第五章-特殊函数(下)-贝塞尔函数

合集下载

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

y x 1J m (x) x J m (x)
y 1x 2 Jm (x) x 1Jm (x) x 1Jm (x) x 2 Jm(x)
x 2 Jm(x) 2x 1Jm (x) 1 x 2 Jm (x)
x 2 Jm(x) 2x 1Jm (x) 1x 2 Jm (x)
xnYn1(x)
d
dx
xnYn (x)
x
Y n n1
(
x)
Yn1 ( x)
Yn1 ( x)
2n x
Yn
(x)
Yn1(x) Yn1(x) 2Yn(x)
例1 求下列微积分
(1)
d dx
J0
(
x)
J 0
(x)
J1(x)
(2)
J0(x)
1 x
J0(x)
J1(x)
1 x
J1(x)
1 2
J
0
(x)
1 2 x
x 1Jm (x) x Jm (x)
2
2
m2 x2
x
J
m
(x)
x 2 Jm(x) x 1Jm (x) x2 2 m2 x 2 Jm (x)
x 2 x2 2 Jm(x) xJm (x) x2 2 m2 Jm (x)
x2 t 2Jm(t) tJm (t) t 2 m2 Jm (t)
J
(x)
y AJn (x) BYn (x)
数学物理方程与特殊函数
x2 y xy x2 n2 y 0
J
n
(
x)
m0
(1)m m!(n m
1)
x 2
n2m
Yn
(
x)
lim
n

第五章-贝塞尔函数

第五章-贝塞尔函数

第五章-贝塞尔函数n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。

从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。

在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。

如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。

本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。

下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。

贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。

§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。

设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。

这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V VVT a T x y∂∂'=+∂∂或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+=(5.4)22220V VV x y λ∂∂++=∂∂ (5.5)从(5.4)得2()a t T t Ae λ-=方程(5.5)称为亥姆霍兹(Helmholtz )方程。

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

(−1) m x 2 n + 2 m −1 = x n J ( x) = x n ∑ n + 2 m−1 n −1 2 m!⋅Γ(n + m) m =0

d x n J n ( x ) = x n J n −1 ( x ) dx d −n x J n ( x) = − x − n J n +1 ( x) dx
y = AJ n ( x) + BYn ( x)
A、B为任意常数, n为任意实数
数学物理方程与特殊函数
第5章贝塞尔函数
三 贝塞尔函数的性质
(−1) m x J n ( x) = ∑ ⋅ m = 0 m! Γ ( n + m + 1) 2
∞ n+2m
J α ( x) cos απ − J −α ( x) Yn ( x) = lim α →n sin απ
= −3J1 ( x) + 2 J1 ( x) + J1 ( x) − J 3 ( x) = − J 3 ( x)
数学物理方程与特殊函数
第5章贝塞尔函数
(4)
d n x J n ( x) = x n J n −1 ( x) dx = − xJ1 ( x ) + ∫ x −1 J1 ( x )dx 2 = − xJ1 ( x) + 2 ∫ J1 ( x)dx d −n x J n ( x) = − x − n J n +1 ( x) = − xJ1 ( x ) − 2 ∫ dJ 0 ( x) = − xJ1 ( x) − 2 J 0 ( x ) + C dx ′ (5) ∫ x 3 J 0 ( x )dx = ∫ x 2 dxJ1 ( x ) = x 3 J 1 ( x ) − 2 ∫ x 2 J1 ( x)dx J n −1 ( x) − J n +1 ( x) = 2 J n ( x) 2n J n −1 ( x) + J n +1 ( x) = J n ( x) 3 2 3 2 = x J 1 ( x ) − 2 ∫ dx J 2 ( x ) = x J 1 ( x ) − 2 x J 2 ( x ) + C x

贝塞尔公式讲解

贝塞尔公式讲解

贝塞尔公式讲解
贝塞尔公式是用来计算贝塞尔函数(Bessel function)的数学公式。

贝塞尔函数是常见的特殊函数之一,它在物理学和工程学中有广泛的应用。

贝塞尔函数是由欧拉和贝塞尔在18世纪末和19世纪初研究振动问题时引入的。

它们是满足贝塞尔微分方程的解,该方程出现在许多物理问题中,如电磁波,声波和热传导等。

贝塞尔函数通常表示为J_n(x),其中n是整数,x是实数。

贝塞尔函数的计算可以使用贝塞尔公式,该公式可以表示为:
J_n(x) = (1/π) ∫_0^πcos(nθ- x sinθ) dθ
其中,θ是积分变量,cos和sin是三角函数,π是圆周率,n和x是函数的参数。

这个公式告诉我们如何计算任意x和n的贝塞尔函数。

它涉及积分,因此可能需要数值计算来获得精确的结果。

贝塞尔函数在微积分,波动问题和量子力学等领域中广泛使用。

贝塞尔函数

贝塞尔函数

贝塞尔函数贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。

贝塞尔函数和初等函数是在物理和工程中最常用的函数。

贝塞尔函数是以19世纪德国天文学家F.W.贝塞尔的姓氏命名的,他在1824年第一次描述过它们。

贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。

一般贝塞尔函数是一些常微分方程(一般称为'''贝塞尔方程''')的标准解函数。

贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。

针对各种具体情况,人们提出了这些解的不同形式。

下面分别介绍不同类型的贝塞尔函数。

这类方程的解无法用初等函数系统地表示。

但是可以运用自动控制理论中的相平面法对其进行定性分析。

这里被称为其对应贝塞尔函数的阶数。

实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。

尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数。

这样做能带来好处,比如消除了函数在=0点的不光滑性。

几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。

雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。

1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。

贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位。

因为贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的。

最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导定律|热传导问题;以及圆形(或环形)薄膜的振动模态分析问题。

第五章 贝塞尔函数1

第五章 贝塞尔函数1
1 p 1 q 1 1 q 1 p p 1
q 1 1 q 1 1 q2 p 1 p 1 p q2 p 1 p 1 = (1 x ) ( x x x ) dx = (1 x ) [ x x (1 x)]dx p 0 p 0 q 1 q 1 q 1 = B( p, q 1) B ( p, q ) B ( p, q ) B( p, q 1) p p p q 1
第五章 贝塞尔函数
一、贝塞尔方程的引出 二、贝塞尔方程的求解
三、贝塞尔函数的递推公式 四、函数展开贝塞尔函数的级数 五、 应用
§ 5.1 贝塞尔方程的引出
例:设有半径为R的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒 保持为零度,且初始温度为已知,求圆盘内的温度分布规律。
问题归结为求解下述定解问题:
2 2 u u u 2 2 2 2 a ( ), x y R ; t 2 2 x y 2 2 2 u ( x, y ), x y R ; t 0 u x2 y 2 R2 0;

2 q 1 ( 2 2 )
d d
令: = cos , sin ( 0, 0< 则: ( p ) ( q ) 4
0 0

2
), d d d d


2 0
2

2( p +q ) 1 2
e
sin 2 p 1 cos 2 q 1 d d

0
=2 e 2( p +q ) 1d 2 2 sin 2 p 1 cos 2 q 1 d
2 x

=


0
e x x ( p +q ) 1dxB( p, q) ( p q)B( p, q)

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

n阶贝塞尔方程
数学物理方程与特殊函数
第5章贝塞尔函数
二 贝塞尔方程的求解
n阶贝塞尔方程 n任意实数或复数
x2 y xy x2 n2 y 0
假设 n 0
令:y xc (a0 a1x a2 x 2 ak x k ) ak xck k 0 (c k)(c k 1) (c k) (x2 n2 ) ak xck 0 k 0
Jn (x)
2 cos x 1 n x 4 2
Yn (x)
2
x
sin
x
1
4
n
2
x , Jn (x) 0,Yn (x) 0
数学物理方程与特殊函数
第5章贝塞尔函数
性质8 正交性
R
0 rJn
(n) m R
r
J
n
(n) k R
r dr
R2
2
J
2 n1
(m(n)
3
(1)m 2m1
52m 1
(
1
)
x 2
1 2
2m
2
(1)m 22m1
x
1 2
2m
m0 2m 1 ! 2
(1)m 2 x2m1
m0 2m 1! x
2
x
(1)m x2m1
m0 2m 1 !
2 sin x
x
J 1 (x) 2
2 cosx
x
J n1 (x) (1)n 2
2
x
n
(c 2 n2 )a0 xc (c 1)2 n2 a1xc1 (c k )2 n 2 ) ak ak2 xck 0
k 0
(c2 n2 )a0 0
(c 1)2 n2 a1 0 (c k)2 n2 ) ak ak2 0

第五章-贝塞尔函数讲解

第五章-贝塞尔函数讲解


2 sin x
x
J
1 2

x

2 cos x
x
1 0.8 0.6 0.4 0.2
J0 J5
-0.2 -0.4
2
4
6
8
10
5.1.2.虚宗量贝塞耳方程
n 阶虚宗量贝塞耳方程
x2
d 2R dx 2

x
dR dx

(x2

n2 )R

0
ix
2
d 2R
d 2

dR
d
( 2

m
1
J-n(x)称为-n阶第一类贝塞尔函数
(5.19)
Jn(x) 和J-n(x)线性无关,故贝塞尔方程(5.12)的通解可表 示为:
y x AJn x BJn x
(5.20)
令 A cot n , B csc n,则 (5.20)可写成
第二个线性 无关特解
2

ak

ak 2

0
由于 a0 0,可得 s1 n s2 n ,需要分别讨论:
(5.14) (5.15) (5.16)
情形1:n不为整数和半奇数,则s1-s2=2n也不为整数。取s1=n代 入(5.15)式得到a1=0,代入(5.16)式得到:
ak

ak 2
k 2n k
d dx
xn
Jn

x

xn
J n1

x

d dx

x
n
J
n

x



x
n
J

Bessel函数介绍

Bessel函数介绍

第一类贝塞‎尔函数图2 0阶、1阶和2阶‎第一类贝塞‎尔函数(贝塞尔J函‎数)曲线(在下文中,第一类贝塞‎尔函数有时‎会简称为“J函数”,敬请读者留‎意。

)第一类α阶‎贝塞尔函数‎Jα(x)是贝塞尔方‎程当α为整‎数或α非负‎时的解,须满足在x‎= 0 时有限。

这样选取和‎处理Jα的‎原因见本主‎题下面的性质介绍;另一种定义‎方法是通过‎它在x = 0 点的泰勒级数展开(或者更一般‎地通过幂级数展开,这适用于α‎为非整数):上式中Γ(z)为Γ函数(它可视为阶乘函数向非整‎型自变量的推广)。

第一类贝塞‎尔函数的形‎状大致与按‎速率衰减的‎正弦或余弦函数类似(参见本页下‎面对它们渐‎进形式的介‎绍),但它们的零‎点并不是周‎期性的,另外随着x‎的增加,零点的间隔‎会越来越接‎近周期性。

图2所示为‎0阶、1阶和2阶‎第一类贝塞‎尔函数Jα‎(x)的曲线(α = 0,1,2)。

如果α不为‎整数,则Jα(x)和J−α(x)线性无关,可以构成微‎分方程的一‎个解系。

反之若α是‎整数,那么上面两‎个函数之间‎满足如下关‎系:于是两函数‎之间已不满‎足线性无关‎条件。

为寻找在此‎情况下微分‎方程与Jα‎(x)线性无关的‎另一解,需要定义第‎二类贝塞尔‎函数,定义过程将‎在后面的小‎节中给出。

贝塞尔积分‎α为整数时‎贝塞尔函数‎的另一种定‎义方法由下‎面的积分给‎出:(α为任意实‎数时的表达‎式见参考文献[2]第360页‎)这个积分式‎就是贝塞尔‎当年提出的‎定义,而且他还从‎该定义中推‎出了函数的‎一些性质。

另一种积分‎表达式为:和超几何级‎数的关系贝塞尔函数‎可以用超几何级数‎表示成下面‎的形式:第二类贝塞‎尔函数(诺依曼函数‎)图3 0阶、1阶和2阶‎第二类贝塞‎尔函数(贝塞尔Y函数)曲线图(在下文中,第二类贝塞‎尔函数有时‎会简称为“Y函数”,敬请读者留‎意。

)第二类贝塞‎尔函数也许‎比第一类更‎为常用。

特殊函数及其应用

特殊函数及其应用

特殊函数及其应用特殊函数是数学中的一类特殊形式的函数,它们在各个领域都有广泛的应用。

本文将介绍几种常见的特殊函数及其应用。

一、阶乘函数阶乘函数是一种特殊的函数,用符号"!"表示。

它的定义如下:n! = n*(n-1)*(n-2)*...*3*2*1阶乘函数在组合数学、概率论等领域中有广泛的应用。

例如,在组合数学中,排列和组合问题中经常会涉及到阶乘函数。

在概率论中,阶乘函数可以用来计算排列和组合的概率。

二、调和函数调和函数是一种特殊的函数,用符号"H(n)"表示。

它的定义如下:H(n) = 1 + 1/2 + 1/3 + ... + 1/n调和函数在数论、物理学等领域中有广泛的应用。

例如,在数论中,调和函数可以用来估计素数的分布情况。

在物理学中,调和函数可以用来描述振动系统的行为。

三、贝塞尔函数贝塞尔函数是一类特殊的函数,用符号"Jn(x)"表示。

它的定义如下:Jn(x) = 1/π ∫[0,π] cos(nθ - x*sinθ) dθ贝塞尔函数在物理学、工程学等领域中有广泛的应用。

例如,在电磁学中,贝塞尔函数可以用来描述电磁波在圆柱坐标系中的传播情况。

在信号处理中,贝塞尔函数可以用来处理带限信号。

四、伽玛函数伽玛函数是一种特殊的函数,用符号"Γ(x)"表示。

它的定义如下:Γ(x) = ∫[0,+∞] t^(x-1) * e^(-t) dt伽玛函数在统计学、概率论等领域中有广泛的应用。

例如,在统计学中,伽玛函数可以用来定义正态分布的密度函数。

在概率论中,伽玛函数可以用来计算连续随机变量的期望值和方差。

五、贝特函数贝特函数是一类特殊的函数,用符号"B(x,y)"表示。

它的定义如下:B(x,y) = ∫[0,1] t^(x-1) * (1-t)^(y-1) dt贝特函数在概率论、统计学等领域中有广泛的应用。

第五章 贝塞尔函数讲解

第五章 贝塞尔函数讲解

贝塞尔方程
(5.12)尔函数或柱函数 为二阶变系数常 微分方程,
x 2 y '' + xy ' + ( x 2 − n 2 ) y = 0
贝塞尔方程
(5.12)
求解贝塞尔方程(5.12),假设如下幂级数解 假设如下幂级数解:
y ( x ) = ∑ ak x
Vxx + Vyy + λV = 0 T ''+ λ a 2T = 0
Helmholtz方程
(5.5)
为了求Helmholtz方程 (5.5),可在极坐标中进行求解 方程 为了求 ,
∂ 2V 1 ∂V 1 ∂ 2V + 2 + λV = 0 2 + 2 r ∂r r ∂θ ∂r V r=R = 0
r F + rF + ( λ r − n ) F = 0
2 '' ' 2 2
F ( R) = 0
F ( 0) < ∞
令 x=
λ r ,记F(r)=y(x),则(5.11)转化为: F(r)=y(x), (5.11)转化为 转化为:
x 2 y '' + xy ' + ( x 2 − n 2 ) y = 0
第五章 贝塞尔函数
5.1 贝塞尔方程
在利用分离变量法求解其它偏微分方程的定解问题时, 在利用分离变量法求解其它偏微分方程的定解问题时,会导 出其它形式的常微分方程的边值问题, 出其它形式的常微分方程的边值问题,从而得到各种各样的坐标 函数---特殊函数。如贝塞尔函数、 ---特殊函数 函数---特殊函数。如贝塞尔函数、勒让德多项式等

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

y AJn (x) BYn (x)
A、B为任意常数, n为任意实数
三 贝塞尔函数的性质
J
n
(
x)
m0
(1) m!(n
m
m
1)
x 2
n2m
Yn
(x)
lim
n
J
(x)
cos sin
J
(x)
性质1 有界性
Jn (x)
性质2 奇偶性 当n为正整数时
Yn (0)
x 0 Yn (x)
(0) j
)
1 2
J 0 (i(0) x)
i 1
(0) i
J
1
(i(0)
)
d
dx
xnJn (x)
xn Jn1(x)
d
dx
xn J n (x)
x n J n1 (x)
J n1 (x) J n1 (x) 2J n (x) 2n
J n1 (x) J n12区间内展成
第五章 贝塞尔函数(bessel)
一 贝塞尔函数的引出
u(ut,a,02) 2u(a,2 ),2u2
1
u
1
2
2u
2
,
R,0 2 ,t 0 R,0 2
u(R, ,t) 0,
令: u(, ,t) V (, )T (t)
0 2 ,t 0
令: V (, ) ()( )
VT a22V T
J (n1) (x) 2
2
x
n
1 2
1
d
n cosx
x dx x
J
n
(x)
m0
(1) m m!(n m
1)

贝塞尔函数课件

贝塞尔函数课件

3
正交性
贝塞尔函数之间具有正交性质,适合用于展开函数。
贝塞尔函数的计算方法
级数展开求解
可以使用贝塞尔函数的级数展开 式近似求解。
径向波动方程求解
使用贝塞尔函数表(示例)
贝塞尔函数是径向波动方程的解, 可用于求解相关问题。
通过查表,可以直接获取贝塞尔 函数的数值。
贝塞尔函数的在物理学中的应用
电磁场问题中的应用
贝塞尔函数用于描述电磁场分 布、辐射和散射等问题。
圆形共振问题中的应 用
贝塞尔函数用于解决圆形共振 腔中的电磁波问题。
量子力学中的应用
贝塞尔函数用于描述量子力学 中的球对称问题和径向波函数。
总结
在本课件中,我们介绍了贝塞尔函数的定义和基本类型,讨论了贝塞尔函数的性质和计算方法,以及它在物理 学中的应用。希望通过这些内容,您对贝塞尔函数有更全面的了解。
贝塞尔函数PPT课件
贝塞尔函数是一种数学函数,常用于解决各种科学领域中的物理和数学问题。 本课件将介绍贝塞尔函数的定义、类型、性质、计算方法以及在物理学中的 应用。
什么是贝塞尔函数
贝塞尔函数是一类特殊的数学函数,它是贝塞尔微分方程的解。它广泛应用 于物理学、工程学和数学等领域,例如波动理论、振动问题和量子力学。
下一步研究方向
贝塞尔函数作为一种重要的数学工具,在各个领域中仍有许多未解决的问题 和有待深入研究的方向。我们鼓励您继续探索和应用贝塞尔函数。
参考文献
1. Jiang, X., & Li, X. (2019). Applications of Bessel functions in physics. Physics Education, 54(6), 065010.

电磁场理论中的特殊函数应用

电磁场理论中的特殊函数应用

电磁场理论中的特殊函数应用在电磁场理论中,特殊函数是一类具有特殊性质和广泛应用的数学函数。

它们在电磁场的描述和分析中起着重要的作用。

本文将介绍几个常见的特殊函数及其在电磁场理论中的应用。

一、贝塞尔函数贝塞尔函数是解决电磁波在球坐标系下的传播和辐射问题时必不可少的数学工具。

贝塞尔函数的定义如下:\[J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta\]其中,\(n\)为函数的阶数,\(x\)为自变量。

贝塞尔函数具有以下性质:正交性、递推关系和复合关系等。

贝塞尔函数在电磁场理论中的应用非常广泛。

例如,当我们研究球面波在辐射场中的传播时,可以利用贝塞尔函数来表示电场和磁场的径向分量。

此外,贝塞尔函数还可以用于求解辐射和散射问题,例如天线辐射、声波传播等。

二、勒让德函数勒让德函数是解决电磁场在球坐标系和柱坐标系下的描述问题时常用的特殊函数。

勒让德函数的定义如下:\[P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l\]其中,\(l\)为函数的阶数,\(x\)为自变量。

勒让德函数具有正交性和归一化性等重要性质。

勒让德函数在电磁场理论中有广泛的应用。

例如,在球坐标系中,我们可以用勒让德函数展开电磁场的角度分量,从而得到辐射场和散射场的解析表达式。

此外,勒让德函数还可以用于计算球谐函数,它是电磁场理论中的重要数学工具。

三、傅里叶变换傅里叶变换是研究信号在时域和频域之间转换的数学工具。

在电磁场理论中,傅里叶变换可以用于分析电磁波的频谱特性。

傅里叶变换的定义如下:\[F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} dt\]其中,\(f(t)\)为被变换的函数,\(\omega\)为频率。

傅里叶变换具有线性性和平移性等重要性质。

数学物理方程第五章_贝塞尔函数

数学物理方程第五章_贝塞尔函数

y ( x) = ∑
式中, a 0 为任意常数.令
a0 =
1 2 Γ(n + 1)
n
根据 Γ 函数的性质,可得到关于系数的一个简洁的表达式
a2m

( − 1) m = n+2m 2 m! Γ ( n + m + 1)
(n ≥ 0)
这样,我们得到了式(5.1.14)的一个特解
y1 ( x) = ∑
(−1) m x n+2m n+2m 2 ! Γ ( + + 1 ) m n m m =0
(−1) m J − N ( x) = ∑ − N + 2 m x − N +2m m!Γ(− N + m + 1) m =0 2
∞ m − N =l ∞
(−1) l + N = ∑ N + 2l x N + 2l (l + N )!Γ(l + 1) l =0 2
∞ l =0
=∑
(−1) l (−1) N x N + 2l N + 2l 2 (l + N )!l!
∑ k +1
k =0

1
⎛ x ⎞ 1 Yn ( x) = J n ( x)⎜ ln + C ⎟ − π ⎝ 2 ⎠ π 2
2m
(n − m − 1)! ⎛ x ⎞ ⎜ ⎟ ∑ m! ⎝2⎠ m =0

− n+2m
⎛ x⎞ (−1) m ⎜ ⎟ ∞ n + m −1 m −1 1 1 1 ⎞ ⎝2⎠ ⎛ − ∑ +∑ ⎜ ∑ ⎟ π m =0 m!(n + m)! ⎝ k =0 k + 1 k =0 k + 1 ⎠

贝塞尔函数的基本概念及其实际应用

贝塞尔函数的基本概念及其实际应用

贝塞尔函数的基本概念及其实际应用贝塞尔函数是数学分析中的一类特殊函数,是解决物理、工程、数学等领域中一些具有圆对称性问题的有力工具。

在本文中,我们将介绍贝塞尔函数的基本概念及其实际应用。

一、贝塞尔函数的定义及性质贝塞尔函数最初是由德国数学家贝塞尔在求解一个普遍的圆形问题时发现的。

贝塞尔函数有两类,即第一类和第二类,一般用Jn(x)和Yn(x)表示。

其中Jn(x)表示第一类贝塞尔函数,Yn(x)表示第二类贝塞尔函数。

贝塞尔函数和它们的导数满足贝塞尔微分方程:x^2*d^2y/dx^2 + x*dy/dx + (x^2-n^2)y = 0其中n为贝塞尔函数的度数,它的值可以是任意实数或零。

当n为整数时,贝塞尔函数是一种完整的函数,当n为小数或分数时,贝塞尔函数是一种不完整的函数。

贝塞尔函数具有一些特殊的性质,例如:对于第一类贝塞尔函数Jn(x),当x→0时Jn(x)≠0;当x→∞时,Jn(x)是振荡型函数,即Jn(x)近似于sin(x-nπ/2)。

而对于第二类贝塞尔函数Yn(x),当x→0时Yn(x)是无穷大;当x→∞时,Yn(x)也是振荡型函数。

二、贝塞尔函数的实际应用1.电学中的应用:贝塞尔函数可以用来描述无限长圆筒形导线和矩形波导内部电磁场的分布。

此外,在计算电磁波在介质中传播时,也可以用到第一类贝塞尔函数。

2.声学中的应用:贝塞尔函数可以用来表示大气中声波的传播过程。

同时,它还可以描述圆形共振腔内空气的压力分布和管道内的声波传输。

3.视觉中的应用:贝塞尔函数可以用来刻画景深和焦距。

此外,它还可以指导图像的锐化和去噪。

4.计算机图形学中的应用:贝塞尔函数可以被用来构建连续的Bézier曲线,从而描述出计算机图形学中重要的对于帧的插值和物体的平滑变形。

结语贝塞尔函数是一种特殊的函数,在各个领域中都有着重要的应用,特别是在电学中、声学中、视觉中以及计算机图形学中。

了解贝塞尔函数的基本概念和性质,对于掌握这些领域的相关知识非常重要。

第五章-贝塞尔函数讲解

第五章-贝塞尔函数讲解
个条件可以得到:
Jn R 0
(5.34)
由于(5.34)式可知:当 取不同值时,Jn(x)有零值,即贝塞尔
函数的零点。
1. Jn(x)有无穷多个零点,关于原点对称分布。 2. Jn(x)的零点和Jn+1(x)的零点是彼此相间分布,且Jn(x)的零 点更靠近坐标原点。 3. 当x趋于无穷大时,Jn(x)两个零点之间的距离接近于π。
y1

x

Jn

x


1m
m0
2n2m
xn2m
m!n
m
1
(5.18)
Jn(x)称为n阶第一类贝塞尔函数
取s2=-n时:
a0

1
2n n
1
可以得到方程另一个特解
y2

x

Jn

x


1m
m0
2n2m
xn2m
m! n
在极坐标系中:
2u 1 u 1 2u

r
2

r
r

r2
2
0
u rr0 f
分离变量
u(r, ) R(r)( )
0 r r0

化简引入常量
R '' 1 R ' 1 R '' 0
r
r2
r2R '' rR ' R 0 '' 0
Jn

kn
R
r

dr

0
m k
三 贝塞耳函数的模
定义积分:
R 0

华中科技大学课件贝塞尔函数课堂课件

华中科技大学课件贝塞尔函数课堂课件

r2
两端乘以 r 2 移项得
FG
G r 2 F rF r 2 F
,
G
F
于是有
G G 0,
(9)
r 2 F rF (r 2 )F 0. (10)
医药&医学
6
G G 0,
(9)
r 2 F rF (r 2 )F 0. (10)
由于温度函数 u(x, y,t)是单值的,所以V (x, y)也必
m um m 4(m 1)(n m 1)
则由达朗贝尔判别法可知级数(18)在整个实轴上
是绝对收敛的。
医药&医学
17
y(x) ak x sk k 0
(a0 0),
[(s 1)2 n2 ]a1 0,
[(s k)2 n2 ]ak ak2 0 (k 2, 3, )
(13) (15) (16)
r 2 r r r 2 2
V |rR 0.
(8)
医药&医学
5
2V 1 V 1 2V V 0 (0 r R), (7)
r 2 r r r 2 2
V |rR 0.
(8)
再令 V (r, ) F(r)G( ), 代入方程(7)得
F G 1 F G 1 FG FG 0,
r
u(x, y,t) V (x, y)T (t), 代入方程(1)得
VT a2 (Vxx Vyy )T,
用 1 乘之,得
a 2VT
T a 2T
Vxx Vyy V
( 0),
医药&医学
3
ut a2 (uxx uyy ) (x2 y2 R2), u |x2 y2 R2 0,
u |t0 (x, y).
我们用u(x, y,t)来表示时刻 t 圆盘上点 (x, y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档