6.2 简单的线性规划(课时测试)-2017届高三数学(文)一轮复习(解析版)
高中数学简单线性规划复习题及答案(最全面)
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
简单的线性规划(高三复习课)
课题:简单的线性规划(高三复习课)点明课题:本节课是北师大版全日制普通高级中学数学教科书(试验修订本·必修5)第三章第4节“简单的线性规划”.本节课是高三第一轮复习课,内容包括二元一次不等式表示平面区域、线性规则及线性规划的实际应用.下面我从三方面来说说对这节课的分析和设计.1. 教材地位分析一教学背景分析 2. 学生特征分析3. 教学目标分析1. 教学重点、难点分析二教学展开分析 2. 教学策略和方法指导3. 教学媒体选择4. 教学实施三教学结果分析一、教学背景分析1、教材地位分析(1)“简单的线性规划”是在复习了直线方程的基础上而再度学习的. 因线性规划的应用性广泛,“简单线性规划”不仅是“新大纲”中增加的新内容,也是“新课标”的必修内容;说明了教材重视数学知识的应用.(2)“简单的线性规划”体现了数学应用性的同时,还渗透了化归、数形结合等数学思想和数学建模法.(3)“简单的线性规划”内容从2003年江苏高考卷选择题开始,已成为近年来高考数学命题的一个亮点. 几乎每年必考。
考查的题型有选择题,填空题、解答题,.2、学生特征分析(1)学习任务分析:通过第一轮复习,学生对不等式、直线方程知识有了更系统的理解;这是复习“简单的线性规划”的起点能力.(2)认知能力分析:学生能应用不等式、直线方程知识来解决问题,加之,体会过“简单的线性规划”应用性;这有益于“简单的线性规划”的“同化”和“顺应”.(3)认知结构变量分析:“不等式”、“直线方程”与“简单的线性规划”是“类属关系”,故“简单的线性规划”的复习是“下位学习”,说明认知结构的可利用性和可分辩性. 但是,由于“简单的线性规划”在教材上的编排简约、图解方法的动态且有错误之处(例3的答案),影响到认知结构的稳固性;这要求通过创设问题情境、自主探究等来促进认知结构的稳固性,进行意义建构.3、教学目标分析(1)知识技能:掌握二元一次不等式表示平面区域,进一步了解线性规划的意义,并能应用其解决一些简单的实际问题.(2)过程与方法:通过自主探究,师生会话,体验数学发现和创造的历程;经历线性规划的实际应用,提高数学建模能力.(3)情感态度:通过自主探究,师生会话,养成批判性的思维品质,形成良好的合作交流品质,提高“应用数学”的意识.以上三个目标确定是基于教材地位分析和学生特征分析.二、教学展开分析1、教学重点与难点分析重点:掌握二元一次不等式表示平面区域并灵活运用,以及线性规划最优解的求解.难点:实际问题转化为线性规划问题及其整数最优解、最优近似解的求解.利用例题、变式训练,求线性规划最优解的两种有效的方法——“调整优值法”、“换元取优法”的应用,以及“简单的线性规划解答器”的应用,来突出重点,突破难点.2、教学策略与方法指导(1)教学策略:本节课采用基于建构主义理论的“建构式教学方法”,即由“创设问题情境——自主探究——师生会话——意义建构”四个环节组成. 以学生为主体,并根据教学中的实际情况及时调整教学方案.(2)学法指导:教师平等地参与“师生会话”,间或参与“自主探究”并适时点拨指导;引导学生全员、全过程参与;自主探究的形式可以是小组学习,也可以是“学习共同体”等,引导学生反思评价.3、教学媒体的选择与运用使用多媒体辅助教学,运用“简单的线性规划解答器”.4、教学实施按照“建构式教学法”的思想,围绕突出重点,解决难点,不断设置问题情境,激发学生自主探究,并由师生会话促进意义建构. 我把本节课的教学实施分成三大部分,即(1)概念“同化”,(2)例题研讨,(3)反思评价.Ⅱ例题研讨三、教学结果分析通过本节课的学习,结合教学目标,从知识、能力、情感三个方面预测可能会出现的结果.1、学生能掌握并灵活运用二元一次不等式的平面区域,能够求出最优解;但在数学建模方面,估计有少部分学生会有一定的困惑. 另外,对线性规划和其它知识的交汇题的求解以及实际问题的整数最优解、近似最优解的求解仍会有学生感到陌生,故须督促学生课后加强消化.2、学生基本思想能力得到一定的提高,但良好的数学素养有待进一步提高.3、由于学生层次不同,已有的数学知识、观念不同,体验和认识也不同,对于学习层次较高的学生,应鼓励其严谨、谦虚、锲而不舍的求学态度;而对学习欠佳的同学,应多鼓励,并辅之以师生的帮助促进其进步.附:板书设计【设计说明】1.高三复习课,不仅仅是以前所学知识的重复,而是要在“问题解决”中对知识进行“同化”、“顺应”,进行意义建构. 故应帮助学生建立明晰的知识结构. 所以本节课的设计采取“建构式教学法”即“设置问题情境”、“自主探究”、“师生会话”、“意义建构”四环节教学;利用题型面广的例、变式题的研讨、探究,形成知识的完整性、系统性.2.高三复习既要依据教学大纲、也要依据考试大纲,还要根据近几年高考对本节内容的考查方向. 故此,在例、变式题中渗透“二元一次不等式表示平面区域”、“线性规划最优解”的问题,做到“重点”突出;而“难点”也随着二种有效方法即“调整优值法”、“换元取优法”及“线性规划解答器”的应用而完成了“顺应”.3.课堂上的例1、例2的解决以学生“自主探究”、“师生会话”为主;例3以师生“共同探究”为主;变式题则由学生理清解题思路完成,教师可在关键的地方点拨. 这其中借助多媒体和“线性规划解答器”予以辅助. 体现了信息技术与教学内容的有机整合.4.课后作业注重基础性、交汇性及新颖性.。
高三数学 直线中的最值问题及简单的线性规划 知识精讲 通用版
高三数学直线中的最值问题及简单的线性规划 知识精讲 通用版【本讲主要内容】直线中的最值问题及简单的线性规划二元一次不等式(组)表示平面区域、线性规划的意义及应用。
【知识掌握】 【知识点精析】1. 二元一次不等式表示的平面区域:(1)在平面直角坐标系中,已知直线0Ax By C ++=,坐标平面内的点()00,P x y 。
①若0,000>++>C By Ax B ,则点()00,P x y 在直线的上方; ②若0,000<++>C By Ax B ,则点()00,P x y 在直线的下方。
(2)对于任意的二元一次不等式)0(0<>++或C By Ax ,无论B 为正值还是负值,我们都可以把y 项的系数变形为正数。
当B>0时,①Ax+By+C>0表示直线0Ax By C ++=上方的区域; ②Ax+By+C<0表示直线0Ax By C ++=下方的区域。
(3)判断二元一次不等式表示的平面区域的方法:①点定域法:画二元一次不等式表示的平面区域常采用直线定界,点定域(原点不在边界上时,用原点定域最简单);不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分。
例如:画不等式x-2y+4>0表示的平面区域时,可先画直线240x y -+=(虚线),取原点()00,代入原不等式成立,所以不等式x-2y+4>0表示的区域如图所示。
②符号判断法:当B>0时,Ax+By+C>0表示直线0Ax By C ++=上方的区域,Ax+By+C<0表示直线0Ax By C ++=下方的区域;一般的若B<0时,可先把y 项系数变为正数再判断。
例如:3x-2y+6>0表示直线3260x y -+=下方区域;-3x+y+3<0表示直线330x y --=下方区域。
2. 线性规划:(1)有关概念:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
高三理科数学第一轮复习§6.3:二元一次不等式(组)与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
提示
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
解析
第六章:不等式 §6.3:二元一次不等式(组) 与简单的线性规划
2017届高考数学大一轮 第六章 不等式与推理证明 第3课时 二元一次不等式(组)与简单的线性规划问题 理
1.(2015·高考陕西卷)某企业生产甲、乙两种产品均需用A,
B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限
额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4
万元,则该企业每天可获得最大利润为( )
A.12万元
A(吨) B(吨)
甲 乙 原料限额
32
12
12
8
B.16万元
C.17万元
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第3课时 二元一次不等式(组)与简单的线性规划问题
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
1.(2015·高考湖南卷)若变量x,y满足约束条件
x2+x-y≥y≤-11,, 则z=3x-y的最小值为(
)
y≤1.
A.-7 C.1
B.-1 D.2
解析:画出可行域,如图中阴影部分所示.目标函数z=3x-
y可化为y=3x-z,其斜率为3,纵截距为-z,平移直线y=3x知
当直线y=3x-z经过点A时,其纵截距最大,z取得最小值.由
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧的所有的点组成的平面区域 (半平面) 不含 边界直线,不等式Ax+By+C≥0所表示的平 面区域(半平面)含有边界直线.
(2)对于直线Ax+By+C=0同一侧的所有的点(x,y),使得Ax
解析 当m≥0时,若平面区域存在,则平面区域内的点在第 二象限,平面区域内不可能存在点P(x0,y0)满足x0-2y0=2,因此 m<0.
苏教版高三数学复习课件6.2 二元一次不等式组与简单的线性规划问题
变式1:(2010·南京市第九中学调研测试)不等式组
所表示的平面
区域的面积等于________.
解析:画出平面区域如图,由 得x=1,在x+3y=4中令x=0得y= 令x=0得y=4.∴平面区域的面积为 答案: ,在3x+y=4中 .
1.在可行域内求目标函数的最值,必须先准确地作出可行域,再作出目标函数 对应的直线,据题意确定取得最优解的点,进而求出目标函数的最值. 2.最优解的确定方法 线性目标函数z=ax+by取最大值时的最优解与b的正负有关,当b>0时,最优 解是将直线ax+by=0在可行域内向上方平移到端点(一般是两直线交点)的位置 得到的;当b<0时,则是向下方平移.
③若适合,则该点 所在的一侧 即为不等式所表示的平面区域,否则,
直线的另一侧为不等式所表示的平面区域. (3)二元一次不等式组表示平面区域 不等式组中各个不等式表示平面区域的 公共 部分.
思考:不等式y≥kx+b与y>kx+b所表示的平面区域有何不同? 提示:不等式y≥kx+b表示的平面区域包括边界直线,此时边界直线画成实线,而 y>kx+b表示的平面区域不包括边界直线,此时边界直线画成虚线.
解:设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,总收 益为z元,由题意得 目标函数为z=3 000x+2 000y.
二元一次不等式组等价于
作出二元一次不等式组所示的平面区域.即可行域,如图
所示,作直线l:3 000x+2 000y=0,即3x+2y=0.平移直线l,
从图中可知,当直线l过点M时,目标函数取得最大值.
平面区域相交,研究直线在y(或x)轴上截距的最大值或最小值,从而求某 些二元一次函数的最值. 2.解线性规划问题,正确画出可行域并利用数形结合求最优解是重要的 一环,故要重视画图;而在求最优解时,常把视线落在可行域的顶点
年高考第一轮复习数学简单的线性规划
简单的线性规划●知识梳理1.二元一次不等式表示平面区域在平面直角坐标系中,已知直线Ax +By +C =0,坐标平面内的点P (x 0,y 0).B >0时,①Ax 0+By 0+C >0,则点P (x 0,y 0)在直线的上方;②Ax 0+By 0+C <0,则点P (x 0,y 0)在直线的下方.对于任意的二元一次不等式Ax +By +C >0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数.当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.2.线性规划求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解.生产实际中有许多问题都可以归结为线性规划问题.线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量x 、y ; (2)找出线性约束条件;(3)确定线性目标函数z =f (x ,y );(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可行域上使t 取得欲求最值的位置,以确定最优解,给出答案.●点击双基1.下列命题中正确的是A.点(0,0)在区域x +y ≥0内B.点(0,0)在区域x +y +1<0内C.点(1,0)在区域y >2x 内D.点(0,1)在区域x -y +1>0内 解析:将(0,0)代入x +y ≥0,成立. 答案:A2.(2005年海淀区期末练习题)设动点坐标(x ,y )满足 (x -y +1)(x +y -4)≥0,x ≥3, A.5 B.10 C.217解析:数形结合可知当x =3,y =1时,x 2+y 2的最小值为10. 答案:D2x -y +1≥0,x -2y -1≤0, x +y ≤1则x 2+y 2的最小值为3.不等式组 表示的平面区域为A.正三角形及其内部B.等腰三角形及其内部C.在第一象限内的一个无界区域D.不包含第一象限内的点的一个有界区域解析:将(0,0)代入不等式组适合C ,不对;将(21,21)代入不等式组适合D ,不对;又知2x -y +1=0与x -2y -1=0关于y =x 对称且所夹顶角α满足t an α=|2121||212|⋅+-=43. ∴α≠3π. 答案:B4.点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是________________.解析:(-2,t )在2x -3y +6=0的上方,则2×(-2)-3t +6<0,解得t >32.答案:t >325.不等式组⎪⎩⎪⎨⎧<+>>1234,0,0y x y x 表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有____________个.解析:(1,1),(1,2),(2,1),共3个. 答案:3 ●典例剖析【例1】 求不等式|x -1|+|y -1|≤2表示的平面区域的面积. 剖析:依据条件画出所表达的区域,再根据区域的特点求其面积. 解:|x -1|+|y -1|≤2可化为x ≥1, x ≥1, x ≤1, x ≤1, y ≥1, y ≤1, y ≥1, y ≤1, x +y ≤4 x -y ≤2 y -x ≤2 x +y ≥0. 其平面区域如图.y∴面积S =21×4×4=8. 评述:画平面区域时作图要尽量准确,要注意边界.或 或 或深化拓展若再求:①12-+x y ;②22)2()1(++-y x 的值域,你会做吗 答案: ①(-∞,-23]∪[23,+∞);②[1,5].【例2】 某人上午7时,乘摩托艇以匀速v n mi l e/h (4≤v ≤20)从A 港出发到距50 n mi l e 的B 港去,然后乘汽车以匀速w km/h (30≤w ≤100)自B 港向距300 km 的C 市驶去.应该在同一天下午4至9点到达C 市.设乘汽车、摩托艇去所需要的时间分别是x h 、y h.(1)作图表示满足上述条件的x 、y 范围; (2)如果已知所需的经费p =100+3×(5-x )+2×(8-y )(元),那么v 、w 分别是多少时走得最经济此时需花费多少元剖析:由p =100+3×(5-x )+2×(8-y )可知影响花费的是3x +2y 的取值范围.解:(1)依题意得v =y 50,w =x300,4≤v ≤20,30≤w ≤100. ∴3≤x ≤10,25≤y ≤225. ① 由于乘汽车、摩托艇所需的时间和x +y 应在9至14个小时之间,即9≤x +y ≤14.② 因此,满足①②的点(x ,y )的存在范围是图中阴影部分(包括边界).x y 1492.52+3=38y x(2)∵p =100+3·(5-x )+2·(∴3x +2y =131-p .设131-p =k ,那么当k 最大时,p 最小.在通过图中的阴影部分区域(包括边界)且斜率为-23的直线3x +2y =k 中,使k 值最大的直线必通过点(10,4),即当x =10,y =4时,p 最小. 此时,v =,w =30,p 的最小值为93元.评述:线性规划问题首先要根据实际问题列出表达约束条件的不等式.然后分析要求量的几何意义.【例3】 某矿山车队有4辆载重量为10 t 的甲型卡车和7辆载重量为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次.甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低剖析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.解:设每天派出甲型车x 辆、乙型车y 辆,车队所花成本费为z 元,那么 x +y ≤9,10×6x +6×8x ≥360, 0≤x ≤4, 0≤y ≤7.z =252x +160y , 其中x 、y ∈N .作出不等式组所表示的平面区域,即可行域,如图.作出直线l 0:252x +160y =0在y 轴上的截距最小.观察图形,可见当直线252x +160y =t 经过点(2,5)时,满足上述要求.此时,z =252x +160y 取得最小值,即x =2,y =5时,z min =252×2+160×5=1304. 答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.评述:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f (x ,y )=t 的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.●闯关训练 夯实基础1.(x -1)2+(y -1)2=1是|x -1|+|y -1|≤1的__________条件. A.充分而不必要 B.必要而不充分 C.充分且必要 D.既不充分也不必要 解析:数形结合. 答案:B2.(x +2y +1)(x -y +4)≤0表示的平面区域为x xy y yy ABCD解析:可转化为 x +2y +1≥0, x +2x -y +4≤0 x -y +4≥0. 答案:B3.(2004年全国卷Ⅱ,14)设x 、y 满足约束条件 x ≥0, x ≥y ,2x -y ≤1,则z =3x +2y 的最大值是____________.或解析:如图,当x =y =1时,z max =5.答案:5x -4y +3≤0,3x +5y -25≤0, x ≥1,_________.解析:作出可行域,如图.当把z 看作常数时,它表示直线y =zx 的斜率,因此,当直线y =zx 过点A 时,z 最大;当直线y =zx 过点B 时,z 最小.yx =1, 3x +5y -25=0,得A (1,522).x -4y +3=0, 3x +5y -25=0,∴z max =1522=522,z min =52.答案:52 522 5.画出以A (3,-1)、B (-1,1)、C (1,3)为顶点的△ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z =3x -2y 的最大值和最小值.分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组; ③求以所写不等式组为约束条件的给定目标函数的最值.解:如图,连结点A 、B 、C ,则直线AB 、BC 、CA 所围成的区域为所求△ABC 区域.直线AB 的方程为x +2y -1=0,BC 及CA 的直线方程分别为x -y +2=0,2x +y -5=0.在△ABC 内取一点P (1,1),分别代入x +2y -1,x -y +2,2x +y -5得x +2y -1>0,x -y +2>0,2x +y -5<0.由 得B (5,2).4.变量x 、y 满足条件设z =x y ,则z 的最小值为_______,最大值为 由因此所求区域的不等式组为x +2y -1≥0, x -y +2≥0, 2x +y -5≤0.作平行于直线3x -2y =0的直线系3x -2y =t (t 为参数),即平移直线y =23x ,观察图形可知:当直线y =23x -21t 过A (3,-1)时,纵截距-21t 最小.此时t 最大,t max =3×3-2× (-1)=11;当直线y =23x -21t 经过点B (-1,1)时,纵截距-21t 最大,此时t 有最小值为t min =3×(-1)-2×1=-5.因此,函数z =3x -2y 在约束条件 x +2y -1≥0,x -y +2≥0, 2x +y -5≤06.某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质6个单位,含淀粉4个单位,售价元,米食每100 g 含蛋白质3个单位,含淀粉7个单位,售价元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少解:设每盒盒饭需要面食x (百克),米食y (百克),y所需费用为S =+,且x 、y 满足 6x +3y ≥8, 4x +7y ≥10, x ≥0, y ≥0,由图可知,直线y =-45x +25S 过A (1513,1514)时,纵截距25S 最小,即S 最小. 故每盒盒饭为面食1513百克,米食1514百克时既科学又费用最少.培养能力7.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法解:设A 、B 两种药分别配x 、y 剂(x 、y ∈N ),则 x ≥1, y ≥1,3x +5y ≤20, 5x +4y ≤25.下的最大值为11,最小值为-5.上述不等式组的解集是以直线x =1,y =1,3x +5y =20及5x +4y =25为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)、(3,2)、(4,1).所以,在至少各配一剂的情况下,共有8种不同的配制方法.8.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少解:设空调机、洗衣机的月供应量分别是x 、y 台,总利润是P ,则P =6x +8y ,由题意有30x +20y ≤300, 5x +10y ≤110, x ≥0, y ≥0,x 、y 均为整数. 由图知直线y =-43x +81P 过M (4,9)时,纵截距最大.这时P 也取最大值P max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元. 探究创新9.实系数方程f (x )=x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,求:(1)12--a b 的值域; (2)(a -1)2+(b -2)2的值域; (3)a +b -3的值域.f (0)>0f (1)<0 f (2)>0b >0,a +b +1<0, a +b +2>0.如图所示. A (-3,1)、B (-2,0)、C (-1,0).解:由题意知 ⇒又由所要求的量的几何意义知,值域分别为(1)(4,1);(2)(8,17);(3)(-5,-4). ●思悟小结简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成.如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决.图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步.一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域.第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确.通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值.它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标.●教师下载中心 教学点睛线性规划是新增添的教学内容,应予以足够重视.线性规划问题中的可行域,实际上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础,因为在直线Ax +By +C =0同一侧的所有点(x ,y )实数Ax +By +C 的符号相同,所以只需在此直线的某一侧任取一点(x 0,y 0)〔若原点不在直线上,则取原点(0,0)最简便〕,把它的坐标代入Ax +By +C =0,由其值的符号即可判断二元一次不等式Ax +By +C >0(或<0)表示直线的哪一侧.这是教材介绍的方法.在求线性目标函数z =ax +by 的最大值或最小值时,设ax +by =t ,则此直线往右(或左)平移时,t 值随之增大(或减小),要会在可行域中确定最优解.解线性规划应用题步骤:(1)设出决策变量,找出线性约束条件和线性目标函数; (2)利用图象在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小).拓展题例【例1】 已知f (x )=px 2-q 且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的范围.解:∵-4≤f (1)≤-1,-1≤f (2)≤5, p -q ≤-1,p -q ≥-4, 4p -q ≤5, 4p -q ≥-1. 求z =9p -q 的最值.∴p =0, q =1,z min =-1, p =3,q =7, ∴-1≤f (3)≤20.【例2】 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少解:设A 厂工作x h ,B 厂工作y h ,总工作时数为t h ,则t =x +y ,且x +3y ≥40,2x +y ≥20,x ≥0,y ≥0,可行解区域如图.而符合问题的解为此区域内的格子点(纵、横坐标都是整数的点称为格子点),于是问题变为要在此可行解区域内,找出格子点(x ,y ),使t =x +y 的值为最小.xx y +3=由图知当直线l :y =-x +t 过Q格子点,我们还必须看Q 点是否是格子点.x +3y =40,2x +y =20,得Q (4,12)为格子点.故A 厂工作4 h ,B 厂工作12 h ,可使所费的总工作时数最少.如图,∵z max=20, 解方程组。
2017版高考数学课件:6.3 简单的线性规划
圆(x-2)2+y2=r2过点C(2,2)时,r的最大值为2,所以1≤(x-2)2+y2≤4.
(4) y 1表示区域内动点与定点(0,-1)连线的斜率,结合图形可知,区域内的
x
点位于A时,斜率最大,最大值为2,区域内的点位于B时,斜率最小,最小值
为 2,所以 2≤ y ≤1 2.
3
3x
第十八页,编辑于星期六:二十点 二十三分。
(5)令xy=t,则y= 为t 反比例函数,对应的图形为双曲线.结合图形可知,当双
x
曲线过点A时,t取最小值,最小值为1;当双曲线与直线l3相切时,t取最大值, 最大值为4,此时切点为C(2,2).所以1≤xy≤4.
第十一页,编辑于星期六:二十点 二十三分。
点A的纵坐标为1+m,点B的纵坐标为 (12+m),C,D两点的横坐标分别为2,-
3
2m,
所以S△ABC= 1(2+2m)(1+m)- 1(2+2m)· 2(1+m)
2
2
3
=
1(1+m)2=
4 ,
3
3
解得m=-3(舍去)或m=1.
故选B.
第十二页,编辑于星期六:二十点 二十三分。
二元一次不等式(组)表示平面区域的判断方法
(1)直线定界,特殊点定域
注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画
成实线.若直线不过原点,则特殊点常选取原点;若直线过原点,则特殊点 常选取(1,0)或(0,1). (2)同号上,异号下
当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方,当B(Ax+By+C)<0时, 区域为直线Ax+By+C=0的下方.
(完整word版)高中数学高考总复习简单的线性规划习题及详解
高中数学高考总复习简单的线性规划习题及详解一、选择题1. (文)(2010北京东城区)在平面直角坐标系中,若点(—2, t)在直线x—2y + 4= 0的上方,贝y t的取值范围是(A.(―汽1)B. (1 ,+s )C. ( —1 ,+s )D. (0,1)[答案]B[解析]•••点0(0,0)使x—2y+ 4>0成立,且点O在直线下方,故点(—2, t)在直线x —2y+ 4= 0 的上方? —2—2t+ 4<0,••• t>1.[点评]可用B值判断法来求解,令 d = B(Ax0+ By°+ C),贝U d>0?点P(x0, y°)在直线Ax+ By+ C = 0的上方;d<0?点P在直线下方.由题意一2(— 2 —2t+ 4)>0 ,• t>1.(理)(2010惠州市模拟)若2m+ 2n<4,则点(m, n)必在()A .直线x+ y—2= 0的左下方B .直线x+ y—2 = 0的右上方C.直线x+ 2y—2 = 0的右上方D .直线x+ 2y —2 = 0的左下方[答案]A[解析]•/ 2m+ 2n> 2 2m+n,由条件2m+ 2n<4 知,2 .2m+ n<4,「. m+ n<2,即m+ n —2<0,故选A.x> 02. (文)(09安徽)不等式组x+ 3y>4 所表示的平面区域的面积等于()3x+ y w 4A.3B.f43C. D. -34[答C案]x+ 3y= 4[解平面区域如图•解3x + y=44B(0,4), C 0, 3,4 8|BC=4— 3 = 3. -4•••S AABC=卜3x 1= 4.x+ y> 2(理)(2010重庆市南开中学)不等式组2x—y w 4 所围成的平面区域的面积为()x—y> 0A . 3 ,'2 B. 6 ,'2C. 6D. 3[答案]D[解析]不等式组表示的平面区域为图中Rt△ ABC,易求B(4,4), A(1,1), C(2,0)二S A ABC= S\ OBC—S A AOC=2X 4 —1X 2X 1 = 3.2 2y< x3. (文)(2010西安中学)设变量x, y满足约束条件x+ y> 2 ,则目标函数z= 2x+ y的最小值为()y > 3x—6A. 2B.3C. 5D. 7[答案]By< x[解析]在坐标系中画出约束条件x+ y> 2所表示的可行域为图中厶ABC,其中y> 3x—6A(2,0), B(1,1), C(3,3),则目标函数z= 2x+ y在点B(1,1)处取得最小值,最小值为3.(理)(2010哈师大附中模考)已知A(2,4) , B( —1,2), C(1,0),点P(x, 丫)在厶ABC内部及边界运动,则z= x—y的最大值及最小值分别是()A . —1,—3 B. 1,—3C. 3, —1D. 3,1[答案]B[解析]当直线y= x —z经过点C(1,0)时,Z max= 1,当直线y= x—z经过点B(- 1,2)时, Z min = — 3.4.(2010四川广元市质检)在直角坐标系xOy 中,已知△ AOB 的三边所在直线的方程分别为x = 0 ,y = 0,2x + 3y = 30,则厶AOB 内部和边上整点(即坐标均为整数的点)的总数为()B . 91D . 75[答案]By = 7 时, y = 9 时, •••共有 16+ 14+ 13+ 11+ 10+ 8+ 7 + 5 + 4+ 2+ 1 = 91 个.5. (2010山师大附中模考)某企业生产甲、乙两种产品,已知生产每吨甲产品要用 料3吨,B 原料2吨;生产每吨乙产品要用 A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )[答案]D3x + y W 13 2x + 3y W 18由题意得,x > 0获利润3= 5x + 3y , 画出可行域如图,C . 88 y = 1 时, y = 3 时,y = 5 时, 0W x W 7; y = 6 时,0W x W 6;0W x W 4; y = 8 时,0W x W 3; 0W x W 1, y = 10 时,x = 0.A . 12万元B .20万元C . 25万元D . 27万元 A 原料不超[解析]设生产甲、乙两种产品分别为x 吨,y 吨,[解0< x W 10; y = 4 时,O W x W 9;3x+ y = 13由,解得A(3,4).2x+ 3y= 185 2T—3<—-< —3,.•当直线5x+ 3y = 3 经过A 点时,3max= 27.3 3x—y+ 6 > 06.(文)(2010山东省实验中学)已知实数x, y满足x+ y> 0 ,若z= ax+ y的最大x w 3值为3a + 9,最小值为3a —3,则实数a的取值范围为()B. a w —1[答案]C[解析]作出可行域如图中阴影部分所示,则z在点A处取得最大值,在点C处取得最小值.又k Bc=—1, k AB = 1,.••一1 w —a w 1,即一1 w a w 1.1a ° 3 ;(理)(2010寿光现代中学)已知变量x, y满足约束条件x+ 4y—13> 02y —x+ 1> 0 ,且有无穷多个x+ y—4 w 0点(x, y)使目标函数z= x+ my取得最小值,则m=(B.—1C. 1D. 4[答案]C[解析]由题意可知,不等式组表示的可行域是由及其内部部分.当z= x + my与x+ y— 4 = 0重合时满足题意,故m= 1.A(1,3), B(3,1), C(5,2)组成的三角形7. (2010 •东五校)当点M (x , y )在如图所示的三角形[解析]由目标函数z = kx + y 得y =— kx + z ,结合图形,要使直线的截距 z 最大的一个最优解为(1,2),贝V 0< — k w k Ac w 1 或 0> — k > k Bc = — 1, A k € [ — 1,1].y > x& (文)(2010厦门一中)已知x 、y 满足不等式组 x + y w 2 ,且z = 2x + y 的最大值是最x > a小值的3倍,则a =()1 A. 0 B.32 C.2 D . 1[答案]B[解析]依题意可知a<1.作出可行域如图所示,z = 2x + y 在A 点和B 点处分别取得最小 值和最大值.x a由 得 A(a , a), y = x x + y = 2 由 得 B(1,1), x = y标函数z = kx + y 取得最大值的一个最优解为 (1,2),则实数k 的取值范围是(A . ( — g,— -1] U [1, + g )B . [ — 1,1]C . (—g,— -1)U (1, + g ) D . (— 1,1)[答案]B)ABC 区域内(含边界)运动时,目1--z max = 3, Z min = 3a.二 a = 3.y > 0(理)已知实数x , y 满足y w 2x — 1x + y w m等于(B .C . [答案]B[解析]画出x , y 满足条件的可行域如图所示,可知在直线y = 2x — 1与直线x + y = m的交点A 处,目标函数z = x — y 取得最小值.y = 2x — 1 由,x + y = mm + 1 x= 3解得, 2m — 1y=^二、填空题x — y > 09. 设变量x, y 满足约束条件 x + y w 1 ,则目标函数z = 2x + y 的最大值为 __________ . x + 2y > 1[答案]2[解析]可行域为图中阴影部分厶 ABC ,显然当直线2x + y = z 经过可行域内的点 A(1,0) 时,z 取最大值,Z max = 2.,如果目标函数z = x — y 的最小值为—1,贝U 实数mD .即点A 的坐标为卬于2m — 1 3将点A 的坐标代入x — y =— 1,得中2 rm 1—3— =— 1,即卩 m = 5•故选 B. 310. (2010四川广元市质检)毕业庆典活动中,某班团支部决定组织班里48名同学去水上公园坐船观赏风景,支部先派一人去了解船只的租金情况,看到的租金价格如下表,那么他们合理设计租船方案后,所付租金最少为___________ 元•x> 1, y> 111. (文)(2010淮南一中)已知M、N是不等式组x —y+ 1>0 所表示的平面区域内的x + y w 6不同两点,贝U |MN|的最大值是 _______ .[答案].17[解析]不等式组所表示的平面区域如图中阴影部分(包括边界)所示,由图形易知,点D(5,1)与点B(1,2)的距离最大,所以|MN|的最大值为.17.y \x=\x-y+l=O眄/Z A ・ -厶1K*萝=6(理)如果直线y= kx+ 1与圆x2+ y2+ kx+ my —4= 0相交于M、N两点,且M、N关于kx -y + 1 > 0 b + 1直线x + y = 0对称,点P(a , b)为平面区域 kx -my < 0 内任意一点,贝U 的取值范围a — 1y > 0是 ________ .1[答案]—1,— 2[解析]T 直线y = kx + 1与圆x 2 + y 2 + kx + my — 4= 0相交于M 、N 两点,且 M 、N 关 k于x + y = 0对称,二y = kx + 1与x + y = 0垂直,二k = 1,而圆心在直线 x + y = 0上,••• — 2+斜率,1•••所求取值范围为—1, — 2 .x < my + n12. 若由不等式组 x — .;3y > 0 (n >0)确定的平面区域的边界为三角形,且它的外接圆y > 0的圆心在x 轴上,则实数m =[答案]—宁[解析]根据题意,三角形的外接圆圆心在 x 轴上, • OA 为外接圆的直径,•直线 x = my + n 与x — . 3y = 0垂直,—m = 0, •m =—1,•作出可行域如图所示,而岂表示点P(a , b)与点(1,-"连线的0 + 1 —1— 1;=1,即m= —三、解答题2x+ y—12W 013. (2010 •宁锦州)若x、y满足条件3x—2y+ 10> 0,求z= x+ 2y的最小值,并求x—4y+ 10< 0出相应的x、y值.[解析]根据条件作出可行域如图所示,x+ 4y—10 = 0解方程组,得A(—2,2).3x —2y+ 10= 0再作直线I: x+ 2y= 0,把直线I向上平移至过点A(—2, 2)时,z取得最小值2,此时x =—2, y= 2.14. (2010茂名模考)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1) 分别求甲、乙产品为一等品的概率P甲,P乙;(2) 已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x, y分别表示生产甲、乙产品的数量,在⑴的条件下,求x, y为何值时,z=xP甲+ yP乙最大,最大值是多少?\jsill工人(名)资金(万兀)甲420乙85P甲一卩乙=0.25[解析]⑴依题意得1 —卩甲=卩乙—0.05P 甲=0.65解得P 乙=0.4故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=04(2)依题意得x、y应满足的约束条件为j+2y=K 4x+ 8y W 3220x+ 5y W 55 ,且z= 0.65x+ 0.4y.x> 0y> 0作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线b: 0.65x+ 0.4y= 0即13x+ 8y= 0,把直线I向上方平移到l i的位置时,直线经过可行域内的点M,且l i与原点的距离最大,此时z取最大值.x+ 2y= 8解方程组,得x= 2, y= 3.4x + y= 11故M的坐标为(2,3),所以z的最大值为Z max= 0.65 X 2+ 0.4 X 3= 2.5。
2017版高考数学一轮总复习课件:第七章 第三节简单的线性规划
►一个口诀:直线定界,特殊点定域;同侧同号,异侧异号. (1)已知点(-3,-1)和(4,-6)分别在直线3x-2y-a=0的两侧 ,则a的取值范围为________. 解析 因为(-3,-1)和(4,-6)分别在直线3x-2y-a=0两侧 ,所以[3×(-3)-2×(-1)-a]×[3×4-2×(-6)-a]<0,即(a+ 7)(a-24)<0,解得-7<a<24. 答案 (-7,24)
名称
意义
由x,y的一次不等式(或方程)组成的不等式组,是对x,y的 线性约束条件
约束条件
目标函数 关于x、y的解析式
线性目标函数 关于x、y的一次解析式
可行解
满足 线性约束条件 的解(x,y)
可行域
所有 可行解 组成的集合
最优解 使目标函数达到 最大值 或 最小值的可行解
线性规 求线性目标函数在线性约束条件下的 最大值或
第十六页,编辑于星期六:十九点 五十八分。
常见的目标函数有
(1)截距型:形如 z=ax+by.求这类目标函数的最值时常将函 数 z=ax+by 转化为直线的斜截式:y=-abx+bz,通过求直线 的截距bz的最值间接求出 z 的最值. (2)距离型:形如 z= x2+y2表示点(x,y)与原点(0,0)的距离,
(x-a)2+(y-b)2表示点(x,y)与点(a,b)的距离. (3)斜率型:形如yx表示点(x,y)与原点(0,0)连线的斜率,yx--ba 表示点(x,y)与点(a,b)连线的斜率. 注意:转化的等价性及几何意义.
第十七页,编辑于星期六:十九点 五十八分。
在通过求直线的截距bz的最值间接求出 z 的最值时,要注意: 当 b>0 时,截距bz取最大值时,z 也取最大值;截距bz取最小值 时,z 也取最小值;当 b<0 时,截距bz取最大值时,z 取最小值; 截距bz取最小值时,z 取最大值.
二元一次不等式(组)与简单的线性规划问题课件-2023届高三数学(文)一轮总复习
解析:在平面直角坐标系内画出题中的不等式组表示的平面区域,其是以(2,
0),(0,2),(4,2)为顶点的三角形区(包含边界)(图略),易得当目标函数z1=2x
-y经过平面区域内的点(4,2)时,取得最大值2×4-2=6.z2=x2+y2表示平面区
域内的点到原点的距离的平方,易得原点到直线x+y=2的距离的平方为所求最
z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是可行域上的点到点(-3
,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,dmin=1
-(-3)=4,dmax= −3 − 5 2
所以z的取值范围为[16,64].
+ 2 − 2 2 =8.
y
2.(变问题)若例2中条件不变,将“z= ”改为“z=|x+y|”,如何
,B,设想培优小组A中,每1名学生需要配备2名理科教师和2名文科
教师做导师;设想培优小组B中,每1名学生需要配备3名理科教师和1
名文科教师做导师.若学校现有14名理科教师和9名文科教师积极支
5
持,则两培优小组能够成立的学生人数和最多是_____.
反思感悟
第三节 二元一次不等式(组)
与简单的线性规划问题
·考向预测·
考情分析:主要考查利用线性规划知识求目标函数的最值、取值范
围、参数的取值(范围)以及实际应用,目标函数大多是线性的,偶尔
也会出现斜率型和距离型的目标函数,此部分内容仍是高考的热点,
主要以选择题和填空题的形式出现.
学科素养:通过线性规划在求最值中的应用问题考查直观想象、数
最大值
最小值
最大值
在线性约束条件下求线性目标函数的________或
高三数学一轮总结复习目录
高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
6.2 简单的线性规划(课时练习)-2017届高三数学(文)一轮复习(解析版)
高三一轮复习 6.2简单的线性规划(练习卷教师版)一、选择题1.【顺义区2016高三第一学期期中】若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .8【答案】 B【解析】 作出可行域(如图中阴影部分所示)后,结合目标函数可知,当直线y =-2x +z 经过点A 时,z 的值最大,由⎩⎪⎨⎪⎧y =-1,x +y =1,得⎩⎪⎨⎪⎧x =2,y =-1,则m =z max =2×2-1=3.当直线y =-2x +z 经过点B 时,z 的值最小,由⎩⎪⎨⎪⎧y =-1,y =x ,得⎩⎪⎨⎪⎧x =-1,y =-1,则n =z min =2×(-1)-1=-3,故m -n =6.2.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为 ( ) A .-6B .-2C .0D .2【答案】 A【解析】 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.3.【大兴区2016高三第一学期检测】若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m的最大值为( )A .1-B .1C .32D .2 【答案】B【解析】如图,当直线m x =经过函数x y 2=的图象与直线03=-+y x 的交点时,函数x y 2=的图像仅有一个点P 在可行域内,由230y xx y =⎧⎨+-=⎩,得)2,1(P ,∴1≤m .4.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥1,x +y ≥1,1<x ≤a ,目标函数z =x +2y 的最大值为10,则实数a 的值为 ( )A .2B.83C .4D .8【答案】 C【解析】 结合图形求解.作出不等式组对应的平面区域,当目标函数经过点(a ,a -1)时取得最大值10,所以a +2(a -1)=10,解得a =4,故选C. 二、填空题:5.【丰台区2016高三第一学期期中】不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为________.【答案】4【解析】不等式组所表示的平面区域如下图阴影部分,则其表示的面积112222422ABCD ABD BCD S S S ∆∆=+=⨯⨯+⨯⨯=.6.若变量x ,y 满足约束条件1400x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩,则y x 的最大值为 __________________.【答案】3【解析】首先根据已知约束条件画出其所表示的平面区域如下图所示,再由图可知,当y x取得最大值时,331OC k ==.7.设z kx y =+,其中实数,x y 满足2240240x x y x y ≥⎧⎪-+≥⎨⎪--≤⎩, 若z 的最大值为12,则实数k =________ .【答案】2【解析】此题是线性规划的逆向求解问题,其解法画出不等式组所表示的平面区域后,对目标函数z kx y =+中的k 进行讨论.此不等式表示的平面区域如下图4所示:y kx z =-+,当0k>时,直线0:l y kx =-平移到A 点时目标函数取最大值,即44122k k +=∴=.当0k <时,直线0:l y kx =-平移到A 或B 点时目标函数取最大值,可知k 取值是大于零,所以不满足,所以2k =,所以填2. 三、解答题:8.【朝阳区2016高三第二学期检测】某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司应如何合理计划当天派用两类卡车的车辆数,才能使公司获得最大的利润,最大利润是多少元?【解析】设派用甲型卡车x (辆),乙型卡车y (辆),获得的利润为z (元),450350z x y =+, 由题意,x 、y 满足关系式12,219,10672,08,07,x y x y x y x y +≤⎧⎪+≤⎪⎪+≥⎨⎪≤≤⎪≤≤⎪⎩作出相应的平面区域,45035050(97)z x y x y =+=+,联立12,219x y x y +=⎧⎨+=⎩,解得75x y ==,.∴点A 的坐标为(75),.∴max 50(9775)4900z=⨯+⨯=(元)答:该公司派用甲型卡车7辆,乙型卡车5辆,公司的利润最大,最大利润是4900元.。
简单的线性规划问题(附答案)
简单的线性规划问题[学习目标]1。
了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b〉0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b〈0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1已知变量x,y满足约束条件错误!则z=3x+y的最大值为()A.12 B.11C.3 D.-1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z经过点A时,z取得最大值.由错误!⇒错误!此时z=3x+y=11。
版高考数学理科一轮复习:简单的线性规划
令z=x+2y, 当z=x+2y过A点时,z取最大值.
由
x
y
3, x
得A(3,3),
∴z的最大值为3+2×3=9.故选D.
x y 3 0,
5.(2017山东,4,5分)已知x,y满足约束条件 3x y 5 0,则z=x+2y的最大值是 ( )
y b 的目标函数的最值问题,可转化为求可行域内的点(x,y)与点(a,b)连线的斜率的最值问题;
xa
②形如z=(x-a)2+(y-b)2的目标函数的最值问题,可转化为求可行域内的点(x,y)与点(a,b)间距离
的平方的最值问题.
B组 自主命题·省(区、市)卷题组
考点 简单的线性规划
x y 5, 2x y 4,
§ 7.2 简单的线性规划
高考理数 (课标Ⅱ专用)
五年高考
A组 统一命题·课标卷题组
考点 简单的线性规划
2x 3y 3 0,
1.(2017课标全国Ⅱ,5,5分)设x,y满足约束条件2x 3y 3 0, 则z=2x+y的最小值是 ( )
y 3 0,
A.-15 B.-9 C.1 D.9
1.(2018天津,2,5分)设变量x,y满足约束条件 x y 1, 则目标函数z=3x+5y的最大值为 ( )
y 0,
A.6 B.19 C.21 D.45
答案 C 本题主要考查线性目标函数最值的求解. 由变量x,y满足的约束条件画出可行域(如图中阴影部分所示).
作出基本直线l0:3x+5y=0,平移直线l0,当直线经过点A(2,3)时,z取最大值,即zmax=3×2+5×3=21,故 选C.
(文)大一轮复习课件 第六章 不等式、推理与证明 第三节 二元一次不等式(组)及简单的线性规划问题
解析:设旅行社租用A型客车x辆,B型客车y 辆,租金为z,则线性约束条件为
x+y≤21, y-x≤7, 36x+60y≥900, x,y∈N.
目标函数为z=1 600x
+2 400y.画出可行域如图中阴影部分所示, 可知目标函数过点N(5,12)时,有最小值zmin=36 800(元).答案:C
[演练冲关]
x-y+2≥0, 1.(2017·海口调研)已知实数x,y满足x+y-4≥0,
4x-y-4≤0.
则z=
3x-y的取值范围为
()
A.0,152 C.2,152
B.[0,2] D.2,83
解析:画出题中的不等式组表示的平面区域 (阴影部分)及直线3x-y=0,平移该直线, 平移到经过该平面区域内的点A(1,3)(该点是 直线x-y+2=0与x+y-4=0的交点)时,相 应直线在x轴上的截距达到最小,此时z=3x-y取得最小值 3×1-3=0;平移到经过该平面区域内的点B85,152(该点是直 线4x-y-4=0与x+y-4=0的交点)时,相应直线在x轴上的 截距达到最大,此时z=3x-y取得最大值3× 85 - 152 = 152 ,因此 z的取值范围是0,152,选A.答案:A
2.(易错题)若满足条件 xx+-yy-≥20≤,0, y≥a
的整点(x,y)恰有9个,其
中整点是指横、纵坐标都是整数的点,则整数a的值为 ( )
A.-3
B.-2
C.-1
解析:不等式组所表示的平面区域如图中
D.0
阴影部分,当a=0时,只有4个整点
(1,1),(0,0),(1,0),(2,0);当a=-1时,
数多个,也可能没有.
3.在通过求直线的截距
z b
的最值间接求出z的最值时,要注
6.2 简单的线性规划(课时测试)-2017届高三数学(文)一轮复习(原卷版)
高三一轮复习 6.2 简单的线性规划(检测学生版)时间:50分钟 总分:70分 班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.在坐标平面上,不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩所表示的平面区域内整数点个数为( )A .1B . 2C . 3D .42.(大兴区2016届高三第二学期期中)已知变量 x y ,满足约束条件230,330,10,x y x y y -+≥⎧⎪-+≤⎨⎪-≤⎩若目标函数z y ax =-仅.在点(3,0)-处取到最大值,则实数a 的取值范围为 A .(3,5)B .1(,)2+∞ C .(1,2) -D .1(,1)33.不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为 ( )A .1B.12C.13D.144. (北京市海淀区2016届高三第一学期期末数学)若,x y 满足+20,40,0,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则2||z y x =-的最大值为( )A.8-B.4-C.1D.25. (北京市丰台区2016届高三第一学期期中)在平面直角坐标系 xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B.1C.12D.136.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49二、填空题(共4小题,每题5分,共20分)7. (通州区2016届高三第二学期期末)已知实数x y 、满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,则目标函数3z x y =+的最大值为________________.8.(海淀区2016届高三第一学期期末)若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.9.(2016北京怀柔二模)已知不等式组221x y x y y +≤⎧⎪-≥-⎨⎪>⎩表示的平面区域为M ,若直线31y kx k =-+与平面区域M 有公共点,则k 的取值范围是 .10.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM的最小值是________.三、 解答题(共2小题,每题10分,共20分)11.(2016北京东城二模)若直线1+=kx y 与圆0422=-+++my kx y x 相交于P 、Q 两点,且点P 、Q 关于直线0=+y x 对称,求不等式组1000kx y kx my y -+≥⎧⎪-≤⎨⎪≥⎩表示的平面区域的面积.12.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打 算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能 的最大亏损率分别为30%和10%.若投资人计划投资金额不超过10万元,要求确保可能的资 金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三一轮复习 6.2 简单的线性规划(检测教师版)
时间:50分钟 总分:70分 班级: 姓名:
一、 选择题(共6小题,每题5分,共30分)
1.在坐标平面上,不等式组1
31
y x y x ≥-⎧⎪⎨
≤-+⎪⎩所表示的平面区域内整数点个数为( )
A .1
B . 2
C . 3
D .4 【答案】D
【解析】整数点为(1,2),(0,1),(0,0),(0,1)---.
2.【大兴区2016届高三第二学期期中】已知变量 x y ,满足约束条件230,
330,10,x y x y y -+≥⎧⎪
-+≤⎨⎪-≤⎩
若目标函数z y ax =-
仅.
在点(3,0)-处取到最大值,则实数a 的取值范围为 A .(3,5)
B .1
(,)2
+∞ C .(1,2) -
D .1(,1)3
【答案】B
【解析】如图:只需使12
AC a k >=
. 3.不等式组⎩⎪⎨⎪
⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为 ( )
A .1
B.1
2
C.13
D.14
【答案】D
【解析】作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,
得y D =1
2,
所以S △BCD =12×(x C -x B )×12=1
4
.
4. (北京市海淀区2016届高三第一学期期末数学)若,x y 满足+20,40,0,x y x y y -≥⎧⎪
+-≤⎨⎪≥⎩
则2||z y x =-的最大值为
( )
A.8-
B.4-
C.1
D.2 【答案】D
【解析】作可行域:
A(-2,0),B(4,0),C(1,3),D (0,2)
由图知:目标函数过点D 时,目标函数值最大,为
5. (北京市丰台区2016届高三第一学期期中)在平面直角坐标系 xOy 中,P 为不等式组⎩⎪⎨⎪
⎧y ≤1,x +y -2≥0,x -y -1≤0所
表示的平面区域上一动点,则直线OP 斜率的最大值为
( )
A .2
B.1
C.1
2
D.13
【答案】B
【解析】 作出可行域如图所示,
当点P 位于⎩
⎪⎨⎪⎧x +y =2,
y =1的交点(1,1)时,(k OP )max =1,故选B.
6.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪
⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,
则a 2+b 2的最大值为
( )
A .5
B .29
C .37
D .49
【答案】 C
【解析】 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.
二、填空题(共4小题,每题5分,共20分)
7. (通州区2016届高三第二学期期末)已知实数x y 、满足2
330220y x y x y ≤⎧⎪
--≤⎨⎪+-≥⎩
,则目标函数3z x y =+的最大
值为________________. 【答案】7
【解析】作出可行域如图所示:
作直线0:l 30x y +=,再作一组平行于0l 的直线:l 3x y z +=,当直线l 经过点M 时,3z x y =+取得最
大值,由3302x y y --=⎧⎨=⎩得:532x y ⎧
=⎪⎨⎪=⎩
,所以点M 的坐标为5,23⎛⎫
⎪⎝⎭,所以max 53273z =⨯+=.
8.【海淀区2016届高三第一学期期末】若A 为不等式组⎩⎪⎨⎪
⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化
到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________. 【答案】 7
4
【解析】 平面区域A 如图所示,
所求面积为S =12×2×2-12×22×22=2-14=7
4
.
9.(2016北京怀柔二模)已知不等式组2
21x y x y y +≤⎧⎪
-≥-⎨⎪>⎩
表示的平面区域为M ,若直线31y kx k =-+与平面区
域M 有公共点,则k 的取值范围是 . 【答案】1[,0)3
-
【解析】∵直线(3)1y k x =-+恒过定点(3,1)P ,如图:
(1,1),(1,1),(0,2)A B C -,∴PC PA k k k ≤<,即1
03
k -≤<.
10.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪
⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM
的最小值是________.
解析 如图所示阴影部分为可行域,
数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值, ∴|OM |min =
|-2|
12+12
= 2.
三、 解答题(共2小题,每题10分,共20分)
11.(2016北京东城二模)若直线1+=kx y 与圆042
2=-+++my kx y x 相交于P 、Q 两点,且点P 、
Q 关于直线0=+y x 对称,求不等式组10
00kx y kx my y -+≥⎧⎪
-≤⎨⎪≥⎩
表示的平面区域的面积.
【解析】依题意直线0=+y x 必经过圆心,∴022
k m
-
-=,∴0m k +=, ∵直线1+=kx y 和直线0=+y x 垂直,∴1,1k m ==-.
∴不等式组10
00
kx y kx my y -+≥⎧⎪
-≤⎨⎪≥⎩
,即为1000x y x y y -+≥⎧⎪+≤⎨⎪≥⎩,
如图平面区域为三角形ABO ,
在10x y -+=中,令0y =,得1x =-,
由100
x y x y -+=⎧⎨
+=⎩,得1
2y =,∴平面区域的面积为1111224S =⨯⨯=.
12.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打 算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能 的最大亏损率分别为30%和10%.若投资人计划投资金额不超过10万元,要求确保可能的资 金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 【解析】 设投资人分别用x 万元,y 万元投资甲、乙两个项目,由题意知 ⎩⎪⎨⎪⎧x +y ≤10,
0.3x +0.1y ≤1.8,
x ≥0,
y ≥0,
目标函数z =x +0.5y . 上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.
将z =x +0.5y 变形为y =-2x +2z ,这是斜率为-2随z 变化的一组平行线,当直线y =-2x +2z 经过可行域内的点M 时,直线y =-2x +2z 在y 轴上的截距2z 最大,z 也最大. 这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.
解方程组⎩
⎪⎨⎪⎧x +y =10,
0.3x +0.1y =1.8,得x =4,y =6,
此时z =4+0.5×6=7(万元).∴当x =4,y =6时,z 取得最大值,
所以投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.。