厦门大学概率论与数理统计期中试卷1

合集下载

13142《概率论与数理统计》期中试卷_参考答案

13142《概率论与数理统计》期中试卷_参考答案

所以可知这件产品是次品的概率为 0.0185,若此件产品是次品,则该产品是乙车间生产的概 率为 0.38.
五、 (15 分)设 (X, Y) 的概率密度为
2
x 2 a x y , 0 x 1, 0 y 2, f ( x, y) 0, 其它, ,试求(1)a ; (2)
(2) P{ X Y 1}
f ( x, y )dxdy 0 dx 1 x ( x x y 1
1

xy 65 )dy 3 72
(3)
f X ( x)

2x 2 2 xy )dy 2 x 2 , 0 x 1, 0 ( x f ( x , y )dy 3 3 0, 其它. 1 y 1 2 xy )dx , 0 y 2, 0 ( x f ( x , y )dx 3 3 6 0, 其它.
p q k 1 q k p qi q k k 1 k 0 k 1 i2




p q i q k k 0 i 0


1 1 p 1 q 1 q
3
xe- x , x 0, f ( x) 假设各周的需求量相互独立,以 Uk 表示 k 周的总 0, 其它。
需求量。 (1)求 U2、U3 的概率密度; (2)求接连三周中的最大需求量的概率密度
解 利用卷积公式. 设 Xi 表示第 i 周的需求量, i=1,2,3, Z 表示三周中的周最大需求量.于是
解: 记 q=1-p, X 的概率分布为 P{X=k}=qk-1 p, k=1,2,…,

概率论期中考试试卷及答案

概率论期中考试试卷及答案

1。

将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球。

解:把4个球随机放入5个盒子中共有45=625种等可能结果。

(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A )=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故12572625360)(==B P2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。

解:设x,y 分别为两船到达码头的时刻.由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω.设A 为“两船不碰面",则表现为阴影部分。

222024,024024,024,2111()24576,()2322506.522()()0.8793()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===⨯+⨯===Ω={(x,y)},A={(x,y)或},有所以,3。

设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求:(1) 该件商品是次品的概率。

(2) 该件次品是由第一厂家生产的概率。

厦门大学概统课程期中试卷____学院___系___年级___专业考试时间 2013.11.8解:1231122331,(1)()()(|)()(|)()(|)=60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024(2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++=设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知111()()(|)60%*(1-98%)()()0.024=0.5P AB P B P A B P A P A ==4。

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________.9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=.10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度2f Y (y )=________.11.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫ ⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+.(-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律;(5)相关系数,X Y ρ18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975.(1)求每次测量中误差绝对值大于19.6的概率p ;(2)问Y 服从何种分布,并写出其分布律;求E (Y ).1取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .157 2.下列选项不正确的是()A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为42100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41B .31C .21D .32 4.若随机变量,X Y 不相关,则下列等式中不成立的是.A5A 6A 79.设随机变量X ~E (1),且21Y X =-,则Y 的概率密度f Y (y )=________.10.设随机变量X ~B (4,32),则{}1P X <=___________. 11.已知随机变量X 的分布函数为0,6;6(),66121,6,x x F x x x ≤-⎧⎪+⎪=-<<⎨⎪≥⎪⎩,则X 的概率密度p (x )=______________.12.设二维随机变量(,)X Y 的协方差矩阵是90.60.625⎛⎫⎪⎝⎭,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y =-+. 14.随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()3Y y f y ⎧-<<⎪=⎨,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z = 试求:(1)常数α,β;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是6否独立;(3)X 的分布函数F(x);(4){1}P X Y +<;(5)1X Y =的条件分布律;(6)相关系数,X Y ρ18.(8分)设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度()3103x e x p x -⎧>⎪=⎨,;某顾客在窗口等待服务,若超过9分钟,他就离视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A.互为对立事件一定是互不相容的B.互为独立的事件一定是互不相容的C.互为独立的随机变量一定是不相关的 D.不相关的随机变量不二、填空题:(每小题2分,共18分)7.同时扔4枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入6个盒子中,则3个盒子中各有一球的概率为=________.89.从a 个白球和b 个黑球中不放回的任取3次球,第3次取的黑球的概率是=.10.公共汽车站每隔5分钟有一辆汽车到站,乘客到站的时刻是任意的,则一个乘客候车时间不超过3分钟的概率为 (1,2,9,16,0)N -;2Z X =-. 率密度函数51,050,0x e x x ->≤的概率密,(,)X Y 相互独立,且X Y +的概率密度函数为(z f 在某区域有一架飞机,雷达以99%的概率探测到并报警。

《概率论》期中测试题参考解答

《概率论》期中测试题参考解答

《概率论》期中测试题参考解答1、(10分)设A B C、、的运算分别表、、表示三个随机事件,试用事件A B C示下列各事件:(1)A不发生而B C、都发生;表示为:ABC(2)A B C、、三个事件至少有一个发生;表示为:A B C;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C、、三个事件至多有一个发生;表示为:ABC ABC ABC ABC(4)A B C、、恰有两个不发生;表示为:ABC CAB BAC;(5)A B C、、都不发生;表示为:ABC(6)A B C、、三个事件不少于两个发生;表示为:AB BC AC;或表示为:ABC ABC ABC ABC(7)A B C、、同时发生;表示为:ABC(8)A B C、、三个事件不多于两个发生;表示为:A B C;或表示为:ABC或表示为:ABC ABC ABC ABC ABC ABC ABC(9)A B C、、不全发生;表示为:A B C;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生. 或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P A B ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--=(3)()()()()0.40.60.10.9P A B P A P B P AB =+-=+-=; (4)()()1()10.90.1P AB P A B P A B ==-=-=; (5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-; (7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率. 解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。

概率论与数理统计试题期中考试-答案

概率论与数理统计试题期中考试-答案

概率论与数理统计课程期中考试考试时间:90分钟姓名:班级:学号:一、单项选择题(本大题共有5个小题,每小题4分,共20分)1,设..~(100,0.1)R V X B,1..~()2R V Yπ,且X和Y相互独立,令72+-=YXZ,则D(Z)=(D )。

A:7 B:8 C:10 D:11 2,若P(A)=1/2,P(B|A)=1/3,则P(AB)=( B )A:1/2 B: 1/3 C: 5/6 D:1/63,设X的概率密度函数为30()xke xf x-⎧>=⎨⎩其它,则=k( C )A:1/3 B:1/9 C: 3 D: 94, 如果X,Y为两个随机变量,满足COV(X,Y)=0,下列命题中正确的是( A )。

A:X,Y不相关B:X,Y相互独立C:D(XY) =D(X)+D(Y) D:D(X-Y) =D(X)-D(Y)5,在8片药中有4片是安慰剂,从中任取3片,则取到2片是安慰剂的概率为( B )A:1/4 B :3/7 C:1/2 D:6/7二、填空题(本大题共有6个小题,每空2分,共20分)4 A,B为两个随机事件,若P(A)=0.4,P(B)=0.6,P(B A)=0.2.则P(AB)= 0.4 ,P(AB)= 0.25 甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一目标,则目标被击中的概率为 0.946.若某产品平均数量为73,均方差为7,利用切比雪夫不等式估计数量在52~94之间的概率为 8/97.在8件产品中有2件次品。

从中随机抽取2次,每次抽取一件,做不放回抽取。

则两次都是正品的概率为 15/28 抽取的产品分别有一正品和一件次品的概率为 3/7 ,第二次取出的产品为次品的概率为 1/48若X~N(2,1),Y~U[1,4],X,Y互相独立,则E(X+2Y-XY+2)= 4 ,D(X-2Y+3)=49 设D(X)=D(Y)=2,0.3XY ρ=,则D(X-Y)= 2.8三、解答题(本大题共有3个小题,共32分)10(7分)病树主人外出,委托邻居浇水。

2023-2024学年第一学期概率统计期中测试卷

2023-2024学年第一学期概率统计期中测试卷

2023-2024第一学期概率论与数理统计期中测试题班级:学号:姓名:第一部分:选择题,每小题3分,共10小题,共30分.1.设B A ⊂,且0)(>A P ,则以下错误的是().A.)()(B P B A P =⋃B.)()(A P AB P =C.1)|(=A B PD.)()()(B P A P B A P -=-2.设)2,1(~-N X ,则X 的密度函数为().A.4)1(221--x eπB.2)1(221+-x eπC.2)1(2221+-x e πD.4)1(221+-x eπ3.设连续型随机变量的概率密度函数与分布函数为,与)()(x F x f 则正确的是().A.1)(0≤≤x f B.)(}{x F x X P == C.)(}{x F x X P =≤ D.)(}{x f x X P ==4.设X 是一随机变量,则下列各式中正确的是().A.)(4)25(X D X D =-B.)(25)25(X D X D -=-C.)(25)25(X D X D +=- D.)(4)25(X D X D -=-5.已知(X,Y)的概率密度为),(y x f ,则关于Y 的边缘密度为().A.⎰+∞∞-dyy x f ),( B.⎰+∞∞-dxy x f ),( C.⎰+∞∞-dxy x xf ),( D.⎰+∞∞-dyy x yf ),(6.已知随机变量X 与Y 相互独立,且),2,0(~),1,0(~U Y U X 则=<}{Y X P ().A.41B.83 C.43 D.857.下列式子中成立的是().A.)()()(Y E X E Y X E +=+B.)()()(Y D X D Y X D +=+C.)()()(Y D X D XY D = D.)()()(Y E X E XY E =8.设随机变量X 的概率密度)(x f 满足)1()1(x f x f -=+,且⎰=206.0)(dx x f ,则}0{<X P 为().A.53 B.32 C.51 D.549.)1,1(~N X ,概率密度函数为)(x f ,分布函数为)(x F ,则().A.5.0)0()0(=≥=≤X P X PB.),(),()(+∞-∞∈-=x x F x FC.5.0)2()2(=>=<X P X P D.5.0)1()1(=>=≤X P X P 10.设随机变量12200,,,X X X 相互独立且服从同一分布,()3,()5E X D X ==,令12200Y X X X =+++ ,由中心极限定理知Y 近似服从()(A )(600,25)N (B )(3,5)N (C )(600,1000)N (D )(1000,600)N 第二部分:填空题,每小题6分,共3小题,共18分.1.甲乙两人独立射击,击中目标的概率分别为0.8,0.7,现在两人同时射击同一个目标,则目标被击中的概率为.2.随机变量X 服从参数为1的泊松分布,则==))((X D X P .3.设随机变量X 的分布律为,...2,1,0,!)(2===-k e k c k X P 则=c .4.已知随机变量X 只取-1,0,1,2四个数值,对应的概率为cc c c 162,85,43,21,则c=.5.设二维随机变量) , (Y X 的联合分布律为则(2)E X Y +=6.设随机变量~(0.5)X b 10,,则2(2)E X =第三部分:计算题,每小题7分,共4小题,共28分.1.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他, ,0.10 )(x x A x f 试求:(1)A 的值;(2)X 的分布函数;(3))41161(<<X P .YX -10100.10.20.110.30.10.22.已知二维随机变量(X,Y)的联合概率密度为⎩⎨⎧≤≤≤≤+=其他,0,0,10),(2),(y x y y x y x f 试求:(1)X 与Y 的边缘概率密度,并判定X 与Y 是否独立;(2)}1{≥+Y X P .3.设随机变量X 在区间(1,2)上服从均匀分布,(1)写出X 的概率密度函数;(2)求XeY 3=的概率密度函数)(y f Y .4.设二维随机变量(,)X Y 的概率密度为,0,(,)0,,y xe x y f x y -⎧<<=⎨⎩其它求随机变量Z X Y =+的概率密度.四、综合应用题(共3个小题,每个小题8分,共24分)1.某地区居民的肝癌发病率为0.0004,先用甲胎蛋白法进行普查.医学研究表明,化验结果是存有错误的.已知患有肝癌的人其化验结果99%呈阳性(有病),而没患肝癌的人其化验结果99.9%呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率是多少?2.对于一名学生来说,来参加家长会的家长人数是一个随机变量.设一名学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布.求有一名家长来参加会议的学生数不多于336的概率.(已知9772.0)2(=Φ)3.一工厂生产的某种设备的寿命X (以年计)服从以14为参数的指数分布,工厂规定,出售的设备若在一年之内损坏可予以调换,若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元,求该厂出售一台设备净赢利的数学期望。

厦门大学概率论与数理统计试卷

厦门大学概率论与数理统计试卷

《概率论与数理统计》试卷题 供参考1.计算机在进行加法运算时,有时要对每个加数取整(取最接近它的整数)。

设所有取整误差都是相互独立的,且都在(-0.5,0.5)上服从均匀分布。

(1) 若进行1500个数的加法运算,问误差总和绝对值超过15的概率多大? (2) 进行多少个数的加法运算,才能使得误差总和绝对值小于10的概论为0.9? (已知 1.3420.91, 1.290.90 1.6450.95ΦΦΦ()=()=,()=)2.设总体X 服从参数为λ的泊松分布,12...n X X X ,,为样本,221111,()1nniii i X XS X X nn ====--∑∑。

求:(1)()E X (2)2()E S (3)()D X (4)λ的矩估计量 3.(1)设样本12,,X X X来自同一总体X , ()E X θ=,则121231231111 (), 3442X X X X X X θθ∧∧=++=++,① 证明它们是θ的无偏估计量 ② 12,θθ∧∧哪个更有效?(2)已知()X t n ,求证:2(1,)X F n 。

4.设总体2(0,)X N σ ,12X X ,是样本。

(1)证明12X X +和12X X -不相关。

由此说明它们是否独立? (2)求212212()()X X Y X X +=+的分布5设总体X 的分布函数为11 1(,)0 1x F x xx ββ⎧->⎪=⎨⎪≤⎩。

其中未知参数1,β>12...n X X X ,,为来自总体X 的简单随机样本。

求: (1)β的矩估计(2)β的极大似然估计量 6.(1)一批电子元件,随机取5只作寿命试验,测得寿命数据如下:21160,9950,x S ==若寿命服从正态分布,试求寿命均值的置信水平为0.95的单侧置信下限。

(已知0.051.6450.95(4) 2.1318t Φ=()=,)(2)设221122(,),(,)A B X N X N μσμσ 参数都未知,随机取容量25,15A B n n ==的两个独立样本,测得样本方差22B6.38, 5.15AS S ==,求二总体方差比2122σσ的置信水平为0.90的置信区间。

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i=1,2,B 表示事件“仅第一次射击命中目标”,则B=()A .A 1A 2B .21A AC .21A AD .21A A 2.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为()A .p 2B .(1-p)2C .1-2p D .p(1-p)3.已知P(A)=0.4,P(B)=0.5,且A B ,则P(A|B)=()A .0 B .0.4 C .0.8 D .14.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为()A .0.2B .0.30C .0.38D .0.57 5.下列选项正确的是()A .互为对立事件一定是互不相容的B .互为独立的事件一定是互不相容的C .互为独立的随机变量一定是不相关的D .不相关的随机变量不一定是独立的6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B(6,21),则D(X-Y)=( ) A .1B .74C .54D .12二、填空题(本题共9小题,每小题2分,共18分)7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________.8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= ________. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= .10.设随机变量X ~U (0,5),且21Y X ,则Y 的概率密度f Y (y)=________.11.设二维随机变量(X ,Y)的概率密度 f (x,y)=,y x ,其他,0,10,101则P{X+Y ≤1}=________.12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59,则相关系数,X Y = ________.13. 二维随机变量(X ,Y)(1,3,16,25,0.5)N ,则X ;Z X Y .。

《概率论与数理统计》期中考试试习题汇总

《概率论与数理统计》期中考试试习题汇总

欢迎阅读《概率论与数理统计》期中考试试题(一)一、选择题(本题共6小题,每小题2分,共12分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 223.已知A .0 4率为(A .0.25A C 6.A .1- 7.8.将39.从a 10.11.12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59⎛⎫⎪⎝⎭,则相关系数,X Y ρ= ________.13. 二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为51,0()50,0x X e x f x x -⎧>⎪=⎨⎪≤⎩,Y 的概率密度函数为1,11()20,Y y f y others ⎧-<<⎪=⎨⎪⎩,(,)X Y相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X , 1()3,()3E X D X ==,则应用切比雪夫不等式估计得{|3|1}P X -≥≤三、计算题(本题共5小题,共70分)16.(8分)某物品成箱出售,每箱20件,假设各箱含0,1和2件次品的概率分别是0.7,0.2和0.1,顾客在购买时,售货员随机取出一箱,顾客开箱任取4件检查,若无次品,顾客则买下该箱物品,否则退货.试求:(1) 顾客买下该箱物品的概率;(2) 现顾客买下该箱物品,问该箱物品确实17.(20求(1)a (3){P X Y +18.(8为三次(1)(2)19.(24求: (1) ;(4) 概率{P Y 20.(101.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .157 2.下列选项不正确的是( ) A .互为对立的事件一定互斥B .互为独立的事件不一定互斥C .互为独立的随机变量一定是不相关的D .不相关的随机变量一定是独立的3.某种电子元件的使用寿命X (单位:小时)的概率密度为2100,100;()0,100,x p x x x ⎧≥⎪=⎨⎪<⎩ 任取一只电子元件,则它的使用寿命在150小时以内的概率为( ) A .41 B .31 C .21 D .324.若随机变量,X Y 不相关,则下列等式中不成立的是 . A .DY DX Y X D +=+)( B. 0),(=Y X Cov C. (E 5.A .1-6.则常数x A .7.8. 将29. 10. 11. 已密度p (x 12.13. 二维随机变量(X ,Y )(2,3,9,16,0.4)N -,则X;Z X Y=-+ .14. 随机变量X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩,Y 的概率密度函数为1,12()30,Y y f y others⎧-<<⎪=⎨⎪⎩,,X Y 相互独立,且Z X Y =+的概率密度函数为()z f z =15. 设随机变量X,1()1,()3E X D X==,则应用切比雪夫不等式估计得{13}P X-<<≥三、计算题(本大题共5小题,共70分)16.(8分)据市场调查显示,月人均收入低于1万元,1至3万元,以及高于3万元的家庭在今后五年内有购置家用高级小轿车意向的概率分别为 0.1,0.2 和 0.7.假定今后五年内家庭月人均收入X 服从正态分布N (2, 0.82 ).试求:(1) 求今后五年内家庭有购置高级小轿车意向的概率;(2) 若已知某家庭在今后五年内有购置高级小轿车意向,求该家庭月人均收入在1至3万元的概率.17(1),Y)关问X,Y)相关18{X>9}(1)X Y的条件概率密度函数;(5)相关系数,X Yρ20.(10分)设市场上每年对某厂生产的29寸彩色电视机的需求量是随机变量X(单位:万台),它均匀分布于[10,20].每出售一万台电视机,厂方获得利润50万元,但如果因销售不出而积压在仓库里,则每一万台需支付库存费10万元,问29寸彩色电视机的年产量应定为多少台,才能使厂方的平均收益最大?《概率论与数理统计》期中试卷试题(五)一、选择题(共5题,每题2分,共计12分)1.下列选项正确的是()A .互为对立事件一定是互不相容的B .互为独立的事件一定是互不相容的C .互为独立的随机变量一定是不相关的D .不相关的随机变量不一定是独立的2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = 。

数理统计期中考试试题及答案

数理统计期中考试试题及答案

数理统计期中考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是描述数据集中趋势的度量?A. 方差B. 标准差C. 平均值D. 极差答案:C2. 在统计学中,正态分布曲线的对称轴是什么?A. 均值B. 中位数C. 众数D. 标准差答案:A3. 以下哪个不是描述数据离散程度的统计量?A. 方差B. 标准差C. 平均值D. 极差答案:C4. 假设检验中,拒绝原假设意味着什么?A. 原假设是正确的B. 原假设是错误的C. 无法确定原假设的正确性D. 需要更多的数据答案:B5. 以下哪个统计量用于衡量两个变量之间的相关性?A. 均值B. 标准差C. 相关系数D. 方差答案:C6. 以下哪个选项是描述数据分布形状的度量?A. 平均值B. 方差C. 偏度D. 峰度答案:C7. 以下哪个选项是描述数据分布中心位置的度量?A. 方差B. 标准差C. 中位数D. 众数答案:C8. 以下哪个选项是描述数据分布集中程度的度量?A. 极差B. 方差C. 标准差D. 偏度答案:B9. 以下哪个选项是描述数据分布的峰值的度量?A. 方差B. 标准差C. 峰度D. 偏度答案:C10. 以下哪个选项是描述数据分布的偏斜程度的度量?A. 方差B. 标准差C. 偏度D. 峰度答案:C二、填空题(每题3分,共15分)1. 一组数据的均值是50,标准差是10,则这组数据的方差是______。

答案:1002. 如果一组数据服从正态分布,那么它的均值和中位数是______。

答案:相等的3. 相关系数的取值范围是______。

答案:-1到14. 在进行假设检验时,如果p值小于显著性水平α,则我们______原假设。

答案:拒绝5. 一组数据的偏度为0,说明这组数据是______。

答案:对称的三、简答题(每题5分,共20分)1. 请简述什么是置信区间,并给出其计算方法。

答案:置信区间是用于估计一个未知参数的区间,它表明了在给定的置信水平下,参数值落在这个区间内的概率。

数理统计期中考试试题及答案

数理统计期中考试试题及答案

数理统计期中考试试题及答案一、选择题(每题5分,共20分)1. 下列哪项是描述数据离散程度的统计量?A. 平均数B. 中位数C. 众数D. 方差答案:D2. 以下哪个分布是描述二项分布的?A. 正态分布B. 泊松分布C. 均匀分布D. 二项分布答案:D3. 以下哪个公式是计算样本方差的?A. \( \bar{x} = \frac{\sum_{i=1}^{n}x_i}{n} \)B. \( s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1} \)C. \( \sigma^2 = \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \)D. \( \mu = \frac{\sum_{i=1}^{n}x_i}{n} \)答案:B4. 以下哪个统计量用于衡量两个变量之间的相关性?A. 标准差B. 相关系数C. 回归系数D. 均值答案:B二、填空题(每题5分,共20分)1. 一组数据的均值是50,中位数是45,众数是40,这组数据的分布是_____。

答案:右偏分布2. 如果一个随机变量服从标准正态分布,那么其均值μ和标准差σ分别是_____和_____。

答案:0,13. 在回归分析中,如果自变量X的增加导致因变量Y的增加,那么X和Y之间的相关系数是_____。

答案:正数4. 假设检验的目的是确定一个统计假设是否_____。

答案:成立三、计算题(每题10分,共30分)1. 已知样本数据:2, 4, 6, 8, 10,求样本均值和样本方差。

答案:均值 = 6,方差 = 82. 假设一个二项分布的随机变量X,其成功概率为0.5,试求X=2的概率。

答案:\( P(X=2) = C_4^2 \times 0.5^2 \times 0.5^2 = 0.25 \)3. 已知两个变量X和Y的相关系数为0.8,求X和Y的线性回归方程。

答案:需要更多信息,如X和Y的均值和方差,才能求解。

厦门大学2010学年概率论与数理统计期中试卷

厦门大学2010学年概率论与数理统计期中试卷

厦门大学 学院 2010 学年 第一学期 专业 级《 概率统计 》期中试卷考试形式:( 闭卷 )一、填空题(共 30 分,每空2分):1.事件C B A ,,中至少有一个发生可表示为 ,三个事件都发生可表示为 ,都不发生可表示为 .2.设()4.0=A P ,()3.0=B P ,()4.0=B A P Y ,则()=B A P .3.一袋中有10个球,其中3个黑球,7个白球. 每次从中任取一球,直到第3次才取到黑球的概率为 ,至少取3次才能取到黑球的概率为 .4.设随机变量X 的分布函数()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31318.0114.010x x x x x F ,则X 的分布列为 .5.进行10次独立重复射击,设X 表示命中目标的次数,若每次射击命中目标的概率都是4.0,则X 服从 分布,其数学期望为 ,方差为 .6.设连续型随机变量()λe X ~,)0(>λ,则=k 时,{}412=>k X P .7.已知随机变量()2~P X ,则102-=X Y 的数学期望=EY ,方差=DY .8. 已知随机变量X 的概率密度函数为()⎩⎨⎧>-<≤≤-=2,202225.0x x x x f ,则X 服从分布,设随机变量12+=X Y ,则=EY .二、选择题(共10 分,每小题 2 分)1.设事件B A ,互不相容,且()()0,0>>B P A P ,则有 ( ) (A )()0>A B P (B )()()A P B A P =(C )()0=B A P (D )()()()B P A P AB P =2.设()x F 1与()x F 2分别为任意两个随机变量的分布函数,令()()()x bF x aF x F 21+=,则下列各组数中能使()x F 成为某随机变量的分布函数的有( )(A )52,53==b a (B )32,32==b a (C )21,23==b a (D )23,21==b a3.设随机变量X 的概率密度函数为()x f ,且()()x f x f =-,()x F 是X 的分布函数,则对任意实数a ,有( ) (A )()()dx x f a F a⎰-=-01 (B) ()()dx x f a F a⎰-=-021 (C) ()()a F a F =- (D) ()()12-=-a F a F4.如果随机变量X 的概率密度函数为()⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,x x x x x f ;则{}=≤5.1X P ( )(A )()⎰⎰-+5.1112dx x xdx (B )()⎰-5.112dx x(C )()⎰-5.111dx x (D )()⎰∞--5.12dx x5.设()2,~σμN X ,且3=EX ,1=DX ,()x 0Φ为标准正态分布的分布函数,则{}=≤≤-11X P ( )(A )()1120-Φ (B )()()2400Φ-Φ (C )()()2400-Φ--Φ (D )()()4200Φ-Φ三、计算题(共 50 分,每小题 10 分)1.城乡超市销售一批照相机共10台,其中有3台次品,其余均为正品,某顾客去选购时,超市已售出2台,该顾客从剩下的8台中任意选购一台,求该顾客购到正品的概率。

概率统计期中试卷(2013)-答案

概率统计期中试卷(2013)-答案

解: 用 A 表示乙最终获得胜利,用Ai表示第 i 局乙获胜,则
P Ai
=
1 2

由于甲两胜一负,并且各局相互独立,如果乙最终获胜,则必须连赢两局,所以
P 乙最终获胜
= P A4 P A5
=
1 4

所以,P 甲最终获胜
=
3,甲乙两人应该以
4
3:1
的方式分配赌注才公平。
四、(10 分)假设随机变量 X 服从参数为 (������,������������)的正态分布,计算 ������ = ������−������的密度函数。
P X + Y = 1 = P X = 1,Y = 0 + P X = 0,Y = 1 = 0.3,
P X + Y = 2 = P X = 1,Y = 1 = 0.1
八、(10 分)设随机变量 X、Y 的联合密度函数为
f x,y =
3 2x3y2 ,
0,
������ > 1,1 < ������������ < x2 ,
=
f x, y dxdy =
x +y >1
dx
1/2
1−x x dy = 1 − ln2
七、(10 分)假设 X,Y 的联合概率分布为
Y
X
-1
0
1
-1
a
0
0.2
0
0.1
b
0.1
1
0
0.2
c
且������ ������������ ≠ ������ = ������. ������,������ ������ ≤ ������|������ ≤ ������ = ������ ,求 ������ + ������ 的概率分布。

厦门大学概率论与数理统计期中试卷1

厦门大学概率论与数理统计期中试卷1

以下解题过程可能需要用到以下数据:(1)0.8413,(1.28)0.9000,(1.65)0.9500,(2)0.9772,(2.33)0.9900Φ=Φ=Φ=Φ=Φ= 计算(总分100,要求写出解题步骤)1.(8分)已知事件A 与B 相互独立,P(A)=0.3, P(B)=0.4。

求()P AB 和()P A B ⋃。

2.(10分)一个坛中有4个黑球2个白球, 先后取球两次。

第一次从该坛中任取一只球,察看其颜色后放回, 同时放入与之颜色相同的2个球, 然后第二次再从该坛中任取一只球。

(1). 问第二次取出的是白球的概率为多少?(2). 若已知第二次取出的是白球, 问第一次所取为白球的概率是多少?3.(10分)设随机变量X 的概率密度函数为,12,(),01,0,c x x f x x x -<≤⎧⎪=<≤⎨⎪⎩其它, 其中c 为未知常数.(1). 求c 的值. (2). 求()1/23/2P X <<.4. (10分) 设某厂生产的灯泡寿命服从正态分布2(1200,50)N (单位:小时)。

(1)求该厂灯泡寿命超过1136小时的概率;(2)若购买该厂灯泡5只,则其中至少2只灯泡寿命超过1136小时的概率是多少?5.(18分)设随机变量X ,Y 相互独立同分布, 其概率密度函数均为 1,03,()30,x f x ⎧<<⎪=⎨⎪⎩其它(1)求(,)X Y 的联合概率密度函数(,)f x y ;(2)求{/2}P Y X ≤;(3)求Z=max{,}X Y 的概率密度函数()Z f z 。

厦门大学《概率统计》课程试卷____学院____系____年级____专业主考教师:____试卷类型:(A 卷/B 卷)6.(18分)设随机向量(X,Y )的概率密度函数为,01,01(,)0,x y x y f x y +<<<<⎧=⎨⎩其它 (1) 分别求关于X 与Y 的边缘概率密度;(2) 问X 与Y 是否相互独立?请说明理由;(3) 求条件概率密度|1()2Y X f y ; (4) 求条件概率11()42P Y X >=。

概率统计期中考答案版

概率统计期中考答案版

《_》 期中考试 (一、四)班级 ______ ___ 姓名 _______学号 _ ___一、选择题(共6题,每题3分,共计18分) 1. 事件C 发生导致事件A 发生, 则 B 。

A. A 是C 的子事件 B. C 是A 的子事件 C. A C = D .()()P C P A >2. 设事件B A ,两个事件,111(),(),()2310P A P B P AB ===,则()P A B = B 。

A .1115 B .415 C .56 D .16(逆事件概率,加法公式,()1()1[()()()]P A B P A B P A P B P AB =-=-+-U )3. 设X ~2(,)N μσ,那么当σ增大时,{2}P X μσ-< C 。

A .增大B .减少C .不变D .增减不定 (随机变量的标准正态化,2(2)1=Φ-)4. 已知B A ,是两个事件,X ,Y 是两个随机变量,下列选项正确的是(C )A . 如果B A ,互不相容,则A 与B 是对立事件B . 如果B A ,互不相容,且()()0,0>>B P A P ,则B A ,互相独立C . Y X 与互相独立,则Y X 与不相关D . Y X 与相关,则相关系数1ρ=5.已知2,1,(,)1,DX DY Cov X Y === 则(2)D X Y -= ( C ) (A) 3; (B) 11; (C) 5; (D) 7 (考查公式(2)4()()2cov(2,)D X Y D X D Y X Y -=+-)6.若X,Y 为两个随机变量,则下列等式中成立的是( A ) A.EY EX Y X E +=+)( B.DY DX Y X D +=+)( C.DXY DX DY =⋅ D.EXY EX EY =⋅二、填空题(共6题,每题3分,共计18分)1. 设三次独立试验中,事件A 出现的概率相等,如果已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为13. (考查贝努里概型)2.设顾客在某银行窗口等待服务的时间X (单位:分钟)具有概率密度 某顾客在窗口等待服务,若超过9分钟,他就离开. (1)该顾客未等到服务而离开窗口的概率P {X >9}= 3e -(2)若该顾客一个月内要去银行5次,以Y 表示他未等到服务而离开窗口的次数,即事件{X >9}在5次中发生的次数,P {Y =0}= 35(1)e -- 3.设随机变量X ~)2,1(2N ,(1){ 2.2}P X <= 0.7257 (2){ 1.6 5.8}P X -≤<= 0.895 (3){ 3.5}P X ≤= 0.8822((0.6)0.7257Φ=(2.4)0.9918,Φ=(1.3)0.9032Φ=(1.25)0.8944,Φ=(2.25)0.9878Φ=)4.,,,X Y Z W 是独立的随机变量,X 服从二项分布1(4,)2B ,Y 为参数为2的指数分布,Z 为参数为3的泊松分布,W 是服从[2,4]-上的均匀分布, ()D Y Z -= 13/4 ,(2)E Z W += 7 ,[(1)]E XY X Z +-= -2 。

概率统计期中试题及答案

概率统计期中试题及答案

一、填空题1、设A,B 为两个随机事件, P(A)=0.5, P(A ∪B)=0.7,若A 与B 互斥,则P (B)= 0.2 。

2、从5双不同的鞋子中任取4只,则这4只鞋子中至少有两只鞋子配成一双的概率为 13/21 。

3、三个人进行射击,令A i 表示“第i 人击中目标”,则至少有两人击中目标为12132A A A A A A ++。

4、四人独立的破译密码,他们能译出的概率分别为1/5 , 1/4 ,1/3 ,1/6 , 则密码能被译出的概率 2/3 。

5、在相同条件下相互独立地进行 5 次射击,每次射击时击中目标的概率为 0.6 ,求击中目标的次数 X 的分布及最有可能击中次数为 B(5,0.6) ;3 。

6、设(X , Y )的联合概率分布列为则Z=max(X,Y)的分布列为7、某人连续向一目标射击,每次命中目标的概率为3/4,他连续射击直到命中为止,则射击次数为3的概率是 3/64 。

8、已知 (X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,4),(2y x xe y x f y ,则E X = 2/3 。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N (-2,25) 。

X 和Y 的分布分别为:则(2)P X Y +==1/6 。

二、市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的两倍,第二、第三厂家相等,且第一、第二、第三厂家的次品率依次为2%,2%,4%。

在市场上随机购买一件商品,问(1)该件商品为正品的概率是多少?(2)若该件商品为次品,则它是第一厂家生产的概率为多少?解:设任购一件商品,它恰好来自第i 家厂生产的事件记为Ai ,i=1、2、3;设该商品恰好是次品事件记为B 。

(1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= 025.040104.04102.04102.042==⨯+⨯+⨯=()1()0.975P B P B =-=(2)1111()()(|)(|)()()P A B P A P B A P A B P B P B ==2/40.020.40.025⨯==三、已知离散型随机变量X 分布函数为:()⎪⎩⎪⎨⎧≥<≤<≤<=41428.0214.010x x x x x F 。

《概率论与数理统计》期中试卷

《概率论与数理统计》期中试卷

杉达 各 专业 2007 级 专科《概率论与数理统计》期中试卷A 评析一、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题3分,共21分。

)1.设事件A 与B 相互独立,且P(A)>0, P(B)>0,则下列等式成立的是 ( )A 、AB=∅B 、P(AB ¯)=P(A)P(B ¯)C 、P(B)=1-P(A)D 、P(B |A¯)=0 【讲评】考点:事件的相互独立的性质。

如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。

本题: 因为A 与B 独立⇔事件A 与事件B  ̄独立⇔ P(AB¯)=P(A)P(B ¯) 选B 。

2.设甲、乙两人向同一目标射击,事件A, B 分别表示甲、乙击中目标,则AB¯¯表示 ( )A 、两人都没有击中目标B 、两人都击中了目标C 、至少有一人击中目标.D 、至少有一人没有击中目标.【讲评】考点:事件的运算的算律与实际意义。

对偶律:AB¯¯=A ¯∪B ¯ 本题: 因为AB ¯¯=A ¯∪B ¯,所以其实际意义为至少有一人没有击中目标. 选D 。

3.一批产品共10件,其中有3件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为 ( )A 、1/60B 、21/40C 、1/5D 、7/15【讲评】考点:P(A)=A 包含样本总个数样本点总数=N(A)N(S), 本题: N(S)= C 103=10×9×8/3! = 120 . N(A)= C 31×C 72= 63,P(A)=N(A)/N(S)=63/120 = 21/40 .选B 。

4.下列各函数中可作为随机变量分布函数的是 ( )A 、F 1(x)=⎩⎨⎧2x 0≤x ≤1 0 其他B 、F 2(x)=⎩⎨⎧0 x<0x 0≤x<11 x ≥1C 、F 3(x)=⎩⎨⎧-1 x<-1x -1≤x<11 x ≥1D 、F 4(x)=⎩⎨⎧0 x<02x 0≤x<12 x ≥1【讲评】考点:分布函数的性质。

厦大期中试卷(含答案)

厦大期中试卷(含答案)

一、计算题(每小题8分,共64分):1、设函数()f x 满足 (0)0, (0)2f f '==,求222224()lim x y t t f x y dxdy t++≤→+⎰⎰。

2、2110y x e dy dx ⎡⎤⎢⎥⎣⎦⎰⎰ 。

3、已知(,)z f x y =由方程xyz =(1,0,1)|dz -。

4、 22()Dx y dxdy +⎰⎰, 其中D 是由 y y ==及0x y +=所围的平面区域。

5、()2x z dv Ω+⎰⎰⎰, 其中Ω是由曲面222z x y =+和平面1z =所围的立体。

6、设(,,), (,), (,)u f x y z y x t t x z ϕψ===,求,u ux z∂∂∂∂。

7、设L 是圆周221x y +=,求2()Lx y ds -⎰。

8、[sin 2()][cos ]x x Le y x y dx e y x dy -++-⎰, 其中L 是从点(,0)A π沿曲线sin y x =到点(0,0)O 的弧。

二、综合题(每小题9分,共36分):1、过曲线(0)y x =≥上的点A 作切线,使该切线与曲线y =x 轴所围平面图形的面积为34,(1)求点A 的坐标;(2)求该平面图形绕x 轴旋转一周的旋转体的体积x V 。

2、设(,)f x y 具有二阶连续偏导数,且2222f fx y∂∂=∂∂。

已知(,2)f x x x =和21(,2)f x x x '=,求11(,2)f x x ''。

3、已知某工厂生产A 和B 两种产品,生产x 单位的产品A 和生产y 单位的产品B 的总成本是33(,)+C x y x ay bxy =+(,a b 是常数),总收入是334020(,)3510x yR x y x y xy x y =+++-++, 点(1,1)P 是函数(,)C x y 的极值点,(1) 问点P 是函数(,)C x y 的极大值点还是极小值点? (2) 若25x y +=,求利润(,)L x y 的最大值。

概率论与数理统计考核试卷

概率论与数理统计考核试卷
一、单项选择题(20×1分)
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以下解题过程可能需要用到以下数据:
(1)0.8413,(1.28)0.9000,(1.65)0.9500,(2)0.9772,(2.33)0.9900Φ=Φ=Φ=Φ=Φ= 计算(总分100,要求写出解题步骤)
1.(8分)已知事件A 与B 相互独立,P(A)=0.3, P(B)=0.4。

求()P AB 和()P A B ⋃。

2.(10分)一个坛中有4个黑球2个白球, 先后取球两次。

第一次从该坛中任取一只球,察看其颜色后放回, 同时放入与之颜色相同的2个球, 然后第二次再从该坛中任取一只球。

(1). 问第二次取出的是白球的概率为多少?
(2). 若已知第二次取出的是白球, 问第一次所取为白球的概率是多少?
3.(10分)设随机变量X 的概率密度函数为
,12,(),
01,0,c x x f x x x -<≤⎧⎪=<≤⎨⎪⎩其它
, 其中c 为未知常数.
(1). 求c 的值. (2). 求()1/23/2P X <<.
4. (10分) 设某厂生产的灯泡寿命服从正态分布2(1200,50)N (单位:小时)。

(1)求该厂灯泡寿命超过1136小时的概率;
(2)若购买该厂灯泡5只,则其中至少2只灯泡寿命超过1136小时的概率是多少?
5.(18分)设随机变量X ,Y 相互独立同分布, 其概率密度函数均为 1,03,()30,x f x ⎧<<⎪=⎨⎪⎩其它
(1)求(,)X Y 的联合概率密度函数(,)f x y ;
(2)求{/2}P Y X ≤;
(3)求Z=max{,}X Y 的概率密度函数()Z f z 。

厦门大学《概率统计》课程试卷
____学院____系____年级____专业
主考教师:____试卷类型:(A 卷/B 卷)
6.(18分)设随机向量(X,Y )的概率密度函数为
,01,01
(,)0,x y x y f x y +<<<<⎧=⎨⎩其它 (1) 分别求关于X 与Y 的边缘概率密度;
(2) 问X 与Y 是否相互独立?请说明理由;
(3) 求条件概率密度|1()2
Y X f y ; (4) 求条件概率11()42
P Y X >=。

7.(10分)设离散型随机向量(X ,Y)的分布律如下:
(1)求()P X Y <;
(2)令2()Z X Y =-,求随机变量Z 的分布律;
8.(8分)设随机变量X 的概率密度函数为
2,01,()0,x x f x <<⎧=⎨⎩其它
令1/Y X =,求随机变量Y 的概率密度函数;
9.(8分) 设随机变量X ,Y 相互独立而且具有相同的分布, 其概率密度函数均为
,0,()0,x e x f x -⎧>=⎨⎩其它
求随机变量Z X Y =+的概率密度函数。

相关文档
最新文档