数列的极限函数的极限与洛必达法则的练习题及解析

合集下载

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限知识点 方法技巧 例题附答案和作业题

数列的极限一、知识要点1数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即|a n -a |无限地接近于0),那么就说数列}{n a 以a 为极限记作l i m n n a a →∞=.(注:a 不一定是{a n }中的项)2几个重要极限:(1)01lim=∞→nn (2)C C n =∞→lim (C 是常数)(3)()()()⎪⎩⎪⎨⎧-=>=<=∞→1,11,110lim a a a a a nn 或不存在,(4)⎪⎪⎩⎪⎪⎨⎧<=>=++++++++----∞→)()()(0lim 011101110t s t s b a t s b n b n b n b a n a n a n a s s s s t t t t n 不存在3.数列极限的运算法则:如果,lim ,lim B b A a n n n n ==∞→∞→那么B A b a n n n +=+∞→)(lim B A b a n n n -=-∞→)(limB A b a n n n .).(lim =∞→0(lim≠=∞→B B Ab a nn n4.无穷等比数列的各项和⑴公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做lim n n S S →∞=⑵1lim ,(0||1)1n n a S S q q→∞==<<- 二、方法与技巧⑴只有无穷数列才可能有极限,有限数列无极限.⑵运用数列极限的运算法则求数列极限应注意法则适应的前提条件.(参与运算的数列都有极限,运算法则适应有限个数列情形) ⑶求数列极限最后往往转化为()N m nm ∈1或()1<q q n型的极限.⑷求极限的常用方法: ①分子、分母同时除以m n 或n a .②求和(或积)的极限一般先求和(或积)再求极限. ③利用已知数列极限(如() 01lim,10lim =<=∞→∞→nq q n n n 等). ④含参数问题应对参数进行分类讨论求极限.⑤∞-∞,∞∞,0-0,0等形式,必须先化简成可求极限的类型再用四则运算求极限 题型讲解例1 求下列式子的极限: ①nnn )1(lim-∞→; ②∞→n lim 112322+++n n n ; ③∞→n lim 1122++n n ; ④∞→n lim 757222+++n n n ; (2)∞→n lim (n n +2-n );(3)∞→n lim (22n +24n +…+22n n ) 例2()B A b a B b A a n n n n n n n +=+==∞→∞→∞→lim lim ,lim 是的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分又不必要条件例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为例4 求nn nn n a a a a --∞→+-lim (a >0);例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值;例6 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n n n a a 的值.数列极限课后检测1下列极限正确的个数是( )①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n lim n n n n 3232+-=-1 ④∞→n lim C =C (C 为常数) A 2 B 3 C 4D 都不正确 3下列四个命题中正确的是( )A 若∞→n lim a n 2=A 2,则∞→n lim a n =AB 若a n >0,∞→n lim a n =A ,则A >0C 若∞→n lim a n =A ,则∞→n lim a n 2=A 2D 若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n5若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于( ) A 11 B 17 C 19 D 256数列{a n }中,n a 的极限存在,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于( )A 52B 72C 41D 254 7.∞→n lim n n ++++ 212=__________∞→n lim 32222-+n nn =____________∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]= 8已知a 、b 、c 是实常数,且∞→n lim c bn c an ++=2,∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是( )9 {a n }中a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =_____________10等比数列{a n }公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_____________11已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *)(1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值 12已知{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21, 求极限∞→n lim (111b a +221b a +…+nn b a 1)的值例题解析答案例1n的分子有界,分可以无限增大,因此极限为0;②112322+++n n n 的分子次数等于分母次数,极限为两首项(最高项)系数之比; ③∞→n lim1122++n n 的分子次数小于于分母次数,极限为0解:①0nn =; ②2222213321lim lim 3111n n n n n n n n→∞→∞++++==++; ③∞→n lim 2222121lim lim 0111n n n n n n n→∞→∞++==++ 点评:分子次数高于分母次数,极限不存在;分析:(4)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(5)因n n +2与n 都没有极限,可先分子有理化再求极限;(6)因为极限的运算法则只适用于有限个数列,需先求和再求极限解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++52 (2)∞→n lim (n n +2-n )=∞→n limnn n n ++2=∞→n lim1111++n21(3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1 点评:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim(2n 2+n +7),∞→n lim (5n 2+7)不存在,∴原式无极限对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )=∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在对于(3)要避免出现原式=∞→n lim 22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误 例2 B例3 数列{a n }和{b n }都是公差不为0的等差数列,且nn n b a ∞→lim =3,求n nn nb a a a 221lim +++∞→ 的值为解:由nnn b a ∞→lim=3⇒d 1=3d 2,∴n n n nb a a a 221lim +++∞→ =2121114])12([2)1(limd d d n b n d n n na n =-+-+∞→43 点评:化归思想 例4 求nn nn n a a a a --∞→+-lim (a >0);解:nnnn n a a a a --∞→+-lim =⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<-=+-=>=+-∞→∞→).10(111lim ),1(0),1(11111lim 2222a a a a a a a n nn n n n 点评:注意分类讨论例5 已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 解:11)()1(lim 2++-+--∞→n b n b a n a n =1,∴⎩⎨⎧=+-=-1)(01b a a ⇒a=1,b=─1例6已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求a 1的取值范围 解:∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在∴0<|q |<1或q =1当q =1时,21a -1=21,∴a 1=3 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q ∴0<|2a 1-1|<1∴0<a 1<1且a 121 综上,得0<a 1<1且a 1≠21或a 1=3 例7 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2)∞→n lim1122+-+-n nn n a a =∞→n lim n n n n c 3211--- ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c 21点评:求数列极限时要注意分类讨论思想的应用 试卷解析 1 答案:B3解析:排除法,取a n =(-1)n ,排除A ;取a n =n1,排除B;取a n =b n =n ,排除D .答案:C 5 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nnn n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…)∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C6 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ) ∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0∴∞→n lim a n =0答案:C7解析:原式=∞→n lim2)1(2++n n n =∞→n lim 221212nnn ++=0∞→n lim 32222-+n n n =∞→n lim 23221nn -+21 解析:∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim 22+n n=2 答案:C 8解析:答案:D 由∞→n lim cbn can ++=2,得a =2b由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b ∴c a =6∴∞→n lim a cn c an ++22=∞→n lim 22na c n ca ++=ca =69析:由题意得n a -1-n a =3 (n ≥2)∴{n a }是公差为3的等差数列,1a∴n a =3+(n -1)·3=3n ∴a n =3n 2∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3 10析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a 38∴a 1=2 11 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1n =2时,a 2=6代入得a 3=15同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2要证b n =2n 2,只需证a n =2n 2-n①当n =1时,a 1=2×12-1=1成立②假设当n =k 时,a k =2k 2-k 成立那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1) ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]8312 解:{a n }、{b n }的公差分别为d 1、d 2∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1),∴2d 2-3d 1=2又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n )∴原式=∞→n lim 41(1-121+n )=41。

数学分析—极限练习题及详细答案

数学分析—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。

A.sin ||xB.ln(1)x -C.11.【答案】D 。

2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。

4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。

5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ2. (i )数列{}n x a 的 (ii )f x ∞→lim ( (iii)x f x x →lim)( (iv)(v (vi )柯西条件是:ε>∀1.2.洛必达(L’ho x 趋如告诉f (x ),并且注意导数分母不能为0。

洛必达法则分为3种情况:(i )“00”“∞∞”时候直接用 (ii)“∞∙0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

通项之后,就能变成(i)中的形式了。

即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;)()(1)(1)(1)()(x g x f x f x g x g x f -=-(iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即ex f x g x g x f )(ln )()()(=,这样就能把幂上的函数移下来了,变成“∞∙0”型未定式。

3.泰勒公式(含有xe 的时候,含有正余弦的加减的时候)12)!1(!!21+++++++=n xn xx n e n x x x e θ ;3211253)!32(cos )1()!12()1(!5!3sin ++++-++-+-+-=m m m mxm x m x x x x x θ cos=221242)!22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ4.5.6.0>>>c b a ,n x =a(2)求⎥⎦⎤⎢⎣⎡++++∞→222)2(1)1(11lim n n nn解:由n nn n n n n 1111)2(1)1(110222222=+++<++++< ,以及010limlim==∞→∞→nn n 可知,原式=0 (3)求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解:由nn nn n n n n n n n n n n n n +=+++++<++++++<=++222222111121111111 ,以及11111limlimlim 2=+=+=∞→∞→∞→nnn n n n n 得,原式=17.数列极限中等比等差数列公式应用(等比数列的公比q 绝对值要小于1)。

关于数列极限和函数极限解法的解析

关于数列极限和函数极限解法的解析

关于数列极限和函数极限解法的解析王雅丽摘要在数学分析中,极限的知识体系包括数列极限和函数极限。

在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;另外,对于函数极限的求解,文中列出六种类型,根据函数数列的定义、性质得出相关的定理和法则,对于不同类型,采用不同的方法。

上述方法对函数概念的理解和加强,以及对极限方法的掌握起很大的帮助作用。

ε-定义单调有界收敛无穷小量络必达法则关键词数列极限N早在两千多年前,我们的祖先就已经能够算出正方形,圆形和柱形等几何图形的面积。

公元前3世纪刘徽创立割圆术,就是用圆内接正多边形面积这一思想近似的计算圆周率,并指出“割之弥细,所失弥少,割之又割,以致不可割,则于圆和体而无所失矣”在数学分析中,极限是一个核心内容,同时它本身研究问题的工具。

极限概念与求极限的运算贯穿了数学分析课程的始终,因此全面掌握极限的方法与技巧是学习数学分析的关键。

1 数列极限古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。

其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去。

把每天截下部分的长度列出如下(单位为尺):第一天截下12,第二天截下212……第n 天截下12n,……这样就得到一个数列{12n} 。

只有无穷数列才可能有极限,有限数列无极限.不难看出,数列{12n} 的通项12n随着n 的无限增大而无限地接近于0。

“无限增大”和“无限地接近”是对极限做了定性的描述,无限地接近于0说明了当n 无限的增大时数列的第n 项12n与0的距离102n-要多小有多小。

下面把任意小量化: 对于12,如果要求1110222nn-=<,只需要1n >即可;对于212,如果要求21110222nn-=<, 只需要2n >即可;对于 312,如果要求31110222n n -=<, 只需要3n >即可;...由上可以看出能满足不等式的n 不是唯一的,这就需要一个一般的任意小的正数来代替特殊的,如12,212,312...为此就出现了任意小的正数ε。

考研高数--巩固测试题 第一章极限习题附答案(包含全书考点)

考研高数--巩固测试题 第一章极限习题附答案(包含全书考点)

第一章函数与极限答案解析一、选择题(本题共 15小题,每小题3分,满分 45 分)1、函数 x x x y sin cos + = 是【 】(A)偶函数 (B)奇函数(C)非奇非偶函数 (D)奇偶函数【答案】B2、函数 21arccos 1 + + - = x x y 的定义域是【 】(A) ] 1 , (-¥ (B) ]1 , 3 [ - - (C) )1 , 3 (- (D) ]1 , 3 [- 【答案】D【解析】 0 1 ³ -x 且 1 211 £ + £- x ,解得 1 3 £ £ - x 3、设 îíì > £ = 10 11) ( x x x f 则 ( ) [ ]{ } x f f f 等于【 】(A )0 (B )1(C) îíì > £ 1 0 1 1 x x (D) îíì > £ 1 1 1 0 x x 【答案】B4、当 +®0 x 时,与 x 等价是无穷小量的是【 】(A ) xe - 1 (B ) xx- + 1 1 ln(C ) 11 - + x (D ) xcos 1- 【答案】B【解析】 +®0 x 时, 等价 与 x 1 - - x e , 等价 与x x 2 1 1 1 - + , 等价 与 x x 21cos 1- 1 1 1lim 11 1 lim 1 1 ln lim 0 0 0 = - + = - - + - + +++® ® ® x x x x xx x x x x x 等价代换 ,等价 与 x xx - + \ 1 1 ln 5、设 tx tx t ee x xf + + = ® 1 lim ) ( 0 ,则 0 = x 是 ) (x f 的【 】(A )连续点 (B )第一类间断点 (C )第二类间断点 (D )不能判断连续性的点【答案】A【解析】 211 e lim 1 lim ) ( 0 00 0 + = + + = + + = ® ® x e x e e x x f t tx tx t 是R 上的连续函数, 0 = \x 是 ) (x f 的连续点 6、 n n x ¥® lim 存在是数列{ }n x 有界的【 】(A)必要而非充分条件 (B)充分而非必要条件(C)充要条件(D)既非充分又非必要条件【答案】B7、如果 ) ( lim 0x f x x + ® 与 ) ( lim 0x f x x -® 存在,则【 】(A) ) ( lim 0x f x x ® 存在且 )( ) ( lim 0 0x f x f x x = ® (B) ) ( lim 0x f x x ® 不存在(C) ) ( lim 0x f x x ® 存在但不一定有 )( ) ( lim 0 0x f x f x x = ® (D) ) ( lim 0x f x x ® 不一定存在【答案】D 8、设 xx x x x f 3 4 2 ) ( - + =,则 ) ( lim 0x f x ® 为【】(A )12(B)1 3(C)1 4(D)不存在【答案】D9、如果 ) ( ), ( x g x f 都在 0 x 点处间断,那么【 】(A) ) ( ) ( x g x f + 在 0 x 点处间断 (B) ) ( ) ( x g x f - 在 0 x 点处间断 (C) ) ( ) ( x g x f + 在 0 x 点处连续 (D) ) ( ) ( x g x f + 在 0 x 点处可能连续【答案】D10、方程 0 1 4= - - x x 至少有一个根的区间是【 】(A) (0,1/2) (B) (1/2,1)(C) (2,3)(D) (1,2)【答案】D 11、设ï îïí ì = ¹ - + = 0 , 0 0 , 11 ) ( x x xx x f ,则 0 = x 是函数 ) (x f 的【 】 ‘(A)可去间断点(B)无穷间断点(C)连续点 (D)跳跃间断点【答案】A 12、已知 0 )( lim0 = ® xx f x ,且 1 ) 0 ( = f ,那么【】(A) ) (x f 在 0 = x 处不连续 (B) ) (x f 在 0 = x 处连续 (C) ) ( lim 0x f x ® 不存在(D) 1) ( lim 0= ® x f x 【答案】A13、已知当 0 ® x 时, 1 ) 1 312 - +ax ( 与 1 cos - x 是等价无穷小,则常数a 为【 】(A )32 (B) 32 -(C)23 (D) 23 -【答案】D【解析】 2 31 32 21 3 1 lim 1 1 cos 1 ) 1 ( lim 22 0 31 2 0 -= Þ = - = - Þ = - - + ® ® a a x axx ax x x14、设 () f x 和 () g x 在(,) -¥+¥ 内有定义, () f x 为连续函数,且 ()0,() f x g x ¹ 有间断点, 则必有间断点的 函数是【】(A) [()] g f x (B) 2 [()]g x (C) [()]f g x (D)()()g x f x 【答案】D【解析】 设 1 ) ( 2+ = x x f , îí ì< - ³ = 0 , 1 0 x 1 ) ( x x g , 则 ) (x f 为连续函数,且 ()0,() f x g x ¹ 有间断点 0= x 则 2 )] ( [ = x g f , 1 ) 1 ( )] ( [ 2 = + = x g x f g , 1 )] [( 2= x g 均为连续函数,所以 A,B,C 选项错 下面证明D 选项是对的,用反证法 假设()()g x f x 是连续函数,由于 () f x 是连续函数且 0 ) ( ¹ x f ) (x g Þ 也为连续函数,与假设矛盾 15、设数列 n x 与 n y 满足 0 lim = ¥® n n n y x ,则下列断言正确的是【】(A)若 n x 发散,则 n y 必发散 (B)若 n x 无界,则 n y 必有界(C)若 n x 有界,则 n y 必为无穷小 (D)若 nx 1为无穷小,则 n y 必为无穷小 【答案】D 【解析】 设 îí ì= 为奇数 , 为偶数 n n n x n 0 , , îíì= 为偶数 , 为奇数 n n n y n 0 , ,满足 0 lim = ¥® n n n y x ,但 n x 和 n y 均无界,所以(B)选项错; 设 2 1 n x n = , n y n = ,满足 0 1lim 1 lim lim 2 = = × = ¥ ® ¥ ® ¥ ® nn n y x n n n n n , n x 有界,但 n y 为无穷大,所以(C)选项 错;0 1 lim0 lim = Þ = ¥ ® ¥® nnn n n n x y y x 极限存在, 若 n x 1 为无穷小, 则 n y 必为无穷小, 否则极限是不存在的, 所以 (D) 选项正确;二、 计算题(满分 105分)1.求下列极限(本题共 6 小题,每小题4 分,满分 24分) (1))1 ( lim 1- ¥® xx e x解: 等价 与 x1 1 , 0 ) 1 ( lim 1 1- \ = - ¥ ® xx x e e , 1 1 lim 1 e lim 1= = - ¥ ® ¥ ® x x x x xx ) ( (2) )( lim x x x x x - - + +¥® 解: 11 1 1 1 2limx 2 lim= -+ + = - + + = +¥® +¥® xx xx x x x x 原式 (3) xxx x 2 sin sin tan lim3 0 - ® 解: 161 )2 ( 2 1 lim 2 sin sin tan lim3 30 3 0 = = - ® ® x xx x x x x (4) xx x 2 sin ln 5 sin ln lim 0+® 解: 1 5 sin 2 sin lim . 2 cos 2 5 cos 5 lim 2 cos 2 . 2 sin 1 5 cos 5 . 5 sin 1lim 2 sin ln 5 sin ln lim 0 0 0 0 = = = ++++® ® ® ® x x x x xxxx x x x x x x (5) xe x x x 1 ln 1 lim 0 - ® 解:方法一: 等价与 1 1 ) 1 1 1 ln( 1 ln - - - - + = - x e x e x e x x x Q 212 1 lim 1 . 1 lim ) 1 1 ( 1 lim 1 ln 1 lim 0 0 0 0 = - = - - = - - = - ® ® ® ® x e x x e x x e x x e x x x x x x x x x 方法二:洛必达法则21 2 lim 1 lim 1 1 lim 1lnlim 1 ln 1 lim 0 2 0 2 0 0 0 = = + - = + - × - = - = - ® ® ® ® ® x xe x e xe x e xe e x x x e x e x x x x x x x x x x x x x x (6) ) cos 1 ( cos 1 lim 0x x x x - - +® 解: 2 1cos 1 1 21 cos 1 lim cos 1 cos 12 1 . cos 1 lim )cos 1 ( cos 1 lim 2 0 0= + × - = + + × - = - - +++® ® ® x x x x x x x x x x x x x x 2.求下列极限(本题共 6 小题,每小题7 分,满分 42分)(1) () xx x 2 tan 4tan lim p®解:原式= )1 .(tan2 tan . 1tan 14)1 tan 1 ( lim - - ®- + x x x x x p1sin cos sin 2 lim cos 2 cos ) cos (sin 2 sin lim) 1 (tan 2 tan lim 444- = + - = - = - ®® ®x x xx x x x x x x x x x p p p1e- = \原式 (2) 21) 2 (cos lim xx x ® 解: 212 cos lim 12 cos .1 2 cos 1 012 0 22)1 2 cos 1 ( lim ) 2 (cos lim - - - - ® ® = = - + = ® eex x xx x x x x x x x (3) x x x 2tan 1)2 ( lim p- ® 解: xx x x x x x x x ex x 2tan ) 1 ( lim 2tan ) 1 ( 1 1 12tan 11 )1 1 ( lim )2 ( lim ppp- - - ® ® ® = - + = - p p p pp p p p p 2 2sin 2 2 cos ) 1 (2 2 sin lim2 cos 2 sin ) 1 ( lim 2 tan ) 1 ( lim 1 1 1 = - - + - = - = - ® ® ® xxx x x x x x x x x x p2e= \原式 (4) )33 ( lim 11 1 2+ ¥® - x x x x 解: 3ln 3 ln )1 ( 1lim ) 1 3( 3 lim ) 3 3 ( lim 2 111 1121112= + ×= - × = - ¥® + - + ¥® + ¥® x x x x x x x x x x x xx 其中 等价 与 )1 ( 11 3111 + - + - x x x x , 13 lim 1 1= + ¥ ® x x (5) ) cos 1sin 1 (lim 2 2 2 0xx x x - ® 解: 42 22 0 2 2 2 2 2 2 0 2 2 2 0 sin cos lim cos sin sin cos lim ) cos 1 sin 1 ( lim x xx x x x x x x x x x x x x x - = - = - ® ® ® 32) 3 1 ( 2 3 sin lim 2 sin cos lim sin cos lim2 0 03 0 - = - × = - = + × - = ® ® ® x x x x x x x x x x x x x x (6) xx xx ) 1cos 2 (sin lim + ¥ ® 解:令 x t 1 = 则 ) cos 2 ln(sin 10 10 lim ) cos 2 (sin lim ) 1 cos 2 (sin lim t t t t t t x x et t xx + ® ® ¥ ® = + = +2 1 cos 2 sin lim ) cos 2 ln(sin lim0 0 = - + = + ® ® tt t t t t t t , 2e= \原式 3. 2 2lim 2 2 2 = - - + + ® x x b ax x x ,求: b a , (本题满分 8 分) 解: b ax + + 2 x 和 2 x 2 - -x 均为多项式,它们都是连续函数且n 阶可导, 2 ® x 时 0 2 x 2 ® - - x 故一定符合洛必达法则的条件2 = \x 时 0 x 2 = + + b ax 即 02 4 = + + b a 2 234 1 2 2 lim 2 lim 2 2 2 2 = Þ = + = - + = - - + + \ ® ® a a x a x x x b ax x x x 8, 2 - = = \ b a 4.设 î íì > - £ = 1 , 1 1 , ) ( 2 x x x x x f , ï îïí ì > + £ < - £ = 5 , 3 5 2 ), 1 ( 2 2 , ) ( x x x x x xx g , 考察 )] ( [ x g f 的连续性. (本题满分 11 分) 解: ï ï îïïíì > - - £ < - £ < - £ = îí ì > - £ = = 5 , 2 5 2 , 2 3 2 1 , 1 1 , 1 ) ( ), ( 1 1 ) ( ), ( )] ( [ ) ( 22 x x x x x x x x x g x g x g x g x g f x F 0 1 1 ) ( lim 1= - = + ® x F x , 1 ) ( lim 1= - ® x F x , ) (x F \ 在 1 = x 处不连续1 4 3 ) ( lim2 - = - = +® x F x , 1 2 1 ) ( lim 2 - = - = -® x F x , ) (x F \ 在 2 = x 处连续7 2 5 ) ( lim 5- = - - = + ® x F x , 7 10 3 ) ( lim 5- = - = - ® x F x , ) (x F \ 在 5 = x 处连续综上可得, )] ( [ x g f 在 ), ( ) , ( ¥ + È ¥ 1 1 ­ 上连续,在 1 = x 处间断, 1 = x 为其跳跃间断点。

高中数学练习题附带解析极限的计算与性质

高中数学练习题附带解析极限的计算与性质

高中数学练习题附带解析极限的计算与性质高中数学练习题附带解析:极限的计算与性质一、单项选择题1.设f(x) = $\sqrt[]{x}$,则$\lim\limits_{x\to4}f(x)$的值为()。

A.2B.4C.1D.不存在解析:由函数$\sqrt[]{x}$的图像可以看出,$\lim\limits_{x\to4}f(x) = \sqrt[]{4} = 2$,故选A。

2.设$f(x) = \dfrac{2x}{x+1}$,则$\lim\limits_{x\to+\infty}f(x)$的值为()。

A.0B.1C.2D.不存在解析:由$\lim\limits_{x\to+\infty}\dfrac{2x}{x+1} = 2$,故选C。

3.设$f(x) = \sin{x} + \cos{x}$,则$\lim\limits_{x\to\frac{\pi}{4}}\dfrac{f(x)-\sqrt[]{2}}{x-\frac{\pi}{4}}$的值为()。

A.-1B.0C.1D.不存在解析:$\lim\limits_{x\to\frac{\pi}{4}}\dfrac{f(x)-\sqrt[]{2}}{x-\frac{\pi}{4}} = \lim\limits_{x\to\frac{\pi}{4}} \dfrac{\sin{x}+\cos{x}-\sqrt[]{2}}{x-\frac{\pi}{4}} =\lim\limits_{x\to\frac{\pi}{4}}\dfrac{\sqrt[]{2}\sin{\frac{\pi}{4}}+\sqrt[]{2}\cos{\frac{\pi}{4}}-\sin{x}-\cos{x}}{\sqrt[]{2}(x-\frac{\pi}{4})}=-\dfrac{\sqrt[]{2}}{2}$,故选A。

二、填空题1.$\lim\limits_{x\to0}\dfrac{\tan{3x}}{\tan{5x}}=$______。

考研高数--洛必达法则及函数的连续性

考研高数--洛必达法则及函数的连续性

洛必达法则及函数的连续性一、洛必达法则A、洛必达法则使用条件1、下列各题计算过程中正确无误的是( )(A )数列极限()01lim ln lim ln lim ==''=∞→∞→∞→nn n n n n n n (B )06sin lim 26cos lim 123sin lim 21121=ππ-=-ππ=--π→→→x x x x x x x x x (C )xx xx x x x x x cos 1cos 1sin 2lim sin 1sin lim 020-=→→不存在 (D )∞=-+=-+→→xx x x x x x x cos 1cos 1lim sin sin lim 002、求x x x x x cos 23sin 3lim -+∞→3、求230)(arctan 1sinlim x x x x →用洛必达法则应注意的事项:(1)只有00或∞∞型的未定式,才可能用法则,一次利用法则后得到的式子只要是00或∞∞,则可一直用下去 (2)每用完一次法则,要将式子整理化简(3)为简化运算,经常将法则与等价无穷小结合使用(4))()(lim x g x f ax ''→不存在(非∞型) )()(lim x g x f a x →不存在 (5)当∞→x 时,极限式中含有x x cos ,sin 不能用法则(6)当0→x 时,极限式中含有xx 1cos ,1sin 不能用法则B 、未定式的极限运算的原则:一步比一步简单 a. 00型 4、30)(arcsin arcsin limx x x x -→5、)1ln(1sin 21lim0x x x x x +--+→6、11lim32cos 0-+-→x e e x xb. ∞∞型 7、求2202limx x t x xe dt e t ⎰+∞→提示:若∞→x 的极限中含有)1,0(≠>a a a x ,或x a r c t a n ,x arc cot ,一定要分别求出+∞→x 与-∞→x 的极限,两者相等,则∞→x 时的极限存在,否则不存在8、求xe x x e x x x +-∞→arctan limc.∞-∞型⇒00或∞∞型,再用法则或“抓大头”方法处理,求解方法有三种 (1)通分 (2)根式有理化 (3)变量替换9、求)cot 1(lim 220x xx -→10、求)(lim x x x x x -+++∞→11、求)]11ln([lim 2xx x x +-∞→d.∞⋅0型⇒00或∞∞型,再用法则或“抓大头”方法处理 12、22)2arctan 2(lim x x x -∞→π13、]1)3cos 2[(1lim30-+→x x x x14、xx x x sin ln 1lim20→e.∞∞1000,,型用对数恒等式 ∞⋅0型⇒00或∞∞型 15、x x x ln 120lim +→+16、x x x sin 0)(cot lim +→17、x x x )arctan 2(lim π+∞→18、210)arcsin (lim x x x x →19、21)1(sin lim n n n ∞→(提示:数列的极限转化为函数的极限求解)二、间断点的判定(关键是会求极限) 20、求下列函数的间断点并判别类型(1)1212)(11+-=x x x f(2)x x x x f n nn ⋅+-=∞→2211lim )((3)⎪⎪⎩⎪⎪⎨⎧>-≤+=011sin 0cos 2)2()(2x x x x x x x f π先判断第二类:左右极限)0(0+x f ,)0(0-x f 至少有一个不存在 再判断第一类:)0(0+x f )0(0-=x f 可去间断点)0(0+x f )0(0-≠x f 跳跃间断点三、极限式中常数的确定常用方法:(1)抓大头;(2)洛必达法则21、设8)1()1()1(lim 502595=+++∞→x ax x n ,则a 的值为【 】 (A )1 (B )2 (C )58 (D )以上均不对22、设0)23()5)(4)(3)(2)(1(lim ≠=------∞→βαx x x x x x x ,则βα,的数值为【 】 (A )31,1==βα (B )31,5==βα (C ) 531,5==βα (D )以上均不对23、设)]sin (sin sin 1[sin 1)(22x x x xx f βα+-++=,且0=x 是)(x f 的可去间断点,求βα,24、确定正数a 和b ,使得2sin 1lim 0220=+-⎰→dt ta t x bx x x。

大学高数真题及答案解析

大学高数真题及答案解析

大学高数真题及答案解析大学高等数学作为大学学习的一门重要基础课程,对于培养学生的数学思维和分析能力具有举足轻重的作用。

在学习过程中,做好真题练习是提高数学水平的一个重要方法。

本文将以大学高数的真题及答案解析为主题,深入探讨一些经典的问题。

第一部分:极限与导数大学高数的第一章是极限与导数。

极限是高数的基础概念之一,在此通过练习题来讲解。

1. 求极限:$$\lim_{x \to 0} \frac{\sin x}{x}$$解析:可以通过洛必达法则求解,即对分子和分母同时求导。

得到:$$\lim_{x \to 0} \frac{\cos x}{1}=1$$2. 求极限:$$\lim_{n \to \infty}\left(1+\frac{1}{n}\right)^n$$解析:这是一个经典的极限题。

可以用数学归纳法证明$n$趋近于无穷大时这个极限是$e$,即$$\lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n=e$$3. 求极限:$$\lim_{x \to \infty}{x^{\frac{1}{x}}}$$解析:这是一个关于无穷大指数的极限题。

可以用自然对数的特性来解答,即$$\lim_{x \to \infty}{x^{\frac{1}{x}}}=\lim_{x \to\infty}{e^{\frac{\ln x}{x}}}$$然后再用洛必达法则求解,得到:$$\lim_{x \to \infty}{e^{\frac{\ln x}{x}}}=e^0=1$$第二部分:积分与微分方程大学高数的第二章是积分与微分方程。

积分是微分的逆运算,通过各种积分方法可以解决多种复杂问题。

1. 求积分:$$\int e^x \sin x dx$$解析:通过分部积分法可以求解这个积分,得到:$$\int e^x \sin x dx = e^x\sin x - \int e^x \cos x dx$$对于$\int e^x \cos x dx$,再次使用分部积分法可得:$$\int e^x \cos x dx = e^x\cos x - \int e^x (-\sin x) dx = e^x\cos x + \int e^x \sin x dx$$将两个方程相加消去$\int e^x \sin x dx$,得到:$$\int e^x \sin x dx = \frac{1}{2}(e^x \sin x - e^x \cosx) + C$$2. 求解微分方程:$$y''-2y'+y=0$$解析:这是一个二阶齐次线性微分方程。

求极限的方法及例题总结

求极限的方法及例题总结
说明:极限号下面的极限过程是一致的;同时注意法则成立的条 件,当条件不满足时,不能用。 . 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情 况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变 形或化简。
8.用初等方法变形后,再利用极限运算法则求极限 例1 解:原式= 。 注:本题也可以用洛比达法则。
16直接使用求导数的定义来求极限 , (一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,
别注意)
看见了有特
十、利用级数收敛的必要条件求极限 级数收敛的必要条件是:若级数
收敛,则 ,故对某些极限 ,可将函数 作为级数 的一般项,只须证明此技术收敛,便有
。 例
十一、利用幂级数的和函数求极限 当数列本身就是某个级数的部分和数列时,求该数列的极限就成了 求相应级数的和,此时常可以辅助性的构造一个函数项级数(通常为幂 级数,有时为Fourier级数)。使得要求的极限恰好是该函数项级数的 和函数在某点的值。 例求
(2)和都可导,且的导数不为0; (3)存在(或是无穷大); 则极限也一定存在,且等于,即= 。 说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满 足,只要有一条不满足,洛比达法则就不能应用。特别要注意条件 (1)是否满足,即验证所求极限是否为“”型或“”型;条件(2)一般都 满足,而条件(3)则在求导完毕后可以知道是否满足。另外,洛比达 法则可以连续使用,但每次使用之前都需要注意条件。
定理3 当时,下列函数都是无穷小(即极限是0),且相互等价,即 有: ~~~~~~ 。 说明:当上面每个函数中的自变量x换成时(),仍有上面的等价 关系成立,例如:当时, ~ ; ~ 。
定理4 如果函数都是时的无穷小,且~,~,则当存在时,也存在且 等于,即=。

求极限的方法及例题总结解读

求极限的方法及例题总结解读

1.定义:说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5)13(lim 2=-→x x(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。

利用导数的定义求极限这种方法要求熟练的掌握导数的定义。

2.极限运算法则定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ⋅=⋅)()(lim (3))0(,)()(lim成立此时需≠=B B Ax g x f说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。

通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。

注:本题也可以用洛比达法则。

例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim =-++=-++--+∞→∞→nn n n n n n n nn 分子分母同除以。

例3 nnn n n 323)1(lim ++-∞→解:原式11)32(1)31(lim 3=++-=∞→nn n n上下同除以。

3.两个重要极限(1)1sin lim0=→x xx(2)ex xx =+→1)1(lim ;ex x x =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,例如:133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x xx =+∞→3)31(lim ;等等。

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解1. 求数列极限)sin 1(sin lim n n n -+→∞本题求解极限的关键是运用三角函数和差化积公式,将算式进行转化,进而求出极限,过程如下:n n sin 1sin -+=21sin 21cos2nn n n -+++ =)1121sin(21cos2n n nn n n n n ++++⋅-+++ =)121sin(21cos2nn n n ++++)(0∞→→n ∴ )sin 1(sin lim n n n -+→∞=0这是因为,当∞→n 时,0)1(21sin→++n n ,而21cos n n ++是有界函数,有界函数与无穷小的乘积仍然是无穷小,所以原式极限为0。

2. 令Sn =∑=+nk k k1)!1( ,求数列极限Sn n ∞→lim 解:)!1(1!1)!1(+-=+n n n n ∴∑=+nk k k 1)!1(=))!1(1!1()!1)!1(1()!41!31()!31!21()!21!11(+-+--++-+-+-n n n n =1)(1)!1(1∞→→+-n n 所以, Sn n ∞→lim =[lim →∞n 1)!1(1+-n ]=13. 求数列极限)4321(lim 132-→∞+++++n n nq q q q ,其中1<q 且0≠q 。

解:令Sn =1324321-+++++n nq q q q ,将等式两边同时乘以q ,得到Sn q ⋅=n n nq q n q q q q +-+++++-1432)1(4321 将以上两式相减,可得(1-q )·Sn =n n nq q q q q -+++++-)1(132 上面的算式两边同时除以1-q ,得到Sn =q nq q q q q q nn ---+++++-111132当1<q 且时∞→n ,0→n nq (注:证明附后), 1321-+++++n q q q q →q-11, ∴ Sn n →∞lim =2)1(1q --q nq n n -→∞1lim =2)1(1q -即 )4321(lim 132-→∞+++++n n nqq q q =2)1(1q -附注:关于0lim =∞→nn nq 的证明 若1<q 且0≠q ,当∞→n 时,0→nq 。

洛必达法则在求函数极限中的应用选题背景和意义

洛必达法则在求函数极限中的应用选题背景和意义

洛必达法则在求函数极限中的应用选题背景和意义全文共四篇示例,供读者参考第一篇示例:洛必达法则是微积分中的重要概念,用来求解函数极限的一种有效方法。

在求函数极限时,有时会遇到一种无穷大/无穷小的形式,此时就可以借助洛必达法则来简化计算。

洛必达法则的原理是当极限的分子和分母都趋向于无穷大或无穷小时,可以通过求导的方式来简化极限的计算,从而得到准确的极限值。

洛必达法则的应用极大地方便了函数极限的求解过程,提高了求解效率,拓展了极限的应用范围。

选题背景与意义:1.数学基础的重要性:微积分是数学的重要分支之一,为许多其他学科提供了理论基础和工具支持。

函数极限是微积分中的基础概念,是研究函数性质及其变化规律的重要手段。

掌握好函数极限的求解方法,不仅有助于提高数学素养,还可以为后续学习更高级的数学知识打下坚实基础。

2.应用领域的广泛性:在教学过程中,函数极限是一个重要的教学内容,而洛必达法则是求解函数极限的一种经典方法。

熟练掌握洛必达法则的应用,不仅可以帮助学生更好地理解函数极限的概念,还可以帮助教师更加生动地展示数学原理和计算技巧,提高教学效果。

在科研领域,洛必达法则的灵活运用也为研究人员提供了一种有效的工具,可以帮助他们更快速地解决函数极限相关的问题,推动科学研究的进展。

洛必达法则在求解函数极限中的应用具有重要的理论和实际意义。

深入研究其原理和方法,提升其在教学和科研中的应用价值,将有助于促进数学教育的发展和推动科学研究的进步。

希望未来能有更多关于洛必达法则在函数极限中的研究与探讨,为数学领域的发展贡献一份力量。

第二篇示例:洛必达法则是微积分中极端重要的定理之一,它为我们解决求函数极限问题提供了一种简单有效的方法。

在实际学习生活中,很多函数在某一点处的极限可能并不容易直接求出,但是通过洛必达法则可以简化计算过程,得到更加准确的结果。

深入研究洛必达法则在求函数极限中的应用显得尤为重要和有意义。

选题背景:洛必达法则由法国数学家洛必达在18世纪提出,并且在微积分课程中得到了广泛的应用。

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解1. 求数列极限)sin 1(sin lim n n n -+→∞本题求解极限的关键是运用三角函数和差化积公式,将算式进行转化,进而求出极限,过程如下:n n sin 1sin -+=21sin 21cos2nn n n -+++ =)1121sin(21cos2n n nn n n n n ++++⋅-+++ =)121sin(21cos2nn n n ++++)(0∞→→n ∴ )sin 1(sin lim n n n -+→∞=0这是因为,当∞→n 时,0)1(21sin→++n n ,而21cos n n ++是有界函数,有界函数与无穷小的乘积仍然是无穷小,所以原式极限为0。

2. 令Sn =∑=+nk k k1)!1( ,求数列极限Sn n ∞→lim 解:)!1(1!1)!1(+-=+n n n n ∴∑=+nk k k 1)!1(=))!1(1!1()!1)!1(1()!41!31()!31!21()!21!11(+-+--++-+-+-n n n n =1)(1)!1(1∞→→+-n n 所以, Sn n ∞→lim =[lim →∞n 1)!1(1+-n ]=13. 求数列极限)4321(lim 132-→∞+++++n n nq q q q ,其中1<q 且0≠q 。

解:令Sn =1324321-+++++n nq q q q ,将等式两边同时乘以q ,得到Sn q ⋅=n n nq q n q q q q +-+++++-1432)1(4321 将以上两式相减,可得(1-q )·Sn =n n nq q q q q -+++++-)1(132 上面的算式两边同时除以1-q ,得到Sn =q nq q q q q q nn ---+++++-111132当1<q 且时∞→n ,0→n nq (注:证明附后), 1321-+++++n q q q q →q-11, ∴ Sn n →∞lim =2)1(1q --q nq n n -→∞1lim =2)1(1q -即 )4321(lim 132-→∞+++++n n nqq q q =2)1(1q -附注:关于0lim =∞→nn nq 的证明 若1<q 且0≠q ,当∞→n 时,0→nq 。

求极限的方法及例题总结

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5)13(lim 2=-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。

利用导数的定义求极限这种方法要求熟练的掌握导数的定义。

2.极限运算法则定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B B Ax g x f说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。

通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。

注:本题也可以用洛比达法则。

例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim=-++=-++--+∞→∞→nn n n n n n n nn 分子分母同除以。

例3 nn n n n 323)1(lim++-∞→解:原式11)32(1)31(lim 3=++-=∞→n n n n上下同除以 。

3.两个重要极限(1) 1sin lim 0=→x xx(2)ex xx =+→1)1(lim ; ex x x =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,例如:133sin lim0=→x xx ,ex xx =--→210)21(lim ,ex xx =+∞→3)31(lim ;等等。

求极限的方法及例题总结

求极限的方法及例题总结

1.定义:说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5)13(lim 2=-→x x(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。

利用导数的定义求极限这种方法要求熟练的掌握导数的定义。

2.极限运算法则定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ⋅=⋅)()(lim (3))0(,)()(lim成立此时需≠=B B Ax g x f说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。

通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。

8.用初等方法变形后,再利用极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。

注:本题也可以用洛比达法则。

例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim=-++=-++--+∞→∞→nn n n n n n n nn 分子分母同除以。

例3 nn n n n 323)1(lim ++-∞→解:原式11)32(1)31(lim 3=++-=∞→nn n n上下同除以。

3.两个重要极限(1)1sin lim0=→x xx(2)ex xx =+→1)1(lim ;ex x x =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,例如:133sin lim0=→x xx ,e x xx =--→21)21(lim ,e x xx =+∞→3)31(lim ;等等。

求极限方法汇总(含例题及考研真题)

求极限方法汇总(含例题及考研真题)

求极限⽅法汇总(含例题及考研真题)1、常⽤等价⽆穷⼩:当0x →时, sin x x :,tan x x :,arcsin x x :, 211cos 2x x -:,ln(1+x)~x ,ex-1~x ,(1+x)a-1~ax ,ax-1~xlna ) 2、泰勒公式(麦克劳林公式) n n x n f x f x f f x f !)0( !2)0()0()0()()(2++''+'+≈ n x x n x x e !1 !2112++++≈)()!12()1(!51!31sin 212153x R x m x x x x m m m +--+++-=-- 3、洛必达法则定理1 (洛必达法则Ⅰ)若函数)(),(x g x f 满⾜条件: (1) ;0)(lim ,0)(lim ==x g x f(2) )(),(x g x f 在点0x 的某个邻域内(点0x 可除外)可导,且0)(0≠'x g ; (3) A x g x f ='')()(lim(或∞) 则 A x g x f x g x f =='')()(lim )()(lim(或∞). 定理2 (洛必达法则Ⅱ)若函数)(),(x g x f 满⾜条件: (1) ;)(lim ,)(lim ∞=∞=x g x f (2) )(),(x g x f 在点0x 的某个邻域内(点0x 可除外)可导,且0)(0≠'x g ; (3) A x g x f ='')()(lim(或∞) 则 A x g x f x g x f =='')()(lim )()(lim(或∞). 4、定积分定义定积分是⽤极限来定义的∑?=→?=ni i i bax f dx x f 1)(lim )(ξλ5、两个重要极限1sin lim 0=→x x x ,e xx x =+∞→)11(lim1(2010数学⼀)2013(1) 设cos 1sin ()x x x α-=,其中()2x πα<,则当0x →时,()x α是( )(A) ⽐x ⾼阶的⽆穷⼩ (B) ⽐x 低阶的⽆穷⼩ (C) 与x 同阶但不等价的⽆穷⼩ (D) 与x 等价的⽆穷⼩【答案】(C)【解析】cos 1sin ()x x x α-=?Q ,(已知条件)21cos 1~2x x --21sin ()~2x x x α∴?- 1sin ()~2x x α∴-⼜sin ()~()x x ααQ (sin x x :) 1()~2x x α∴-∴()x α与x 同阶但不等价的⽆穷⼩. 所以选(C ).3(2010数学三)若1])1(1[lim =--→x o x e a x x 则a =A0 B1 C2 D3 答案:C6(2010数学三)求极限xx x x ln 11)1(lim -+∞→答案:1ln 11ln 2ln ln )1(lim 1ln ln 1lim ln 1ln lim ln )1ln(lim,0ln ,,ln 11lim ln )1ln(limln ln -+∞→+∞→+∞→+∞→∞→∞→=-∴-=-=-?=-→+∞→-?-=-e x x xx x xx e x e xxx x x e xe x e xxx x xx x x x x xx xx 故⽽当Θe^x-1~x9(2011数学⼀)求极限110ln(1)lim xex x x -→+??【答案】12e-【考点分析】:本题考查极限的计算,属于1∞形式的极限。

第二章极限习题及答案:极限的四则运算

第二章极限习题及答案:极限的四则运算

自变量趋向无穷时函数的极限例 求下列极限:(1)42242115lim x x x x x --+-∞→(2)⎪⎪⎭⎫⎝⎛+--∞→1212lim 223x x x x x 分析:第(1)题中,当∞→x 时,分子、分母都趋于无穷大,属于“∞∞”型,变形的一般方法是分子、分母同除以x 的最高次幂,再应用极限的运算法则.第(2)题中,当∞→x 时,分式1223-x x 与122+x x 都趋向于∞,这种形式叫“∞-∞”型,变形的一般方法是先通分,变成“∞∞”型或“00”型,再求极限.解:(1)211151lim 2115lim 24424224--+-=--+-∞→∞→xx x x x x x x x x .212000012lim 1lim 1lim 1lim 5lim 1lim 2442-=--+-=--+-=∞→∞→∞→∞→∞→∞→x x x x x x x x xx(2))12)(12()12()12(lim 1212lim 2223223+---+=⎪⎪⎭⎫ ⎝⎛+--∞→∞→x x x x x x x x x x x x )12)(12(11lim)12)(12(lim2223xx xx x xx x x +-+=+-+=∞→∞→ 41)02)(02(01)12(lim )12(lim )11(lim 2=+-+=+-+=∞→∞→∞→xx x x x x说明:“∞∞”型的式子求极限类似于数列极限的求法.无穷减无穷型极限求解例 求极限:(1))11(lim 22x x x x x +--++-∞→(2))11(lim 22x x x x x +--+++∞→分析:含根式的函数求极限,一般要先进行变形,进行分子、分母有理化,再求极限. 解:(1)原式22112limxx x x xx +-+++=-∞→222112limxx x x x x +-+++-=-∞→.11111112lim22-=+-+++-=-∞→x xx xx(2)原式22112limxx x x xx +-+++=+∞→.11111112lim22=+-+++=+∞→x xx xx说明:当<x 时,2x x ≠,因此211111121122222→+-+++≠+-+++x xx xxx x x x.利用运算法则求极限例 计算下列极限: (1)⎪⎭⎫⎝⎛+-+++++++∞→123171411lim 2222n n n n n n ; (2)()⎥⎦⎤⎢⎣⎡-+++--∞→n n n 3112719131lim 1 . (1992年全国高考试题,文科难度0.63)解: (1)原式()11321lim 2+-=∞→n n n n()232213lim 123lim 222=+-=+-=∞→∞→nn n n n n n . (2)原式⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→31131131limnn[]41014131141lim =-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛--=∞→nn .说明:该题计算时,要先求和,再求所得代数式的极限,不能将只适用有限个数列的加、减、乘、除的数列极限的四则运算法则,照搬到无限个数列的加、减、乘、除,超出了法则的适用范围,下面的计算是错误的: (1)原式123lim14lim 11lim 222+-+++++=∞→∞→∞→n n n n n n n (2)原式()4131131027********lim 271lim 91lim 31lim 1=⎪⎭⎫ ⎝⎛--=+++-=-+++-=-∞→∞→∞→∞→ n n n n n n 用二项式定理展开或逆用等比数列和公式化简求极限例 设*N p ∈,求nn p n 1111lim1-⎪⎭⎫ ⎝⎛++∞→.分析:把111+⎪⎭⎫⎝⎛+p n 用二项式定理展开或逆用等比数列和公式即可求得.解:111221111)1()1(1111++++++++++=⎪⎭⎫ ⎝⎛+p p p p p p nC n C n C n pp p p p p p nC C n C n C nn )1()1(111111131221111++++++++++=-⎪⎭⎫ ⎝⎛+∴11111lim 111+==-⎪⎭⎫ ⎝⎛+∴++∞→p C nn p p n或:逆用等比数列求和公式:原式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=∞→pn n n n 1111111lim 211111+=+++=+p p个说明:要注意p 是与n 无关的正整数,111+⎪⎭⎫⎝⎛+p n 不是无限项,对某些分式求极限应先对式子进行必要的变形,使之成为便于求极限的形式,以利问题的解决,经常用到的技巧是分母、分子有理化或按二项式定理展开等等.零乘无穷型转化为无穷除无穷型例 求.)1(lim n n n n -+∞→分析:当∞→n 时,所求极限相当于∞⋅0型,需要设法化为我们熟悉的∞∞型. 解: n n n n )1(lim -+∞→.211111lim 1lim)1()1)(1(lim =++=++=++++-+=∞→∞→∞→nnn n n n n n n n n n n n说明:对于这种含有根号的∞⋅0型的极限,可采取分子有理化或分母有理化来实现.如本题是通过分子有理化,从而化为nn n++1,即为∞∞型,也可以将分子、分母同除以n的最高次幂即n ,完成极限的计算.根据极限确定字母的范围例 已知161)2(44lim 2=+++∞→n n n n m ,求实数m 的取值范围. 分析:这是一个已知极限的值求参数的范围问题,我们仍然从求极限入手来解决.解:16142161lim )2(44lim 2=⎪⎭⎫⎝⎛++=++∞→+∞→nn n n nn m m 于是142<+m ,即26,424<<-<+<-m m . 说明:在解题过程中,运用了逆向思维,由16142161lim =⎪⎭⎫⎝⎛++∞→n n m 可知,nm ⎪⎭⎫⎝⎛+42的极限必为0,而0→nq 的充要条件是1<q ,于是解不等式142<+m . 零比零型的极限例 求xx x 11lim10-+→. 分析:这是一个00型的极限,显然当0→x 时,直接从函数x x 1110-+分子、分母中约去x 有困难,但是1110-+x 当0→x 时也趋近于0,此时x 化为1)1(1010-+x ,这就启发我们通过换元来解决这一难题,即设101x y +=,则110-=y x .解:设101x y +=,则110-=y x ,于是,当0→x 时,1→y .原式10111lim 11lim891101=++++=--=→→y y y y y y y 说明:本题采用的换元法是把0→x 化为01→-y ,这是一种变量代换.灵活地运用这种代换,可以解决一些型的极限问题. 例如对于11lim 21--→x x x ,我们一般采用因式分解,然后约去1-x ,得到2)1(lim 1=+→x x .其实也可以采用这种代换,即设1-=x t ,则当1→x 时,0→t ,这样就有.2)2(lim 1)1(lim 11lim 02021=+=-+=--→→→t tt x x t t x 组合与极限的综合题例 ) (lim 1222=++∞→n n nn n C CA .0B .2C .21 D .41 分析:将组合项展开后化简再求极限.解: 1222lim ++∞→n n nn n C C.4126412lim )22)(12()1(lim)!22()!1()!1(!!)!2(lim 222=++++=+++=⎥⎦⎤⎢⎣⎡++⋅+⋅=∞→∞→∞→n n n n n n n n n n n n n n n n 故应选D .说明:本题考查组合的运算和数列极限的概念.高考填空题1.计算.________)2(lim =+∞→nn n n 2.若数列{}n a 的通项公式是)N ()1(1*∈+=n n n a n ,则.________)(lim 21=+∞→n n a n a3.计算:.________)13(lim =++∞→nn n n1.解析 22222221221lim 2lim -+--+-∞→∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+e n n n n n n n nn n n说明:利用数列极限公式e n nn =⎪⎭⎫⎝⎛+∞→11lim ,把原题的代数式稍加变形即可获解.本题主要考查灵活运用数列极限公式的能力.2.解析 .21,)1(11=∴+=a n n a n.23121)11121(lim )1(121lim 2=+=++=⎥⎦⎤⎢⎣⎡+⋅+∴∞→∞→nn n n n n说明:本题的思考障碍点是如何求1a ?——只要懂得在通项公式中令1=n ,可立得1a 的具体值,本题考查数列极限的基本知识.3.解析 nn n n )13(lim ++∞→ 21221)121(lim e n n n n n =⎥⎦⎤⎢⎣⎡++=++∞→说明:本题考查数列极限公式的应用.根据已知极限和四则运算求其它极限例 若12lim =∞→n n na ,且n n a ∞→lim 存在,则.________)1(lim =-∞→n n a nA .0B .21 C .21- D .不存在 分析:根据题设知n na 和n a 均存在极限,这是进行极限运算的前提,然后相减即可求得结论.解:,lim ,12lim 存在n n n n na na ∞→∞→=0lim 021lim2lim lim =∴==∴∞→∞→∞→∞→n n n nn nn a n na a又21lim ,12lim ==∞→∞→n n n n na na ∴21210lim lim )(lim )1(lim =-=-=-=-∞→∞→∞→∞→n n n n n n n n n na a na a a n 即.21)1(lim -=-∞→n n a n选C .说明:n n a ∞→lim 是关键,不能错误地认为0lim =∞→n n a ,0)1(lim =-∞→n n a n .两个数列{}n a 、{}n b 的极限存在是两个数列的和.差、积存在极限的充分条件.但⎭⎬⎫⎩⎨⎧n n b a 的极限不一定存在.化简表达式再求数列的极限例 求下列极限 (1)⎪⎭⎫⎝⎛+++++++++∞→112171513lim 2222n n n n n n (2)nnn 21412113191311lim ++++++++∞→ (3)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→211511411311lim n n n 分析:先运用等差数列、等比数列的前n 项公式求和,或运用其他方式化简所给表达式,再进行极限的四则运算.解:(1)原式1)12(753lim2++++++=∞→n n n11121lim 1)2(lim 22=++=++=∞→∞→nn n n n n n (2)原式nn n n nn ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∞→∞→211311lim 34211231123lim4301013421lim 1lim 31lim 1lim 34=--⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=∞→∞→∞→∞→n n n nn n (3)原式.222lim21544332lim =+=⎪⎭⎫ ⎝⎛++⋅⋅⋅=∞→∞→n n n n n n n 说明:先化简,再求极限是求极限经常用到的方法,不能认为0112lim ,,015lim ,013lim 222=++=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→∞→n n n n n n n 而得到(1)的结果是0.无穷比无穷和字母讨论的数列极限例 求下列极限:(1)n n n n n 3423352lim 11⋅+⋅⋅-++∞→ (2))0(11lim>+-∞→a a a nnn 分析:第(1)题属“∞∞”型,一般方法是分子,分母同除以各式中幂的值最大的式子.第(2)题中当a 的值在不同范围内变化时,分子,分母的极限或变化趋势)不同,因此要分各种情形进行讨论.解:(1)原式432315322lim 342331522lim +⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫⎝⎛⋅=⋅+⋅⋅-⋅=∞→∞→n nn n n nn n .41540315024lim 32lim 315lim 32lim 2-=+⨯-⨯=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=∞→∞→∞→∞→n nn n nn (2)当10<<a 时,01111lim 11lim=+-=+-∞→∞→n n n n a a , 当1>a 时,.110101lim 1lim 1lim 1lim 1111lim 11lim -=+-=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→∞→∞→∞→∞→n n n n nn n n n n n n a a a a a a说明:含参数的式子求极限,经常要进行讨论,容易出现的问题是错误地认为0lim =∞→n n a .根据极限确定等比数列首项的取值范围例 已知等比数列{}n a 的首项为1a ,公比为q ,且有211lim 1=⎪⎪⎭⎫ ⎝⎛-+∞→n n q q a ,求1a 的取值范围.分析:由已知条件及所给式子的极限存在,可知nn q ∞→lim 存在,因此可得q 的取值范围,从而确定出1a 的取值范围.解:由211lim 1=⎪⎪⎭⎫⎝⎛-+∞→n n q q a ,得nn q ∞→lim 存在. ∴1<q 且0≠q 或1=q .. 当1<q 时,有2111=+q a , ∴121-=a q ,∴112<-a 解得101<<a , 又0≠q ,因此211≠a . 当1=q 时,这时有2112lim 1=⎪⎭⎫⎝⎛-∞→a n , ∴31=a .综上可得:101<<a ,且211≠a 或31=a . 说明:在解决与数列有关的问题时,应充分注意相关知识的性质,仅从极限的角度出发来考虑q 的特点,容易将0≠q 这一条件忽视,从而导致错误.求函数在某一点处的极限例 求下列极限:(1)⎪⎪⎭⎫⎝⎛++++→22423lim 3322x x x x x (2)401335172lim 225++++→x x x x x(3)xxx 320cos 1sin lim -→(4)⎪⎭⎫⎝⎛---→9631lim 23x x x分析:第(1)题中,2=x 在函数的定义域内,可直接用极限的四则运算法则求极限;(2)、(3)两个极限分子、分母都趋近于0,属“”型,必须先对函数变形,然后施行四则运算;(4)为“∞-∞”型,也应先对函数作适当的变形,再进行极限的运算.解:(1)22lim 423lim 22423lim 332223322++++=⎪⎪⎭⎫ ⎝⎛++++→→→x x x x x x x x x x x)2(lim 2lim )4(lim )23(lim 3232222++++=→→→→x x x x x x x x2lim lim lim 24lim lim 2lim lim 32323223222→→→→→→→++++=x x x x x x x x x x x.513581222242223322=+=+⨯+++⨯= (2).18)5(7)5(2872lim )8)(5()72)(5(lim 401335172lim 55225-=+-+-⨯=++=++++=++++→→→x x x x x x x x x x x x x (3)xx x x x x x x x x x 20220320cos cos 1cos 1lim )cos cos 1)(cos 1(cos 1lim cos 1sin lim +++=++--=-→→→ .3211111=+++= (4).6133131lim 96)3(lim 9631lim 32323=+=+=--+=⎪⎭⎫⎝⎛---→→→x x x x x x x x 说明:不能错误地认为,由于31lim3-→x x 不存在,96lim 23-→x x 也不存在,因此(4)式的极限不存在.(4)属于“∞-∞”型,一般要先对函数式进行变形,变为“00”型或“∞∞”型,再求极限.函数在某一点处零比零型的极限例 求下列极限:(1)3111lim x x x --→ (2)xx x x 32sin sin tan lim -→π 分析:第(1)题中,当1→x 时,分子、分母的极限都是0,不能用商的极限的运算法则,应该先对分式变形,约去一个极限为零的因式后再应用极限的运算法则求分式的极限,常用的变换方法有:①对多项式进行因式分解;②对无理式分子或分母有理化;③对三角函数式(如第(2)题,先进行三角恒等变换,再约分.解:(1)原式)1)(1)((1()1)(1)(1(lim 32333231x x x x x x x x x +++-+++-=→.23111111)1(lim )1)(1()1)(1(lim 32313231=+++=+++=+-++-=→→xx x x x x x x x x(2)原式xx x x x x xx x x cos sin cos sin sin lim sin sin cos sin lim 3232⋅-=-=→→ππ .211)11(1cos )cos 1(1lim cos sin cos 1lim222=⨯+=⋅+=⋅-=→→x x x x x ππ 说明:如果分子、分母同乘以31x +,对(1)式进行变形,思维就会受阻,正确的方法是分子、分母同乘以分子、分母的有理化因式,分母的有理化因式是)1(323x x ++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的极限函数的极限与洛必达法则的练习题及解析
一、单项选择题(每小题4分,共24分)
3. 若()0lim x x f x →=∞,()0
lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞⎡⎤⎣
⎦ B . ()()0lim x x f x g x →-=∞⎡⎤⎣
⎦ C . ()()
01lim 0x x f x g x →=+ D . ()()0
lim 0x x kf x k →=∞≠ 解:()()000lim lim x x x x k kf x k f x k →→≠==⋅∞∞ ∴选D
6.当n →∞时,
1k n 与1k n 为等价无穷小,则k=( ) A .12
B .1
C .2
D .-2 解:2
211sin lim lim 1,21
1n n k k
n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分)
8.2112lim 11x x x →⎛⎫-= ⎪--⎝
⎭ 解:原式()()()
112lim 11x x x x →∞-∞+--+ 10
.n =
解:原式n ≡有理化 11.1201arcsin lim sin x x x e x x -→⎛⎫+= ⎪⎝⎭
解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x
x →→== 故 原式=1
12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x
→=-,则正整数n = 解:()222200ln 1lim lim sin n n x x x x x x x x
→→+⋅= 20420,lim 02
n x n x n x
→<>2,4,n n ∴>< 故3n =
三、计算题(每小题8分,共64分)
14.求0x → 解:原式有理化
16.求0ln cos 2lim ln cos3x x x
→ 解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形
注:原式02sin 2cos3lim cos 23sin 3x x x x x
→∞⎛⎫ ⎪∞⎝⎭-⨯- 17.求02lim sin x x x e e x x x
-→--- 解: 原式0020lim 1cos x x x e e x
-→+-- 19.求lim 111lim 11n n n n n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭
解: (1) 拆项,111...1223(1)
n n +++⋅⋅+ 1111111...122311n n n ⎛⎫⎛⎫⎛⎫=-+-+-=- ⎪ ⎪ ⎪⎝⎭++⎝⎭⎝⎭(2) 原式=lim 111lim 11n n n n n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭
20.求21lim ln 1x x x x →∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦
解: 原式()201ln 11lim t t t x t t →=+⎡⎤-⎢⎥⎣⎦
四、证明题(共18分)
21.当x →∞时且
()()lim 0,lim x x u x v x →∞→∞
==∞, 证明()()()()lim lim 1x u x v x v x x u x e →∞
→∞+=⎡⎤⎣⎦ 证:()()
lim 1v x x u x →∞+⎡⎤⎣⎦ ()()lim x u x v x e →∞⋅=证毕
22.当0x →时,证明以下四个差函数的等价无穷小。

(1)()3
tan sin 02
x x x x -→等价于 (2)()3
tan 03
x x x x -→等价于 (3)3
sin 6
x x x -等价于()0x → (4)()3
arcsin 06
x x x x -→等价于 证:()30tan sin 1lim 2
x x x x →- 当0x →时,3
tan sin 2x x x
- 当0x →时,2tan 3x x x
- 当0x →时,31sin :6
x x x - 当0x →时,31arcsin 6x x x -等价于
五、综合题(每小题10分,共20分)
23
.求(lim 3x x →∞ 解: 原式
229921x x x x -++有理化 24. 已知()22281lim 225
x x mx x n x n →-+=-++,求常数,m n 的值。

解:(1)∵原极限存在且
(2)()22268lim 22x x x x n x n
→-+-++ 102n ∴-=- 12n = 答6,12m n ==
选做题
求()1
101lim x x x x e →⎡⎤+⎢
⎥⎢⎥⎢⎥⎣⎦
解:原式()11
011lim 1x x x x e e ∞→⎡⎤+-⎢⎥+⎢⎥⎢⎥⎣⎦
令()()1
1ln 11x x x y x e
+=+= 原式()()()()
20201ln 10ln 1lim lim 123x x x x x x x x x x e e →→-++-+++==。

相关文档
最新文档