(完整版)小学数学几何题(总复习)
新苏教版小学数学六年级下册期末总复习第2单元《图形与几何》测试卷(二)
新苏教版六年级下册期末总复习第二单元《图形与几何》测试卷(二)姓名: 班级: 得分:一、选择题(5分)1.时针从3:00到9:00是围绕钟面中心旋转了()。
A.360° B.180°C.90° D.60°2.用一根铁丝围成正方形、长方形、正三角形和圆,那么面积最大的是()。
A.长方形B.正方形C.正三角形 D.圆3.下列图形不是轴对称图形的是()。
A.扇形B.环形 C.平行四边形D.菱形4.一根长30cm、宽3cm的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,MA的长应为()。
A.7.5cm B.9cm C.12cm D.10. 5cm5.下列图中,每个大正方形都是由四个边长为1的小正方形组成,其中阴影面积不等于2的图形是()。
A.B.C.D.二、填空题(32分)6.图中共有______个三角形.7.一张长方形图片,长12厘米,宽9厘米.按1:3的比缩小后,新图片的长是(______)厘米,宽是(______)厘米,这张图片(______)不变,大小(______).8.长方形有(_____)条对称轴,正方形有(_____)条对称轴,圆有(_____)条对称轴,等边三角形有(____)条对称轴,半圆有(_____)条对称轴。
9.看图填一填。
(1)小帆船先向(______)平移了(______)格,再向(______)平移了(______)格.(2)三角形先向(______)平移了(______)格,再向(______)平移了(______)格.10.若一个角的余角比它的补角的还多1°,则这个角的大小是__________.11.如图,长方形ABCD长6cm,宽4cm,阴影部分甲和乙也是长方形。
已知甲的面积是△ABD面积的,那么乙的面积是(_______)。
12.图中多边形的周长是(________)厘米。
小学数学几何图形经典30题(含解析)
小学数学几何图形经典30题(含解析)线、角1.直线没有端点,没有长度,可以无限延伸。
2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。
3.在一条直线上的一个点可以引出两条射线。
4.线段有两个端点,可以测量长度。
圆的半径、直径都是线段。
5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。
6.几个易错的角边关系:(1)平角的两边是射线,平角不是直线。
(2)三角形、四边形中的角的两边是线段。
(3)圆心角的两边是线段。
7.两条直线相交成直角时,这两条直线叫做互相垂直。
其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
8.从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。
9.在同一个平面上不相交的两条直线叫做平行线。
2三角形1.任何三角形内角和都是180度。
2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。
3.任何三角形都有三条高。
4.直角三角形两个锐角的和是90度。
5.两个三角形等底等高,则它们面积相等。
6.面积相等的两个三角形,形状不一定相同。
3正方形面积1.正方形面积:边长×边长2.正方形面积:两条对角线长度的积÷24三角形、四边形的关系1.两个完全一样的三角形能组成一个平行四边形。
2.两个完全一样的直角三角形能组成一个长方形。
3.两个完全一样的等腰直角三角形能组成一个正方形。
4.两个完全一样的梯形能组成一个平行四边形。
5圆1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r×2。
2.半圆的周长等于圆的周长的一半加直径。
3.半圆的周长公式:C=pd¸2+d或C=pr+2r4.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小以上倍数的平方倍。
小学数学 几何模型训练 完整版例题带答案
几何模型例1、长方形的长是8厘米,宽是6厘米,三角形AOB的面积为16平方厘米,求三角形DOC 的面积DA=10-2=8BD=610×6÷2=30练习1、如图,正方形边长为10厘米,AB和正方形底边垂直,那么图中阴影部分的面积是多少平方厘米?10×10÷2=50(cm²)例题2、如图所示,正方形ABCD的边长为10厘米,BO长8厘米,BO垂直于AE,求AE的长。
连接BE正方形面积:10×10=100(cm²)三角形ABE面积:100÷2=50(cm²)AE:50×2÷8=12.5(cm)练习2、如图所示,正方形ABCD的边长为12厘米,DE=16厘米,AF垂直于DE,则AF的长度是多少?连接AE三角形AED的面积12×12÷2=72(cm²)AF:72×2÷16=9(cm)例题3、如图,四边形ABCD、ACEF都是平行四边形,已知AD=12厘米,AD上的高为8厘米,求阴影部分面积。
△ABC面积:12×8÷2=48(cm²)阴影部分面积=△ABC面积=48(cm²)例题4、如图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?连接AG正方形面积:4×4=16(cm²)△AGD面积=正方形面积一半=长方形面积一半长方形面积=16(cm²)DE:16×2÷5=3.2(cm)练习4、如图,正方形ABCD的边长是6厘米,求长方形EDGF的面积是多少平方厘米?连接AG正方形面积:6×6=36(cm²)△AGD面积=正方形面积一半=长方形面积一半长方形面积=36(cm²)例题5、如图,ABCD是一个长方形,DEFG是一个平行四边形,E点在BC边上,FG过A点,已知三角形AKF与三角形ADG面积只和等于5平方厘米。
小学数学几何 直线型面积的计算 完整版题型训练+详细答案
直线形面积的计算例题讲解:板块一:基础题型:1.如图,四边形ABCD是直角梯形,其中AD=12(厘米),AB=8(厘米),BC= 15(厘米),且三角形ADE、四边形DEBF、三角形CDF的面积相等,阴影三角形DEF的面积是多少平方厘米?解析:四边形ABCD的面积是(12+15)×8÷2=108(平方厘米),108÷3=36(平方厘米)。
CF=36×2÷8=9(厘米),FB=15-9=6(厘米),AE=36×2÷12=6(厘米),EB=8-6=2(厘米)。
阴影三角形DEF的面积是36-2×6÷2=30(平方厘米)2.一块长方形的土地被分割成4个小长方形,其中三块的面积如图所示(单位:平方米),剩下一块的面积应该是多少平方米?解析:40×15÷30=20(平方米)3.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍,三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是多少平方厘米?解析:三角形ADC的面积是3×3=9(平方厘米),三角形ABC的面积是3×9=27(平方厘米)4.如图,E是BC上靠近C的三等分点,且ED是AD的2倍,三角形ABC的面积为36平方厘水.三角形BDE的面积是多少平方厘米?解析:三角形BAE的面积是36÷3×2=24(平方厘米),三角形BDE的面积24÷3×2=16(平方厘米)5.如图所示,已知三角形BEC的面积等于20平方厘米,E是AB边上靠近日点的四等分点,三角形AED的面积是多少平方厘米?平行四边形DECF的面积是多少平方厘米?解析:(1)三角形AED的面积是20×3=60(平方厘米)(2)三角形DEC的面积是20+60=80(平方厘米),三角形DEC的面积是平行四边形DECF 的面积的一半,也是平行四边形ABCD的面积的一半,所以平行四边形DECF的面积是80×2=160(平方厘米)6.如图,已知平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?解析:根据一半模型可知,三角形AOD的面积和三角形BOC的面积是平行四边形ABCD 的面积的一半,所以三角形BOC的面积是36÷2-8=107.如图,长方形ABCD的面积是96平方厘米,E是AD边上靠近D点的三等分点,F是CD上靠近C点的四等分点.阴影部分的面积是多少平方厘米?解析:链接BD ,可知三角形ABD 的面积和三角形BDC 都是96÷2=48(平方厘米),三角形ABE 的面积是48×32=32(平方厘米)。
小学奥数几何题100道及答案(完整版)
小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。
北师大版小学数学三年级下册期末总复习-图形与几何(讲解+练习试题+点拨+答案)
北师大版数学三年级下册总复习(2)图形与几何1.对称、平移和旋转【例1】看镜子写时间。
解答:镜子里的钟表对应的实际时间应该是:点拨:根据竖直方向的镜面对称的特点,上下位置不变,左右位置发生对换。
所以,镜子里的钟表竖直方向的指针跟实物钟表相同,左右方向的指针跟实物钟表方向相反。
【例2】按要求作图。
(1)分别画出图形A 向右平移8格、再向下平移3格得到的图形。
(2)根据对称轴mn 画出图A 的对称图形。
(3)画出图A 绕O 点顺时针旋转90°后的图形。
解答:点拨:要想顺利解决这些问题,我们必须能够分辨什么是平移,什么是旋转,什么是对称,还需要掌握图形平移、旋转、对称的方法。
平移是物体或图形沿直线移动,旋转是物体或图形绕一个点或一条轴转动,对称是物体或图形两对的两边的各部分,在大小、形状和排列上具有一一对应的关系。
无论是平移、旋转还是对称,运动前后的图形只是位置发生了变化,其大小和形状没有变(对称图形和原图是相反的)。
2.面积【例1】在( )里填上合适的面积单位。
(1)数学作业本的面积约是4( )。
(2)我国的陆地面积大约是960万( )。
(3)学校小操场的面积大约是400( )。
(4)我的手表表盘的面积约是( )。
(5)北京的中华世纪坛占地面积大约是4.5( )。
解答:(1)平方分米 (2)平方千米 (3)平方米 (4)平方厘米 (5)公顷点拨:常用的面积单位有厘米2、分米2、米2,常用的土地面积单位有公顷、千米2。
解答上面的这类问题时,要想清楚一个单位面积的大小,用我们熟悉的面的面积去估测、对比、相象,从而作出正确的判断。
【例2】计算下面图形的面积和周长。
解答:面积: 周长:4×4=16(平方米) 4×4=16(米)4-1-1=2(米) 2×3=6(米)2×3=6(平方米) 16+6=22(米)16-6=10(平方米)答:这个图形的面积是10平方米。
小学几何汇总试题及答案
小学几何汇总试题及答案一、选择题1. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 长方形D. 所有选项答案:D2. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B3. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题4. 一个长方形的长是8厘米,宽是4厘米,它的周长是________厘米。
答案:245. 一个圆的半径是3厘米,它的面积是________平方厘米。
答案:28.26三、判断题6. 所有平行四边形都是轴对称图形。
()答案:×7. 一个正方形的对角线相等。
()答案:√四、简答题8. 描述如何计算一个正方体的体积。
答案:正方体的体积可以通过计算其边长的立方得到。
如果边长为a,则体积V = a³。
9. 解释什么是圆的周长。
答案:圆的周长是指围绕圆的边缘一圈的长度,可以通过公式C =2πr计算,其中r是圆的半径。
五、计算题10. 一个圆的直径是14厘米,求这个圆的周长和面积。
答案:周长C = πd = 3.14 × 14 = 43.96厘米;面积A = πr² =3.14 × (14/2)² = 153.86平方厘米。
11. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求它的体积。
答案:体积V = 长× 宽× 高= 10 × 6 × 4 = 240立方厘米。
六年级下册数学单元试题-总复习《图形和几何》(二) 苏教版 (含答案)
六年级下册总复习《图形和几何》复习精选题(二)一、选择题1.一个圆柱与圆锥体的体积相等,圆柱的底面积是圆锥体的底面积的3倍,圆锥体的高与圆柱的高的比为()A.3:1 B .1:3 C.9:1 D.1:92.三角形的面积一定,它的底和高()。
A.成正比例 B.成反比例C.不成比例D.无法确定3.下面的立体图形,与选项中的哪个立体图形从左侧面看到的形状相同()。
A.B.C.D.4.淘气从学校出发,步行去图书馆(如下图)。
行走路线正确的是()。
A.向东偏北35°行走600米 B.向西偏南40°行走600米C.向南偏西35°行走600米 D.向南偏东40°行走600米5.如图,边长相等的两个正方形中,画了甲、乙两个三角形(用阴影表示),它们的面积相比()A.甲的面积大B.乙的面积大C.相等6.下图中的正方体、圆柱体和圆锥体的底面积相等,高也相等.下面说法正确的是().A.圆锥的体积是圆柱体积的3倍.B.圆柱的体积比正方体的体积小一些.C.圆锥的体积是正方体体积的.D.以上说法都不对.二、填空题7.一个圆柱的侧面展开图是个正方形,这个圆柱的高是底面直径的(______)倍。
8.将一个圆柱平均分成若干等份后,拼成一个近似长方体,这个长方体的高10厘米,表面积比圆柱多40平方厘米,圆柱的体积是(________)立方厘米。
9.一个高45cm的圆锥体容器,盛满水后再倒入和它等底等高的圆柱体容器里,水面的高度是(______)cm。
10.一个圆柱和一个圆锥的底面周长之比是1:3,它们的体积比是1:1,圆柱和圆锥高的比是(____)。
11.等腰的三角形的顶角与底角的比是3:1,那么它的顶角是_____度.12.把一根长4米的圆柱体木料截成3段小圆木,表面积增加4平方分米,这根圆木原来的体积是(______)立方分米。
13.仔细数一数,填一填.(1)下图是由________个小三角形拼成的.(2)下图有________个三角形.(3)下图共有________个正方形.14.一个用小正方体搭成的几何体,下面是它的两个不同方向看到的形状,要符合这两个条件,最少需要摆(______)块,最多能摆(_______)块,共有(______)种摆法。
最新人教版六年级下册总复习图形和几何练习试题以及答案 (3套题)
六年级下册图形和几何测试试卷一、填空题。
1、一个平行四边形的面积是1.2平方分米,它的高是0.6分米,底是()分米。
2、一个长方体的长、宽、高分别是3cm、2cm、4cm,这个长方体的棱长总和是( ),表面积是(),体积是()。
3、一个半圆的直径是6厘米,它的面积是()平方厘米,周长是()厘米。
4、6时整时,钟面上分针和时针所组成的角是( )°,它是一个()角;9时整时,分针和时针所组成的夹角是()°,它是一个()角,能形成这样的角的时刻还有()时整。
5、两个正方形的边长比是1∶2,它们的周长比是(),面积比是();两个圆的周长比是1∶3,则它们的半径比是(),面积比是()。
6、圆柱的体积一定,它的底面积和高成()比例关系。
7、把长为8cm,宽为6cm,高为4cm的长方体木块切成棱长是2cm的小正方体,能切出()块。
8、0.6dm3=( )cm3 3.02公顷=( )平方米530dm2=()m2二、选择题。
1、下面的图形中,不能折成正方体的是()C.2、一个正方体的棱长缩小到原来的21,表面积就会缩小到原来的( ),体积缩小到原来的( )。
A.21 B.41 C.81 3、小朋友喜欢玩的跷跷板的运动是( )。
A.旋转B.平移C.轴对称C.三、判断题。
1、在同一幅地图上,图上距离越大,实际距离也就越大。
( )2、长方体、正方体、圆柱和圆锥的体积计算公式可以统。
( )3、只有两个角是锐角的三角形一定是钝角三角形。
( )4、把一个长方形框架拉成一个平行四边形,它的周长不变,面积变大了。
( )5、甲在乙的东偏北30°方向,乙在甲的西偏南30°方向。
( )四、我会画。
(1)在下图中找出各点位置,并按顺序进行连线。
(5,1)(2,1)(2,4) (1,4)(3,6)(5,6)2、以图中的虚线为对称轴,画出图形的另一半。
五、解答题。
1、李叔叔家里要进行房屋装修,其中客厅长为5米,宽为4米,高为3米。
小学数学六年级下册总复习《图形与几何》专项练习(附参考答案和相关知识整理汇总)
六年级数学下册图形与几何练习题班级考号姓名总分一、填空题。
1. 3.5平方米=()平方分米2立方分米3立方厘米=()立方分米5.02升=()升()毫升公顷=()平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是(),是一个()角。
3.一个三角形中,∠1=∠2=35°,∠3=(),按边分是()三角形。
4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是()平方分米。
5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是()平方厘米。
把它沿着底面直径垂直切成两半,表面积会增加()平方厘米。
6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。
7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。
长方体的表面积是()平方厘米,体积是()立方厘米。
8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
二、判断题。
(对的画“√”,错的画“✕”)1.平角是一条直线。
()2.三角形具有稳定性,四边形不具有稳定性。
()3.两个面积相等的梯形,可以拼成一个平行四边形。
()4.一个玻璃容器的体积与容积相等。
()5.一个棱长是6厘米的正方体的表面积和体积相等。
()三、选择题。
(把正确答案的序号填在括号里)1.射线()端点。
A.没有B.有一个C.有两个2.下面图形中对称轴最少的是()。
A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是()。
4.下图中,甲和乙两部分面积的关系是()。
A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。
A.πB.2πC.r四、计算题。
1.计算下面图形中阴影部分的面积。
(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。
小学六年级数学总复习资料(平面几何部分)
小学数学总复习资料几何的初步知识一线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
* 射线射线只有一个端点;长度无限。
* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
* 平行线在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形1长方形(1)特征对边相等,四个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b)s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c=4as=a²3三角形(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
小学数学-几何问题专项练习(附答案)
几何问题1.问题:一个正方形的边长为5厘米,它的面积是多少平方厘米?2.问题:一个矩形的长为8厘米,宽为4厘米,它的周长是多少厘米?3.问题:一个三角形的底边长为6厘米,高为4厘米,它的面积是多少平方厘米?4.问题:一个圆的半径为3厘米,它的周长是多少厘米?5.问题:一个正方形的周长为20厘米,它的边长是多少厘米?6.问题:一个梯形的上底长为5厘米,下底长为9厘米,高为6厘米,它的面积是多少平方厘米?7.问题:一个圆的直径为10厘米,它的周长是多少厘米?8.问题:一个正方形的面积为36平方厘米,它的边长是多少厘米?9.问题:一个矩形的周长为16厘米,长为6厘米,它的宽是多少厘米?10.问题:一个三角形的底边长为10厘米,高为8厘米,它的面积是多少平方厘米?11.问题:一个圆的半径为5厘米,它的面积是多少平方厘米?12.问题:一个正方形的周长为24厘米,它的面积是多少平方厘米?13.问题:一个梯形的上底长为8厘米,下底长为12厘米,高为5厘米,它的面积是多少平方厘米?14.问题:一个圆的直径为6厘米,它的面积是多少平方厘米?15.问题:一个正方形的面积为64平方厘米,它的周长是多少厘米?16.问题:一个矩形的周长为20厘米,长为8厘米,它的宽是多少厘米?17.问题:一个三角形的底边长为12厘米,高为10厘米,它的面积是多少平方厘米?18.问题:一个圆的半径为4厘米,它的周长是多少厘米?19.问题:一个正方形的周长为28厘米,它的边长是多少厘米?20.问题:一个梯形的上底长为10厘米,下底长为14厘米,高为7厘米,它的面积是多少平方厘米?21.问题:一个圆的直径为8厘米,它的周长是多少厘米?22.问题:一个正方形的面积为81平方厘米,它的边长是多少厘米?23.问题:一个矩形的周长为24厘米,长为9厘米,它的宽是多少厘米?24.问题:一个三角形的底边长为15厘米,高为12厘米,它的面积是多少平方厘米?25.问题:一个圆的半径为6厘米,它的面积是多少平方厘米?26.问题:一个正方形的周长为32厘米,它的面积是多少平方厘米?27.问题:一个梯形的上底长为12厘米,下底长为16厘米,高为8厘米,它的面积是多少平方厘米?28.问题:一个圆的直径为10厘米,它的周长是多少厘米?29.问题:一个正方形的面积为100平方厘米,它的周长是多少厘米?30.问题:一个矩形的周长为30厘米,长为12厘米,它的宽是多少厘米?答案1.25平方厘米2.24厘米3.12平方厘米4.6π厘米5.5厘米6.35平方厘米7.10π厘米8.6厘米9.2厘米10.40平方厘米11.25π平方厘米12.36平方厘米13.50平方厘米14.9π平方厘米15.16厘米16.2厘米17.60平方厘米18.8π厘米19.7厘米20.48平方厘米21.8π厘米22.9厘米23.3厘米24.90平方厘米25.36π平方厘米26.64平方厘米27.100平方厘米28.10π厘米29.20厘米30.3厘米。
2023年北师大版六年级数学下册《图形与几何》总复习可下载打印(附答案)_小学试卷
2023年北师大版六年级数学下册《图形与几何》总复习可下载打印(附答案)_小学试卷2023年北师大版六年级数学下册《图形与几何》总复习可下载打印(附答案)一、选择题(16分)1.计算鱼缸能装水多少升,是求鱼缸的()。
A.表面积B.棱长总和C.体积D.容积2.营养学家建议:儿童每天水的摄入量应不少于1500mL。
要达到这个要求,小明每天用底面直径6cm,高10cm的圆柱形水杯喝水,至少喝水()杯。
A.4 B.5 C.6 D.73.两个圆柱形容器内原来的水面高度都是6cm。
它们的底面直径都是10cm。
①号容器内放入一个小球后,水面高度为10cm。
②号容器内放入一个小球和一个大球,水面高度为16cm。
两个容器内的小球完全相同,水也均未溢出,小球的体积与大球的体积的比是()。
A.5∶8 B.2∶5 C.2∶3 D.5∶124.制作一个无盖的圆柱形容器,应该选择()。
A.①和③B.①和④C.②和③D.②和④5.下面各图中,()是不正确的。
6.如图是由7个立方体摆成的几何体,从右面观察到的图形是()。
7.一个三角形,三个内角度数比是2∶3∶1,这个三角形按角分是()。
A.钝角三角形B.锐角三角形C.直角三角形D.无法确定8.如图,甲与乙的周长相比,()。
A.甲的周长>乙的周长B.甲的周长<乙的周长C.甲的周长=乙的周长D.无法比较二、填空题(26分)9.如图,有两个边长是6厘米的正方形,把其中一个正方形的顶点固定在另一个正方形的中心点上。
旋转其中一个正方形,重叠部分的面积是( )平方厘米。
10.将一个长方体的高增加3厘米后变成一个正方体,它的表面积比原来增加84平方厘米,原来长方体的体积是( )立方厘米。
11.在一幅比例尺为1∶3000的图纸上,量得一个三角形菜地的底是20厘米,高15厘米,这块菜地的实际面积是( )公顷。
12.一顶帽子,上面是直径2dm,高1dm的圆柱形(有帽顶),帽檐部分是一个宽1dm的圆环,做这顶帽子,至少要用( )的布料。
小学数学《几何图形题9大解法归纳》含例题
小学数学《几何图形题9大解法归纳》含例题分割法▌例1:将两个相等的长方形重合在一起,求组合图形的面积。
(单位:厘米)解:将图形分割成两个全等的梯形。
S组=(7-2+7)×2÷2×2=24(平方厘米)▌例2:下列两个正方形边长分别为8厘米和5厘米,求阴影部分面积。
解:将图形分割成3个三角形。
S=5×5÷2+5×8÷2+(8-5)×5÷2=12.5+20+7.5=38(平方厘米)▌例3:左图中两个正方形边长分别为8厘米和6厘米。
求阴影部分面积。
解:将阴影部分分割成两个三角形。
S阴=8×(8+6)÷2+8×6÷2=56+24=80(平方厘米)添辅助线▌例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。
求阴影部分面积。
解:从P点向4个定点添辅助线,由此看出,阴影部分面积和空白部分面积相等。
S阴=4×4÷2=8(平方厘米)▌例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方厘米,平行四边形底20.4厘米,高8厘米。
梯形下底是多少厘米?解:因为添一条辅助线平行于三角形一条边,发现40平方厘米是一个平行四边形。
所以梯形下底:40÷8=5(厘米)▌例3:平行四边形的面积是48平方厘米,BC分别是这个平行四边形相邻两条边的中点,连接A、B、C得到4个三角形。
求阴影部分的面积。
解:如果连接平行四边形各条边上的中点,可以看出空白部分占了整个平行四边形的八分之五,阴影部分占了八分之三。
S阴=48÷8×3=18(平方厘米)倍比法▌例1:已知OC=2AO,SABO=2㎡,求梯形ABCD的面积。
解:因为OC=2AO,所以SBOC=2×2=4(㎡)SDOC=4×2=8(㎡)SABCD=2+4×2+8=18(㎡)▌例2:已知S阴=8.75㎡,求下图梯形的面积。
六年级小升初数学总复习【图形与几何】专题训练(解析卷)
六年级小升初数学总复习【图形与几何】专题训练(解析卷)六年级小升初数学总复【图形与几何】专题训练【解析卷】直线型面积】1.在图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。
解答:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边形ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。
2.图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米,求CD的长。
解答:连结CB。
三角形DCB的面积为4×4÷2-2=6(厘米2),CD=6÷4×2=3(厘米)。
3.有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合。
已知露在外面的部分中,红色面积是20,黄色面积是14。
绿色面积是10,求正方形盒子底部的面积。
解答:把黄色正方形纸片向左移动并靠紧盒子的左边。
由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。
此时露出的黄、绿两部分的面积相等,都等于(14+10)÷2=12.因为绿:红=A∶黄,以是绿×黄=红×A,A=绿×XXX÷红12×12÷20=7.2.正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2.三角形的等积变换】:4.如左下图是两个相同的直角三角形叠在一起组成的,求阴影部分的面积。
单位:分米)谜底:32.5平方分米。
拓展:如图所示,已知正方形ABCD和正方形EFGC,且正方形EFGC的边长为6厘米,请问图中阴影部分面积是多少?答案:18平方厘米。
5.如图所示,在平行四边形ABCD中,DE=EF=FC,BG=GD.已知三角形GEF的面积是4平方厘米,求平行四边形的面积。
【小学数学】小学数学六年级几何专题汇总
几何专题1、(★★)如图;已知四边形ABCD 中;AB=13;BC=3;CD=4;DA=12;并且BD 与AD 垂直;则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形;底AD 已知;高BD 是未知的;但可以通过勾股定理求出;进而可以判定三角形BCD 的形状;然后求其面积.这样看来;BD 的长度是求解本题的关键.解:由于BD 垂直于AD;所以三角形ABD 是直角三角形.而AB=13;DA=12;由勾股定理;BD2=AB2-AD2=132—122=25=52;所以BD=5.三角形BCD 中BD=5;BC=3;CD=4;又32十42=52;故三角形BCD 是以BD 为斜边的直角三角形;BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米;三条线把它分成了4个小三角形;其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ;是右侧两个三角形面积和的2 倍;故左侧三角形面积是右侧对应三角形面积的2倍;最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图;其中的粗实线图形面积与原三角形面积之比为2:3。
已知右图中3个阴影的三角形面积之和为1;那么重叠部分的面积为多少?[思 路]:小升初中常把分数;百分数;比例问题处理成份数问题;这个思想一定要养成。
解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分;减少的部分就是因为重叠才变少的;这样可以设总共3份;后来粗线变2份;减少的绿色部分为1份;所以阴影部分为2-1=1份;7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示;将左下角的阴影部分分为两部分;然后按照右下图所示;将这两部分分别拼补在阴影位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学几何题小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积 a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形( C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高 s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2 (3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷3一、选择题1、用圆规画一个周长是12.56厘米的圆,圆规两脚之间的距离是( )A 、2厘米B 、4厘米C 、12.56厘米2、监利水文站用来测量水位高低和变化情况的选用( )统计图。
A 、条形B 、折线C 、扇形3、 这里共有( )条线段。
A 、三条B 、四条C 、五条D 、六条4、一个圆柱体和一个圆锥体的底面积相等,圆锥的高是圆柱高的3倍。
则圆锥的体积 ( )圆柱的体积。
A 、小于B 、等于C 、大于5、一个圆柱体,挖去一个最大的圆锥体,成为一个容器,这个容 器 的 体 积是原来 圆 柱 的( )A 、13B 、23C 、336、长方形有( )条对称轴。
A 、1B 、2C 、4D 、无数条7、棱长为a 厘米的正方体,其体积是( )立方厘米.A 、6a 2B 、6aC 、a+a+aD 、a 38、一个圆柱和一个圆锥的底面积和体积分别相等,如果圆锥的高是9厘米,圆柱的高是( )A 、3厘米B 、9厘米C 、27厘米9、一个长方体的长、宽、高分别是a 米、b 米、h 米,如果高增加3米后,新的长方体体积比原来增加( )立方米。
A 、3abB 、3abhC 、ab(h+3)D 、abh+3310、下列图形中,对称轴最多的是( )A 、正方形B 、长方形C 、等边三角形D 、圆11、甲、乙两车同时从两地相向而行,距中点14千米的地方相遇,两车相遇时,它们所行路程的差是( )千米。
A 、7B 、14C 、28D 、4212、一块菜地呈半圆形,它的半径是r,周长是( )A 、2πr ×12B 、πr+rC 、2πrD 、r(2+π) 13、一个正方体棱长扩大2倍,体积就扩大( )倍.A 、2B 、4C 、8D 、1614、如果一个长方体和圆锥体等底等高,那么长方体的体积是圆锥体积的( )A 、3倍B 、2倍C 、1倍D 、1315、一个长方形和一个正方形的周长相等,那么它们的面积相比较,( )的面积大。
A 、正方形B 、长方形C 、同样大16、在一个面积为36平方厘米的正方形纸上剪下一个最大的圆面,那么这个圆面的圆周长是( )A 、28.26平方厘米B 、18.84厘米C 、18厘米17、圆的半径扩大2倍,圆的面积就扩大( )A 、2倍B 、4倍C 、8倍18、甲零件重3/4千克,是乙零件重量的1/2,求乙零件重多少千克的算式是( )A 、34 ×12B 、12 ÷34C 、34 ÷1219、将一个直径是10厘米的纸圆对折,用剪刀剪成两个半圆,求一个半圆周长的算式是( )A 、π×10÷2+10B 、π×10-10C 、π×10÷220、下列图形中,对称轴只有一条的是( )A 、长方形B 、等边三角形C 、等腰三角形D 、圆21、一个正方体的棱长扩大2倍,表面积就扩大( )A 、2倍B 、4倍C 、12倍D 、8倍22、一个三角形,三个内角度数比是2:5:2,这个三角形是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等边三角形23、一个圆柱体和一个圆锥体的底面积和体积都分别相等,圆柱的高是3分米,圆锥体的高是( )。
A 、13分米 B 、1分米 C 、6分米 D 、9分米 24、一段重12千克的圆柱体钢柱,锻压成等底的圆锥,这个圆锥的高和圆柱的高相比( )A 、圆锥的高是圆柱的3倍B 、相等C 、圆锥的高是圆柱的13D 、圆锥的高是圆柱的2325、在一个棱长为1分米的正方体的8个角上,各锯下一个棱长为1厘米的正方体,现在它的表面积和原来比( )A 、不变B 、减少C 、增加D 、无法确定二、判断题1、如果正方形、长方形、圆的周长相等,那么正方形的面积最大。
( )2、一个长方形和一个正方形的周长都是16厘米,那么它们的面积也相等。
( )3、在一个正方形内画一个圆,这个圆 的 面积一定大于正方形面积的34。
( ) 4、周长相等的两个长方形,面积一定相等。
( )5、三角形的面积是与它等底等高平行四边形面积的一半。
( )6、长方体的每个面一定都是长方形。
()7、圆有无数条对称轴。
()8、大圆的圆周率比小圆的圆周率大。
()9、角的大小与角两边叉开的大小有关。
()10、两个大小不同的圆,大圆周长与直径的比值等于小圆周长与直径的比值。
()11、两条直线相交时,这两条直线叫互相垂直。
()12、在圆内且两端都在圆上的线段叫做直径。
()13、甲数的75%与乙数的80%相等,则甲数一定比乙数大。
()14、一个三角形至少有两个锐角。
()15、用3倍的放大镜看一个角,那么这个角就扩大3倍。
()16、半圆的周长等于圆周长的一半。
()17、一个圆锥和一个圆柱的体积相等,底面积也相等,那么圆锥的高是圆柱高的3倍。
()18、三角形中至少有一个锐角。
()19、一个圆柱体和一个圆锥体的底面半径相等,体积也相等,则圆锥体的高是圆柱体的高的3倍。
()20、甲、乙两辆汽车的速度比是4:5,两车同行驶2小时后,甲车所行路程是乙车所行路程的80%。
()三、填空题1、大圆的半径是8厘米,小圆的直径是6厘米,则大圆与小圆的周长比是(),小圆与大圆的面积比是()。
2、一个圆柱的体积是60立方厘米,与它等底等高的圆锥体的体积是()立方厘米。
3、一个长方体的长是8厘米,高是5厘米,它的底面积是48平方厘米,那么这个长方体的体积是()。
4、用圆规画一个周长是9.42厘米的圆,圆规两脚间的距离是()厘米,这个圆的面积是()平方厘米。
5、一个圆的半径扩大3倍,周长就扩大(),面积()。
6、当长方形、正方形、圆的周长相等时,()的面积较大。
7、把两个棱长都是3厘米的正方体,拼成一个长方体,这个长方体的表面积是(),体积是()。
8、圆柱的侧面展开,得到一个()形,它的长等于圆柱的(),宽等于圆柱的()。
9、一个圆柱的底面半径是2厘米,高是12厘米,这个圆柱的侧面积是()平方厘米,体积是()立方厘米。
10、一根圆柱形钢材体积是882立方分米,底面积是42平方分米,它的高是()米。
11、把一根长3米,底面半径5厘米圆柱形木料锯成两段,表面积增加()平方厘米。
12、把一个圆柱体侧面展开,得到一个正方形,这个圆柱体底面半径是0.5分米,圆柱体的高是()分米。
13、在一个正方形里画一个最大的圆,这个圆的周长是这个正方形的(),这个圆的面积是正方形的()。
14、大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方米,小圆面积是()平方米。
15、一个圆柱体和它等底等高的圆锥体的体积相等,圆锥体的高是12厘米,圆柱体的高是()厘米。
16、一个圆柱体,如果把它的高截短6厘米,表面积就减少75.36平方厘米,体积应减少()立方厘米。
17、用10.28厘米的铁丝围成一个半圆形,它的面积是()平方厘米。
18、一个底面是正方形的长方体,把它的侧面展开后,正好是一个边长为12厘米的正方形,这个长方体体积是()立方厘米。
19、一个圆柱体,如果把它的高截短6厘米,表面积就减少75.36平方厘米,体积应减少()立方厘米。
20、用10.28厘米的铁丝围成一个半圆形,它的面积是()平方厘米。
21、一个底面是正方形的长方体,把它的侧面展开后,正好是一个边长为12厘米的正方形,这个长方体体积是()立方厘米。
22、如图,它是一个圆柱的表面展开图,那么,25.12cm这个圆柱的高是()厘米,底面半径是()厘米。
23、用8个棱长2厘米的立方体拼成长方体或大立方体(全部都要用上),拼成图形的棱长总和最小是()厘米,最大是()厘米。
24、一根长3.6米的圆柱形木材,将它锯成三段(与底面平行锯)以后,表面积增加了1.1304平方米。
这根木材的体积是()。
25、一个长方体,长、宽都是24厘米,高是60厘米,现在要把它削成一个最大的圆锥,那么削去部分的体积是()。
26、填上合适的单位:一间教室的内部空间约是45()。
一只墨水瓶的容积约是60()。
一瓶酱油的质量约是500()。
一桶纯净水的体积约是19()。
27、一个180米长的水库大坝,横截面是梯形,上底4米,下底15米,高12米。
这个大坝的体积是()立方米。
28、把一根长144厘米的铁丝做成一个立方体框架,这个立方体的表面积是()平方厘米,体积是()立方厘米。
29、一个圆柱,它的侧面展开是一个边长为18.84厘米的正方形,这个圆柱的侧面积是()平方厘米,体积是()立方厘米。
(得数保留两位小数)30、右图是从一个大正方形中剪去一个边长为4.8厘米的小正方形后形成的图形,已知阴影部分的周长是52厘米,那么原来大正方形的边长是()厘米。
(114)31、一个长方形的周长是42厘米,它的宽比长少25%,这个长方形的面积是()平方厘米。
32、一个直角三角形的三条边的长度分别是3厘米、4厘米、5厘米。