初二上数学知识点总结
8年级上数学知识点归纳总结
8年级上数学知识点归纳总结一、三角形。
1. 三角形的概念与分类。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
- 按角分类:锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
- 按边分类:不等边三角形(三边都不相等)、等腰三角形(有两边相等),其中等腰三角形包括等边三角形(三边都相等)。
2. 三角形的性质。
- 三角形三边关系:三角形两边的和大于第三边,三角形两边的差小于第三边。
- 三角形内角和定理:三角形三个内角的和等于180°。
- 三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
3. 三角形中的重要线段。
- 中线:连接三角形顶点和它对边中点的线段。
三角形的三条中线相交于一点,这点叫做三角形的重心。
- 角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。
三角形的三条角平分线相交于一点。
- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段。
锐角三角形的三条高都在三角形内部;直角三角形的两条直角边是它的高,另一条高在三角形内部;钝角三角形的高有两条在三角形外部,一条在三角形内部。
4. 全等三角形。
- 概念:能够完全重合的两个三角形叫做全等三角形。
- 性质:全等三角形的对应边相等,对应角相等。
- 判定:- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
- HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
二、轴对称。
1. 轴对称图形与轴对称。
- 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
初二数学上册知识点总结归纳
初二数学上册知识点总结归纳一、整数和有理数1. 整数运算:加法、减法、乘法、除法2. 整数的性质:相等性、大小关系、相反数、绝对值3. 有理数的性质:相等性、大小关系、相反数、绝对值4. 有理数的加法和减法:同号相加、异号相减5. 有理数的乘法和除法:同号得正、异号得负二、代数式与方程1. 代数式的概念:字母、数字和运算符号的组合2. 代数式的运算:加法、减法、乘法、除法3. 方程的概念:等号两边的代数式4. 方程的解:使方程成立的值5. 一元一次方程:解一次方程的方法6. 一元一次方程的应用:问题的转化和解答三、图形的认识1. 图形的分类:平面图形和立体图形2. 平面图形的名称和性质:点、线、线段、射线、角、三角形、四边形、多边形、圆3. 立体图形的名称和性质:球体、圆柱体、圆锥体、棱锥体、棱柱体四、相交线与平行线1. 相交线的性质:相互垂直、补角相等、同位角相等、对顶角相等2. 平行线的判定:相交线与平行线的性质3. 平行线的性质:对应角相等、内错角相等、同位角相等4. 直线与平面的关系:直线与平面有一个公共点,直线与平面没有公共点五、数的倍数与约数1. 数的倍数的概念:一个数除以另一个数,商是整数2. 数的倍数的性质:公倍数、最小公倍数3. 数的约数的概念:能整除给定数的数4. 数的约数的性质:公约数、最大公约数六、四则运算与算式1. 公式与算式的概念:有运算符号和等号的式子2. 算式的运算法则:先乘除后加减、先括号后计算3. 利用四则运算解决实际问题七、角与直线的关系1. 角的概念:角的三要素、角的分类2. 角的比较与度量:角的大小比较、度量角的单位3. 角的平分线和角的三等分线4. 直线的分类:与角有关的直线、与平行线有关的直线八、方形与平行四边形1. 方形的性质:四个角都是直角的四边形2. 平行四边形的性质:对边平行、对边相等、对角相等3. 平行四边形的判定:各边的长度、对角线的关系4. 平行四边形的性质应用九、单位换算与量的计算1. 常用单位的换算:长度、面积、体积、质量、时间2. 运用单位换算解决实际问题3. 人口密度、文明程度等综合计算十、比例与比例应用1. 比例的概念:比值相等的关系2. 解决比例问题的方法:分离两比值、求未知数3. 按比例象形、小学生由高到低站队、分数排数等应用4. 面积比例、速度比例、比例尺及其应用十一、数轴与大小关系1. 数轴的概念:用线段表示数及其大小2. 数轴上点的坐标:规定数轴上一个点的坐标3. 数轴上的加法和减法:根据坐标的变化进行运算4. 数轴上的倍数:根据坐标的变化进行运算十二、综合与实践1. 基本依据:理论与实际结合2. 实际问题:通过解答实际问题,理解和应用所学知识通过对初二数学上册的知识点进行总结归纳,可以加深对这些知识的理解和掌握。
初二数学上学期知识点总结优秀6篇
初二数学上学期知识点总结优秀6篇初二数学上册知识点篇一一.知识概念1.同底数幂的乘法法则:m,n都是正数2..幂的乘方法则:m,n都是正数3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:5.完全平方公式:6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即a≠0,m、n都是正数,且mn.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即,如,-2.50=1,则00无意义。
③任何不等于0的数的-p次幂p是正整数,等于这个数的p的次幂的倒数,即a≠0,p 是正整数,而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的;当a0时,a-p的值可能是正也可能是负的,如,④运算要注意运算顺序。
7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的'步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
初二数学知识点全总结
初二数学知识点全总结一、整数1. 整数的概念和表示法2. 整数的加减法3. 整数的乘除法4. 整数的乘方和开方5. 整数的大小比较和大小关系的判断6. 整数的运算性质和规律二、分数1. 分数的概念和表示法2. 分数的加减法3. 分数的乘除法4. 分数的约分和商的混合数表示法5. 分数的运算性质和规律6. 分数的大小比较和大小关系的判断三、小数1. 小数的概念和表示法2. 小数的加减法3. 小数的乘除法4. 小数与分数的相互转换5. 小数的运算性质和规律6. 小数的大小比较和大小关系的判断四、代数式与方程式1. 代数式的概念和表示法2. 代数式的加减法和乘法3. 代数式的乘方和乘方的运算规则4. 代数式的化简和展开5. 一元一次方程和一元一次方程的解法6. 代数式和方程式在实际问题中的应用五、平面图形1. 点、线、面的概念和性质2. 直线、射线、线段的概念和性质3. 角的概念和性质4. 三角形、四边形、多边形的概念和性质5. 圆的概念和性质6. 平面图形的周长和面积计算六、几何变换1. 平移、旋转、翻转的概念和性质2. 平移、旋转、翻转的操作方法和计算规则3. 平面图形在几何变换中的变化规律4. 几何变换在实际问题中的应用七、统计与概率1. 数据的搜集、整理、分析和表示2. 数据的统计量和图表的绘制3. 概率的概念和性质4. 事件的概念和性质5. 概率计算和事件发生的可能性判断以上是初二数学的主要知识点总结,其中包括整数、分数、小数、代数式与方程式、平面图形、几何变换、统计与概率等方面的内容。
掌握这些知识点对于学好初二数学非常重要,希望对你有所帮助。
初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)
资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。
1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。
第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
初二上册数学知识点总结归纳
初二上册数学知识点总结归纳初二上册数学知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
八年级上下册数学知识点总结
数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。
2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。
3.乘方:乘方的概念,乘方的性质,乘方的运算法则。
4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。
5.分数:分数的概念,分数的性质,分数的加减法运算法则。
6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。
7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。
9.角:角的概念,角的分类,角的性质,角的度量。
10.平行线:平行线的概念,平行线的性质,平行线的判定。
二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。
2.勾股定理:勾股定理的概念,勾股定理的应用。
3.多边形:多边形的概念,多边形的分类,多边形的性质。
4.圆:圆的概念,圆的性质,圆的度量。
5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。
6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。
7.百分数:百分数的概念,百分数的性质,百分数的计算。
8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。
9.概率:概率的概念,概率的计算。
10.函数与图像:函数的概念,函数的性质,函数的图像。
初二数学上学期知识点总结(10篇)
初二数学上学期知识点总结(10篇)在平平淡淡的学习中,大家较不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。
掌握知识点有助于大家更好的学习。
问学必有师,讲习必有友,以下是可爱的小编为家人们收集整理的初二数学上学期知识点总结(较新10篇),欢迎参考阅读,希望可以帮助到有需要的朋友。
初二数学上学期知识点总结篇一分式的加减法1、分式与分数类似,也可以通分。
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2、分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。
(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:3、概念内涵:通分的关键是确定较简分母,其方法如下:较简公分母的系数,取各分母系数的较小公倍数;较简公分母的字母,取各分母所有字母的次幂的积,如果分母是多项式,则首先对多项式进行因式分解。
初二数学上册知识点篇二多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的`一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到初二数学上册知识点篇三平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算。
初二数学上学期的知识点汇总
初二数学上学期的知识点汇总一、数与式1.1 整数•整数的概念及表示方法•整数的加减乘除(含绝对值)•整数的大小比较1.2 分数•分数的概念及表示方法•分数的化简•分数的加减乘除1.3 小数•小数的概念及表示方法•小数的加减乘除•小数和分数的互换1.4 数指和运算•数指的概念及表示方法•数指的四则运算•检验结果的方法二、代数式2.1 代数式的概念•代数式的定义及基本概念•代数式的化简与展开•如何将代数式加减乘除2.2 一元一次方程•一元一次方程的概念•一元一次方程的解法(等式法、代入法、消元法)•一元一次方程实际应用问题的解法2.3 不等式•不等式的概念及表示方法•不等式的解集•不等式的加减乘除2.4 命题•命题的概念及表示方法•命题的真值与否定•命题的充分必要条件和充分条件三、图形与变换3.1 平面图形•三角形、四边形、多边形的特点•相似与全等图形的概念•各种图形的面积与周长公式3.2 空间图形•立体图形的种类及特点•立体图形的表面积和体积公式•立体图形的展开图3.3 图形的变换•平移、旋转、翻转、对称的概念和特点•图形的变形、相似和全等的判断•图形的变换在生活中的应用四、统计与概率4.1 统计•统计的概念及基本术语•统计数据的处理方法(平均数、中位数、众数、范围等)•统计数据的图形表示(直方图、折线图、饼图等)4.2 概率•概率的概念及基本术语•概率的计算方法(多个事件的概率、独立事件和非独立事件的概率)•概率的应用(游戏、抽奖、赌博、生活中的概率问题)以上内容是初二数学上学期的主要知识点汇总,希望同学们认真学习并掌握,为下学期的学习打下坚实的基础。
初二数学知识点总结归纳【完整版】
初二数学知识点总结归纳【完整版】八年级上册数学知识点篇一1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的所有点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°初二数学知识点归纳篇二一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx 平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。
初二上数学知识点(必备5篇)
初二上数学知识点(必备5篇)初二上数学知识点(1)二元一次方程组1、二元一次方程①二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解2、二元一次方程组①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入(消元)法加减(消元)法④一次函数与二元一次方程(组)的关系:一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数的图象的交点。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
初二上数学知识点(2)位置与坐标1、确定位置在平面内,确定物体的位置一般需要两个数据2、平面直角坐标系及有关概念①平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
②平面直角坐标系为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
③点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
初二数学上学期知识点归纳初二数学上册知识点
初二数学上学期知识点归纳初二数学上册知识点初二数学上学期的知识点可以归纳如下:
1. 平方根与立方根:掌握求平方根和立方根的方法,包括精确求解和近似求解。
2. 常用平方根与立方根:了解常用平方根和立方根的值,如2的平方根、3的平方根等。
3. 有理数的加减乘除运算:掌握有理数的加减乘除运算规则,包括同号相加、异号相减、乘法运算的性质、除法运算的原则等。
4. 分数的加减乘除运算:掌握分数的加减乘除运算规则,包括同分母相加减、异分母相加减、乘法运算的性质、除法运算的原则等。
5. 百分数与百分数之间的转化:掌握百分数与小数、分数之间的相互转化方法。
6. 倍数与约数:了解倍数和约数的概念,掌握求倍数和约数的方法。
7. 整数的乘方与除法:了解整数的乘方和除法的概念,掌握整数的乘方和除法的性质和运算法则。
8. 直线和角的关系:了解直线和角的概念,掌握直线和角的关系,如相交直线上的对应角、同位角、内错角、同旁内角等。
9. 平行线和角的关系:了解平行线和角的概念,掌握平行线和角的关系,如同位角、内错角、同旁内角等。
10. 三角形的性质:了解各种特殊三角形的性质,如等腰三角形、等边三角形、直角三角形等。
11. 平面图形的性质:了解各种平面图形的性质,如正方形、长方形、菱形、平行四边形等。
12. 相似三角形:了解相似三角形的概念,掌握相似三角形的判定方法和性质。
13. 长方体和正方体:了解长方体和正方体的性质,包括体积和表面积的计算方法。
以上是初二数学上学期的主要知识点,有些知识点可能还需要进一步的细分和深入学习。
初二上学期数学知识点总结
初二上学期数学知识点总结
初二上学期数学主要涉及以下知识点:
1. 整数运算:包括整数的加、减、乘、除运算,以及绝对值运算。
2. 分数运算:包括分数的加、减、乘、除运算,以及带分数的运算。
3. 小数运算:包括小数的加、减、乘、除运算。
4. 百分数:包括百分数的转换、计算,以及百分数与分数、小数的转换。
5. 数据统计:包括图表的读取和分析,以及频率、平均数、中位数等的计算。
6. 代数式与方程:包括代数式的化简、展开,以及一元一次方程的解法。
7. 几何:包括平面图形的性质、分类,三角形的性质,以及平行线与相交线的性质。
8. 比例与相似:包括比例关系的判断与计算,以及相似三角形的性质。
9. 函数与图像:包括函数的定义、性质,以及平面直角坐标系中的点、线、函数图像的表示与分析。
10. 一次函数:包括一次函数的图像、方程与解法,以及应用问题的解决。
11. 三视图与展开图:包括常见物体的三视图的绘制和展开图的分析与绘制。
这些是初二上学期数学的主要知识点,掌握了这些知识,就可以顺利解决与这些内容相关的数学问题。
初二数学上学期知识点总结
初二上学期数学知识点回顾分式知识要点 1. 分式的有关概念设A.B 表示两个整式. 如果B 中含有字母, 式子 就叫做分式. 注意分母B 的值不能为零, 否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式, 要进行约分化简2.分式的基本性质,M B M A B A ⨯⨯= MB M A B A ÷÷=(M 为不等于零的整式) 3. 分式的运算 (分式的运算法则与分数的运算法则类似).(异分母相加, 先通分);4. 零指数5. 负整数指数注意正整数幂的运算性质n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=⋅-+)(,)(),0(,可以推广到整数指数幂, 也就是上述等式中的m 、 n 可以是O 或负整数.6.解分式方程的一般步骤: 在方程的两边都乘以最简公分母, 约去分母, 化为整式方程.解这个整式方程. .验根, 即把整式方程的根代入最简公分母, 看结果是不是零, 若结果不是0, 说明此根是原方程的根;若结果是0, 说明此根是原方程的增根, 必须舍去.7、列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子, 找出相等关系, 列出方程;(4)解方程, 并验根, 还要看方程的解是否符合题意;(5)写出答案(要有单位)。
正比例、反比例第一象限(+, +), 第二象限(-, +)第三象限(-、-)第四象限(+, -);x 轴上的点的纵坐标等于0, 反过来, 纵坐标等于0的点都在x 轴上, y 轴上的点的横坐标等于0, 反过来, 横坐标等于0的点都在y 轴上,若两个点关于x 轴对称, 横坐标相等, 纵坐标互为相反数;若两个点关于y 轴对称, 纵坐标相等, 横坐标互为相反数;若两个点关于原点对称, 横坐标、纵坐标都是互为相反数。
初二数学上册知识点总结
初二数学上册知识点总结
1. 分数与小数
- 分数与小数是数的表示方法。
分数表示部分与整体的关系,
小数表示除法的结果。
两者可以进行相互转化。
- 分数的基本性质包括:分数的大小比较、分数的加减乘除、
分数的约分与化简等。
- 小数的基本性质包括:小数的大小比较、小数的运算、小数
的读法等。
2. 带分数与混合小数
- 带分数是由整数和假分数组成的,可以转化为假分数或小数。
- 混合小数是由整数和小数组成的,可以转化为连分数。
3. 整数与有理数
- 整数是包括正整数、负整数和零的数的集合。
- 有理数是包括整数、分数和小数的数的集合,可以用分数或
小数形式表示。
- 有理数的基本性质包括:有理数的加减乘除、有理数的大小
比较、有理数的绝对值等。
4. 两点间的距离与坐标
- 两点间的距离可以通过勾股定理计算。
- 坐标是表示一个点在坐标平面上的位置的数对。
5. 等式与方程
- 等式是由等号连接的两个表达式,左右两边的值相等。
- 方程是由等式和未知数组成的,通过求解方程可以确定未知
数的值。
6. 平面图形与形状
- 平面图形包括:三角形、四边形、五边形、六边形、圆等。
- 形状包括:相似、全等、对称等。
以上是初二数学上册的知识点总结,希望对你的研究有所帮助。
八年级上册数学知识点归纳(5篇)
八年级上册数学知识点归纳(5
篇)
新学期已经开始,同学们即将进入紧张的学习生活。
以下是白话文编写的八年级上册数学知识点总结(5篇精选),希望能给你一些参考和帮助。
八年级上册数学知识点篇一
1、二元一次方程
①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组
①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入(消元)法、加减(消元)法
④一次函数与二元一次方程(组)的关系:
一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
线性函数与二元线性方程组的关系:二元线性方程组的解可以看作是两个线性函数之和的像的交集。
当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图像(直线)平行,即没有交点时,说明对应的二元线性方程组无解。
数学初二上册知识点篇二
乘法和除法,因式分解和三角形的分数,全等三角形,轴对称和代数表达式。
(1)三角形:是初中数学的基础,中考命题中的重点。
中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
人教版初二上数学知识点
人教版初二上数学知识点一、数与式1.整数:正整数、负整数、零。
绝对值、相反数、相邻整数。
2.少数和多数的比较:分数、小数、百分数。
3.整数的加减法:异号相消、同号相加。
4.字母表示数:字母的含义、字母定点、字母代数加减法、字母代数整数乘法、字母代数整数除法。
5.简单的代数式与数对:相等关系、代数式值的判断、算式的理解、算法的性质。
二、平方根与立方根1.定义:数a的平方根是b,表示为b²=a,b是一个数。
数a的立方根是c,表示为c³=a,c是一个数。
2.计算平方根:完全平方数的平方根、非完全平方数的平方根。
3.计算立方根:完全立方数的立方根、非完全立方数的立方根。
三、代数式1.代数式的概念:由字母及其系数和指数的代数符号组成的有一个或多个算式。
2.项、同类项、不同类项、系数、指数。
3.同类项的合并与展开:同类项合并、展开、合并同类项的法则。
4.乘法公式与因式分解:二次平方公式的条件、应用。
5.多项式的加减法:同次异号相消、同次同号相加。
四、方程与不等式1.一元一次方程:解方程思想、去括号、去分母、去小数、去开方。
2.解方程与变量约束数:答案在数轴上的位置。
3.一元一次方程的应用。
4.一元一次不等式:解不等式的解集与表示。
五、函数概念1.函数的概念:函数的定义、自变量、因变量、函数值。
2.函数的表示方法:函数图、输入输出表、函数公式。
3.函数的性质:单调性、奇偶性。
4.一些常见的函数:自然数函数、整数函数、有理数函数、无理数函数、递增函数、平方函数、立方函数、绝对值函数。
六、图形的认识与性质1.平面的概念:平面与图形。
2.图形的分类:几何图形、曲线。
3.角:角的概念、角的度量、角的度数与弧度、零度角、平角、直角、锐角、钝角、角的相互关系。
4.线段:线段的概念、线段的长度、线段的性质、相交线段、重合线段、界限线段。
5.三角形:三角形的概念、三角形的分类、角的度量关系。
6.多边形:多边形的概念、多边形的分类、正多边形。
初二数学上学期的知识点汇总
初二数学上学期的知识点汇总基础数学知识整数1.整数的加减乘除运算,包括同符号整数运算和异符号整数运算。
2.整数的概念和性质,例如正整数、负整数、零、相反数等。
分数1.分数的概念和性质,例如分子、分母、真分数、假分数等。
2.分数的加减乘除运算,包括带分数的运算。
小数1.小数的概念和性质,例如小数点、循环小数、非循环小数等。
2.小数的加减乘除运算。
指数和幂1.指数和幂的概念和性质,例如底数、指数、幂等。
2.指数运算的法则,例如幂的乘方、幂的除方、同底数幂的相加减等。
3.科学记数法的应用。
代数式1.代数式的概念和性质,例如字母、系数、同类项等。
2.代数式的加减乘除运算,包括分配律、结合律、交换律等。
方程和不等式1.一元一次方程和不等式的概念和性质。
2.一元一次方程和不等式的解法,包括列方程、消元、检验等。
3.满足方程和不等式的集合和图像的表示。
几何知识角1.角的概念和性质,例如度、弧度、对顶角、补角、余角等。
2.角的分类,例如锐角、直角、钝角等。
3.角的度量方法,包括用量角器和计算器度量角度大小。
直线、线段和射线1.直线、线段和射线的概念和性质,包括端点、中点、垂直平分线、角平分线等。
2.用尺规作图的方法,包括画线段、画角度、垂线等。
三角形1.三角形的概念和性质,例如角度和边长的关系、内角和、外角和等。
2.三角形分类,包括等边三角形、等腰三角形、直角三角形等。
3.三角形的周长和面积的计算方法。
四边形1.四边形的概念和性质,例如对角线、平行四边形、矩形、正方形等。
2.四边形的周长和面积的计算方法。
圆1.圆的概念、性质和部分术语,例如圆心、半径、直径、周长、面积等。
2.圆的弧、弧度和圆的扇形、面积的计算方法。
统计与概率知识统计1.统计的概念和基本思想。
2.统计中的样本和总体的概念及其区别。
3.描述统计中的中心值和分散程度的概念、计算方法和应用。
概率1.概率的概念和性质。
2.事件和样本空间的概念及其关系。
3.概率的计算方法,包括古典概型、几何概型、频率和概率公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二上数学知识点总结
初二上数学知识点总结
多做好知识点归纳,对自己的学习很有帮助,今天我们就一起来看看初二上数学知识点总结吧!
初二上数学知识点总结
1 全等三角形的对应边、对应角相等
2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的'平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的
高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等
于60°
24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论 2 有一个角等于60°的等腰三角形是等边三角
形
27 在直角三角形中,如果一个锐角等于30°那么它所对
的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理和一条线段两个端点距离相等的点,在这条线
段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
38 定理四边形的内角和等于360°
39 四边形的外角和等于360°
40 多边形内角和定理 n边形的内角的和等于(n-
2)×180°。