烧结过程及机理ppt课件
合集下载
烧结过程及机理
![烧结过程及机理](https://img.taocdn.com/s3/m/124d4065b5daa58da0116c175f0e7cd1842518e9.png)
在烧结过程中,时间会影响材料的显微结构。随着时间的延长,材料内部的孔 隙逐渐减少,晶粒逐渐长大,这些变化会影响材料的物理和化学性质。
气氛
气氛对烧结过程的 影响
气氛是烧结过程中的一个重要 因素。气氛中的气体成分可以 与材料发生化学反应,从而影 响烧结过程和材料的性能。
气氛对材料相变的 影响
在烧结过程中,气氛中的气体 成分可以与材料发生化学反应 ,导致材料发生相变。这种相 变可以改变材料的物理和化学 性质,因此控制气氛可以实现 对材料相变和性能的调控。
压力
压力对烧结过程的影响
压力是烧结过程中的另一个重要参数。在适宜的压力范围内,随着压力的增加,烧结速率 加快,材料的致密度和强度增加。
压力对材料结构的影响
在烧结过程中,压力可以改变材料的结构。例如,在高温高压条件下,某些材料会发生晶 体结构的改变或相变,从而改变材料的性能。
压力对扩散的影响
压力可以影响材料内部原子或分子的扩散速度。在烧结过程中,扩散速度决定了材料的致 密化程度和显微结构,因此控制压力可以实现对材料结构和性能的调控。
烧结的重要性
烧结是材料制备过程中的重要环节,通过 烧结可以获得高性能的材料,广泛应用于 航空航天、汽车、电子、能源等领域。
通过优化烧结工艺参数和添加合金元 素等方法,可以进一步改善材料的性 能,提高其综合性能和应用价值。
烧结过程可以改变材料的物理和化学性质 ,如密度、硬度、电导率、热导率等,从 而满足不同领域对材料性能的需求。
陶瓷材料的烧结机理主要包括扩散传质和流动传质,扩散 传质是材料内部质点通过热运动进行迁移的过程,流动传 质则是气体在压力作用下通过材料孔隙的流动过程。
金属材料
金属材料的烧结过程是在一定的温度和压力下,通过原子或分子的扩散和流动,使松散的金属粉末颗 粒紧密结合在一起,形成致密的金属块体。金属材料具有高强度、高导电性、高导热性等优点,广泛 应用于机械、电子、航空航天等领域。
气氛
气氛对烧结过程的 影响
气氛是烧结过程中的一个重要 因素。气氛中的气体成分可以 与材料发生化学反应,从而影 响烧结过程和材料的性能。
气氛对材料相变的 影响
在烧结过程中,气氛中的气体 成分可以与材料发生化学反应 ,导致材料发生相变。这种相 变可以改变材料的物理和化学 性质,因此控制气氛可以实现 对材料相变和性能的调控。
压力
压力对烧结过程的影响
压力是烧结过程中的另一个重要参数。在适宜的压力范围内,随着压力的增加,烧结速率 加快,材料的致密度和强度增加。
压力对材料结构的影响
在烧结过程中,压力可以改变材料的结构。例如,在高温高压条件下,某些材料会发生晶 体结构的改变或相变,从而改变材料的性能。
压力对扩散的影响
压力可以影响材料内部原子或分子的扩散速度。在烧结过程中,扩散速度决定了材料的致 密化程度和显微结构,因此控制压力可以实现对材料结构和性能的调控。
烧结的重要性
烧结是材料制备过程中的重要环节,通过 烧结可以获得高性能的材料,广泛应用于 航空航天、汽车、电子、能源等领域。
通过优化烧结工艺参数和添加合金元 素等方法,可以进一步改善材料的性 能,提高其综合性能和应用价值。
烧结过程可以改变材料的物理和化学性质 ,如密度、硬度、电导率、热导率等,从 而满足不同领域对材料性能的需求。
陶瓷材料的烧结机理主要包括扩散传质和流动传质,扩散 传质是材料内部质点通过热运动进行迁移的过程,流动传 质则是气体在压力作用下通过材料孔隙的流动过程。
金属材料
金属材料的烧结过程是在一定的温度和压力下,通过原子或分子的扩散和流动,使松散的金属粉末颗 粒紧密结合在一起,形成致密的金属块体。金属材料具有高强度、高导电性、高导热性等优点,广泛 应用于机械、电子、航空航天等领域。
(完整版)烧结技术
![(完整版)烧结技术](https://img.taocdn.com/s3/m/eca0ae6f8bd63186bdebbc15.png)
三、烧结缺陷分析
1. 形状与尺寸缺陷: ● 变形与翘曲
● 尺寸超差
2. 分层与开裂 3. 鼓泡与麻点
● 鼓泡:圆滑凸起
● 麻点:黑麻点、白亮麻点
4. 过烧与欠烧 ● 过烧:粘接、局部熔化
● 欠烧:未烧好
2020/8/17
School of Materials Science and Engineerin14g
2020/8/17
School of Materials Science and Engineerin5g
℃温Biblioteka 度加热1050-1200oC 烧结保温 空冷 水冷
时间,hr
2020/8/17
School of Materials Science and Engineerin6g
铁基制品烧结温度范围
一、概述 1. 烧结气氛的作用
控制烧结体与环境之间的化学反应 …… 1)保护作用:减少环境对制品的影响,如防氧化、脱碳 2)净化作用:及时带走烧结坯体中润滑剂和成形剂的分解产
2020/8/17
School of Materials Science and Engineerin12g
焙烘的目的(常用于Cu、青铜):
● 充分挥发并烧除硬脂酸锌润滑剂; ● 使粉末颗粒表面氧化,得到薄层氧化物,实现活化烧
结,温度380-500℃,氧化物层厚<500A。
2020/8/17
School of Materials Science and Engineerin13g
合金元素),或复压复烧工艺中的高温烧结
2020/8/17
School of Materials Science and Engineerin7g
材料科学基础 第十四章烧结
![材料科学基础 第十四章烧结](https://img.taocdn.com/s3/m/807651cc05087632311212c6.png)
清洁的Si3N4粉末γSV为1.8J/m2,但它极易在空 气中被氧污染而使γSV降低,同时由于共价键材料原 子之间强烈的方向性而使γGB增高。固体表面一般不 等于表面张力,但当界面上原子排列是无序的,或 在高温下烧结时,这两者仍可当作数值相同来对待 。
2、压力差:颗粒弯曲的表面上存在压力差。 粉末体紧密堆积后,颗粒间仍有很多细小气孔 通过,在这些弯曲的表面上由于张力的作用而造成 的压力差为: △P=2γ/r 式中:γ为粉末体表面张力;r为粉末球型半径。
(2)温度继续升高,传质过程开始进行,颗粒间 接触状态由点接触逐渐扩大为面接触,接触面积 增加,固-气表面积相应减少。 (3)随着温度不断升高,传质过程继续进行,颗 粒界面不断发育长大,气孔相应地缩小和变形 ,而形成孤立的闭气孔。同时,颗粒界面开始移 动,粒子长大,气孔迁移到颗粒界面上消失,致 密度提高。 根据上面讨论,烧结过程可以分为三个阶段 :烧结初期、中期和后期。
第二节 烧结过程及机理
烧结过程
烧结推动力
烧结机理
一、烧结过程
首先从烧结体的宏观性质随温度的变化上 来认识烧结过程。
(一)烧结温度对烧结体性质的影响 图1是新鲜的电解铜粉(用氢还原的),经高 压成型后,在氢气气氛中于不同温度下烧结2 小时然后测其宏观性质:密度、比电导、抗拉 强度,并对温度作图,以考察温度对烧结进程 的影响。
比电导(Ω-1· cm-3)
密度(g/cm2)
温度(°C)
图1 烧结温度对烧结体性质的影响 l一比电导 2一拉力 3一密度
结果与讨论: 随烧结温度的升高,比电导和抗拉强度增加。 曲线表明,在颗粒空隙被填充之前(即气孔率 显著下降以前),颗粒接触处就已产生某种键 合,使得电子可以沿着键合的地方传递,故比 电导和抗拉强度增大。 温度继续升高,物质开始向空隙传递,密度 增大。当密度达到理论密度的90~95%后,其 增加速度显著减小,且常规条件下很难达到完 全致密。说明坯体中的空隙(气孔)完全排除是 很难的。
烧结过程的基本理论
![烧结过程的基本理论](https://img.taocdn.com/s3/m/18bbe3eaee06eff9aff8075f.png)
23
高温区厚度计算(即燃烧带大小的计算)可采用C.T.布拉塔可 夫及B.U.杜卡什提出的新方法,其计算公式如下(烧结料内 燃料与惰性料组成并两者不发生化学反应):
24
上式表明:燃烧带的宽度是由燃料粒度直径、 气流速度、原始气体中氧的浓度、料层透气性及 系数b来决定的。
计算结果与实验室测定结果很接近,但由于计 算式的假定条件与实际生产条件有差别,计算结 果与实际的误差值不超过30%~40%。
11
2.2 燃料的燃烧与热交换
• 烧结过程中,固体燃料燃烧所获得的高温和CO气体,为液相 生成和一切物理化学反应的进行,提供了所必需的热量和气 氛条件。
2.2.1 燃烧反应的一般规律 • 所谓燃烧反应就是在着火温度下,燃料中的可燃成分被激烈
氧化的过程,并放出大量热量。 • 烧结生产所用的固体燃料焦粉和无烟煤燃烧的一般原理如下:
因此,烧结过程可在较短时间内完成,当料层小于 300 mm时,烧结时间一般为12~16 min。
19
二、高温区的温度水平和厚度
注意区分烧结料层与烧结矿层
20
二、高温区的温度水平和厚度 理解出发点:在烧结过程中,燃烧层从原料表面逐渐向原料内部移动
高温区温度水平对烧结矿的影响: ✓ 高温区温度↑→生成液相多→烧结矿的强度↑; ✓ 温度过高→出现过熔现象,烧结料层的透气性↓( ? ),气流阻力↑,
21
图2-3是烧结料层高温区热平衡示意图,从中我们可以看 出下列平衡关系。
22
影响高温区温度水平及厚度的因素:
(1)配碳量:配C量↑→QT↑→燃烧层的温度水平↑,厚度↑ (2)燃料的粒度:粒度↓→比表面积↑→与空气接触条件↑→燃烧速度
↑→温度水平高、厚度小 (3)固体燃料的燃烧性能:
高温区厚度计算(即燃烧带大小的计算)可采用C.T.布拉塔可 夫及B.U.杜卡什提出的新方法,其计算公式如下(烧结料内 燃料与惰性料组成并两者不发生化学反应):
24
上式表明:燃烧带的宽度是由燃料粒度直径、 气流速度、原始气体中氧的浓度、料层透气性及 系数b来决定的。
计算结果与实验室测定结果很接近,但由于计 算式的假定条件与实际生产条件有差别,计算结 果与实际的误差值不超过30%~40%。
11
2.2 燃料的燃烧与热交换
• 烧结过程中,固体燃料燃烧所获得的高温和CO气体,为液相 生成和一切物理化学反应的进行,提供了所必需的热量和气 氛条件。
2.2.1 燃烧反应的一般规律 • 所谓燃烧反应就是在着火温度下,燃料中的可燃成分被激烈
氧化的过程,并放出大量热量。 • 烧结生产所用的固体燃料焦粉和无烟煤燃烧的一般原理如下:
因此,烧结过程可在较短时间内完成,当料层小于 300 mm时,烧结时间一般为12~16 min。
19
二、高温区的温度水平和厚度
注意区分烧结料层与烧结矿层
20
二、高温区的温度水平和厚度 理解出发点:在烧结过程中,燃烧层从原料表面逐渐向原料内部移动
高温区温度水平对烧结矿的影响: ✓ 高温区温度↑→生成液相多→烧结矿的强度↑; ✓ 温度过高→出现过熔现象,烧结料层的透气性↓( ? ),气流阻力↑,
21
图2-3是烧结料层高温区热平衡示意图,从中我们可以看 出下列平衡关系。
22
影响高温区温度水平及厚度的因素:
(1)配碳量:配C量↑→QT↑→燃烧层的温度水平↑,厚度↑ (2)燃料的粒度:粒度↓→比表面积↑→与空气接触条件↑→燃烧速度
↑→温度水平高、厚度小 (3)固体燃料的燃烧性能:
烧结过程动力学
![烧结过程动力学](https://img.taocdn.com/s3/m/10d8836bbceb19e8b8f6baf9.png)
由于各接触点所处的环境和几何条件相同,可从一个接 触点的颈部成长速度近似描述整个成型体烧结动力学关系。 常采用:两个等径球或
球与平面作为烧结模型, 图示。
烧结模型: 球粒的初始半径,x 颈部半径
16
烧结模型
双球模型
特征: 中心矩L不变 坯体无收缩
适用: 蒸发-凝聚传质
双球模型
中心矩L缩短 坯体收缩
5
后期(cd):一般发生了相变,使物质密度进一步增加。
随传质继续,粒界进一步扩大,气孔逐渐缩小和变形,最终 转变为孤立闭气孔,颗粒界开始移动,气孔逐渐迁移到粒界 上最后消失,烧结体致密度增高。
6
2. 烧结动力
烧结致密化过程:依靠物质传递和迁移实现的,存在推动作用使 物质传递和迁移。
粉体:颗粒尺寸小,比表面积大,有高表面能,即使加压成型体 中,颗粒间接触面积也很小,总表面积很大处于较高表面积状态。
性关系。
22
3)、烧结后期:
烧结动力学
这阶段坯体达 95% 以上理论密度,多数空隙变成孤立闭 气孔。相邻的三个圆柱形空隙向顶点收缩,形成闭气孔,这 时每一个十四面体的 24 个顶点上都有一个气孔,每个孔分 属于四个十四面体。若以球形气孔表面为空位源,因此空位 向外扩散是球对称的。
考波导出烧结后期动力学关系为气孔率 Ps 是 t 的函数:
位反向扩散到界面上消失。在毛细孔引力作用下颈部表面过
剩空位浓度差:
C
2 3 kT
C0
半径增长率:x [ 2 3Dv ]1/5 t 1/5 1/5 r kT
根据开尔文公 式、朗格缪尔公式, 可以推导出球形颗 粒接触面积颈部生 长速率关式.
Dv 体积扩散系数。体积扩散烧结,颈部半径增长率(x/r)与时
球与平面作为烧结模型, 图示。
烧结模型: 球粒的初始半径,x 颈部半径
16
烧结模型
双球模型
特征: 中心矩L不变 坯体无收缩
适用: 蒸发-凝聚传质
双球模型
中心矩L缩短 坯体收缩
5
后期(cd):一般发生了相变,使物质密度进一步增加。
随传质继续,粒界进一步扩大,气孔逐渐缩小和变形,最终 转变为孤立闭气孔,颗粒界开始移动,气孔逐渐迁移到粒界 上最后消失,烧结体致密度增高。
6
2. 烧结动力
烧结致密化过程:依靠物质传递和迁移实现的,存在推动作用使 物质传递和迁移。
粉体:颗粒尺寸小,比表面积大,有高表面能,即使加压成型体 中,颗粒间接触面积也很小,总表面积很大处于较高表面积状态。
性关系。
22
3)、烧结后期:
烧结动力学
这阶段坯体达 95% 以上理论密度,多数空隙变成孤立闭 气孔。相邻的三个圆柱形空隙向顶点收缩,形成闭气孔,这 时每一个十四面体的 24 个顶点上都有一个气孔,每个孔分 属于四个十四面体。若以球形气孔表面为空位源,因此空位 向外扩散是球对称的。
考波导出烧结后期动力学关系为气孔率 Ps 是 t 的函数:
位反向扩散到界面上消失。在毛细孔引力作用下颈部表面过
剩空位浓度差:
C
2 3 kT
C0
半径增长率:x [ 2 3Dv ]1/5 t 1/5 1/5 r kT
根据开尔文公 式、朗格缪尔公式, 可以推导出球形颗 粒接触面积颈部生 长速率关式.
Dv 体积扩散系数。体积扩散烧结,颈部半径增长率(x/r)与时
陶瓷烧结过程【共23张PPT】
![陶瓷烧结过程【共23张PPT】](https://img.taocdn.com/s3/m/b679f0db6aec0975f46527d3240c844769eaa0db.png)
氧化锆,(<2000C)
– 钟罩窑、梭式窑 室温就高吸收:CaCO3、Fe2O3、Cr2O3、SiC等
以高压气体作为压力介质作用于陶瓷材料(包封的粉体和素坯,或烧结体),使其在高温环境下受到等静压而达到高致密化 氧化锆,(<2000C)
• 连续式: 氮化硅无熔点、高温分解(1900C)
硅钼棒,MoSi2(<1700C)
• 整体均匀加热 低温吸收小,高于某温度急剧增加:Al2O3、MgO、ZrO2、Si3N4等
利用微波与材料的相互作用,其介电损耗导致陶瓷坯体自身发热而烧结
• 无热惯性,烧成周期短 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
管式气氛炉:电热丝、硅碳、硅钼 为了抑制氮化物分解,在N2气压力1-10MPa高压下烧成。
Al2O3-SiO2)
• 采用α氮化硅为原料,1420C相变为β相,有利烧结, 且该β相为柱状晶,力学性能好。
• 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
氮化硅的气压烧结 (Gas Pressure Sintering GPS)
• 为了抑制氮化物分解,在N2气压力110MPa高压下烧成。
• 对于氮化硅常压烧成温度要低于1800C, 而气压烧结温度可提高到2100-2390C。
热压烧结(Hot Pressing, HP)
• 加热的同时施加机械压力 ,增加烧结驱动力,促进 烧结
– 粘性流动 – 塑性变形 – 晶界滑移 – 颗粒重排
• 一般采用石墨模具,表面 涂覆氮化硼,防止反应
热等静压 (Hot Isostatic Pressing, HIP)
陶瓷烧结过程
烧结的驱动力
• 粉体表面能与界面能的差 • 传质过程
– 钟罩窑、梭式窑 室温就高吸收:CaCO3、Fe2O3、Cr2O3、SiC等
以高压气体作为压力介质作用于陶瓷材料(包封的粉体和素坯,或烧结体),使其在高温环境下受到等静压而达到高致密化 氧化锆,(<2000C)
• 连续式: 氮化硅无熔点、高温分解(1900C)
硅钼棒,MoSi2(<1700C)
• 整体均匀加热 低温吸收小,高于某温度急剧增加:Al2O3、MgO、ZrO2、Si3N4等
利用微波与材料的相互作用,其介电损耗导致陶瓷坯体自身发热而烧结
• 无热惯性,烧成周期短 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
管式气氛炉:电热丝、硅碳、硅钼 为了抑制氮化物分解,在N2气压力1-10MPa高压下烧成。
Al2O3-SiO2)
• 采用α氮化硅为原料,1420C相变为β相,有利烧结, 且该β相为柱状晶,力学性能好。
• 埋粉(Si3N4:BN:MgO=5:4:1)抑制氮化硅分解
氮化硅的气压烧结 (Gas Pressure Sintering GPS)
• 为了抑制氮化物分解,在N2气压力110MPa高压下烧成。
• 对于氮化硅常压烧成温度要低于1800C, 而气压烧结温度可提高到2100-2390C。
热压烧结(Hot Pressing, HP)
• 加热的同时施加机械压力 ,增加烧结驱动力,促进 烧结
– 粘性流动 – 塑性变形 – 晶界滑移 – 颗粒重排
• 一般采用石墨模具,表面 涂覆氮化硼,防止反应
热等静压 (Hot Isostatic Pressing, HIP)
陶瓷烧结过程
烧结的驱动力
• 粉体表面能与界面能的差 • 传质过程
材料科学基础2-第三章-烧结过程
![材料科学基础2-第三章-烧结过程](https://img.taocdn.com/s3/m/171daede0b1c59eef8c7b4e8.png)
达到理论密度
通常可将烧结过程分成几步:
a.烧结前颗粒堆积:颗粒间彼此以点接触,有的相 互分开,有较多的空隙。
ab. T,t,产生颗粒间键合和重排,粒子相互 靠拢,a中的大孔隙逐渐消失,气孔总体积迅速减少, 但颗粒间仍以点接触为主,总表面积没有缩小
bc.有明显的传质过程,由点接触逐渐扩大为面接 触,粒界增加,固-气表面积相应减少,但空隙仍连 通。
➢无液相参与的烧结,即只在单纯固相颗粒之间进 行的烧结称为固相烧结
➢有部分液相参与的烧结称为液相烧结 ➢通过蒸发-凝聚机理进行传质的烧结称为气相烧结
3. 根据烧结体系的组元多少分类: ➢烧结可分为单组元系统烧结、二组元系统烧结和多 组元系统烧结。单组元系统烧结在烧结理论的研究中 非常有用。而实际的粉末材料烧结大都是二组元系统 或多组元系统的烧结。
❖在烧结过程中,坯体内部发生一系列物理变化过程:
(i)颗粒间首先在接触部分开始相互作用,颗粒接触 界面逐渐扩大并形成晶界(有效粘结,Bonding)
(ii)同时气孔形状逐渐发生变化、由连通气孔变成孤 立气孔并伴随体积的缩小,气孔率逐渐减少
(iii)发生数个晶粒相互结合,产生再结晶和晶粒长 大等现象
第三章
烧 结 过程
❖一种或多种固体(金属、氧化物、氮化物、 粘土等)粉末经压制成为坯体,坯体中含有大 量气孔,颗粒之间的接触面积较小,强度较低。
❖烧结---将坯体加热到一定温度后,坯体中颗 粒开始相互作用,气孔逐渐收缩,气孔率逐渐 减少,颗粒接触界面逐渐扩大为晶界,最后数 个晶粒相互结合,产生再结晶和晶粒长大,坯 体在低于熔点温度下变成致密,坚硬的烧结体
烧结过程有两个共性的基本特征:一是需要高温加热,第二是 烧结的目的是为了使粉体致密,产生相当强的机械强度
通常可将烧结过程分成几步:
a.烧结前颗粒堆积:颗粒间彼此以点接触,有的相 互分开,有较多的空隙。
ab. T,t,产生颗粒间键合和重排,粒子相互 靠拢,a中的大孔隙逐渐消失,气孔总体积迅速减少, 但颗粒间仍以点接触为主,总表面积没有缩小
bc.有明显的传质过程,由点接触逐渐扩大为面接 触,粒界增加,固-气表面积相应减少,但空隙仍连 通。
➢无液相参与的烧结,即只在单纯固相颗粒之间进 行的烧结称为固相烧结
➢有部分液相参与的烧结称为液相烧结 ➢通过蒸发-凝聚机理进行传质的烧结称为气相烧结
3. 根据烧结体系的组元多少分类: ➢烧结可分为单组元系统烧结、二组元系统烧结和多 组元系统烧结。单组元系统烧结在烧结理论的研究中 非常有用。而实际的粉末材料烧结大都是二组元系统 或多组元系统的烧结。
❖在烧结过程中,坯体内部发生一系列物理变化过程:
(i)颗粒间首先在接触部分开始相互作用,颗粒接触 界面逐渐扩大并形成晶界(有效粘结,Bonding)
(ii)同时气孔形状逐渐发生变化、由连通气孔变成孤 立气孔并伴随体积的缩小,气孔率逐渐减少
(iii)发生数个晶粒相互结合,产生再结晶和晶粒长 大等现象
第三章
烧 结 过程
❖一种或多种固体(金属、氧化物、氮化物、 粘土等)粉末经压制成为坯体,坯体中含有大 量气孔,颗粒之间的接触面积较小,强度较低。
❖烧结---将坯体加热到一定温度后,坯体中颗 粒开始相互作用,气孔逐渐收缩,气孔率逐渐 减少,颗粒接触界面逐渐扩大为晶界,最后数 个晶粒相互结合,产生再结晶和晶粒长大,坯 体在低于熔点温度下变成致密,坚硬的烧结体
烧结过程有两个共性的基本特征:一是需要高温加热,第二是 烧结的目的是为了使粉体致密,产生相当强的机械强度
粉末冶金原理烧结ppt课件
![粉末冶金原理烧结ppt课件](https://img.taocdn.com/s3/m/b2c6fc9f81eb6294dd88d0d233d4b14e84243e70.png)
二、烧结的热力学问题
粉末有自动粘结或成团的倾向 粉末烧结使系统自由能减少的过程 烧结系统自由能降低是烧结过程的原动力。烧结
后系统自由能降低包括下述几个方面: (1)由于颗粒结合面(烧结颈)的增大和颗粒表
面平直化,粉末体的总比表面积和总表面自由能 减小; (2)烧结体内孔隙的总体积和总表面积减小; (3)粉末颗粒内晶格畸变部分消除。
借助于建立物理、几何或化学模型, 进行烧结过程的计算机模拟(蒙特-卡 洛模拟)
粉末烧结过程模拟
多相粉末烧结
液相烧结
三、烧结技术的发展
● 外力的引入(加压同时烧结): ➢ HP、HIP、超高压烧结(纳米晶材料)等 ➢ 气压烧结
●快速烧结技术
1 电固结工艺 2 快速热等静压(quick-HIP) 3 微波烧结技术 4 激光烧结 5 等离子体烧结 6 电火花烧结
按烧结过程有无液相出现
固相烧结:
单元系固相烧结:单相(纯金属、化合物、固溶体)粉末 的烧结:烧结过程无化学反应、无新相形成、无物质聚集 状态的改变。 多元系固相烧结:
两种或两种以上组元粉末的烧结过程,包括反应烧结等。
无限固溶系:Cu-Ni、Cu-Au、Ag-Au等 有限固溶系:Fe-C、Fe-Ni、Fe-Cu、W-Ni等 互不固溶系:Ag-W、Cu-W、Cu-C等
烧结颈长大
3.封闭孔隙球化和缩小阶段 当烧结体密度达到90%以后, 多数孔隙被完全分隔,闭
孔数量大的增加,孔隙形状趋近球形并不断缩小。在这个 阶段,整个烧结体仍可缓慢收缩,但主要是靠小孔的消失 和孔隙数量的减少来实现。这一阶段可以延续很长时间, 但是仍残留少量的隔离小孔隙不能消除。也就是一般不能 达到完全致密。
对烧结定义的理解-1:
● 粉末也可以烧结(不一定要成形) 松装烧结,制造过滤材料(不锈钢,青铜,黄铜,钛等)
第四章-固相反应与烧结PPT课件
![第四章-固相反应与烧结PPT课件](https://img.taocdn.com/s3/m/84fcdfeea32d7375a51780b0.png)
1
dG K dt K
(1G)3
1
1(1G)3
----金斯特林格微分方程
讨论:
(1) 适用更大的反应程度; 由金斯特林格方程拟合实验结果,G=0.246-0.616时, FK(G)~t,有很好的线性关系,KK=1.83; 由杨德尔方程知FJ(G)~t线性关系很差,KJ由1.81增加到2.25
(2) 从方程本身看:
反应物间的机械接触,即在界面进行反应, 与接触面F有关。
转化率(G):
参与反应的反应物,在反应过程中被反应了的体积分数。
(1) 设反应物颗粒呈球状,半径R0, 则时间t 后,颗粒外层有x厚
度已被反应,此时
x
G = R 03 - R (03 R 0 - x3 ) R 0xR 0(1 - G )1 3
则固相反应动力学一般方程为
.
2
不同物质泰曼温度与其熔点的关系:
泰曼温度
金属 0.3~0.4Tm 盐类 0.57Tm 硅酸盐类 0.8~0.9Tm
▪ 当反应物之一有晶型转变时,则转变温度通常是反
应开始明显的温度 --海德华定律 Hedvall’s Law
控制反应速度的因素:
化学反应本身
反应新相晶格缺陷调整速率
晶粒生长速率
反应体系中物质. 和能量的输送速率
讨论:
1
F J(G )[1(1G )3]2K Jt
(1) FJ(G)~t 呈直线关系,通过斜率可求KJ, 又由 KJ=Cex pR G(R T -) 可求反应活化能。
(2) KJ与D、R02有关
KJ
2DC0 R02
(3) 杨德尔方程的局限性
假定的扩散截面不变 x/R0 很小,因而仅适用于反 应初期,如果继续反应会出现大偏差。G < 0.3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 烧结过ቤተ መጻሕፍቲ ባይዱ及机理
一、烧结过程
(一)烧结温度对烧结体性质的影响
图5是新鲜的电解铜粉(用氢还原的),经高 压成型后,在氢气气氛中于不同温度下烧结2 小时然后测其宏观性质:密度、比电导、抗拉 强度,并对温度作图,以考察温度对烧结进程 的影响。
精品
1
比电导(Ω-1 c·m-3)
密 度
拉力(kg/cm3) (g/cm2)
c'c0
c 3
exp
1
c0 c0
精品
22
一般烧结温度下,
于是
c 3 1
c0 kT
c
3 kT
c0
从式可见,在一定温度下空位浓度差是与表面 张力成比例的,因此由扩散机理进行的烧结过 程,其推动力也是表面张力。
精品
23
由于空位扩散既可以沿颗粒表面或界面进行, 也可能通过颗粒内部进行,并在颗粒表面或颗 粒间界上消失。为了区别,通常分别称为表面 扩散,界面扩散和体积扩散。有时在晶体内部 缺陷处也可能出现空位,这时则可以通过质点 向缺陷处扩散,而该空位迁移到界面上消失, 此称为从缺陷开始的扩散。
可见,作为烧结动力的表面张力可以通 过流动、扩散和液相或气相传递等方式 推动物质的迁移。
精品
11
图9 凹凸不平的固体表面的附加压强差及物质迁移
精品
12
三、烧结机理
(一) 颗粒的粘附作用 (二) 物质的传递
精品
13
(一) 颗粒的粘附作用
例子:
把两根新拉制的玻璃纤维相互叠放在一起, 然后沿纤维长度方向轻轻地相互拉过,即可发 现其运动是粘滞的,两根玻璃纤维会互相粘附 一段时间,直到玻璃纤维弯曲时才被拉开,这 说明两根玻璃纤维在接触处产生了粘附作用。
F v
S x
(3)
精品
19
塑性流动传质:如果表面张力足以使晶体产生位错,
这时质点通过整排原子的运动或晶面的滑移来实现物
质传递,这种过程称塑性流动。可见塑性流动是位错
运动的结果。与粘性流动不同,塑性流动只有当作用
力超过固体屈服点时才能产生,其流动服从宾汉
(Bingham)型物体的流动规律即,
F v (3)
温度(°C)
图5 烧结温度对烧结体性质的影响
l一比电导 2一拉力 3一密度
精品
2
结果与讨论:
1.随烧结温度的升高,比电导和抗拉强度增加。
2.曲线表明,在颗粒空隙被填充之前(即气孔率显著 下降以前),颗粒接触处就已产生某种键合,使得电 子可以沿着键合的地方传递,故比电导和抗拉强度 增大。
3.温度继续升高,物质开始向空隙传递,密度增大。 当密度达到理论密度的90~95%后,其增加速度显著 减小,且常规条件下很难达到完全致密。说明坯体 中的空隙(气孔)完全排除是很难的。
精品
15
(a)
(b)
图10 被水膜包裹的精两品固体球的粘附
16
图11 在扩展的粘附接触面上的变形作用 (A处的细线表示粘附力)
精品
17
(二) 物质的传递
在烧结过程中物质传递的途径是多样的,相应 的机理也各不相同。但如上所述,它们都是以表 面张力作为动力的。 有流动传质 、扩散传质 、 气相传质 、溶解—沉淀传质。
S
x
式中,τ是极限剪切力。
精品
20
2. 扩散传质
扩散传质是指质点(或空位)借助于浓度梯度 推动而迁移的传质过程。如图7和图8所示,烧 结初期由于粘附作用使粒子间的接触界面逐渐 扩大并形成具有负曲率的接触区。在颈部由于 曲面特性所引起的毛细孔引力△ρ≈γ/ρ。
对 于 一 个 不 受 应 力 的 晶 体 , 其 空 位 浓 度 Co 是取决于温度T和形成空位所需的能量△Gf
粉体颗料尺寸很小,比表面积大,具有较高的表面能, 即使在加压成型体中,颗料间接面积也很小,总表面积 很大而处于较高能量状态。根据最低能量原理,它将自 发地向最低能量状态变化,使系统的表面能减少。
烧结是一个自发的不可逆过程,系统表面 能降低是推动烧结进行的基本动力。
精品
9
表面张力能使凹、凸表面处的蒸气压P分别低于和高
C0nN0 exp (kGTf )
精品
21
倘若质点(原子或离子)的直径为δ,并近似地令空位体积
为δ3,则在颈部区域每形成一个空位时,毛细孔引力所做
的功△W=γδ3/ρ。故在颈部表面形成一个空位所需的能量
应为△Gf=-γδ3/ρ,相应的空位浓度为
cexp[Gf
3
]
kT kT
在颈部表面的过剩空位浓度为
于平面表面处的蒸气压Po,并可以用开尔文本公式表
达:
P 2M
对于球形表面 ln
(1)
P0 dRTr
对于非球形表面
lnP M (11)(2)
P0 dRTr1 r2
表面凹凸不平的固体颗粒,其凸处呈正压,凹处呈负 压,故存在着使物质自凸处向凹处迁移。
精品
10
如果固体在高温下有较高蒸气压,则可以通 过气相导致物质从凸表面向凹表面处传递。此 外若以固体表面的空位浓度C或固体溶解度L分 别代替式2中的蒸气压P,则对于空位浓度和溶 解度也都有类似于式 2的关系,并能推动物质 的扩散传递。
精品
3
(二)烧结过程的模型示意图
根据烧结性质随温度的变化,我们可以把烧结 过程用图6的模型来表示,以增强我们对烧结过 程的感性认识。
精品
4
图6 粉状成型体的烧结过程示意图
精品
5
6/1
12/2
a)烧结前
b)烧结后
图7 铁粉烧结的SEM照片
精品
6
a)烧结前
b)烧结后
图7 BICUVOX.10烧结的SEM照片
精品
7
坯体中颗粒重排,接触处
烧结初期
产生键合,空隙变形、缩
烧
小(即大气孔消失),固-
结
气总表面积没有变化。
过
程 的 三
烧结中期
传质开始,粒界增大,空 隙进一步变形、缩小,但 仍然连通,形如隧道。
个
阶
段
烧结后期
传质继续进行,粒子长大, 气孔变成孤立闭气孔,密
度达到95%以上,制品强
精品
度提高。
8
二、烧结推动力
1.流动传质
这是指在表面张力作用下通过变形、流动引起 的物质迁移。属于这类机理的有粘性流动和塑性 流动。
精品
18
粘性流动传质 :
若存在着某种外力场,如表面张力作用时, 则质点(或空位)就会优先沿此表面张力作用的方 向移动,并呈现相应的定向物质流,其迁移量是 与表面张力大小成比例的,并服从如下粘性流动 的关系:
精品
14
由此可见,粘附是固体表面的普遍性质,它起因于固 体表面力。当两个表面靠近到表面力场作用范围时.即发 生键合而粘附。粘附力的大小直接取决于物质的表面能和 接触面积,故粉状物料间的粘附作用特别显著。
水膜的例子,见图10
因此,粘附作用是烧结初始阶段,导致粉体颗粒间产 生键合、靠拢和重排,并开始形成接触区的一个原因。
一、烧结过程
(一)烧结温度对烧结体性质的影响
图5是新鲜的电解铜粉(用氢还原的),经高 压成型后,在氢气气氛中于不同温度下烧结2 小时然后测其宏观性质:密度、比电导、抗拉 强度,并对温度作图,以考察温度对烧结进程 的影响。
精品
1
比电导(Ω-1 c·m-3)
密 度
拉力(kg/cm3) (g/cm2)
c'c0
c 3
exp
1
c0 c0
精品
22
一般烧结温度下,
于是
c 3 1
c0 kT
c
3 kT
c0
从式可见,在一定温度下空位浓度差是与表面 张力成比例的,因此由扩散机理进行的烧结过 程,其推动力也是表面张力。
精品
23
由于空位扩散既可以沿颗粒表面或界面进行, 也可能通过颗粒内部进行,并在颗粒表面或颗 粒间界上消失。为了区别,通常分别称为表面 扩散,界面扩散和体积扩散。有时在晶体内部 缺陷处也可能出现空位,这时则可以通过质点 向缺陷处扩散,而该空位迁移到界面上消失, 此称为从缺陷开始的扩散。
可见,作为烧结动力的表面张力可以通 过流动、扩散和液相或气相传递等方式 推动物质的迁移。
精品
11
图9 凹凸不平的固体表面的附加压强差及物质迁移
精品
12
三、烧结机理
(一) 颗粒的粘附作用 (二) 物质的传递
精品
13
(一) 颗粒的粘附作用
例子:
把两根新拉制的玻璃纤维相互叠放在一起, 然后沿纤维长度方向轻轻地相互拉过,即可发 现其运动是粘滞的,两根玻璃纤维会互相粘附 一段时间,直到玻璃纤维弯曲时才被拉开,这 说明两根玻璃纤维在接触处产生了粘附作用。
F v
S x
(3)
精品
19
塑性流动传质:如果表面张力足以使晶体产生位错,
这时质点通过整排原子的运动或晶面的滑移来实现物
质传递,这种过程称塑性流动。可见塑性流动是位错
运动的结果。与粘性流动不同,塑性流动只有当作用
力超过固体屈服点时才能产生,其流动服从宾汉
(Bingham)型物体的流动规律即,
F v (3)
温度(°C)
图5 烧结温度对烧结体性质的影响
l一比电导 2一拉力 3一密度
精品
2
结果与讨论:
1.随烧结温度的升高,比电导和抗拉强度增加。
2.曲线表明,在颗粒空隙被填充之前(即气孔率显著 下降以前),颗粒接触处就已产生某种键合,使得电 子可以沿着键合的地方传递,故比电导和抗拉强度 增大。
3.温度继续升高,物质开始向空隙传递,密度增大。 当密度达到理论密度的90~95%后,其增加速度显著 减小,且常规条件下很难达到完全致密。说明坯体 中的空隙(气孔)完全排除是很难的。
精品
15
(a)
(b)
图10 被水膜包裹的精两品固体球的粘附
16
图11 在扩展的粘附接触面上的变形作用 (A处的细线表示粘附力)
精品
17
(二) 物质的传递
在烧结过程中物质传递的途径是多样的,相应 的机理也各不相同。但如上所述,它们都是以表 面张力作为动力的。 有流动传质 、扩散传质 、 气相传质 、溶解—沉淀传质。
S
x
式中,τ是极限剪切力。
精品
20
2. 扩散传质
扩散传质是指质点(或空位)借助于浓度梯度 推动而迁移的传质过程。如图7和图8所示,烧 结初期由于粘附作用使粒子间的接触界面逐渐 扩大并形成具有负曲率的接触区。在颈部由于 曲面特性所引起的毛细孔引力△ρ≈γ/ρ。
对 于 一 个 不 受 应 力 的 晶 体 , 其 空 位 浓 度 Co 是取决于温度T和形成空位所需的能量△Gf
粉体颗料尺寸很小,比表面积大,具有较高的表面能, 即使在加压成型体中,颗料间接面积也很小,总表面积 很大而处于较高能量状态。根据最低能量原理,它将自 发地向最低能量状态变化,使系统的表面能减少。
烧结是一个自发的不可逆过程,系统表面 能降低是推动烧结进行的基本动力。
精品
9
表面张力能使凹、凸表面处的蒸气压P分别低于和高
C0nN0 exp (kGTf )
精品
21
倘若质点(原子或离子)的直径为δ,并近似地令空位体积
为δ3,则在颈部区域每形成一个空位时,毛细孔引力所做
的功△W=γδ3/ρ。故在颈部表面形成一个空位所需的能量
应为△Gf=-γδ3/ρ,相应的空位浓度为
cexp[Gf
3
]
kT kT
在颈部表面的过剩空位浓度为
于平面表面处的蒸气压Po,并可以用开尔文本公式表
达:
P 2M
对于球形表面 ln
(1)
P0 dRTr
对于非球形表面
lnP M (11)(2)
P0 dRTr1 r2
表面凹凸不平的固体颗粒,其凸处呈正压,凹处呈负 压,故存在着使物质自凸处向凹处迁移。
精品
10
如果固体在高温下有较高蒸气压,则可以通 过气相导致物质从凸表面向凹表面处传递。此 外若以固体表面的空位浓度C或固体溶解度L分 别代替式2中的蒸气压P,则对于空位浓度和溶 解度也都有类似于式 2的关系,并能推动物质 的扩散传递。
精品
3
(二)烧结过程的模型示意图
根据烧结性质随温度的变化,我们可以把烧结 过程用图6的模型来表示,以增强我们对烧结过 程的感性认识。
精品
4
图6 粉状成型体的烧结过程示意图
精品
5
6/1
12/2
a)烧结前
b)烧结后
图7 铁粉烧结的SEM照片
精品
6
a)烧结前
b)烧结后
图7 BICUVOX.10烧结的SEM照片
精品
7
坯体中颗粒重排,接触处
烧结初期
产生键合,空隙变形、缩
烧
小(即大气孔消失),固-
结
气总表面积没有变化。
过
程 的 三
烧结中期
传质开始,粒界增大,空 隙进一步变形、缩小,但 仍然连通,形如隧道。
个
阶
段
烧结后期
传质继续进行,粒子长大, 气孔变成孤立闭气孔,密
度达到95%以上,制品强
精品
度提高。
8
二、烧结推动力
1.流动传质
这是指在表面张力作用下通过变形、流动引起 的物质迁移。属于这类机理的有粘性流动和塑性 流动。
精品
18
粘性流动传质 :
若存在着某种外力场,如表面张力作用时, 则质点(或空位)就会优先沿此表面张力作用的方 向移动,并呈现相应的定向物质流,其迁移量是 与表面张力大小成比例的,并服从如下粘性流动 的关系:
精品
14
由此可见,粘附是固体表面的普遍性质,它起因于固 体表面力。当两个表面靠近到表面力场作用范围时.即发 生键合而粘附。粘附力的大小直接取决于物质的表面能和 接触面积,故粉状物料间的粘附作用特别显著。
水膜的例子,见图10
因此,粘附作用是烧结初始阶段,导致粉体颗粒间产 生键合、靠拢和重排,并开始形成接触区的一个原因。