三相绕线转子异步电动机的起动控制

合集下载

三相绕线式异步电动机的启动控制

三相绕线式异步电动机的启动控制

三相绕线式异步电动机的启动控制绕线式异步电动机R与鼠笼式异步电动机的主要区别是绕线式异步电动机的转子采用三相对称绕组,启动时通常采用转子串电阻启动,或者是采用频敏变阻器启动。

一、绕线式异步电动机转子串电阻启动1.方法启动时,在绕线式异步电动机的转子回路中串入合适的三相对称电阻,如果正确选取电阻器的电阻值,使转子回路的总电阻值R2=X20,由前面分析可知,此时S m=1,即最大转矩产生在电动机启动瞬间,从而缩短起动时间,达到减小启动电流增大启动转矩的目的。

随着电动机转速的升高,可变电阻逐级减小。

启动完毕后,可变电阻减小到零,转子绕组被直接短接,电动机便在额定状态下运行。

这种启动方法的优点是不仅能够减少启动电流,而且能使启动转矩保持较大范围,故在需要重载启动的设备如桥式起重机、卷扬机、龙门吊车等场合被广泛采用。

其缺点是所需的启动设备较多,一部分能量消耗在启动电阻,而且启动级数较少。

2.绕线式异步电动机转子串电阻启动控制线路串接在三相转子回路的启动电阻,一般接成星形。

利用时间继电器控制电阻自动切除,即转子回路三段启动电阻的短接是依靠KT1、KT2、KT3三个时间继电器及KM1、KM2、KM3三个接触器的相互配合来实现。

图2-70绕线式异步电动机转子串电阻控制线路线路工作原理分析:与启动按钮SBl串接的接触器KMl、KM2、和KM3常闭辅助触头的作用是保证电动机在转子绕组中接入全部外加电阻的条件下才能启动。

如果接触器KMl、KM2、和KM3中任何—个触头因熔焊或机械故障而没有释放时,启动电阻就没有被全部接入转子绕组中,从而使启动电流超过规定的值。

把KMl、KM2和KM3的常闭触头与SBl串接在一起,就可避免这种现象的发生,因三个接触器中只要有一个触头没有恢复闭合,电动机就不可能接通电源直接启动。

停止时按下SB2即可。

二、转子回路串接频敏变阻器启动控制绕线式异步电动机转子绕组串接电阻的启动方法:若想获得良好的启动特性,一般需要较多的启动级数,所用电器多,控制线路复杂,设备投资大,维修不便,同时由于逐级切除电阻,会产生一定的机械冲击力。

关于三相异步电动机的启动与制动问题的分析

关于三相异步电动机的启动与制动问题的分析

关于三相异步电动机的启动与制动问题的分析摘要现阶段,异步电动机的电力拖动已被广泛地应用在各个工业电气自动化领域中。

本文就三相异步电动机的启动、制动等技术问题进行分析。

关键词三相异步电动机;启动;制动;分析1 三相异步电动机的启动电动机接上电源,转速由零开始增大,直至稳定运转状态的过程,称为启动过程。

对电动机启动的要求是:启动电流小,启动转矩大,启动时间短。

当异步电动机刚接上电源,转子尚未旋转瞬间(n=0),定子旋转磁场对静止的转子相对速度最大,于是转子绕组感应电动势和电流也最大,则定子的感应电流也最大,它往往可达额定电流的5-7倍。

笼型异步电动机的启动方法有直接启动(全压启动)和降压启动两种。

1.1 直接启动直接启动也称全压启动。

启动时,电动机定子绕组直接接入额定电压的电网上。

这是一种最简单的启动方法,不需要复杂的启动设备,但是,它的启动性能恰好与所要求的相反,即:1)启动电流I大。

对于普通笼型异步电动机,启动电流是额定电流的4—7倍。

启动电流大的原因是:启动时n=0,s=1,转子电动势很大,所以转子电流很大,根据磁通势平衡关系,定子电流也必然很大。

2)启动转矩TST不大。

对于普通笼型异步电动机,启动转矩倍数KST=1-2。

由上可见,笼型异步电动机直接启动时,启动电流大,而启动转矩不大,这样的启动性能是不理想的。

过大的启动电流对电网电压的波动及电动机本身均会带来不利影响,因此,直接启动一般只在小容量电动机中使用,如:7.5kW以下的电动机可采用直接启动。

如果电网容量很大,就可允许容量较大的电动机直接启动。

若电动机的启动电流倍数K1、容量与电网容量满足下列经验公式:则电动机便可直接启动,否则应采用下面介绍的降压启动方法。

1.2 降压启动降压启动的目的是为了限制启动电流,但问题是在限制启动电流的同时,启动转矩也受限制,因此它只适用于在空载或轻载情况下启动。

启动时,通过启动设备使加到电动机上的电压小于额定电压,待电动机转速上升到一定数值时,再使电动机承受额定电压,保证电动机在额定电压下稳定工作。

绕线转子异步电动机起动控制线路

绕线转子异步电动机起动控制线路

一般采用三相绕线式异步电动机转子绕组串电阻
启动控制系统。
传统继电器控制的行车串电阻降压启动
电源开关
热继电器 停止按钮 启动按钮
切除第三组电 阻R3接触器
电源接触器
切除第一组电 阻R1接触器
切除第二组电 阻R2接触器
为了限制启动电流,电路用3个时间继电器KT1、KT2、KT3 分别控制3个接触器KM1、KM2、KM3按顺序依次吸合,自动切除转 子绕组中的三级电阻。串接在三相转子绕组中的起动电阻,一般 都接成星形接线。在起动前,起动电阻全部接入电路,在起动过 程中,起动电阻被逐步地短接。 KM1、KM2和KM3 3个常闭辅助触 头与启动按钮SB1串接的作用 保证电动机在转子绕组中接入全部启动电阻的条件 下才能启动,如果接触器KM1、KM2、KM3中任何一个触头 因熔焊或机械故障没有释放恢复闭合时,电动机M就不能 接通电源直接启动。
按下停止按钮SB1,KM、KM3失电,电机停转。
传统继电器控制的行车串电阻降压启动
传统继电器控
三相绕线式异步电动机可以通过滑环在转子 绕组回路串入适当的电阻来限制启动电流,增大 启动转矩。因此,重载启动要求启动转矩大的设 备如桥式起重机、卷扬机、龙门吊车等生产机械 常使用三相绕线式异步电动机。
制的行车串电
阻降压启动
对启动控制频繁,启动转矩要求大的场所,
传统继电器控制的绕线式电机串电阻启动
XXXXX 传统继电器控制的行车串电阻降压启动
三相鼠笼式异步电动机存在 异步电动机的转子绕组, 除了笼形以外还有绕线转 子式,故称绕线转子异步 电动机。 启动电流大、启动转矩不大 的缺点,只能用于空载或轻 载启动。
一、绕线式电机串电阻启动
合上电源开关QS,按下起动按钮SB2,接触器KM线圈通电并 自锁,KT1同时通电,KT1常开触头延时闭合,接触器KM1通电动作, 使转子回路中KM1常开触头闭合,切除第一级起动电阻 R1,同时使 KT2通电,KT2常开触头延时闭合,KM2通电动作,切除第二级起动电 阻R2,同时使KT3通电,KT3常开触头延时闭合,KM3通电并自锁,切 除第三级起动电阻R3,KM3的另一副常闭触点断开,使KT1线圈失电, 进而KT1的常开触头瞬时断开,使KM1、KT2、KM2、KT3依次断电子释 放,恢复原位。只有接触器KM3保持工作状态,电动机的起动过程结 束,进行正常运转。

一、转子绕组串接电阻启动控制线路

一、转子绕组串接电阻启动控制线路
课题八
绕线转子异步电动机的控制线路
绕线转子三相异步电动机,可以通过滑环在 转子绕组中串接电阻来改善电动机的机械特性, 从而达到减小启动电流、增大启动转矩以及调节 转速的目的。
YR系列
符号
一、转子绕组串接电阻启动控制线路
1.转子串接三相电阻启动原理 启动时,在转子回路串入作Y形连接、分级切换 的三相启动电阻器,以减小启动电流、增加启动转矩。 随着电动机转速的升高,逐级减小可变电阻。启动完 毕后,切除可变电阻器,转子绕组被直接短接,电动 机便在额定状态下运行。
SB1 KM KM 3 KH
M
3~
KA1 KM KA2
KA动合触头 闭合 因启动电流 大,KA1,KA2. R3 KA3的动断触 头断开,继续串 R2 联全部电阻启 R1 动
KM1 KM2
KM3 KM3 KA3 KM2 KA2 KM1 KA1
KA3
KM
KA
KM1
KM2 KM3
QS L1 L2 L3 FU1
KM3
QS L1 L2 L3
FU2
KH SB5
FU1 KM
KM 3 KH M 3~ KM3 R3 KM2 R2 KM1 R1 KM KM1 KM2 SB1 KM1 SB2 KM2 SB3 SB4 KM3
松开SB4
电动机继续运 行
KM3
3.时间继电器自动控制线路
L1 L2 L3
QS
FU2 KH FU1 KM 3 SB2 KM
KA3
KM
KA
KM1
KM2 KM3
QS L1 L2 L3 FU1
FU2
KH SB2
KA
SB1 KM KM 3 KH
M
3~

基于PLC的三相绕线式异步电机启动控制

基于PLC的三相绕线式异步电机启动控制

k y r s wo n -oo a y c r n u moo P E; t t gc nr l e wo d : u d rt r n h o o s tr; I s ri o t s a n o
O引言
三相 鼠笼式异 步 电动机存在 启动 电流大 、 动 启
1 电接触器控制电路分析 继
靠性低。 L 控制系统能在一般高温 、 PC 振动、 冲击和粉尘
恶劣环境中稳定有效地工作 。 采用P C L 控制技术, 系统
体积小, 故障率低, 硬接线少维修方便, 控制精 准, 可靠
伺 服 及 PL 控 制 系 统 C
0 ≯ ≯◇| 0≯参一 i 嚣 |
基于 P C的三相绕线式异 步电机 启动控制 L
朱 望德 吴 闻z ,
(. 1江铜 集 团公 司教 育 培 训 中 心 , 西 贵 溪 3 5 2; . 西 铜 业 集 团公 司德 兴 铜 矿 , 西 贵 溪 3 5 2 ) 江 3 4 l 2江 江 3 4 1
转矩 不大的缺点, 只能用于 空载或轻载启动 。 三相 绕
线式异步 电动机可 以通过滑环在转 子绕组 回路串入 适 当的 电阻来 限制启动 电流, 增大启 动转矩 。 因此, 重载启动 要求 启动转 矩大 的设 备 如桥式起 重机 、 卷 扬 机 、 门吊车 等生产机 械常使 用三相 绕 线式异步 龙 电动机 。 对启动 控制频 繁, 启动转 矩要求 大的场所 ,
动控 制系统 。
再过1后, 接触器K 主触头闭合, s M3 切除第三组电阻R , 3
启动继 电接触器控 制系统存在 以下缺点 : 电接触器 继 属硬器件, 控制电路接线繁杂, 元器件和接点多, 触点
易 磨 损, 障率 高 , 制 功 能改 变不 方 便 , 用性 差 , 故 控 通 可

三相绕线式异步电动机启动控制与实现概述重点难点(精)

三相绕线式异步电动机启动控制与实现概述重点难点(精)

任务六三相绕线式异步电动机起动控制与实现
一、单元概述
本单元首先介绍了控制电路常用低压电器中的组合开关、电流继电器、主令控制器和凸轮控制器。

其中组合开关由若干个动触点及静触点分别装在数层绝缘件内组成,手柄转动时动触点随之变换位置通、断电路。

电流继电器属保护电器,它的线圈串接在被保护电路中,当保护电路中的电流增大时,线圈电流高于整定值,继电器动作。

主令控制器常用来控制频繁操作的多回路控制电路,如起重机械升降控制电路。

凸轮控制器靠凸轮运动来使触头动作,主要用于控制绕线电机的起动和调速,在起重机械的升降控制电路中应用较广泛。

本单元介绍了三相绕线式异步电动机转子串电阻起动控制,在绕线型异步电动机转子串电阻的起动方法中,首先串入全部起动电阻起动,此时具有小的起动电流和较大的起动转矩,起动一段时间后,转子电阻中第一级被切除,电动机转矩加大转速提升,随后转子电阻中第一级和第二级同时被切除,电动机在大转矩下正向转动,然后依次切除起动电阻,电动机起动完毕进入正常运行状态。

二、重点
三相绕线式异步电动机转子串电阻起动过程
三、难点
主令控制器通断表、凸轮控制器触头分和表。

三相绕线式异步电动机启动控制

三相绕线式异步电动机启动控制

KM1
KA KM2 KM3 KM4
控制电路
一、转子绕组串电阻启动控制线路
3.电流原则控制
➢工作原理:
电动机启动时转子电流最大,KA1、KA2、KA3都吸合,其常闭触头 都打开,KM2、KM3、KM4主触头处于断开状态,全部启动电阻均串 接在转子绕组中。
电动机转速逐渐升高,转子电流逐渐减小,当电流减小至KA1的释放 电流时,KA1首先释放,其常闭触头复位,使接触器KM1得电主触头 闭合,切除第一级电阻R1。
三相绕线式异步电动机启动控制
绕线异步电动机的优点:
可以在转子绕组中串接电阻来改善电动 机的机械特性,从而达到减小启动电流、 增大启动转矩及平滑调速之目的。
绕线异步电动机降压启动原理:
起动时,在转子回路中串入三相起动变阻器,并把起动电阻调到最大 值,以减小起动电流,增大起动转矩。随着电动机转速的升高,起动电 阻逐级减小。
➢电气原理图:
FU1
KM1
三个欠电流继电器的线圈串 FR 接在转子回路中,电流继电 器的吸合电流一样,但释放 电流不同,KA1的释放电流 最大,KA2其次,KA3最小。
3M~
KM4 R3
KI3 KM3
R2
KI2
KM2 R1
KI1
主电路
FR
SB1
SB2
KM1 KM1
KA
KM2 KM3 KM4
KI1 KI2 KI3
铁心损耗很大的三相电抗器,由铸铁板或钢板叠成的三柱式铁心,在每个铁心 上装有一个线圈,线圈的一端与转子绕组相连,另一端作星形连接。 频敏变阻器的等效阻抗值与频率有关,电动机刚启动时,转速较低,转子电流 的频率较高,相当于在转子回路中串接一个阻抗很大的电抗器,随着转速的升 高,转子频率逐渐降低,其等效阻抗自动减小,实现了平滑无级启动。

绕线型三相异步电机转子电路串电阻启动

绕线型三相异步电机转子电路串电阻启动

引言三相异步电动机是目前应用最为广泛的电动机。

要想讨论电力拖动中经常遇到的绕线型异步电动机转子串电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。

异步电动机是交流电动机的一种。

由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。

异步电动机按供电电源相数的不同,有三相、两相和单相之分。

三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。

一、异步电动机的原理三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。

二、异步电动机的结构组成(一)定子异步电动机的定子由定子铁心、定子绕组和机座三部分组成。

1.定子铁心定子铁心是异步电动机主磁通磁路的一部分。

为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。

对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。

定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。

从提高电动机的效率和功率因数来看,半闭口槽最好。

2,定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。

能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。

开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽内必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。

三相异步电动机的启动、制动与调速

三相异步电动机的启动、制动与调速

三相异步电动机的启动、制动与调速摘要:随着人类对生活环境和生产生活能耗比的重视,绿色、节能、环保成为人们长久发展的共识,在生产生活中能耗最高的当属电动机。

提高电动机的功率因数一直是国家电网的要求,降低能耗也是国家环保一直努力的方向。

自从世界上出现第一台电动机开始,电机控制问题就伴随着人们的生产生活,而且在实际生产生活中,电动机的应用存在的很多的电能浪费现象,合理的控制电机的运转是节约能耗的关键点。

三项异步电动机应用十分广泛,三项异步电动机的控制包括启动、制动、和调速,合理的控制这三个过程是降低能耗的关键,当然还有提升电动机的生产工艺。

其中启动控制方式有软启动、降压启动、直接启动、转子串电阻启动、转子串频敏变阻器启动。

制动方式有反接制动、能耗制动、回馈制动。

传统的调速方式有变极调速、变转差率调速,还有现在流行的变频调速、适量控制、和直接转矩控制。

关键词:三项异步电动机;能耗;启动控制;调速;适量控制1.绪论1.1研究背景随着电子科技的不断发展,控制精度不断地提升,工业4.0马上就要到来。

在我们工业生产中电动机的能耗比例越来越重,怎么能够有效的提高电动机能耗比是工厂节能减排的重要的一个关键点。

当然对于整个的生产设备来说,合适的电动机控制方案可以有效的提高整个机械运转系统的稳定性。

1.2发展现状对于三相异步电动机的状态控制分为三大类型:电动机启动、电动机制动、电动机调速。

对于电动机启动随着电子技术的发展已经得到比较完善的解决方案,所以对于电动机的启动研究一直是附加在对电动机的调速控制和精准控制上。

虽然对电动机的制动方式的研究也已经有很多的优秀方案,但是从能量回收再利用方面还需要努力,现在大多数的制动方式还是以转化为热能释放在空气中的方式来解决的,随着超级电容技术的成熟应用,未来在大型设备的电动机制动能量的回收一定有完善的解决方案。

2.三相异步电动机状态控制分析2.1总体概述三相异步电动机是生产生活中应用比较早的电动机类型,从转子的结构来分分为:一是鼠笼式异步电动机,二是绕线式异步电动机。

绕线式三相异步电动机启动方式

绕线式三相异步电动机启动方式

绕线式三相异步电念头启动方法
1.转子回路串接电阻起动:绕线式三相异步电念头可以在转子回路中串入电阻进行起动,如许就减小了起动电流.一般采取起动变
阻器起动,起动时全体电阻串入转子电路中,跟着电念头转速逐渐
加速,应用掌握器逐级切除起动电阻,最后将全体起动电阻从转子
电路中切除.实用于中小功率低压电念头.
2.转子回路串接频敏变阻器起动:频敏变阻器的电阻(电抗)随线圈中所经由过程的电流频率而变.刚起动时,电机转差率最大,转子电流(即频敏电阻线圈经由过程的电流)频率最高,等于电源频率.是以,频敏变阻器的电阻最大,这就相当于起动时在转子回路中串接一个较大电阻,从而使起动电流减小.跟着电念头转速的加速,转差率逐渐减小,转子电流频率逐渐降低,频敏变阻器电阻也逐渐
减小,最后把电念头的转子绕组短接,频敏变阻器从转子电路中切除.实用于中小功率低压电念头.
3.转子回路串液体变阻器启动:液体变阻器俗称水电阻,顾名思义,在特制的水箱内装有电阻值的液体,液体一般用纯清水参加适量的电解粉按必定比例配制,在水箱的底部有一组静极板,水箱顶部有
一组动极板,动极板在驱动装配的驱动下,在一准时光内降低到与
静极板接触,接触后由外部接触器将水电阻切除,从而实现腻滑启动.实用于大功率高压电念头.
串电阻启动降压启动变频启动直接启动共四种。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。

所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。

典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。

点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。

其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。

点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。

按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。

当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。

在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。

2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。

接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。

它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。

欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。

“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。

因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。

三相异步电动机的直接起动点动控制实验报告

三相异步电动机的直接起动点动控制实验报告

三相异步电动机的直接起动点动控制实验报告实验报告:三相异步电动机的直接起动点动控制实验一、实验目的:1.了解三相异步电动机的基本原理和起动方法;2.掌握三相异步电动机的直接起动点动控制方法;3.了解三相异步电动机在直接起动点动控制过程中的运行特性。

二、实验原理:三相异步电动机是由定子绕组和转子构成,当定子绕组通过交流电源供电时,形成旋转磁场,通过与磁场相互作用的转子达到旋转的目的。

常用的三相异步电动机起动方法有直接起动法、星-三角启动法、自耦变压器起动法等。

本实验采用直接起动法进行控制,即通过直接给电动机供电来启动。

三、实验器材:1.三相异步电动机;2.电流表和电压表;3.三相交流电源;4.开关按钮;5.电缆等。

四、实验步骤:1.将实验室电源连接到三相交流电源,并确保其接地良好;2.将电动机的三个相线分别与实验室电源的三个相线相连;3.设置电压和频率,根据实验需求调节合适的数值;4.确保电动机的正反转拨动开关处于停止状态;5.逐次打开电源上的开关按钮,观察电动机是否运行;6.若电动机启动不正常或运行不稳定,可根据实际情况适当调整电流和电压的数值;7.在确保实验安全的前提下,可以通过改变电源的电压和频率观察电动机的运行特性。

五、实验数据记录与分析:1.记录电动机起动时的电流和电压数值;2.分析电流和电压的变化规律,得出电动机起动过程中的运行特性;3.可以通过对比不同频率和电压下的实验数据,得出不同条件对电动机启动的影响;4.利用实验数据进行图表绘制,以便更好地展示实验结果。

六、实验结论:1.在使用直接起动法对三相异步电动机进行起动时,适当调节电流和电压的数值可以提高电动机的起动性能;2.不同频率和电压对电动机启动过程有一定的影响,可根据实际情况进行调整;3.通过对电流和电压的观察,可以了解三相异步电动机在起动过程中的运行特性。

七、实验总结:通过本次实验,我们掌握了三相异步电动机的直接起动点动控制方法,了解了三相异步电动机在起动过程中的运行特性和影响因素。

三相绕线转子异步电动机的起动控制

三相绕线转子异步电动机的起动控制

第三节三相绕线转子异步电动机的起动控制转子回路通过滑环在外串电阻以减小起动电流、提高转子电路的功率因数和起动转矩。

(请注意主电路中电动机的画法)1)转子回路串接电阻起动控制线路串接在三相转子回路中的起动电阻,一般接成Y形。

起动前,起动电阻全部接入电路,随着起动过程的结束,起动电阻被逐段短接。

短接方式:三相电阻不平衡短接法——每相的起动电阻轮流被短接三相电阻平衡短接法——三相的起动电阻同时被短接1)依靠时间继电器自动短接起动电阻的控制线路:教材P38 Fig 2-10(平衡短接法)控制过程:SB2合上→KM1线圈得电→主触头闭合→电机串电阻起动常开触点闭合→KT1线圈得电→KT1整定时间到→ KT1常开闭合→KM2得电→主触头闭合→切除第一段起动电阻1R常开触点闭合→KT2线圈得电→KT2整定时间到→KT2常开闭合→KM3得电→主触头闭合→切除第二段起动电阻2R常开触点闭合→KT3线圈得电→KT3整定时间到→KT3常开闭合→KM4得电→主触头闭合→切除第三段起动电阻3R→起动电阻全部切除常开触点闭合→自锁优点:线路中只有KM1、KM4长期通电,而所有的时间继电器和KM2、KM3的通电时间均被压缩到最低限度。

节省电能,延长了器件寿命。

缺点:1. 万一时间继电器损坏,线路即无法实现电动机的正常起动和运行。

2. 电动机起动过程中逐段减小电阻时,电流及转矩突然增大,会产生不必要的机械冲击。

2)利用电动机转子电流大小的变化来控制电阻切除的控制线路:教材P39~P40 Fig 2-11 (同样有上述的缺点2)请同学们自学该线路。

二、转子回路串频敏变阻器起动控制线路:控制线路:教材P40 Fig 2-13(略)*第四节三相异步电动机的调速控制三相异步电动机的调速方法变更定子绕组极对数改变转子电路的电阻变频调速串级调速电磁(滑差)调速教材P41~P42 Fig2-14(a)、(b)介绍了双速电动机三相定子绕组接线方式及其控制线路。

实验六三相异步电动机的起动、反转与调速

实验六三相异步电动机的起动、反转与调速

实验六三相异步电动机的起动、反转与调速一、实验目的掌握三相异步电动机起动、反转和调速的方法。

二、实验项目1、三相绕线式异步电动机直接起动2、三相绕线式异步电动机转子绕组串电阻起动3、三相绕线式异步电动机转子绕组串电阻调速4、三相异步电动机转向改变5、星形(Y)——三角形(Δ)换接起动三、实验设备该实验是在DDSZ-1型电机及电气技术实验装置上完成的。

本次实验使用设备包括:1、DD01电源控制屏2、D33挂件3、D32挂件4、D51挂件5、DJ17-3绕线式异步电动机转子专用箱6、DD03测试台和三相绕线式异步电动机本次实验使用DD01电源控制屏上方的交流电源。

D33挂件,共有三个完全相同的多量程指针式交流电压表,本次实验选用其中的一块电压表。

D32挂件,共有三个完全相同的多量程指针式交流电流表,本次实验选用其中的一块电流表。

D51挂件,由波形测试部分和开关S1、S2、S3组成,本次实验只使用开关S1 。

DJ17-3转子专用箱的电阻值是可调的,分0Ω、20Ω、40Ω、60Ω、∞五档,实验中作为异步电动机转子绕组的串接电阻。

DD03测试台包括导轨、测速发电机和指针式转速表三相绕线式异步电动机,定子三相绕组有六个接线端,转子三相绕组有四个接线端。

四、实验内容及方法接线之前:开启电源总开关,按下绿色“启动”按钮,将电源控制屏上方的交流“电压指示切换”开关切换到“三相调压输出”位置,旋转控制屏左侧的三相调压器旋钮,将其输出电压调到220V后,按下红色“停止”按钮。

1、三相绕线式异步电动机起动、调速、改变转向实验三相绕线式异步电动机起动、调速、改变转向实验接线图图6-1 三相绕线式异步电动机起动、调速、改变转向实验接线图三相绕线式异步电动机定子绕组接线:定子绕组按星形接法从“三相调压输出”U端接到交流电流表“2.5A”黄色端,从电流表黑色“*”端接到异步电动机定子绕组A端,分别从“三相调压输出”V、W端接到定子绕组的B端和C端,将电动机定子绕组的另外三个接线端X、Y、Z用导线连接。

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法

三相异步电动机简述及起动方式调速方法概述:自从1887年发明了三相异步电机后,三相异步电动机在全世界得到广泛的应用。

三相异步电机结构简单,无需电刷和换向器,可长期高速运行,只需对轴承进行维护。

相对其他类型电动机而言故障率较低。

我厂500多台电动机基本均为三相异步电动机。

工作原理简述:在三相交流电动机定子上布置有结构完全相同在空间位置各相差120电角度的三相绕组,分别通入三相交流电,则在定子与转子的空气隙间所产生的合成磁场是沿定子内圆旋转的,故称旋转磁场。

转速的大小由电动机极数和电源频率而定。

转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。

转子铜条(铝条)是短路的,有感应电流产生而产磁场。

在磁场中受到力的作用。

转子就会旋转起来。

电机转动要有三个条件:第一要有旋转磁场,第二转子转动方向与旋转磁场方向相同,第三转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,电机就速度减慢产生转速差,所以只要有旋转磁场存在,转子总是落后同步转速在转动。

起动方式:三相异步电机起动方式有:1、直接起动,电机直接接额定电压起动。

2、降压起动: (1)定子串电抗降压起动; (2)星形三角形启动器起动; (3)软起动器起动; (4)用自耦变压器起动。

(5)转子绕线式电机采用转子绕组接电阻分段起动(或碱液水电阻起动),转子绕组接频敏变阻器起动两种方式。

3、变频起动及分段变频起动。

直接起动:直接起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为全压起动。

全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。

为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。

所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。

有人误认为降压起动比全压起动好,将负荷较重的电机也采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。

浅谈绕线式三相异步电动机的调速控制

浅谈绕线式三相异步电动机的调速控制

模糊ቤተ መጻሕፍቲ ባይዱ制
要点一
总结词
模糊控制是一种基于模糊逻辑和模糊集合论的控制策略, 通过将专家的经验转化为模糊规则,实现对复杂系统的有 效控制。
要点二
详细描述
模糊控制的核心是模糊逻辑和模糊集合论,它将输入的精 确值转换为模糊集合中的隶属度函数,并根据专家经验制 定模糊规则进行推理,最后将模糊输出值转换为精确值。 在绕线式三相异步电动机的调速控制中,模糊控制器可以 根据电机转速、电流等参数,通过模糊逻辑和模糊规则的 推理,实现对电机速度的智能控制。
浅谈绕线式三相异步电动机的调速 控制
目 录
• 绕线式三相异步电动机的概述 • 绕线式三相异步电动机的调速方法 • 绕线式三相异步电动机的调速控制策略 • 绕线式三相异步电动机的调速控制系统的实现 • 绕线式三相异步电动机的调速控制的发展趋势
与展望
01 绕线式三相异步电动机的 概述
绕线式三相异步电动机的定义与特点
家用电器如洗衣机、空调等也常 常采用绕线式三相异步电动机作
为动力源。
02 绕线式三相异步电动机的 调速方法
变极调速
总结词
通过改变电动机的极对数实现调速。
详细描述
变极调速是通过改变电动机的磁极对数来实现调速的。在绕线式三相异步电动机中,改变定子绕组的接线方式可 以改变极对数,从而改变电动机的同步转速。这种调速方法简单、可靠,但调速范围有限,且在变极过程中存在 转矩突变,影响机械特性的稳定性。
04 绕线式三相异步电动机的 调速控制系统的实现
硬件实现
控制器选择
选择合适的控制器是实现调速控制的 关键,常用的控制器包括PLC、单片 机、DSP等,根据实际需求选择合适 的控制器。
传感器配置

三相异步电动机的起动控制与参数测量实验操作步骤

三相异步电动机的起动控制与参数测量实验操作步骤

三相异步电动机的起动控制与参数测量实验操作步骤实验目的
1、看懂三相异步电动机铭牌数据和定子三相绕组六根引出线在接线盒中的排列方式;
2、根据电动机铭牌要求和电源电压,能正确连接定子绕组Y形或A形);
3、了解复式按钮、交流接触器和热继电器等几种常用控制电器的结构,并熟悉它们的接用方法:
4、通过实验操作加深对三相异步电动机直接起动和正反转控制线路工作原理及各环节作用的理解和掌握,明确自锁和互锁的的作用;
5、在理解顺序控制工作原理的基础上,学会对三相异步电动机进行简单顺序控制;
6、学会检查线路故障的方法,培养分析和排除故障的能力。

二、实验仪器与设备
电动机控制综合试验板一台
导线若干
万用表一只
三、预习要求
1、复习三相异步电动机直接启动和正反转控制线路的工作原理,并理解自锁、互锁及点动的概念,以及短路保护、过载保护和零压保护的概念。

2、复习行程开关、时间继电器的工作原理。

3、复习行程控制、时间控制的工作原理。

四、实验内容与步骤
(一)三相鼠笼式异步电动机的直接起动控制
(二)三相鼠笼式异步电动机的正反转控制
五、实验报告:
回答以下思考题:1、为什么主回路只串联两只发热元件?以星行连接的负载为例,没有串联发热元件的一项发生过载时,是否也能得到保护?
2、热继电器是否也能起到短路保护?
3、零压保护是如何实现的?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节三相绕线转子异步电动机的起动控制转子回路通过滑环在外串电阻以减小起动电流、提高转子电路的功率因数和起动转矩。

(请注意主电路中电动机的画法)
1)转子回路串接电阻起动控制线路
串接在三相转子回路中的起动电阻,一般接成Y形。

起动前,起动电阻全部接入电路,随着起动过程的结束,起动电阻被逐段短接。

短接方式:三相电阻不平衡短接法——每相的起动电阻轮流被短接
三相电阻平衡短接法——三相的起动电阻同时被短接
1)依靠时间继电器自动短接起动电阻的控制线路:教材P38 Fig 2-10(平衡短接法)控制过程:SB2合上→KM1线圈得电→主触头闭合→电机串电阻起动
常开触点闭合→KT1线圈得电→KT1整定时间到→ KT1常开闭合→KM2得电→主触头闭合→切除第一段起动电阻1R
常开触点闭合→KT2线圈得电→KT2整定时间到→
KT2常开闭合→KM3得电→主触头闭合→切除第二段起动电阻2R
常开触点闭合→KT3线圈得电→KT3整定时间到→
KT3常开闭合→KM4得电→主触头闭合→切除第三段起动电阻3R→起动电阻全部切除
常开触点闭合→自锁
优点:线路中只有KM1、KM4长期通电,而所有的时间继电器和KM2、KM3的通电时间均被压缩到最低限度。

节省电能,延长了器件寿命。

缺点:1. 万一时间继电器损坏,线路即无法实现电动机的正常起动和运行。

2. 电动机起动过程中逐段减小电阻时,电流及转矩突然增大,会产生不必要的机械冲
击。

2)利用电动机转子电流大小的变化来控制电阻切除的控制线路:教材P39~P40 Fig 2-11 (同样有上述的缺点2)请同学们自学该线路。

二、转子回路串频敏变阻器起动控制线路:控制线路:教材P40 Fig 2-13
(略)
*第四节三相异步电动机的调速控制
三相异步电动机的调速方法变更定子绕组极对数
改变转子电路的电阻
变频调速
串级调速
电磁(滑差)调速
教材P41~P42 Fig2-14(a)、(b)介绍了双速电动机三相定子绕组接线方式及其控制线路。

第五节三相异步电动机的制动控制
三相异步电动机从切除电源到完全停止旋转,由于惯性的原因,总需要一段时间。

但实际工业生产中,很多生产机械在运行过程中都要求安全和准确定位、以及为了提高劳动生产率,都需要电动机能迅速停车,所以要求对电动机进行制动控制。

制动方法:机械制动
电气制动——反接制动
能耗制动
·机械制动——利用机械装置使电动机在切断电源后迅速停转
普遍方法——电磁抱闸电磁铁
闸瓦制动器
弹簧抱闸示意图:
当电磁铁1得电时,制动瓦2被吸起与制动
轮4脱离,与制动轮相连的电动机可自由转动。

当电磁铁失电时,在弹簧3的作用下,制动瓦压
紧制动轮使电动机无法转动。

电磁制动器常用于防止起重机械失电时重物
下跌和需要准确定位的场合。


4
·电气制动
2)
反接制动:改变电动机电源的相序→定子绕组产生相反方向的旋转磁场→产生制动转矩特点:定子绕组中流过的反接制动电流相当于全电压起动时电流的两反接制动控制线路倍
制动迅速、效果好、冲击大,适用于10kW以下的小容量电动机
为减小冲击电流,通常在电动机主电路中串接电阻以限制反接制动电流
1)单向反接制动控制线路
要求:电动机电源相序的改变;转速下降接近于零,及时自动切断电源,防止反向起动措施:采用速度继电器检测电动机的速度变化
控制线路:教材P42 Fig 2-15
控制回路:
(1)SB2按下→KM1线圈得电并自锁→主触头吸合→电动机起动正常运转→速度继电器 KS常开触头闭合→为反接制动作好准备
(2)停车时:
SB1按下→复合触头的常闭触点断开→KM1失电→电动机脱离电源→
复合触头的常开触点闭合(KM1的辅助常闭复位)
电动机因惯性在脱电后仍保持较高转速→KS的常开仍闭合→
KM2得电并自锁→主触头吸合→接入反接制动电阻R
电动机获得相反相序的三相电源
进入反接制动→转速迅速下降接近于零→KS常开触点复原(断开)→KM2失电→
电动机电源切断→反接制动结束
2)电动机可逆运行的反接制动控制线路
该电路具有反接制动电阻R,并可利用该R进行降压起动。

控制线路:教材P43~P44 Fig 2-16(请同学自行分析其控制过程)。

二、能耗制动控制线路——适用电动机容量较大和起、制动频繁的场合
能耗制动:电动机脱离三相交流电源后,定子绕组加一直流电压,即定子绕组通以直流电流,利用转子感应电流与静止磁场的作用达到制动目的。

能耗制动时间原则控制——利用时间继电器控制
速度原则控制——利用速度继电器控制
(1)单向能耗制动控制线路
·时间原则控制
控制线路:教材P45 Fig 2-18
控制过程:
主回路:合上QS→主电路和控制线路接通电源
变压器需经KM2的主触头接入电源(原边)和定子线圈(副边)控制回路:按下SB2→KM1得电→电动机正常运行
按下SB1→ KM1失电→电动机脱离三相电源
常闭触头复原→KM2得电并自锁(KT常闭延时断开)
(通电延时)时间继电器KT得电,KT瞬动常开触点闭合→KM2主触头吸合→电动机进入能耗制动状态→电动机转速接近于零→KT整定
时间到→ KT延时断开常闭触点断→KM2失电→能耗制动结束
KT瞬动常开触点自动断开
注:KT瞬动常开触点的作用:如果KT线圈断线或机械卡住故障时,在按下SB1后电动机能迅速制动,两相的定子绕组不致长期接入能耗制动的直流电流。

·速度原则控制
控制线路:教材P45 Fig 2-19
控制过程:
主回路:与时间原则控制基本相同,同时在电动机轴伸端安装速度继电器KS
控制回路:
按下SB2→KM1得电并自锁→电动机正常运行→ KM1常闭断开(互锁KM2)
KS常开吸合(为制动作好准备)按下SB1→ KM1失电→电动机脱离三相电源
因惯性,电动机速度仍使KS常开闭合→KM2得电并自锁→电动机进入能耗制
动状态。

当电动机的转子速度→0时,KS常开复原(断开)→KM2失电→能耗制动结束。

(2)电动机可逆运行能耗制动控制线路
·时间原则控制
控制线路:教材P46 Fig 2-20
(3)无变压器单管能耗制动控制线路控制线路:教材P47 Fig 2-21
第六节电动机控制的保护环节
电气控制系统中常用的保护环节:
3)短路保护——熔断器、自动开关
二、过载保护——热继电器
三、过电流保护——过电流继电器
四、零电压和欠电压保护——零电压继电器、欠电压继电器;按钮的自动恢复功能和接触器
的自锁功能亦能起零压保护作用。

电气控制图常用符号表:教材P49~P56。

作业:写出下列控制线路的控制过程 P31 Fig 2-2 c、d
P44 Fig 2-17
P45 Fig 2-19
充:电气原理图的规定画法
4)绘制电气原理图的规则
1. 电气原理图主电路
控制电路
照明电路
辅助电路信号电路
保护电路
2. 电气原理图中所有的电器元件均应按GB表示
3. 布局——便于阅读的原则:主电路——左面
辅助电路——右面
4. 同一器件的不同部件在不同位置时,应标注统一的图符号
5. 所有电器的可动部件按未通电或无外力作用时的状态(原始状态)画出
6. 尽量减少线条和避免线条交叉
二、图面区域的划分
见图上方:1、2、……13——图区号
图区号下方:对应的元件或电路功能
图下方:
KM KA “X”表示未使用的触点
4 6 X 9 X 9区中KA触点下面的“8”表示继电器
4 X X 13 X KA的线圈在图区8
4 X X
X X
KM:KA:
左栏中栏右栏左栏右栏主触点所在辅助常开辅助常闭常开触点常闭触点
图区号所在图区号所在图区号所在图区号所在图区号
三、符号位置的索引
图例:
234
5678910
111213
1电源开关及保护
主电机
启停控制电路变压器
照明及信号
Q S
FU 2
L L L 50H z 380V 某机床电气原理图。

相关文档
最新文档