储氢合金PPT
合集下载
储氢合金
储氢合金 Hydrogen storage alloy
主讲人:汪沅 201039110213
能源危机与环境问题
• 化石能源的有限性与人类 需求的无限性-石油、煤 炭等主要能源将在未来数 十年至数百年内枯竭 • 化石能源的使用正在给地 球造成巨大的生态灾难- 温室效应、酸雨等严重威 胁地球动植物的生存 • 新能源研究势在必行 • 氢——二十一世纪的绿色 能源 • 优点: • 自然界最普遍的元素; • 清洁能源; • 燃烧性能好,易点燃; • 发热值高(142MJ/kg); • 导热性好; • 用途广泛;
钛锰系储氢合金
• Ti-Mn合金是拉维斯相结构,Ti-Mn二元合金中Ti-Mn1.5 储氢性能最佳,在室温下即可活化,与氢反应生成TiMn1.5H2.4,其特性见表2-1。TiMn原子比Mn/Ti = 1.5 时,合金吸氢量较大,如果Ti量增加,吸氢量增大,但由 于形成稳定的Ti氢化物,室温释氢量减少。 • 除以上几类典型储氢合金外,非晶态储氢合金目前也引起 了人们的注意。研究表明,非晶态储氢合金比同组份的晶 态合金在相同的温度和氢压下有更大的储氢量;具有较高 的耐磨性;即使经过几百次吸、放氢循环也不致破碎;吸 氢后体积膨胀小。但非晶态储氢合金往往由子吸氢过程中 的放热而晶化。有关非晶态储氢材料的机理尚不清楚,有 待于进一步研究。
非晶态合金储氢
非晶态合金比同组分的晶态合金在相同温度和氢
压下有更大的贮氢量,如TiCu非晶态比晶态贮氢 量大1/3。
非晶态贮氢合金具有较高耐蚀性、耐磨性,可多 次使用而不破碎,但吸氢放热时易使其晶化。
制备方法和工艺
• 原材料
• (1)稀土 • 主要采用混合稀土元素,如富铈稀土(Mm)和富镧稀土(MI)。我 国具有丰富的稀土资源,总储量占世界80%以上。目前我国稀土年产 量在3500~4000T之间。 • (2)金属镍 • 我国金属镍主要来自金川镍公司,目前年产量35000T左右 • (3)其他添加元素 • 添加元素包括钴,锰和铝等,用量不大,但非常容易得到
主讲人:汪沅 201039110213
能源危机与环境问题
• 化石能源的有限性与人类 需求的无限性-石油、煤 炭等主要能源将在未来数 十年至数百年内枯竭 • 化石能源的使用正在给地 球造成巨大的生态灾难- 温室效应、酸雨等严重威 胁地球动植物的生存 • 新能源研究势在必行 • 氢——二十一世纪的绿色 能源 • 优点: • 自然界最普遍的元素; • 清洁能源; • 燃烧性能好,易点燃; • 发热值高(142MJ/kg); • 导热性好; • 用途广泛;
钛锰系储氢合金
• Ti-Mn合金是拉维斯相结构,Ti-Mn二元合金中Ti-Mn1.5 储氢性能最佳,在室温下即可活化,与氢反应生成TiMn1.5H2.4,其特性见表2-1。TiMn原子比Mn/Ti = 1.5 时,合金吸氢量较大,如果Ti量增加,吸氢量增大,但由 于形成稳定的Ti氢化物,室温释氢量减少。 • 除以上几类典型储氢合金外,非晶态储氢合金目前也引起 了人们的注意。研究表明,非晶态储氢合金比同组份的晶 态合金在相同的温度和氢压下有更大的储氢量;具有较高 的耐磨性;即使经过几百次吸、放氢循环也不致破碎;吸 氢后体积膨胀小。但非晶态储氢合金往往由子吸氢过程中 的放热而晶化。有关非晶态储氢材料的机理尚不清楚,有 待于进一步研究。
非晶态合金储氢
非晶态合金比同组分的晶态合金在相同温度和氢
压下有更大的贮氢量,如TiCu非晶态比晶态贮氢 量大1/3。
非晶态贮氢合金具有较高耐蚀性、耐磨性,可多 次使用而不破碎,但吸氢放热时易使其晶化。
制备方法和工艺
• 原材料
• (1)稀土 • 主要采用混合稀土元素,如富铈稀土(Mm)和富镧稀土(MI)。我 国具有丰富的稀土资源,总储量占世界80%以上。目前我国稀土年产 量在3500~4000T之间。 • (2)金属镍 • 我国金属镍主要来自金川镍公司,目前年产量35000T左右 • (3)其他添加元素 • 添加元素包括钴,锰和铝等,用量不大,但非常容易得到
金属材料之储氢材料ppt课件
p
2 H
2
H M
A一B:为吸氢过程的第二步,固溶体进一步与氢反应,
产生相变,形成金属氢化物;
B点以后:为第三步,氢溶入氢化物形成固溶体,氢压
增加。
提高温度,平台压力升高,但有效氢 容量减少
.
21
p-c-T曲线是衡量贮氢材料热力学性能的重要特
性曲线。通过该图可以了解金属氢化物中能含多
少氢(%)和任一温度下的分解压力值。 p-c-T曲线
动植物的生存!!!
人类的出路何在?-新能源研究势在必
行!!!
.
2
对中国来说,首要的是开发水力资源和 生物质能,其次是发展地热能、风能和 太阳能。太阳能和风能的利用存在较大 的新材料问题。
太阳照射到地面的能量相当于全球能耗 的1.6万倍,既无污染,又是永久性能源。 可惜太阳辐射到地球的能量密度太低, 只有1kW/m2,还受气候影响。
.
3
太阳能的利用形式主要有两种:-是热能的直接 利用,如利用镜面或反射槽将太阳光聚焦在收 集器上,由中间介质吸热产生蒸汽,推动气轮 机组发电,美国单台容量己达80MW;另一种形 式是利用小型太阳能装置为房屋采暖供热,现 己大量应用。研制高效、长寿、廉价的光伏转 换材料已成为目前能源新材料领域的重要课题。
缺点:
氢吸、放动力学性能差:释放温度高, 250℃以上,反应速度慢,氢化困难
抗蚀能力差,特别是作为阴极贮氢合
金材料。
.
31
⑵稀土系合金
以LaNi5 为代表的稀土储氢合金被认为是所有 储氢合金中应用性能最好的一类,荷兰Philips实 验室首先研制
. 初期氢化容易, 反应速度快, 吸-放氢性能优良, 20℃ 时氢分解压仅几个大气压. 但是镧价格高, 循环退 化严重,易粉化.
储氢合金简介.ppt
Des.
Abs. MHx + ∆H
氢以原子形式储存,固态储氢,安全可靠
较高的储氢体积密度
Hydrogen on Tetrahedral Sites
Hydrogen on Octahedral Sites
Hydrogen Storage Materials
稀土镧镍系储氢合金
典型代表:LaNi5 ,荷兰Philips实验室首先研制 特点:
金属或合金储氢体积储氢容量高无需高压及隔热容器安全性好无爆炸危险可得到高纯氢提高氢的附加值1234开发新型高效的储氢材料和安全的储氢技术hydrogenstoragematerials几种贮氢方法比较hydrogenstoragematerials二储氢材料技术现状?金属合金材料?物理吸附材料?复合化学氢化合物材料?液态有机储氢材料hydrogenstoragematerials金属氢化物储氢特点?反应可逆?氢以原子形式储存固态储氢安全可靠?较高的储氢体积密度hydrogenontetrahedralsiteshydrogenonoctahedralsitesmx2h2mhx?habsdes
Hydrogen Storage Materials
储氢材料的研究与发展
报告人:吴丽娟 学 号: S201109027 日 期:2012年4月10日
Hydrogen Storage Materials
一 研究背景
氢——二十一世纪的绿色能源
优点: 自然界最普遍的元素; 清洁能源; 燃烧性能好,易点燃; 发热值高(142MJ/kg); 导热性好; 用途广泛;
储氢容量高 资源丰富 价格低廉 放氢温度高(250-300℃ ) 放氢动力学性能较差
改进方法:机械合金化-加TiFe和CaCu5球磨,或复合
储氢材料PPT演示课件
目前解决上述问题的最好办法就是将氢气储存在某种可以快速 吸入和释放大量氢气的材料中。
18
贮氢材料的发现和应用研究始于20世纪60年代, 1960年发现镁(Mg)能形成MgH2,其吸氢量高达(H)= 7.6%,但反应速度慢。
19Leabharlann 1964年,研制出Mg2Ni,其吸氢量为(H)=3.6%, 能在室温下吸氢和放氢,250 ℃时放氢压力约0.1MPa, 成为最早具有应用价值的贮氢材料。
36
2 n
M
(固)
H2
(气,
p)
吸氢,放热 放氢,吸热
2 n
MH
n
(固)
H
式中,M---金属; MHn---金属氢化物 P---氢压力;H---反应的焓变化
反应进行的方向取决于温度和氢压力。
37
2 n
M
(固)
H2
(气,
p)
吸氢,放热 放氢,吸热
2 n
MH
n
(固)
H
实际上,上式表示反应过程具有化学能(氢)、热能 (反应热)、机械能(平衡氢气压力)的贮存和相互转换功 能。
一般说,同一族从上至下还原性增强,同一周期从左至右 还原性减弱。
27
例如: 4NH3+5O2→4NO+6H2O 2PH3+4O2→P2O5+3H2O 2H2S+3O2→2SO2+2H2O 共价型氢化物在水中的行为较为复杂。常见为: 形成强酸的:HCl,HBr,HI; 形成弱酸的:HF,H2S,H2Se,H2Te; 形成碱的:NH3; 水解放出氢气的:B2H6,SiH4; 与水不作用的:CH4,PH3,AsH3,GeH4,SnH4,SbH3。
4LiH+AlCl3→LiAlH4+3LiCl 复合氢化物主要用做还原剂、引发剂和催化剂。
18
贮氢材料的发现和应用研究始于20世纪60年代, 1960年发现镁(Mg)能形成MgH2,其吸氢量高达(H)= 7.6%,但反应速度慢。
19Leabharlann 1964年,研制出Mg2Ni,其吸氢量为(H)=3.6%, 能在室温下吸氢和放氢,250 ℃时放氢压力约0.1MPa, 成为最早具有应用价值的贮氢材料。
36
2 n
M
(固)
H2
(气,
p)
吸氢,放热 放氢,吸热
2 n
MH
n
(固)
H
式中,M---金属; MHn---金属氢化物 P---氢压力;H---反应的焓变化
反应进行的方向取决于温度和氢压力。
37
2 n
M
(固)
H2
(气,
p)
吸氢,放热 放氢,吸热
2 n
MH
n
(固)
H
实际上,上式表示反应过程具有化学能(氢)、热能 (反应热)、机械能(平衡氢气压力)的贮存和相互转换功 能。
一般说,同一族从上至下还原性增强,同一周期从左至右 还原性减弱。
27
例如: 4NH3+5O2→4NO+6H2O 2PH3+4O2→P2O5+3H2O 2H2S+3O2→2SO2+2H2O 共价型氢化物在水中的行为较为复杂。常见为: 形成强酸的:HCl,HBr,HI; 形成弱酸的:HF,H2S,H2Se,H2Te; 形成碱的:NH3; 水解放出氢气的:B2H6,SiH4; 与水不作用的:CH4,PH3,AsH3,GeH4,SnH4,SbH3。
4LiH+AlCl3→LiAlH4+3LiCl 复合氢化物主要用做还原剂、引发剂和催化剂。
储氢合金及应用PPT课件
尘和有害气体 → 清洁能源 • 氢的发热值在所有化石燃料、化工燃料和生物燃料中最高,
(1.21-1.43)X105kJ/kg•H2,是汽油发热值的3倍,焦炭发热 值的4.5倍
可编辑课件
4
• 氢的燃烧性能好,点燃快,可燃范围宽,燃点高,燃烧速 度快
• 在所有气体中,氢气的导热性最好,比大多数气体的导热 系数高10倍,是极好的传热载体
可编辑课件
16
家庭用氢前景图
可编辑课件
17
复合能源系统: • 氢作为储能介质 → 太阳能-氢能系统 • 阳光充足的夏季和白天 → 光发电电解水制氢,通过储氢
材料储氢,太阳能 → 转化成氢的化学能 • 夜晚和冬季 → 利用氢运行燃料电池,或氢气的其它利用
可编辑课件
18
太阳能-氢能系统的结构概念图
可编辑课件
19
(3)储氢材料
储氢材料: • 能在适当的温度和压力下,大量可逆地吸收、释放氢的材
料 • 储氢材料可大致地分为三大类:金属储氢材料、非金属储
氢材料、有机液体储氢材料 • 是氢能系统中作为氢储存与输送载体的重要候选材料 →
成为氢能技术开发中的关键材料之一 • 储氢材料的研究开发与应用已成为国内外的热门研究课题
(hydrogen storage and transportation)、氢的利用 (hydrogen utilization)三大关键系统 • 每个系统都在发展各自的相应技术
可编辑课件
9
制氢技术: • 化石燃料制氢,以煤、石油或天然气等作原料制氢,产量
大,效率高,但伴有大量CO2排放 • 水分解制氢,可通过电解、热化学循环分解、光化学分解
大量氢气,当提高温度或减压时,放出氢气 • 吸氢量一般均大于金属储氢材料,可达4-10wt.%
(1.21-1.43)X105kJ/kg•H2,是汽油发热值的3倍,焦炭发热 值的4.5倍
可编辑课件
4
• 氢的燃烧性能好,点燃快,可燃范围宽,燃点高,燃烧速 度快
• 在所有气体中,氢气的导热性最好,比大多数气体的导热 系数高10倍,是极好的传热载体
可编辑课件
16
家庭用氢前景图
可编辑课件
17
复合能源系统: • 氢作为储能介质 → 太阳能-氢能系统 • 阳光充足的夏季和白天 → 光发电电解水制氢,通过储氢
材料储氢,太阳能 → 转化成氢的化学能 • 夜晚和冬季 → 利用氢运行燃料电池,或氢气的其它利用
可编辑课件
18
太阳能-氢能系统的结构概念图
可编辑课件
19
(3)储氢材料
储氢材料: • 能在适当的温度和压力下,大量可逆地吸收、释放氢的材
料 • 储氢材料可大致地分为三大类:金属储氢材料、非金属储
氢材料、有机液体储氢材料 • 是氢能系统中作为氢储存与输送载体的重要候选材料 →
成为氢能技术开发中的关键材料之一 • 储氢材料的研究开发与应用已成为国内外的热门研究课题
(hydrogen storage and transportation)、氢的利用 (hydrogen utilization)三大关键系统 • 每个系统都在发展各自的相应技术
可编辑课件
9
制氢技术: • 化石燃料制氢,以煤、石油或天然气等作原料制氢,产量
大,效率高,但伴有大量CO2排放 • 水分解制氢,可通过电解、热化学循环分解、光化学分解
大量氢气,当提高温度或减压时,放出氢气 • 吸氢量一般均大于金属储氢材料,可达4-10wt.%
储氢合金 ppt课件
放,无污染,可循环利用。
3.氢的利用途径多——燃烧放热或电化学发电
4.氢气的存储方式多——气体,液体或固体化合物 5.可
直接用作发动机燃料、也可以以燃料电池方式驱动汽
车
2020/12/2
5
氢气储存与储氢合金
❖ 在整个氢能系统中,储氢是最关键的环节。
储氢合金——在一定的温度和氢气压力下,可以多次吸收、 储存和释放氢气的合金材料。
格间位置和四配位
的四面体晶格间位
置是氢稳定存在的氢原子在合金晶格中形成固溶体 2个位置。
2020/12/2
Chapter6 Metallic Materials
10
10
合金中氢的位置
❖金属形成氢化物后,氢化物中 的金属晶格结构有和金属相一样 的结构,也有变为与金属相完全 不同的另一种结构。前者称为溶 解间隙型,如Pd—H和LaNi5— H系等,后者为结构变态型,如 Ti—H和Mg2Ni—H系等。
Application 贮氢容器
节省能量,安全可靠——用贮氢合金贮氢,无 需高压及贮存液氢的极低温设备和绝热措施。
2020/12/2
Chapter6 Metallic Materials
15
15
Example
装到容器中的贮氢合金贮7采0氢0用标合贮准金氢大量制为气作2压的.7%的贮重储氢量氢装、罐置合金密度为5g/cm3的材料。
储氢合金 hydrogen storage alloys
小组成员:
2020/12/2
1
储氢合金
hydrogen storage alloys
2020/12/2
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
3.氢的利用途径多——燃烧放热或电化学发电
4.氢气的存储方式多——气体,液体或固体化合物 5.可
直接用作发动机燃料、也可以以燃料电池方式驱动汽
车
2020/12/2
5
氢气储存与储氢合金
❖ 在整个氢能系统中,储氢是最关键的环节。
储氢合金——在一定的温度和氢气压力下,可以多次吸收、 储存和释放氢气的合金材料。
格间位置和四配位
的四面体晶格间位
置是氢稳定存在的氢原子在合金晶格中形成固溶体 2个位置。
2020/12/2
Chapter6 Metallic Materials
10
10
合金中氢的位置
❖金属形成氢化物后,氢化物中 的金属晶格结构有和金属相一样 的结构,也有变为与金属相完全 不同的另一种结构。前者称为溶 解间隙型,如Pd—H和LaNi5— H系等,后者为结构变态型,如 Ti—H和Mg2Ni—H系等。
Application 贮氢容器
节省能量,安全可靠——用贮氢合金贮氢,无 需高压及贮存液氢的极低温设备和绝热措施。
2020/12/2
Chapter6 Metallic Materials
15
15
Example
装到容器中的贮氢合金贮7采0氢0用标合贮准金氢大量制为气作2压的.7%的贮重储氢量氢装、罐置合金密度为5g/cm3的材料。
储氢合金 hydrogen storage alloys
小组成员:
2020/12/2
1
储氢合金
hydrogen storage alloys
2020/12/2
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
第5章_储氢合金
氢浓度
最大吸入量
储氢合金吸放氢的p-c-T曲线
1. 金属储氢原理
储氢合金p-c-T曲线的特点:
温度较低,平台压降低,反应平台较宽;
温度高,平台压较高,反应平台较窄;
p-c-T曲线重要参数:
平台压; 平台宽度; 平台起始宽度;
平台滞后:吸氢时较高,放氢时较低。
1. 金属储氢原理
平衡氢压与温度的关系
电池的总反应:
Ni (OH ) 2
1 充电 1 M NiOOH MH x x 放电 x
2. 储氢合金的电化学原理
镍氢电池的充放电原理
•充电时,负极吸收电
子;正极放出电子;
•放电时,负极放出电
子;正极吸收电子;
注意:规定的电流方向是 正电荷的运动方向,与电 子运动的方向相反;
正极:电势较高的电极; 阳极:发生氧化反应(失去电子)的电极; 负极:电势较低的电极; 阴极:发生还原反应(得到电子)的电极;
(2)抗杂质气体中毒能力差;
(3)反复吸氢后性能下降。
4.储氢合金分类与特点
4.4 A2B型储氢合金(以TiFe合金为例)
主要是镁系储氢合金,以Mg2Ni为代表。 优点:密度小,储氢容量高,资源丰富,价格低廉。 缺点:Mg的吸放氢条件比较苛刻,反应温度300-400oC, 2.4-40MPa才能生成MgH2,反应速度较慢。 应用:车用动力型电池。
记忆效应小,使用更方便,寿命更长。 充电速度快,且能与Ni-Cd电池互换(工作电压均为1.2V)。
5.金属储氢材料的应用
5.1 Ni-MH二次电池
储氢合金用作镍氢电池电极的基本要求: 可逆性吸氢、放氢量大; 合适的室温平台压力; 在碱性电解质溶液中具有良好的化学稳定性,电极寿命长;
第四章 储氢材料ppt课件
.
17
❖ 储氢合金中,氢密度极高。金属氢化物的氢 密度与液态氢、固态氢的相当,约是氢气的 1000倍。
❖ 另外,一般储氢合金中,氢分解压较低,所 以用金属氢化物贮氢时并不必用耐压钢瓶。
.
18
4.3 储氢合金的热力学原理
1 储氢过程 在一定温度和压力下,氢可与许多金属、合金和金属 间化合物生成金属固溶体MHx和 MHy,反应分三步进行:
.
7
4.2 贮氢方法
贮氢方法大致分为5种:
液态贮氢 压缩贮氢 有机化合物贮氢 碳质吸附贮氢 金属化合物贮氢
.
8
1 液态储氢
❖ 即把氢气冷却到沸点以下成为液体加以存储。由 于氢气沸点极低(-252.77℃ ),所以,采用这种方法 储氢能耗大,成本高、储氢设备材质要求很高,操 作和使用条件苛刻,大都用于火箭、飞船和卫星发 射等高科技领域。
❖ 活性炭作为特种功能吸附材料具有质轻,对少 量的气体杂质不敏感,并且原料丰富、比表面 积高、且可重复使用,微孔孔容大和容易进行 孔径控制、表面化学修饰和负载金属等优点。
.
13
❖ 但从已有的应用研究证明,各种分子筛和超级活性炭均 达不到美国能源部要求(60kg/m3),近年来人们把研 究重点放在碳纳米管方面。
常用材料为: TiMn1.5 、 MNi5系。
.
43
利用贮氢材料吸收氢的特性,可从氯碱、合成 氨的工业废气中回收氢;可方便而廉价地获取超 高纯H2(99.9999%),实现氢的净化;还可将难与 氢分离的气体,如氦经济地分离出来,无须惯用 的深冷方法而实现氢的分离。
.
44
4、发展镍氢电池
由于镉有毒,镍镉高容量可再充式电池因废电池处 理复杂已处于被淘汰的阶段。因此金属氢化物镍氢 电池发展迅速,
第四章储氢材料正式版ppt课件
值
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(1) 体积比较
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
Position for H occupied at HSM
Hydrogen on Tetrahedral Sites
Hydrogen on Octahedral Sites
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
▪ (LiAlH4在TiCl3、 TiCl4等催化下180℃ ,8MPa氢 压下获得5%的可逆储放氢容量)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
金属配位氢化物的主要性能
▪ 化石能源的使用正在给地球造成巨大的生态 灾难-温室效应、酸雨等严重威胁地球动植物的生存
▪ 人类的出路何在-新能源研究势在必行
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.2 氢能开发,大势所趋
因此,高容量贮氢系统是贮氢材料研究 中长期探求的目标。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(1) 体积比较
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
Position for H occupied at HSM
Hydrogen on Tetrahedral Sites
Hydrogen on Octahedral Sites
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
▪ (LiAlH4在TiCl3、 TiCl4等催化下180℃ ,8MPa氢 压下获得5%的可逆储放氢容量)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
金属配位氢化物的主要性能
▪ 化石能源的使用正在给地球造成巨大的生态 灾难-温室效应、酸雨等严重威胁地球动植物的生存
▪ 人类的出路何在-新能源研究势在必行
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1.2 氢能开发,大势所趋
因此,高容量贮氢系统是贮氢材料研究 中长期探求的目标。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
储氢合金 PPT
合金中氢的位置
氢原子在合金晶格中形成固溶体
Chapter6 Metallic Materials
9
合金中氢的位置
❖金属形成氢化物后,氢化物中 的金属晶格结构有和金属相一样 的结构,也有变为与金属相完全 不同的另一种结构。前者称为溶 解间隙型,如Pd—H和LaNi5— H系等,后者为结构变态型,如 Ti—H和Mg2Ni—H系等。
(1)比能量为Ni—Cd电他的1.5- 2倍; ❖(2)无重金属Cd对人体的危害; ❖(3)良好的耐过充、放电性能; ❖(4)无记忆效应; ❖(5)主要特性与Ni/Cd电他相近,可 以互换使用。 氢化物电极
Ni、MHx电池充放电过程示意图
Chapter6 Metallic Materials
⑦ 有确定的化学稳定性;
⑧ 对杂质敏感程度低;
⑨ 原料资源丰富,价格低廉;
⑩ 用作电极材料时具有良好的耐腐蚀性。
Chapter6 Metallic Materials
11
储氢合金种类
可以在工程上应用的合金基本上都是金属间化合物,已 确认有应用前景的共有四类
A及N——吸氢量较大的金属 (ⅡA,ⅢB,ⅣB,ⅤB族金属) B及M——过渡金属 (ⅥB,ⅦB,Ⅷ,ⅠB,ⅡB,ⅢA,ⅣA族) Mm ——混合稀土金属
放,无污染,可循环利用。
3.氢的利用途径多——燃烧放热或电化学发电
4.氢气的存储方式多——气体,液体或固体化合物 5.可 直接用作发动机燃料、也可以以燃料电池方式驱动汽 车
氢气储存与储氢合金
❖ 在整个氢能系统中,储氢是最关键的环节。
储氢合金——在一定的温度和氢气压力下,可以多次吸收、 储存和释放氢气的合金材料。
Application 贮氢容器
储氢合金PPT
贮氢材料在室温和常压条件下能迅速吸氢(H2)并反应生成氢 化物,使氢以金属氢化物的形式贮存起来,在需要的时候, 适当加温或减小压力使这些贮存着的氢释放出来以供使用。 与氢作用生成氢化物 储氢材料 T、P
储氢
氢化物分解
放出氢
提高T降低P
相当钢瓶1/3重量的贮氢合金,可吸尽钢瓶内全部氢, 而体积仅为钢瓶的1/10。有的贮氢合金的贮氢量比液态 氢还大。贮氢合金一般在常温和常压下,比普通金属的 吸氢量要高1000倍,一种镁镍合金制成的氢燃料箱, 自重l00kg,所吸收的氢气热能相当于40kg的汽油,一 种镧镍合金吸氢的密度甚至达到了液氢的密度。表1显 示了几种贮氢合金的贮氢能力。
——By 陆皓
随着人类社会的进步和发展
传统的能源石油、煤日渐枯竭,且带来了严重的环境污染
为了满足人们工业生产和日常生活的需要 急需寻找和开发新能源, 如太阳能、生物质能、 氢能、风能、潮汐能、地热能及核能等
众多的新能源中,氢能因具有: 储量大 氢来源广泛,是自然界中最普遍的元素 高能量密度 燃烧1Kg氢气可产生1.25x106kJ的热量。相当于3Kg 汽油或4.5Kg焦炭完全燃烧所产生的热量。 清洁 氢燃烧后生成的产物是 H 2O 具有零污染的特点
制氢技术
全球年产氢:5000亿Nm3
合成氨:50% 石油精练:37%
化石燃料制氢占96%
甲醇合成:8%
制氢技术
1) 化石燃料制氢—目前主要的制氢方法 成熟、廉价,但资源和环境问题并未解决 2) 生物质为原料制氢 光合效率、水土面积、集中和储运成本等问题 3) 水分解制氢 利用光化学、热化学和电化学方法制氢。然而,太阳 能的收集、高品质热能和电能的产生方法,都是首先要解 决的问题。 4)光催化制氢 效率低,需要寻求新型、高效的光催化材料。
第2章 贮氢合金 讲稿1
贮氢技术
关键环节 亟待突破
氢内燃机 燃料电池技术
第 二 章 贮 氢 合 金
制氢原料 能 源
贮氢技术
类 型 典型技术 体积密度 重量密度 液态氢 物理 方法
第 二 章 贮 氢 合 金
备 注 20K,能耗大
71/37 g/l
~5wt%
高压氢
大比表面吸附 剂
39/24 g/l
~3.3wt%
~1wt% <2wt%
贮氢合金材料都服从的经验法则是“贮氢 合金是氢的吸收元素(IA—IVA族金属)和氢的 非吸收元素(VIA-VIII族金属)所形成的合金”。 如 在 LaNi5 里 La是前 者 , Ni是 后 者 ; 在 FeTi里Ti是前者,Fe是后者。即,合金氢化物
第 二 章 贮 氢 合 金
的性质介于其组元纯金属的氢化物的性质之间。
第 二 章 贮 氢 合 金
可得出 H为-7 ~ -11kcal/mol· 2。 H
氢化物生成焓 H为-7~-11 kcal/mol· 2 H 的金属仅有V族金属元素中的V、Nb、Ta等,
因其氢化物在室温附近的氢分解压很低而不
第 二 章 贮 氢 合 金
适于做贮氢材料。
图中所示的 氢合金,其合金 组分在与氢气反
RT,70MPa
80K 可逆存放量
可实用速度吸\放氢量
纳米碳管
化学 有机液体 方法
金属氢化物 >100 g/l
<2wt%
~7wt% >4wt%
~50 g/l 63/22 g/l
苯理论量
30%NaBH4溶液
其他含氢物质
含硼贮氢材料
• 硼氢化合物 热分解制氢——NH3BH3、LiBH4等 水分解制氢——NaBH4(SBH)等
储氢材料概述PPT课件
2. 单壁纳米碳管最大放电容量为503mAh/g,相当于1.84%重量 储氢容量。经过100充放电后,其仍保持最大容量的80%。
。
四、储氢合金的应用
(一)制取储运氢气的容器
用钢瓶储存氢气或液态氢的缺点颇多。而改用储氢合金制作储存氢 气的容器,重量轻、体积小、储气密度高、不需要高压及储存液氢的极 低温设备,能量损失很少,安全可靠。
。
稀土镧镍系储氢合金
典型代表:LaNi5 ,荷兰Philips实验室首先研制 特点:
活化容易 平衡压力适中且平坦,吸放氢平衡压差小 抗杂质气体中毒性能好 适合室温操作
经元素部分取代后的 MmNi3.55Co0.75Mn0.47Al0.3(Mm混合稀土,主要成分 La、Ce、Pr、Nd)广泛用于镍/氢电池
化石能源的使用正在给地球造成巨大的 生态灾难-温室效应、酸雨等严重威胁地球动植物的
生存!!!
人类的出路何在?-新能源研究势在必行!!!
。
1.2 氢能开发,大势所趋
氢是自然界中最普遍的元素,资源无 穷无尽-不存在枯竭问题
氢的热值高,燃烧产物是水-零排放,无污
染 ,可循环利用
氢能的利用途径多-燃烧放热或电化学发电 氢的储运方式多-气体、液体、固体或化合物
氢,并放出热量;逆向反应时,金属氢化物释
氢,吸收热量。这样,只需要改变温度与压力,
就能使反应向正向或逆向反复进行。达到金属
(合金)储氢或释氢的日的。当然,不是任何金属
或合金都只有上述的功能,所以发现合适的金
属和合金是获得储氢材料的关键问题了。
。
3.1 金属氢化物储氢
理想的、有使用价值的储氢合金,必须具备如下的条件: (1) 吸氢能力高,即能吸尽量多的氢; (2) 储氢时生成热应尽量小,便于释氢时的温度不必太高。
。
四、储氢合金的应用
(一)制取储运氢气的容器
用钢瓶储存氢气或液态氢的缺点颇多。而改用储氢合金制作储存氢 气的容器,重量轻、体积小、储气密度高、不需要高压及储存液氢的极 低温设备,能量损失很少,安全可靠。
。
稀土镧镍系储氢合金
典型代表:LaNi5 ,荷兰Philips实验室首先研制 特点:
活化容易 平衡压力适中且平坦,吸放氢平衡压差小 抗杂质气体中毒性能好 适合室温操作
经元素部分取代后的 MmNi3.55Co0.75Mn0.47Al0.3(Mm混合稀土,主要成分 La、Ce、Pr、Nd)广泛用于镍/氢电池
化石能源的使用正在给地球造成巨大的 生态灾难-温室效应、酸雨等严重威胁地球动植物的
生存!!!
人类的出路何在?-新能源研究势在必行!!!
。
1.2 氢能开发,大势所趋
氢是自然界中最普遍的元素,资源无 穷无尽-不存在枯竭问题
氢的热值高,燃烧产物是水-零排放,无污
染 ,可循环利用
氢能的利用途径多-燃烧放热或电化学发电 氢的储运方式多-气体、液体、固体或化合物
氢,并放出热量;逆向反应时,金属氢化物释
氢,吸收热量。这样,只需要改变温度与压力,
就能使反应向正向或逆向反复进行。达到金属
(合金)储氢或释氢的日的。当然,不是任何金属
或合金都只有上述的功能,所以发现合适的金
属和合金是获得储氢材料的关键问题了。
。
3.1 金属氢化物储氢
理想的、有使用价值的储氢合金,必须具备如下的条件: (1) 吸氢能力高,即能吸尽量多的氢; (2) 储氢时生成热应尽量小,便于释氢时的温度不必太高。
储氢材料简介ppt课件
31
三、储氢材料的研发
3.1.1 添加碳纳米管镁基材料的储氢性能 碳 碳12、、纳良具米纳米管:好有管的一优导定势热的:性吸和氢热性稳能定。性;
32
三、储氢材料的研发
添加碳纳米管镁基材料的储氢性能
实验方法:球磨法(以氢气作为保护气体) 1)球磨过程:
33
三、储氢材料的研发
34
三、储氢材料的研发
8
二、储氢材料的简介
氢能
氢能——利用氢燃烧时放出的热量作为能源。 氢能优势:
(1) 氢具有很高的燃烧值;
单位质量的氢气所含的化学能(142MJ/kg)至少是其他化学燃料 的三倍(例如,等质量的液体碳氢化合物是47MJ/kg)。 (2) 氢在氧气中燃烧只产生水,预计不会对环境产生负面影响,是一种 绿色的能源。
式中MH、为氢的固溶体相(a相),MHy为氢化物相(p相),△H。为氢 化物生成焙或氢化反应热。
28
三、储氢材料的研发
金属或合金一氢体系吸放氢作用可用下图的气固反应过程来表示。
29
三、储氢材料的研发
镁基材料的优势: (1)镁在地球上的储量丰富,储氢容量高(7.6wt%); (2)价格低廉,被认为是一种很有发展前途的储氢材料; (3)镁可与氢气直接反应,在300-400℃和较高的氢压下, 反应生成MgH2。
蒸发损失; 对储槽绝热材料的要求高。
18
二、储氢材料的简介
储氢方式比较
(c) 固态储氢 • 固态储氢的优势:
1) 体积储氢容量高 2) 无需高压及隔热容器 3) 安全性好,无爆炸危险 4) 可得到高纯氢,提高氢的附加值
19
二、储氢材料的简介
储氢方式比较
体积比较:
20
二、储氢材料的简介
三、储氢材料的研发
3.1.1 添加碳纳米管镁基材料的储氢性能 碳 碳12、、纳良具米纳米管:好有管的一优导定势热的:性吸和氢热性稳能定。性;
32
三、储氢材料的研发
添加碳纳米管镁基材料的储氢性能
实验方法:球磨法(以氢气作为保护气体) 1)球磨过程:
33
三、储氢材料的研发
34
三、储氢材料的研发
8
二、储氢材料的简介
氢能
氢能——利用氢燃烧时放出的热量作为能源。 氢能优势:
(1) 氢具有很高的燃烧值;
单位质量的氢气所含的化学能(142MJ/kg)至少是其他化学燃料 的三倍(例如,等质量的液体碳氢化合物是47MJ/kg)。 (2) 氢在氧气中燃烧只产生水,预计不会对环境产生负面影响,是一种 绿色的能源。
式中MH、为氢的固溶体相(a相),MHy为氢化物相(p相),△H。为氢 化物生成焙或氢化反应热。
28
三、储氢材料的研发
金属或合金一氢体系吸放氢作用可用下图的气固反应过程来表示。
29
三、储氢材料的研发
镁基材料的优势: (1)镁在地球上的储量丰富,储氢容量高(7.6wt%); (2)价格低廉,被认为是一种很有发展前途的储氢材料; (3)镁可与氢气直接反应,在300-400℃和较高的氢压下, 反应生成MgH2。
蒸发损失; 对储槽绝热材料的要求高。
18
二、储氢材料的简介
储氢方式比较
(c) 固态储氢 • 固态储氢的优势:
1) 体积储氢容量高 2) 无需高压及隔热容器 3) 安全性好,无爆炸危险 4) 可得到高纯氢,提高氢的附加值
19
二、储氢材料的简介
储氢方式比较
体积比较:
20
二、储氢材料的简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p-c-T 曲线(氢化物可逆吸放氢压力 组成等温线)是衡量贮氢材料热力学性
能的重要特性曲线。通过该图可以了解
金属氢化物中能含多少氢(%)和任一温
度下的分解压力值。
p-c-T 曲线的平台压力、平台宽度与倾
斜度、平台起始浓度和滞后效应,既是 常规鉴定贮氢合金的吸放氢性能主要指 M-H系统平衡压相图 标,又是探索新的贮氢合金的依据。
生成焓 /[kJ/mol( H2) -30.1 -38.1 -26.4 -17.6 -29.5H4.
5
AB2
CaNi5 Ti1.2Mn1.8 TiCr1.8 ZrMn2 ZrV
TiFe Mg2Ni
AB A2B
① ② ③
CaCu5 C14 ① C14 C15 CsAl CsAl Mg2Ni
LaNi5中氢原子位置
Hydrogen on Tetrahedral Sites
Hydrogen on Octahedral Sites
贮氢合金的应用
贮氢材料在室温和常压条件下能迅速吸氢(H2)并反应生成氢 化物,使氢以金属氢化物的形式贮存起来,在需要的时候, 适当加温或减小压力使这些贮存着的氢释放出来以供使用。 与氢作用生成氢化物 储氢材料 T、P
储氢
氢化物分解
放出氢
提高T降低P
相当钢瓶1/3重量的贮氢合金,可吸尽钢瓶内全部氢, 而体积仅为钢瓶的1/10。有的贮氢合金的贮氢量比液态 氢还大。贮氢合金一般在常温和常压下,比普通金属的 吸氢量要高1000倍,一种镁镍合金制成的氢燃料箱, 自重l00kg,所吸收的氢气热能相当于40kg的汽油,一 种镧镍合金吸氢的密度甚至达到了液氢的密度。表1显 示了几种贮氢合金的贮氢能力。
4、粉末化
贮氢材料在吸储和释放氢的过程中,它会反复膨胀和收缩,从而导致出现粉 末现象。这一现象会使装置内的充填密度增高、传热效率降低、装置局部地 方会产生应力;同时形成微粉还会随氢气流动,造成阀门和管道阻塞。
LaNi5 室温即可活化、吸氢释 氢容易 但成本高
AB5型稀土类及钙系贮氢合金
AB2型贮氢合金
金属与氢的反应是一个可逆过程。正向反应吸氢、放热,逆向反应释氢、 吸热。 改变温度和压力条件可使反应按正向、逆向反复进行,实现材料的稀释氢 功能。 氢在金属中的吸收和释放,取决于金属和氢的相平衡关系,影响相平衡的 因素为温度、压力和组成。(也就是金属吸氢生成金属氢化物还是金属氢 化物分解释放氢,受温度、压力和合金成分的控制)
CaNi5H4.0 Ti1.2Mn1.8H2.47 TiCr1.8H3.6 ZrMn2H3.46 ZrV2H4.8 TiFeH1.95 TiFe0.8Mn0.2H1.95 Mg2NiH4.0
② C14 - C14 C15 立方 - ③
1.2 1.8 2.4 1.7 2.0 1.8 1.9 3.6
0.04(30) 0.7(20) 0.2~5(-78) 0.1(210) 10-9(50) 1.0(50) 0.9(80) 0.1(253)
表1 几种贮氢合金的贮氢能力 (单位:(1022/cm3))
种类
氢原子个数
20K液氢
4.2
LiH
5.3
TiH2
9.2
ZrH2
7.3
YH2
5.7
UH2
8.2
FeTiH1.7
6.0
LaNi5H6.7
6.1
贮氢原理
在一定温度和压力下,许多金属、合金和金属间化合物(Me)与气态H2可逆
反应生成金属固溶体MHx和氢化物MHy。
1.8wt%
Mg2NiH4
3.6wt%
Carbon nanotube (RT,10MPa 氢压)
0 1 2 3 4
4.2wt%
5
Hydrogen storage capacity (wt%)
氢在合金中的位置
金属的晶体结构一 般为面心立方(fcc)、 体心立方(bcc)和密 排六方(hcp)。在这 三类晶体机构中, 八面体和四面体的 位置是氢能稳定存 在的位置。在fcc和 hcp结构中具有一个 八面体位置和两个 四面体位置;在bcc 结构中分别为三个 八面体位置和六个 四面体位置。
不同储氢方式的比较
气态储氢:能量密度低,不太安全
液化储氢:
能耗高
对储罐绝热性能要求高
固态储氢的优势: 1) 体积储氢容量高 2) 无需高压及隔热容器 3) 安全性好,无爆炸危险 4) 可得到高纯氢,提高氢的附加值
储氢合金的概念与功能
什么是储氢合金? 在一定温度和氢气压力下,能可逆的并且能多次吸收、 贮存和释放氢气的合金就是储氢合金。 贮氢合金是20世纪60年代发展起来的,使氢的贮存问 题得到了令人满意的解决。这种合金像海绵吸水一样, 大量吸氢.亦称为氢海绵。这类合金中的一个金属原 子能和两、三个甚至更多的氢原子结合,生成稳定的 金属氢化物,同时放出热量将其稍稍加热,氢化物发 生分解,吸收热量后,又可将吸收的氢气释放出来。
制氢技术
全球年产氢:5000亿Nm3
合成氨:50% 石油精练:37%
化石燃料制氢占96%
甲醇合成:8%
制氢技术
1) 化石燃料制氢—目前主要的制氢方法 成熟、廉价,但资源和环境问题并未解决 2) 生物质为原料制氢 光合效率、水土面积、集中和储运成本等问题 3) 水分解制氢 利用光化学、热化学和电化学方法制氢。然而,太阳 能的收集、高品质热能和电能的产生方法,都是首先要解 决的问题。 4)光催化制氢 效率低,需要寻求新型、高效的光催化材料。
氢的贮存
传统贮氢方法有两种: ①气态储氢:一种方法是利用高压钢瓶(氢气瓶)来贮存氢气, 但钢瓶贮存氢气的容积小,瓶里的氢气即使加压到150个大气 压,所装氢气的质量也不到氢气瓶质量的1%,而且还有爆炸 的危险; ②液态储氢:另一种方法是贮存液态氢,将气态氢降温到- 253℃变为液体进行贮存,但液体贮存箱非常庞大,需要极好 的绝热装置来隔热,才能防止液态氢不会沸腾汽化。 近年来,一种新型简便的贮氢方法应运而生,即利用贮氢合金 (金属氢化物)来贮存氢气。
成的金属间化合物,如LaNi5和TiFe。适当调整金属间化合物成分,使这两类
组分相互配合,可使合金的氢比物具有适当的生成热和氢分解压。 其中有的过渡金属元素对氢化反应时氢分子分解为氢原子的过程起着重要的 催化作用。
生成热:用于储氢,应使氢化物的生成热小; 用于蓄热,应使氢化物的生成热大。
实用贮氢金属氢化物的特征
氢化物生成热较大,氢的离解压低,贮氢不理想。
绝大多数能形成单质氢化物的金属由于生成热太大(绝对值)不适于作为储 氢材料。通常要求储氢合金的生成热为(-29.26~-45.98)kJ/mol H2。
为了获得合适的氢化物分解压与生成热,必是由一种或多种放热型金属(Ti、
Zr、Ce、 Ta、 V等)和一种或多种吸热型金属(Fe 、Ni、Cu、Cr、Mn等)组
贮氢合金的分类 (按化合物的类型)
AB型钛系贮氢合金
A2B型镁系贮氢合金 储氢量大、重量轻、资源丰富、 价格低廉、但分解温度高 >250℃
钛铁系和钛锰系 价格便宜 缺点:活化困难、 反复吸氢后性能下 降。
主要贮氢合金及其氢化物的晶体结构和性质
类型 合金
LaNi5 LaNi4.6Al0.4 MmNi5 MmNi4.5Mn0.
2、耐久性和中毒
当向贮氢材料供给新的氢时,每次都会带入氧、水分等不纯物,这些不纯
物在合金或氢化物离子表面聚集,并形成氧化物等,从而导致吸储能力的
下降,这种现象称为“表面中毒”
3、贮氢材料的导热性
当贮氢材料在反复吸储和释放氢的过程中,形成厚度为 5~25m的微粉层,
其平均有效导热系数为0.5W/(m· K),导热性能很差。
5
合金晶 体结构 CaCu5 CaCu5 CaCu5 CaCu5 CaCu5
氢化物
LaNi5H6.0 LaNi4.6Al0.4H5.5 MmNi5H6.3 MmNi4.5Mn0.5H6.
5
氢化物晶 体结构 六方 - 六方 六方 六方
吸氢量 (%,质 量分数) 1.4 1.3 1.4 1.5 1.2
放氢压 (℃)/MPa 0.4(50) 0.2(80) 3.4(50) 0.4(50) 0.5(50)
反应分三步进行: 第一步:先吸收少量氢,形成含氢固溶体(α相)。其固溶度[H]M与固溶体 平衡氢压的平方根成正比:
1 2 pH 2
H M
第二步:固溶体进一步与氢反应,产生相变,形成氢化物相(β相):
式中:x为固溶体中的氢平衡浓度,y是合金氢化物中氢的浓度,一般y≥x。 第三步:再提高氢压,金属中的氢含量略有增加。
在吸收和释放氢过程中有金属 -氢系的平衡压力不相等的滞后现象。产生 滞后效应的原因,目的还不太清楚,但一般认为,它与合金氢化过程中金
属晶格膨胀引起的晶格间应力有关。
滞后程度的大小因金属和合金而异,如 MmNi5 ( Mm 是混合稀土)和 TiFe 系
氢化物的滞后程度较大。在热泵等金属氢化物的利用系统中,滞后效应严
7、在贮存与运输过程中性能可靠;
8、原料来源广,成本低廉; 9、 对不纯物如氧、氮、CO、CO2、水分等的耐中毒能力强。
影响贮氢材料吸储能力的因素
1、活化处理
制造贮氢材料时,考虑到表面被氧化物覆盖及吸附着水及气体等会影响氢
化反应,因此应先对材料进行表面活化处理。活化处理可以采用加热解压
脱气和高压加氢处理。
——By 陆皓
随着人类社会的进步和发展
传统的能源石油、煤日渐枯竭,且带来了严重的环境污染
为了满足人们工业生产和日常生活的需要 急需寻找和开发新能源, 如太阳能、生物质能、 氢能、风能、潮汐能、地热能及核能等
众多的新能源中,氢能因具有: 储量大 氢来源广泛,是自然界中最普遍的元素 高能量密度 燃烧1Kg氢气可产生1.25x106kJ的热量。相当于3Kg 汽油或4.5Kg焦炭完全燃烧所产生的热量。 清洁 氢燃烧后生成的产物是 H 2O 具有零污染的特点