时相应的r1=1.35,r2=0.38)

(3)在极性的四氢呋喃中,因这种溶剂具有很强 的溶剂化能 力,使苯乙烯的活性远大于丁二烯;共聚时苯乙烯反而先行聚 合。
第17页,共108页。
应用: (1)抗湿滑性能好,对路面的抓着力大,具有一定的 耐磨性。主要用于轮胎工业,也用于胶管、胶带、胶 鞋等橡胶制品。 (2)高苯乙烯丁苯橡胶适于制造高硬度、质轻制品, 如硬质泡沫鞋底、硬质胶管、棒球、铺地材料。
第18页,共108页。
苯乙烯-马来酸酐共聚物(SMA)
最简单形式的透明的苯乙烯-马来酸酐共聚物(S-MA) 是通过苯乙烯单体与少量的马来酸酐单体反应制得的。 马来酸酐单体无规地接到PS主链上,增加了玻璃化转变 和热变形温度。一般苯乙烯-马来酸酐共聚物产品的热变 形温度都超过260°F。在注塑成型时,即使温度超过
应用:橡胶制品,如车窗密封条、水暖系统软管、电线电缆 的保护套和绝缘材料、耐热物料输送带、耐化学腐蚀
的工业制品。
第15页,共108页。
丁苯橡胶
1、低温乳液丁苯橡胶(自由基) 丁二烯和苯乙烯可按任一比例共聚,但所得丁苯共聚物的Tg则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
智能高分子材料研究起源 能响应外界刺激而溶胀或收缩的聚合物凝胶。
聚合物凝胶:由网状结构(物理或化学交联结构)的 高聚物和水组成。网状结构的高聚物 不能被水溶解,但能吸收大量水分子 而使凝胶溶胀。 自然界: 海参体壁的原始器官——高分子“水凝胶”
3
人工材料: 田中丰一 1975年
★聚丙烯酰胺凝胶 透明
体积相转变:
溶胀相 收缩相
凝胶的体积随外界环境因子变化而产生不连续 变化的现象——凝胶的体积相转变。
体系内各种相互作用力相互结合和竞争的结果。
9
高分子凝胶内存在的相互作用力 (1)范德华力 取向力、诱导力、色散力。 在非极性有机溶剂体系的凝胶中起重要作用。 (2)氢键 形成氢键时:大分子以特定方式排列而收缩; 温度升高时:氢键破坏,发生溶胀。 (3)静电相互作用力 源于大分子链上荷电基团的相互作用。 正、负离子间相互吸引——凝胶收缩; 正—正、负—负电荷相斥——凝胶溶胀。 例:弱酸性丙烯酸和强碱性季铵盐合成的两性凝胶。
14
(3)磁场敏感性凝胶
包埋有磁性微粒子的高吸水性凝胶随磁场的 变化而发生溶胀和收缩。 机理:将铁磁体“种植”在凝胶内,当施加磁场时 铁磁体发热,使周围凝胶温度升高诱发溶胀 或收缩。去除磁场后,凝胶冷却,恢复至原 来的尺寸。 制备:将微细镍针状结晶置于预先形成的凝胶中; 以聚乙烯醇涂着于微米级镍薄片上,与单 体溶液混合后再聚合成凝胶。
15
(4)电场敏感性凝胶 在电场刺激下,能产生溶胀和收缩并将电 能转变为机械能的凝胶. 构成:聚电解质凝胶 —— 聚合物网络结构中键 合离子化基团。 机理:溶液中自由离子在直流电场作用下的定向 移动造成: ●凝胶内外离子浓度不均,产生渗透压变化 引起凝胶变形。 ●凝胶内不同部位 pH 值不同,从而影响凝 胶中聚电解质电离状态,使凝胶结构发 生变化,产生变形 16
5
(2)智能药物释放体系
当药物所在环境发生变化时,体系能够感知并
做出相应的反应,以一定的形式(定向、定时、
定量)调控释放药物,从而达到最佳治疗效果的
系统。
控制信号: ●体内信号 ●外部信号:热、电场、磁场、超声波等物 理信号。
6
(3)记忆功能高分子材料 应力记忆、形状记忆、体积记忆、色泽记忆。
(4)智能高分子膜 以高分子膜的形式对环境进行感知、响应且 具有功能发现能力的膜用材料。 研究较多:选择性渗透、选择性吸附和分离等。
13
(2)光敏感性凝胶
由于光辐射(光刺激)而发生体积相转变的凝胶
机理一:聚合物链上的光敏感分子的经光辐照后 发生光异构化,伴随几何结构的改变, 发生不连续的相转变。
机理二:光敏感分子发生光解离作用 ( 即遇光分解 产生的离子化 ) ,使凝胶内外离子浓度差 改变,造成凝胶渗透压突变,促使凝胶发 生溶胀做出光响应。
4.3高分子凝胶的刺激响应性
4.3.1物理刺激响应性
(1)温敏性凝胶
能响应温度变化而发生溶胀或收缩即体积相 变转变的凝胶。 机制:温度的变化影响了其中的疏水基团的疏水作用 以及大分子链间的氢键作用,从而使凝胶结构 改变,发生体积相变。 体积发生变化的临界转化温度——低临界溶解温度 (lower critical solution temperatureture,LCST)。
7
(5)聚合物电流变流体
由高介电常数的聚合物颗粒悬浮在低介电常数 的液体中构成,可有效解决无机电流变液的沉降和 材料对器件的磨损等问题。
聚合物:以离子型聚合物和聚合物半导体为主。 (6)智能织物 防水透湿织物、变色纺织品、调温纺织品、智 能安全防护纺织品等。
8
4.2 高分子凝胶及体积相转变
高分子凝胶:复合体系 网络的交联结构——使它不溶解而保持一定的形状; 亲溶剂型基团——使它可被溶剂溶胀。
质子化程度相应改变,导致聚合物网络
结构单元的离子键或氢键状态改变;
18
(1) pH敏感性凝胶 ★聚丙烯酸(羧基电离) 高pH值:溶胀 低pH值:收缩 ★壳聚糖 (CS - NH2) 与聚丙二醇聚醚 (PE) 的半 互穿聚合物
10
(4)疏水相互作用力
存在于大分子链的疏水性基团之间。
温度较低时:水分子在疏水性基团周围形成团簇,
整个分子呈现亲水性——凝胶溶胀; 温度升高至相变温度:链段运动能力提高,疏水性 基团周围的水团簇崩溃,凝胶网络为疏 水基团保护,水不易进入——凝胶收缩。 例:聚异丙基丙烯酰胺凝胶(PNIPA)
侧链的异丙基——疏水基团 11
12
高温收缩型
温度低于LCST时溶胀,高于LCST时收缩。 ★聚异丙基丙烯酰胺(PNIPA) 机理:疏水基团的疏水作用。 低温收缩型 温度低于LCST时收缩,高于LCST时溶胀。 ★聚丙烯酸(PAAC)和聚N, N-二甲基丙烯酰胺 (PDMAAM)网络互穿形成的聚合物水凝胶 机理:氢键的形成与断裂。
冷却 加热
混浊
★离子化的部分水解聚丙烯酰胺凝胶置于水-丙酮溶 液中 随溶剂浓度和温度变化,凝胶溶胀或收缩数倍。
新的研究领域:灵巧凝胶、智能凝胶
4
智能高分子材料的研究内容:
(1)智能高分子凝胶 ——刺激响应性高分子凝胶 受到环境刺激时会随之响应,发生结构、物
理性质、化学性质变化的凝胶。
单一响应性 —— 压力、温度、光强、电 ( 磁 ) 场、 组成、pH值、离子强度、特异 的化学物质刺激; 双(多)重响应性——热-光、磁-热、pH值-离 子刺激等。
接触电场:部分水解的聚丙烯酰胺凝胶浸入50% 的丙酮水溶液中 非接触电场:聚乙烯醇(PVA)与聚丙烯酸(PAA) 共混物弯曲
应用:化学开关、药物释放体系、人工肌肉 17
4.3.2 化学刺激响应性
(1) pH敏感性凝胶
随pH值的变化发生溶胀或收缩的凝胶。 结构特征:网络中含有大量易水解或质子化的 酸、碱基团(如羧基或氨基)。 机理:随外界 pH 值ห้องสมุดไป่ตู้化,酸、碱基团的解离或
第4章 智能高分子材料
1
4.1概述
概念
能感觉周围环境变化,而且针对环境的变化 能采取响应对策的高分子材料。 又称:智能聚合物、机敏性聚合物、刺激响应型聚 合物、环境敏感型聚合物。 智能化设计思路: 从分子结构(包括支链结构)、聚集态结构、 共混、复合、界面和表面甚至外观结构等方面, 单一或多种机制综合利用,实现某种智能化。
相关文档
最新文档