数学人教版七年级上册角平分线

合集下载

人教版七年级数学知识点试题精选-角平分线的定义

人教版七年级数学知识点试题精选-角平分线的定义

七年级上册角平分线的定义一.选择题(共20小题)1.如图A、O、B三点共线,OD平分∠AOC,OE平分∠BOC,则∠DOE度数为()A.30°B.60°C.90°D.120°2.如图,点O在直线AB上,OD平分∠BOC,若∠BOD=55°,则∠AOC的度数是()A.110°B.70°C.55°D.35°3.如图,如果∠AON=∠BOM,OC平分∠MON,那么图中除∠AON=∠BOM外,相等的角还有()A.1对 B.2对 C.3对 D.4对4.如图,OC是∠AOB的平分线,下列表达式中错误的是()A.∠AOC=∠AOB B.∠AOB=2∠BOC C.∠AOC=∠COB D.∠AOB=2∠O5.如图,OM平分∠AOB,OC是∠AOB内部的一条射线,ON平分∠BOC,有以下说法:①∠AOC=∠BOM②∠CON=∠BON③∠AOC=∠AOM+∠COM④∠AOC=∠BOM+∠COM⑤∠AOC=2∠MOC+∠COB⑥∠AOC=2∠MOC+2∠CON⑦∠AOC=2∠MON其中正确的有()个.A.4 B.5 C.6 D.76.如图,已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.60°B.50°C.45°D.30°7.点C在∠AOB的内部,现在五个等式:∠AOB=∠BOC,∠BOC=∠AOB,∠AOB=2∠AOC,∠AOB=2∠AOC,∠AOC+∠BOC=∠AOB,其中能表示OC是∠AOB 平分线的等式有()A.2个 B.3个 C.4个 D.5个8.如图,∠AOB是平角,∠AOC,∠BOC的角平分线分别是OD,OE,则∠DOE 是()A.80°B.90°C.100° D.105°9.如图,射线OC,OD在∠AOB的内部,OC是∠AOD的平分线,若∠AOB=100°,∠COD=15°,则∠BOD的度数为()A.85°B.80°C.70°D.60°10.如图,已知∠AOB=40°,∠AOC=90°,OD平分∠BOC,则∠AOD的度数是()A.20°B.25°C.30°D.35°11.如图,已知OD平分∠AOB,OE平分∠BOD,若=,则的值为()A.B.C.D.12.如图,已知∠BOC=40°,OD平分∠AOC,∠AOD=25°,那么∠AOB的度数是()A.65°B.50°C.40°D.90°13.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125° D.145°14.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A.30°B.45°C.60°D.75°15.点P在∠MON内部,则四个等式:①∠POM=∠NOP;②∠PON+∠POM=∠MON;③∠MOP=∠MON,④∠MON=2∠NOP,其中能表示OP是角平分线的式子有()A.1个 B.2个 C.3个 D.4个16.已知∠AOB=60°,作射线OC,使∠AOC等于40°,OD是∠BOC的平分线,那么∠BOD的度数是()A.100°B.100°或20°C.50°D.50°或10°17.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°18.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52°B.38°C.64°D.26°19.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB20.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°二.填空题(共20小题)21.若∠AOB=4∠α,OC为∠AOB的角平分线,则∠AOC=∠α.22.如图,∠AOB=68°,OC平分∠AOB,则∠BOC的度数为.23.如图,∠1=∠2=∠3=∠4.(1)那么OD是的角平分线,OE是是的角平分线,OC是的角平分线;(2)=4∠1,==3∠1;(3)∠BOD=∠BOC=∠AOB;(4)若∠BOE=30°,那么∠AOE=.24.一个角的平分线把这个角分为30°的两个角,则这个角是.25.从一个角的点引出一条线,把这个角分成个,这条线叫做这个角的平分线.如图所示,如果OC是∠AOB的平分线,那么:①∠AOC==;②∠AOB==.26.一条以一个角的为的射线把这个角分成的角,这条射线叫做这个角的.27.如图,∠AOB是直角,∠BOC=50°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为.28.如图,OC平分∠AOB,若∠BOC=29°34′,则∠AOB=°′.29.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB=.30.如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.若∠BOC=66°,则∠EOC=度.31.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是.(填序号)32.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是.33.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为.34.如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.(1)若∠AOC=120°,∠BOC=β,求∠DOE;;(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE..35.已知直线AB上有一点O,射线OC、OD在AB的同侧,∠AOD=24°,∠BOC=46°,则∠AOD与∠BOC的平分线的夹角的度数为.36.如图,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则∠DOE=度.37.如图,OB在∠AOC内部,且∠BOC=3∠AOB,OD是∠AOB的平分线,∠BOC=3∠COE,则下列结论:①∠EOC=∠AOE;②∠DOE=5∠BOD;③∠BOE=(∠AOE+∠BOC);④∠AOE=(∠BOC﹣∠AOD).其中正确结论有.38.如图所示,∠AOB=85°,∠AOC=10°,OD是∠BOC的平分线,则∠BOD的度数为度.39.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10′,则∠AOB的度数为.40.如图,OC平分∠AOB,若∠AOC=27°30′,则∠AOB=度.三.解答题(共10小题)41.如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,则∠DOE的度数为;(2)如果∠BOD=56°,求∠AOE的度数.解:如图,因为OB是∠AOC的平分线,所以=2∠BOC.因为OD是∠EOC的平分线,所以=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=°.42.已知平角AOB及其平分线OC,如果作射线OD,使∠BOD与∠COD的度数之比为7:3,那么∠AOD等于多少度?43.已知,如图,∠AOB=90°,∠EOD=70°,OE、OD分别是∠AOB和∠BOC的角平分线,求∠BOC的度数.44.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;(2)若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.45.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC的度数.46.如图,O是直线AB上的一点,OC是△BOD的平分线,已知∠AOD=113°24′,求∠COD的度数.47.如图1,OM是∠BOC的角平分线,ON是∠AOC的角平分线,且∠AOB=76°.(1)求∠MON的度数;(2)当OC在∠AOB内另一个位置时,∠MON的值是否发生变化?若不变化,请你在图2中画图加以说明;(3)由(1)、(2)你发现了什么规律?当OC在∠AOB外的某一个位置时,你发现的规律还成立吗?请你在图3中画图加以说明.48.如图,点O为直线AB上一点,∠AOC=50°,OD平分∠AOC.(1)求∠BOD的度数;(2)若OE平分∠BOC,求∠DOE的度数.49.如图,OC是∠AOM的平分线,OD是∠BOM的平分线.(1)如图1,若∠AOB=90°,∠AOM=60°,求∠COD的度数;(2)如图2,若∠AOB=90°,∠AOM=130°,则∠COD=°;(3)如图3,若∠AOB=m°,∠AOM=n°,则∠COD=°.50.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线.(1)若∠AOB=120°,则∠COE是多少度?(2)若∠EOC=65°,∠DOC=25°,则∠BOE是多少度?七年级上册角平分线的定义参考答案与试题解析一.选择题(共20小题)1.如图A、O、B三点共线,OD平分∠AOC,OE平分∠BOC,则∠DOE度数为()A.30°B.60°C.90°D.120°【分析】根据角平分线的定义可得∠COD=∠AOC,∠COE=∠COB,再根据∴∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)可得答案.【解答】解:∵OD平分∠AOC,OE平分∠BOC,∴∠COD=∠AOC,∠COE=∠COB,∴∠DOE=∠COD+∠COE=∠AOC+∠COB=180°=90°,故选:C.【点评】此题主要考查了角平分线的定义,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.2.如图,点O在直线AB上,OD平分∠BOC,若∠BOD=55°,则∠AOC的度数是()A.110°B.70°C.55°D.35°【分析】先由角平分线的定义得出∠BOC=2∠BOD,再根据邻补角定义即可求解.【解答】解:∵OD平分∠BOC,∠BOD=55°,∴∠BOC=2∠BOD=110°,∵AB是直线,∴∠AOC=180°﹣∠B0C=70°.故选B.【点评】此题考查角平分线与邻补角的定义,属于基础题,比较简单.3.如图,如果∠AON=∠BOM,OC平分∠MON,那么图中除∠AON=∠BOM外,相等的角还有()A.1对 B.2对 C.3对 D.4对【分析】根据角平分线的定义和图中角与角间的和差关系进行计算.【解答】解:∵∠AON=∠BOM,∴∠AON+∠MON=∠BOM+∠MON,即∠AOM=∠BON;又∵OC平分∠MON,∴∠MOC=∠NOC,∴∠AON+∠NOC=∠BOM+∠MOC,即∠AOC=∠BOC.综上所述,图中除∠AON=∠BOM外,相等的角还有∠AOM=∠BON、∠MOC=∠NOC、∠AOC=∠BOC,共有3对.故选:C.【点评】本题考查了角平分线的定义.实际上是根据角平分线定义得出所求角与已知角的关系转化求解.4.如图,OC是∠AOB的平分线,下列表达式中错误的是()A.∠AOC=∠AOB B.∠AOB=2∠BOC C.∠AOC=∠COB D.∠AOB=2∠O 【分析】根据角平分线的定义对各选项进行逐一分析即可.【解答】解:A、∵OC是∠AOB的平分线,∴∠AOC=∠AOB,故本选项正确;B、∵OC是∠AOB的平分线,∴∠AOB=2∠BOC,故本选项正确;C、∵OC是∠AOB的平分线,∴∠AOC=∠COB,故本选项正确;D、∵从点O出发由三个角,故不能确定∠AOC的大小,故本选项错误.故选D.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.5.如图,OM平分∠AOB,OC是∠AOB内部的一条射线,ON平分∠BOC,有以下说法:①∠AOC=∠BOM②∠CON=∠BON③∠AOC=∠AOM+∠COM④∠AOC=∠BOM+∠COM⑤∠AOC=2∠MOC+∠COB⑥∠AOC=2∠MOC+2∠CON⑦∠AOC=2∠MON其中正确的有()个.A.4 B.5 C.6 D.7【分析】根据角平分线的定义对各小题进行逐一分析即可.【解答】解:∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM,∠BON=∠CON.①∵∠AOM=∠BOM,∴∠AOC≠∠BOM,故本小题错误;②∵ON平分∠BOC,∴∠CON=∠BON,故本小题正确;③由图可知,∠AOC=∠AOM+∠COM,故本小题正确;④∵∠AOC=∠AOM+∠COM,∠AOM=∠BOM,∴∠AOC=∠BOM+∠COM,故本小题正确;⑤∵∠AOC=∠AOM+∠MOC,∠AOM=∠BOM,∠BOC+∠MOC=∠BOM,∴∠AOC=2∠MOC+∠COB,故本小题正确;⑥∵∠AOC=2∠MOC+∠COB,∠COB=2∠CON,∴∠AOC=2∠MOC+2∠CON,故本小题正确;⑦∵∠AOM=∠BOM=2∠CON+∠MOC,∠BOM=2∠CON,∴∠AOC=∠AOM+∠MOC=2∠CON+∠MOC+∠MOC=2∠MON.故本小题正确.故选C.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.6.如图,已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.60°B.50°C.45°D.30°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB 的关系,即可求出∠MON的度数.【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=(∠AOB+∠BOC﹣∠BOC)=∠AOB=45°.故选C.【点评】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.7.点C在∠AOB的内部,现在五个等式:∠AOB=∠BOC,∠BOC=∠AOB,∠AOB=2∠AOC,∠AOB=2∠AOC,∠AOC+∠BOC=∠AOB,其中能表示OC是∠AOB 平分线的等式有()A.2个 B.3个 C.4个 D.5个【分析】根据角平分线的定义对各等式进行逐一分析即可.【解答】解:点C在∠AOB的内部时,∠AOB>∠BOC,原等式不能表示OC是∠AOB平分线;∠BOC=∠AOB,原等式能表示OC是∠AOB平分线;∠AOB=∠AOC,原等式不能表示OC是∠AOB平分线;∠AOB=2∠AOC,原等式能表示OC是∠AOB平分线;∠AOC+∠BOC=∠AOB,原等式不能表示OC是∠AOB平分线;故选A.【点评】本题考查的是角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.8.如图,∠AOB是平角,∠AOC,∠BOC的角平分线分别是OD,OE,则∠DOE 是()A.80°B.90°C.100° D.105°【分析】本题比较多的条件是角平分线,OD和OE分别是∠AOC,∠BOC的角平分线,则2∠DOC+2∠EOC=180°,从而可以求解.【解答】解:∵OE平分∠BOC,OD平分∠AOC,∴∠AOC=2∠DOC,∠BOC=2∠COE,∵∠AOC+∠BOC=180°,∴2∠DOC+2∠EOC=180°,∴∠DOE=90°,故选:B.【点评】本题主要考查了角平分线的性质,关键是掌握角平分线把角分成相等的两部分.9.如图,射线OC,OD在∠AOB的内部,OC是∠AOD的平分线,若∠AOB=100°,∠COD=15°,则∠BOD的度数为()A.85°B.80°C.70°D.60°【分析】根据角平分线的定义,及角的和差进行计算即可.【解答】解:∵OC是∠AOD的平分线,∴∠AOD=2∠COD,∵∠COD=15°,∴∠AOD=2∠COD=30°,∵∠BOD=∠AOB﹣∠AOD,∠AOB=100°,∴∠BOD=100°﹣30°=70°.故选C.【点评】此题考查了角的平分线的定义,及角的和差计算,解题的关键是:根据角平分线的定义,先求出∠AOD的度数.10.如图,已知∠AOB=40°,∠AOC=90°,OD平分∠BOC,则∠AOD的度数是()A.20°B.25°C.30°D.35°【分析】先求出∠BOC=40°+90°=130°,再根据角平分线的定义求得∠BOD=65°,把对应数值代入∠AOD=∠BOD﹣∠AOB即可求解.【解答】解:∵∠AOB=40°,∠AOC=90°,∴∠BOC=40°+90°=130°,∵OD平分∠BOC,∴∠BOD=65°,∴∠AOD=∠BOD﹣∠AOB=65°﹣40°=25°.故选B.【点评】本题主要考查了角平分线的定义和角的运算.要会结合图形找到其中的等量关系:∠BOC=∠AOC+∠AOB,∠AOD=∠BOD﹣∠AOB是解题的关键.11.如图,已知OD平分∠AOB,OE平分∠BOD,若=,则的值为()A.B.C.D.【分析】由=,可设∠AOC=3x,∠BOC=2x,则∠AOB=5x,由OD平分∠AOB,可得∠AOD=∠BOD==,进而可得∠DOC=x,由OE平分∠BOD,可得∠DOE=∠BOE=∠BOD=,进而可得∠COE=∠DOE﹣∠DOC=,将∠COE=,∠BOE=,代入即可.【解答】解:∵=,可∴设∠AOC=3x,∠BOC=2x,则∠AOB=5x,∵OD平分∠AOB,∴∠AOD=∠BOD==,∴∠DOC=∠AOC﹣∠AOD=x,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=,∴∠COE=∠DOE﹣∠DOC=,∴==故选:C.【点评】本题主要考查了角平分线的定义,解题的关键是利用角平分线的定义找出各角之间的关系.12.如图,已知∠BOC=40°,OD平分∠AOC,∠AOD=25°,那么∠AOB的度数是()A.65°B.50°C.40°D.90°【分析】利用角平分线的定义得出∠COD=25°,进而得出答案.【解答】解:∵OD平分∠AOC,∠AOD=25°,∴∠COD=25°,∴∠AOB的度数是:∠BOC+∠AOD+∠COD=90°.故选:D.【点评】此题主要考查了角平分线的定义,得出∠COD的度数是解题关键.13.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125° D.145°【分析】先画出图形,然后根据角平分线的定义解题.【解答】解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选C.【点评】根据题意画出图形是解题的关键.然后根据角平分线的定义进行计算.14.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A.30°B.45°C.60°D.75°【分析】根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可.【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°.故选B.【点评】本题考查了角平分线的定义,做这类题时学生总会认为条件不够,其实只要把这些等量关系合并化简即可求出角的度数,所以学生做题时有是不要急于计算,而是要先化简后再合并,属于基础题.15.点P在∠MON内部,则四个等式:①∠POM=∠NOP;②∠PON+∠POM=∠MON;③∠MOP=∠MON,④∠MON=2∠NOP,其中能表示OP是角平分线的式子有()A.1个 B.2个 C.3个 D.4个【分析】利用角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得答案.【解答】解;如图:根据角平分线定义可得三个等式:①∠POM=∠NOP,③∠MOP=∠MON,④∠MON=2∠NOP;故选:C.【点评】此题主要考查了角平分线定义,题目比较简单,画出图形分析即可.16.已知∠AOB=60°,作射线OC,使∠AOC等于40°,OD是∠BOC的平分线,那么∠BOD的度数是()A.100°B.100°或20°C.50°D.50°或10°【分析】分为两种情况:①当OC在∠AOB外部时,②当OC在∠AOB内部时,求出∠BOC,根据∠BOD=∠BOC求出即可.【解答】解:分为两种情况:①当OC在∠AOB外部时,∵∠AOB=60°,∠AOC=40°,∴∠BOC=60°+40°=100°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=50°,②当OC在∠AOB内部时,∵∠AOB=60°,∠AOC=40°,∴∠BOC=60°﹣40°=20°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=10°,故选D.【点评】本题考查了角平分线定义和角的有关计算,解此题的关键是求出符合条件的所有情况.17.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.【点评】本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.18.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52°B.38°C.64°D.26°【分析】先求得∠BOC的度数,然后由角平分线的定义可求得∠BOD的度数,最后根据∠AOD=∠AOB﹣∠BOD求解即可.【解答】解:∠BOC=∠AOB﹣∠AOC=90°﹣38°=52°,∵OD平分∠BOC,∴∠BOD=∠BOC=26°.∴∠AOD=∠AOB﹣∠BOD=90°﹣26°=64°.故选:C.【点评】本题主要考查的是角平分线的定义,掌握角平分线的定义是解题的关键.19.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB【分析】利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B不一定正确.【解答】解:A、正确;B、不一定正确;C、正确;D、正确;故选B.【点评】此题主要考查了从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.20.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°【分析】根据角平分线的定义求出∠BOC,再根据邻补角的定义列式计算即可得解.【解答】解:∵OD平分∠BOC,∴∠BOC=2∠1=2×168°=136°,∴∠2=180°﹣∠BOC=180°﹣136°=44°.故选C.【点评】本题考查了角平分线的定义,邻补角的定义,熟记概念并准确识图是解题的关键.二.填空题(共20小题)21.若∠AOB=4∠α,OC为∠AOB的角平分线,则∠AOC=2∠α.【分析】直接根据角平分线的定义即可求解.【解答】解:∵∠AOB=4∠α,OC为∠AOB的角平分线,∴∠AOC=∠AOB=×4∠α=2∠α.故答案为:2.【点评】本题考查了角平分线的性质:从角的顶点引一条射线,把这个角分成相等的两部分,那么这条射线叫这个角的平分线.22.如图,∠AOB=68°,OC 平分∠AOB ,则∠BOC 的度数为 34° .【分析】根据角平分线的定义即可直接求解.【解答】解:∵OC 平分∠AOB ,∴∠BOC=∠AOB=×68=34°.故答案是:34°.【点评】此题主要考查了垂线和角平分线的定义,理解定义是关键.23.如图,∠1=∠2=∠3=∠4.(1)那么OD 是 ∠AOB 和∠COE 的角平分线,OE 是 ∠BOD 是的角平分线,OC 是 ∠AOD 的角平分线;(2) ∠AOB =4∠1, ∠BOC = ∠AOE =3∠1;(3)∠BOD= ∠BOC= ∠AOB ;(4)若∠BOE=30°,那么∠AOE= 90° .【分析】根据角平分线的定义、结合图形进行解答即可.【解答】解:(1)OD 是∠AOB 和∠COE 的角平分线,OE 是∠BOD 是的角平分线,OC是∠AOD的角平分线;(2)∠AOB=4∠1,∠BOC=∠AOE=3∠1;(3)∠BOD=∠BOC=∠AOB;(4)若∠BOE=30°,那么∠AOE=90°,故答案为:(1)∠AOB和∠COE;∠BOD;∠AOD;(2)∠AOB;∠BOC;∠AOE;(3);;(4)90°.【点评】本题考查的是角平分线的定义,掌握角平分线是经过角的顶点把这个角分成相等的两个角的射线是解题的关键.24.一个角的平分线把这个角分为30°的两个角,则这个角是60°.【分析】依据角平分线的定义回答即可.【解答】解:∵一个角的平分线把这个角分为30°的两个角,∴这个角=30°×2=60°.故答案为:60°.【点评】本题主要考查的是角平分线的定义,掌握角平分线的定义是解题的关键.25.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如果OC是∠AOB的平分线,那么:①∠AOC=∠BOC=∠AOB;②∠AOB=2∠AOC=2∠BOC.【分析】根据角平分线的定义和性质进行解答即可.【解答】解:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;①∠AOC=∠BOC=∠AOB;②∠AOB=2∠AOC=2∠BOC.故答案为:顶;射;两;相等的角;射;①∠BOC;∠AOB;②2∠AOC;2∠BOC.【点评】从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.26.一条以一个角的顶点为端点的射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.【分析】根据角平分线的定义解答.【解答】解:顶点、端点、两个相等.一条以一个角的顶点为端点的射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.【点评】此题考查了角平分线的定义,直接按定义填空即可.27.如图,∠AOB是直角,∠BOC=50°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为45°.【分析】先根据∠AOB是直角,∠BOC=50°得出∠AOC的度数,再根据OM平分∠AOC,ON平分∠BOC得出∠COM与∠CON的度数,由∠MON=∠COM﹣∠CON 即可得出结论.【解答】解:∵∠AOB是直角,∠BOC=50°,∴∠AOC=90°+50°=140°.∵OM平分∠AOC,ON平分∠BOC,∴∠COM=∠AOC=×140°=70°,∠CON=∠BOC=25°,∴∠MON=∠COM﹣∠CON=70°﹣25°=45°.故答案为:45°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.28.如图,OC平分∠AOB,若∠BOC=29°34′,则∠AOB=59°8′.【分析】从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.根据定义求得即可.【解答】解:∠AOB=2×29°34′=59°8′.故答案为59、8.【点评】本题主要考查了角平分线的定义.29.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB=28°.【分析】设∠AOB=x°,根据已知和角平分线定义得出∠AOD=∠COD=(x+14)°,求出∠AOC=2∠AOD=3∠AOB,得出方程3x=2(x+14),求出方程的解即可.【解答】解:设∠AOB=x°,∵∠BOD=14°,OD平分∠AOC,∴∠AOD=∠COD=(x+14)°,∵∠BOC=2∠AOB,∴∠AOC=2∠AOD=3∠AOB,∴3x=2(x+14),解得:x=28,∴∠AOB=28°,故答案为:28°.【点评】本题考查了角平分线定义和角的有关计算的应用,解此题的关键是能得出关于x的方程,难度适中.30.如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.若∠BOC=66°,则∠EOC=57度.【分析】先根据OE平分∠AOC,∠BOC=66°求出∠COD的度数,再由OD平分∠BOC,OE平分∠AOC得出∠EOD的度数,根据∠EOC=∠EOD﹣∠COD即可得出结论.【解答】解:∵OE平分∠AOC,∠BOC=66°,∴∠COD=∠BOC=×66°=33°,∵OD平分∠BOC,OE平分∠AOC,∴∠EOD=∠EOC+∠COD=∠AOC+∠BOC=(∠AOC+∠BOC)=90°,∴∠EOC=∠EOD﹣∠COD=90°﹣33°=57°.故答案为:57.【点评】本题考考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.31.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是①③④.(填序号)【分析】根据角的计算和角平分线性质,对四个结论逐一进行计算即可.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB=90°﹣∠BOC,∠COD=90°﹣∠BOC,∴∠AOB=∠COD;故①正确.②只有当OB,OC分别为∠AOC和∠BOD的平分线时,∠AOB+∠COD=90°;故②错误.③∵∠AOC=∠BOD=90°,OB平分∠AOC,∴∠AOB=∠COB=45°,则∠COD=90°﹣45°=45°∴CB平分∠BOD;故③正确.④∵∠AOC=∠BOD=90°,∠AOB=∠COD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线.故④正确.故答案为:①③④.【点评】此题主要考查学生对角的计算,角平分线的理解和掌握,此题难度不大,属于基础题.32.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.【分析】根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.【解答】解:∵EF是∠BED的角平分线,∠DEF=70°,∴∠DEB=2∠DEF=2×70°=140°,∴∠AED=180°﹣∠DEB=180°﹣140°=40°.故答案为:40°.【点评】本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.33.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为∠BOC+∠DOC=90°.【分析】根据已知得出∠AOC+∠EOC=180°,∠BOC=∠AOC,∠DOC=EOC,求出∠BOC+∠DOC=(∠AOC+∠EOC)=90°,即可得出答案.【解答】解:∠BOC+∠DOC=90°,理由是:∵A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,∴∠AOC+∠EOC=180°,∠BOC=∠AOC,∠DOC=EOC,∴∠BOC+∠DOC=(∠AOC+∠EOC)=180°=90°,∴∠BOC与∠COD的关系为∠BOC+∠DOC=90°,故答案为:∠BOC+∠DOC=90°.【点评】本题考查了角平分线定义和角的有关计算的应用,能识别图形是解此题的关键.34.如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.(1)若∠AOC=120°,∠BOC=β,求∠DOE;60°﹣β;(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE.α﹣β.【分析】根据角平分线的性质计算.【解答】解:(1)∠AOC=120°,∴∠COE=60°(角平分线定义),∵∠BOC=β,∴∠COD=β(角平分线定义),∴∠DOE=60°﹣β;(2)∵∠AOC=α,OE是∠AOC的平分线,且∠BOC=β(α>β),∴∠COE=α(角平分线定义).∴∠BOE=∠COE﹣∠BOC=α﹣β.【点评】此题主要考查了角平分线定义.由角平分线的定义,易求该角的度数.35.已知直线AB上有一点O,射线OC、OD在AB的同侧,∠AOD=24°,∠BOC=46°,则∠AOD与∠BOC的平分线的夹角的度数为145°.【分析】先根据题意画出图形,然后依据角平分线的定义求得∠AOF和∠EOB的度数,然后依据平角是180°可求得∠EOF的度数.【解答】解:如图所示:∵OF平分∠AOD,∴∠AOF=AOD==12°.同理可知:∠EOB=.∴∠EOF=180°﹣∠AOF﹣∠EOB=180°﹣12°﹣23°=145°.故答案为:145°.【点评】本题主要考查的是角平分线的定义,根据题意画出图形是解题的关键.36.如图,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则∠DOE=90度.【分析】利用角平分线的性质计算.【解答】解:∵OD平分∠AOC,OE平分∠BOC,则∠DOE=(∠AOC+∠BOC)=90°.故答案为90.【点评】此题主要考查角平分线的定义和平角的定义.37.如图,OB在∠AOC内部,且∠BOC=3∠AOB,OD是∠AOB的平分线,∠BOC=3∠COE,则下列结论:①∠EOC=∠AOE;②∠DOE=5∠BOD;③∠BOE=(∠AOE+∠BOC);④∠AOE=(∠BOC﹣∠AOD).其中正确结论有①②④.【分析】根据∠BOC=3∠AOB,∠BOC=3∠COE,得∠COE=∠AOB,则∠BOC=∠AOE,设∠AOD=x,则∠AOB=∠COE=2x,∠AOE=∠BOC=6x,得出①②④正确,③不正确.【解答】解:①∵∠BOC=3∠AOB,∠BOC=3∠COE,∴∠COE=∠AOB,∴∠COE+∠BOE=∠AOB+∠BOE,∴∠BOC=∠AOE,∵OD是∠AOB的平分线,∴∠AOD=∠BOD,设∠AOD=x,则∠AOB=∠COE=2x,∠AOE=∠BOC=6x,∴∠COE=∠AOE;所以①正确;②∵∠DOE=∠BOD+∠BOE=x+4x=5x,∠BOD=x,∴∠DOE=5∠BOD,所以②正确;③∵∠BOE=4x,(∠AOE+∠BOC)=(6x+6x)=6x,∴∠BOE≠(∠AOE+∠BOC),所以③不正确;④∵∠AOE=6x,(∠BOC﹣∠AOD)=(6x﹣x)=6x,∴∠AOE=(∠BOC﹣∠AOD),所以④正确.故答案为:①②④.【点评】本题考查了角平分线的性质和角的和差倍分,一般情况下,根据已知条件得出各角之间的关系,设一个最小角为x°,分别表示出各角的关系,得出相应的结论.38.如图所示,∠AOB=85°,∠AOC=10°,OD是∠BOC的平分线,则∠BOD的度数为37.5度.【分析】利用角与角的和差关系及角平分线的性质计算.【解答】解:∵∠AOB=85°,∠AOC=10°∴∠BOC=85°﹣10°=75°又∵OD是∠BOC的平分线,∴∠BOD=∠COD=∠BOC,即∠BOD的度数为×75°=37.5°故∠BOD的度数为37.5度.【点评】本题主要考查角平分线的知识点,比较简单.39.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10′,则∠AOB的度数为100°40′.【分析】直接利用角平分线的性质得出∠AOC的度数,进而得出答案.【解答】解:∵OD是∠AOC的平分线,且∠COD=25°10′,∴∠AOC=2×25°10′=50°20′,∵OC是∠AOB的平分线,∴∠AOB的度数为:50°20′×2=100°40′.故答案为:100°40′.【点评】此题主要考查了角平分线的定义,正确把握定义是解题关键.40.如图,OC平分∠AOB,若∠AOC=27°30′,则∠AOB=55度.【分析】直接利用角平分线的定义得出∠AOC=∠BOC,进而得出答案.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵∠AOC=27°30′,∴∠AOB=27°30′×2=55°.故答案为:55.【点评】此题主要考查了角平分线的定义以及度分秒的换算,正确把握角平分线的定义是解题关键.三.解答题(共10小题)41.如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,则∠DOE的度数为37°;(2)如果∠BOD=56°,求∠AOE的度数.解:如图,因为OB是∠AOC的平分线,所以AOC=2∠BOC.因为OD是∠EOC的平分线,所以COE=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=112°°.【分析】(1)角平分线的定义求得∠AOC=38°,∠DOE=∠DOC=∠AOD﹣∠AOC=75°﹣38°=37°;(2)根据角平分线的定义易求∠AOE=2∠BOD.【解答】解:(1)∵OB是∠AOC的平分线,∠BOC=19°,∴∠AOC=2∠BOC=38°.∴∠DOC=∠AOD﹣∠AOC=75°﹣38°=37°.又∵OD是∠EOC的平分线,∴∠DOE=∠DOC=37°.故填:37°;(2)如图,因为OB是∠AOC的平分线,所以AOC=2∠BOC.因为OD是∠EOC的平分线,所以COE=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=112°°.故填:∠AOC,∠COE,112°.【点评】本题考查了角平分线的定义.解题时,实际上是根据角平分线定义得出所求角与已知角的关系转化求解.42.已知平角AOB及其平分线OC,如果作射线OD,使∠BOD与∠COD的度数之比为7:3,那么∠AOD等于多少度?【分析】根据题意画出图形,由角平分线的定义得出∠COB的度数,再根据∠BOD 与∠COD的度数之比为7:3求出∠COD的度数,根据∠AOD=∠AOC+∠COD即可得出结论.【解答】解:如图1所示,∵∠AOB=180°,OC是∠AOB的平分线,∴∠COB=×180°=90°.∵∠BOD与∠COD的度数之比为7:3,∴∠COD=∠COB=×90°=27°,∴∠AOD=∠AOC+∠COD=90°+27°=117°.如图2所示,∵∠AOD:∠COD=1:3,∴∠AOD=90°×=22.5°.答:∠AOD等于117°或22.5°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.43.已知,如图,∠AOB=90°,∠EOD=70°,OE、OD分别是∠AOB和∠BOC的角平分线,求∠BOC的度数.【分析】先由∠AOB=90°,OE是∠AOB的角平分线,得出∠EOB=∠AOB=45°,那么∠BOD=∠EOD﹣∠EOB=70°﹣45°=25°,再由OD是∠BOC的角平分线,得出∠BOC=∠BOD=50°.【解答】解:∵∠AOB=90°,OE是∠AOB的角平分线,∴∠EOB=∠AOB=45°,∵∠EOD=70°,∴∠BOD=∠EOD﹣∠EOB=70°﹣45°=25°,∵OD是∠BOC的角平分线,∴∠BOC=∠BOD=50°.【点评】本题考查了角的计算及角平分线的定义,首先确定各角之间的关系,利用角平分线的性质来求.44.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;(2)若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.【分析】①利用角平分线的定义求出∠AOC,∠FOC与∠AOC和是180°.②从图中不难看出∠DOE是由∠AOB与∠BOC半角之和,也就是∠AOB的一半.【解答】解:①∵OE平分∠AOC,∠AOE=20°∴∠AOC=2∠AOE=40°∴∠FOC=180°﹣∠AOC=140°;②∵OE平分∠AOC,OD平分∠BOC,∴∠AOE=∠COE=∠AOC,∠COD=∠BOD=∠BOC,∴∠DOE=∠COE+∠COD=∠AOC+∠BOC=∠AOB,已知∠AOB=84°∴∠DOE=42°.【点评】本题考查了角平分线的定义,解决本题的关键牢记角平分线的定义,注意实际问题中的转化.45.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC的度数.【分析】此题的关键是要先设∠ABC的度数.然后再利用题中的关系求出,∠DBE 的值,让它与27°列成等式.从而求出∠ABC的度数.【解答】解:设∠ABC=α,则∠ABD=,∠ABE=α∵∠DBE=∠ABD﹣∠ABE∴﹣α=27°得α=126°。

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

新人教版初中数学七年级上学期《角》知识点讲解及例题解析

《角》知识讲解及例题解析【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图1 图2(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作“1′”,1′的160为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于60时要向高一位进位.要点三、角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB =∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.3.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示.(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题】类型一、角的概念1. 利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.举一反三:【变式】下列说法中,正确的是()A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看做是由一条射线绕着它的端点旋转而形成的图形D.角可以看做是由一条线段绕着它的端点旋转而形成的图形【答案】C.类型二、角度制的换算2. 计算下列各题:(1)152°49′12″+20.18°; (2)82°-36°42′15″;(3)35°36′47″×9; (4)41°37′÷3.【答案与解析】解:(1)解法一:∵ 20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵ 152°49′12″=152.82°,∴ 152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴ 82°-36°42′15″=45°17′45″.423″=7′3″, 324′+7′=5°31′,∴ 35°36′47″×9=320°31′3″.∴ 41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3; (4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.类型三、角的比较与运算3. 如图所示表示两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出图中各角的度数,并把图中的6个角从小到大排列,然后用“<”或“=”连接.【答案与解析】解:(1)如图所示,把两块三角板叠在一起,可得∠1>∠α,用同样的方法,可得∠α<∠2.所以∠2=∠1>∠α.(2)用量角器量出图中各个角的度数,分别是∠1=∠2=45°,∠3=90°,∠α=30°,∠β=60°,∠γ=90°,把它们从小到大排列,有∠α<∠1=∠2<∠β<∠3=∠γ.【总结升华】比较角的大小有叠合法和度量法两种:①先将两个角的顶点与顶点重合,一条边与一条边重合再比较.②先量出每个角的度数,然后按它们的度数来比较.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线.某同学经过认真分析,得到一个关系式是∠MON=12(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来.【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON) -∠AON 即有∠MON=∠BON-∠MON -∠AON∴ 2∠MON=∠BON-∠AON∴∠MON=12(∠BON-∠AON)4. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM ﹣∠CON=45°. (4)从上面的结果中,发现:∠MON 的大小只和∠AOB 得大小有关,与∠A0C 的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,已知O 是直线AC 上一点,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.【答案】解:设∠EOC=x °,则∠BOE =12∠EOC =12x °,根据题意可得:1180127022x xx --+= ,解得: 80x = .∠EOC =2∠BOE =80°. 类型四、方位角5.已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于 . 【答案】85°. 【解析】解:如图:∵∠2=50°,∴∠3=40°, ∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°, 故答案为:85°.【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键. 类型五、钟表上有关夹角问题6. 在7时到7时10分之间的什么时刻,时针与分针成一条直线? 【答案与解析】解:设7时x 分钟,时针与分针成一条直线,由题意得:16302x x -=,5511x =. 答:7时5511分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则: ① 分针的速度为36060=6°/分;②时针的速度为3060°分=0.5°/分. 故分针速度是时针速度的12倍. 举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午7点前回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间? 【答案】解:设此人外出用了x 分钟,则分针转了6x 度,时针转了0.5x 度.根据题意得:6x-0.5x =110×2,解之得x =40. 答:此人外出购物用了40分钟的时间.。

最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案

最新2024人教版七年级数学上册6.3.2 角的比较与运算--教案

6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。

1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。

解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。

又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。

2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。

1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。

2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。

解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。

所以 $\angle DAC=4\times18°=72°$。

因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。

2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。

数学人教版七年级上册角平分线

数学人教版七年级上册角平分线
A
C
O
B
【剖析定义】
角平分线的定义中,我们 需要注意哪些地方?
(1)一条射线 (2)射线的端点是角的顶点 (3)把角分成两个相等的角
【三种语言】
线段

特殊
特殊
线段中点 类比 角平分线
定义 表示方法
定义 表示方法
【小组合作探索】
请你回顾线段中点的 表示方法,小组探索,归 纳出角平分线的表示方法.
【表示方法】 A
C
O
B
若OC是∠AOB的平分线
则:(1) ∠AOC=∠BOC
【表示方法】 A
C
O
B
若OC是∠AOB的平分线
则:(2) AOC 1AOB
2

BOC 1AOB 2
【表示方法】 A
C
O
B
若OC是∠AOB的平分线
则:(3) AO 2 A BOC 或 AO 2 B BOC
【提炼方法】
类 线段中点 比 角平分线
定义 表示方法
定义 表示方法
三、巩固应用
1、如图,OC为∠AOB的平分线
(1) 若∠1= 60° 则∠2=______
A
分析:∠1=∠2C12OB
三、巩固应用
1、如图,OC为∠AOB的平分线
(2) 若∠AOB=120°
则∠1=_____
A
C
分析1: 1AOB 2
1
2
O
B
义务教育教科书 数学 七年级 上册
第四章 几何图形初步
4.3.2 角平分线
学习目标
1、理解角平分线的概念,能用文字 语言、图形语言、符号语言进行描述. 2、经过类比线段中点学习角平分线 的相关知识的过程,体会类比思想. 3、初步培养简单的说理能力.

人教版七年级数学上册4.3.2角的比较与运算一等奖优秀教学设计

人教版七年级数学上册4.3.2角的比较与运算一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级上册4.3.2角的比较与运算教学设计一、教材分析1、地位作用:角的比较,角的和与差,角平分线是本章重要的基础知识,也是后续学习图形与几何必备的知识基础。

在本节课中,除了让学生重点掌握以上的基础知识外,还应通过大量的识图和作图训练,来培养学生的图形感,同时,还应在解决问题的过程中注意学生推理语言和能力的培养,这也是教学的难点。

2、目标和目标解析:(1)、目标:1.理解两个角的和、差、倍、分的意义;2.掌握角平分线的概念;3.会比较角的大小,会用量角器画一个角等于已知角.(2)、目标解析:①、能从图形和数量关系两个角度认识角的大小,会用度量法和叠合法比较两个角的大小;能从几何图形和数量关系两方面认识角的和与差及角平分线,知道两个角的和、差仍然是一个角,知道角的和、差或等分的度数的计算;能结合角的大小、和与差、角平分线的直观图形,用文字语言和符号语言描述它们,反之,能将它们用符号语言或文字语言所表述的图形及关系,用图形直观表示出来。

②、在学习过程中,能在回忆线段的大小、和与差、中点内容的同时,想象本节课所要学习的内容,能对学习进程心中有数;能将对线段的大小、和与差、中点的研究方法和基本套路迁移到角的相关问题研究中,不断地提出问题、分析问题、解决问题。

3、教学重、难点教学重点:角的大小、角的和与差、角平分线的意义及数量关系;感受类比的思想。

教学难点:用图形语言、文字语言、符号语言综合描述角的大小、角的和与差关系及角平分线。

突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。

二、教学准备:多媒体课件、导学案、三角板或直尺、量角器、剪刀,透明或半透明纸。

三、教学过程教学内容与教师活动 学生活动 设计意图一、创设情景 引入课题 问题:这两把折扇中,哪一把形成的角度大?与折扇的大小有关系吗?(板书)课题学生观察图片,获得感性认识. 让学生知道,角的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。

人教版数学七年级上册《角平分线性质1》教学设计

人教版数学七年级上册《角平分线性质1》教学设计

人教版数学七年级上册《角平分线性质1》教学设计一. 教材分析人教版数学七年级上册《角平分线性质1》这一节主要讲述角平分线的性质。

学生通过学习这一节内容,能够理解角平分线的定义,掌握角平分线上的点到角的两边的距离相等的性质,并能够运用这一性质解决一些几何问题。

二. 学情分析七年级的学生已经学习过一些基本的几何知识,如点、线、面的基本概念,以及一些基本的几何性质。

但是,他们对于角平分线的性质可能还没有完全理解,需要通过实例和练习来进一步巩固。

三. 教学目标通过本节课的学习,学生能够:1.理解角平分线的定义;2.掌握角平分线上的点到角的两边的距离相等的性质;3.能够运用角平分线的性质解决一些几何问题。

四. 教学重难点1.角平分线的定义;2.角平分线上的点到角的两边的距离相等的性质;3.运用角平分线的性质解决几何问题。

五. 教学方法采用讲授法、示例法、练习法、讨论法等教学方法,通过生动的实例和丰富的练习,引导学生理解角平分线的性质,提高他们解决几何问题的能力。

六. 教学准备1.准备相关的几何图形和实例;2.准备一些练习题,包括基础题和提高题;3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际的例子,引出角平分线的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解角平分线的定义,并通过几何图形和实例来展示角平分线的性质。

引导学生理解和掌握角平分线上的点到角的两边的距离相等的性质。

3.操练(10分钟)让学生做一些基础题,巩固对角平分线性质的理解。

然后做一些提高题,培养学生的解题能力。

4.巩固(5分钟)通过小组讨论,让学生进一步理解角平分线的性质,并能够运用到实际问题中。

5.拓展(5分钟)引导学生思考:角平分线还有其他的性质吗?让学生进行思考和探索。

6.小结(3分钟)对本节课的内容进行小结,强调角平分线的性质和运用。

7.家庭作业(2分钟)布置一些相关的练习题,让学生巩固所学知识。

8.板书(3分钟)板书本节课的主要内容和重点。

6.3.2.2角的运算课件 人教版数学七年级上册

 6.3.2.2角的运算课件  人教版数学七年级上册

2
2
跟踪训练
如图,O 是直线AB上一点,OC是∠AOB 的 平分线,∠COD=31°28'.求∠AOD 的度数.
解:因为O 是直线AB上一点,
所以∠AOB=180°.
因为OC是∠AOB 的平分线,
所以∠AOC=∠BOC= 1∠AOB= 2
因为∠COD=31°28',
1×180°=90°. 2
所以∠AOD=90°-31°28'=58°32'.
(3) 如果∠AOE=140°, ∠COD=30°,那么∠AOB 是多少度?
解:因为 ∠COD=30°,OD 平分∠COE, 所以 ∠COE=2∠COD=60°,
E
DC
B
所以 ∠AOC=∠AOE-∠COE =140°-60°= 80°. O
A
又因为 OB 平分∠AOC,
所以∠AOB= 1 ∠AOC= 1 ×80°= 40°.
或∠AOC=2∠AOB=2∠BOC,
所以射线OB是∠AOC的平分线.
C B
O
A
反之也成立:
因为射线OB是∠AOC的平分线.
所以∠AOB=∠BOC= 1∠AOC, 2
或∠AOC=2∠AOB=2∠BOC,
题讲解
例1. 如图,OB 是∠AOC 的平分线,OD 是∠COE的平分线.
(1) 如果∠AOC=80°,那么∠BOC 是多少度? E
说明:度、分、秒是六十进制的,不能整除时要把剩余的度 数化成分
跟踪训练
1.如图,把一个蛋糕等分成8份,每份中的角是多少度? 要使每份中的角是15°,这个蛋糕应等分成多少份? 解:360°÷8=45°.
360°÷15°=24. 答:把一个蛋糕等分成8份,每份中的角是45度;

2024-2025学年数学人教版七年级上册 第六章 第10课时 角的比较与运算(2)

2024-2025学年数学人教版七年级上册 第六章 第10课时 角的比较与运算(2)

所以∠BOE=∠DOE=75°,∠BOD=
2∠DOE=150°.
因为∠AOB+∠BOD=180°,
所以∠AOB=180°-∠BOD=30°.
第3题图
因为 OC 平分∠AOB,所以∠BOC=12 ∠AOB=15°.
所以∠COE=∠BOE+∠BOC=75°+15°=90°.
领跑作业本 ·数学(七年级上册RJ)
返回目录
与角的平分线有关的运算
例2 如图,∠AOB=168°,OC平分∠AOB.求∠AOC,∠BOC的
度数. 解:因为OC平分∠AOB,∠AOB=168°, 所以∠AOC=∠BOC=12 ∠AOB=21 ×
168°=84°.
例2题图
领跑作业本 ·数学(七年级上册RJ)
第10课时 角的比较与运算(2)
第1题图
领跑作业本 ·数学(七年级上册RJ)
第10课时 角的比较与运算(2)
返回目录
2.如图,BD平分∠ABC,∠ABE∶∠CBE=2∶3,∠ABC=100°, 求∠DBE的度数.
解:因为BD平分∠ABC,∠ABE∶∠CBE=2∶3,
∠ABC=100°,
所以∠ABD=12 ∠ABC=50°,∠ABE=
第5题图
所以∠DOE=180°-∠COD=180°-60°=120°.
领跑作业本 ·数学(七年级上册RJ)
第10课时 角的比较与运算(2)
返回目录
(2)试猜想∠AOC和∠DOE的数量关系,并说明理由.
解:(2)∠DOE=2∠AOC.理由如下:
因为∠AOB=90°,
所以∠BOC=90°-∠AOC. 因为OB平分∠COD, 所 以 ∠COD = 2∠BOC = 2×(90° - ∠AOC)=180°-2∠AOC. 因为∠COD+∠DOE=180°,

人教版数学七年级上册《角平分线的性质》教学设计

人教版数学七年级上册《角平分线的性质》教学设计

人教版数学七年级上册《角平分线的性质》教学设计一. 教材分析人教版数学七年级上册《角平分线的性质》是学生在学习了角的概念、垂线的性质等知识后,进一步研究角平分线的性质。

通过本节课的学习,学生能够掌握角平分线的定义、性质和作法,并为后续学习三角形内心的性质和线段的垂直平分线打下基础。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对角的概念和垂线的性质有一定的了解。

但是,对于角平分线的性质和作法,学生可能还比较陌生。

因此,在教学过程中,教师需要通过生动形象的讲解和丰富的实例,帮助学生理解和掌握角平分线的性质。

三. 教学目标1.知识与技能:学生能够准确地描述角平分线的定义和性质,并会运用角平分线的性质解决一些简单的问题。

2.过程与方法:学生通过观察、操作、思考、交流等活动,培养自己的空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,增强对数学学科的兴趣。

四. 教学重难点1.重点:角平分线的定义和性质。

2.难点:角平分线的作法和在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和模型,引发学生的兴趣,引导学生主动探究角平分线的性质。

2.启发式教学法:教师提问引导学生思考,激发学生的思维,培养学生的创新能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队协作能力。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体课件等。

2.学具:每人一套几何工具,包括三角板、直尺、圆规等。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入本节课的主题——角平分线。

例如,教师可以提问:“在修筑公路时,如何确定两个交叉路口之间的距离?”引导学生思考角平分线的作用。

2.呈现(10分钟)教师通过PPT展示角平分线的定义和性质,引导学生初步理解角平分线的概念。

同时,教师可以给出一些实例,让学生观察和思考,进一步加深对角平分线性质的理解。

七年级数学上册角平分线几何综合题汇总

七年级数学上册角平分线几何综合题汇总

七年级数学上册角平分线几何综合题汇总角平分线是几何学中的一个重要概念,涉及到角的计算。

在研究过线段射线的基础上,学生需要掌握方法和技巧,加强分析解题的能力并规范书写。

题1:直线AB、CD是经同一点O的不同直线,OE是∠BOD的角平分线,OF是∠COE的角平分线,求∠COF的度数。

已知∠1=100°,解题过程如下:∵∠1=100°,所以∠BOD=180°-100°=80°。

因为OE是∠BOD的角平分线,所以∠DOE=1/2×∠BOD=40°。

同理,∠COE=180°-40°=140°,OF 是∠COE的角平分线,所以∠COF=1/2×∠COE=70°。

题2:已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数。

解题过程如下:∵∠BOC=2∠AOC,∠AOC=40°,所以∠BOC=2×40°=80°。

因此,∠AOB=∠BOC+∠AOC=80°+40°=120°。

由于OD平分∠AOB,所以∠AOD=1/2×∠AOB=1/2×120°=60°。

最后,∠COD=∠AOD-∠AOC=60°-40°=20°。

题3:已知∠AOD=150°,∠AOB=40°,∠COD=70°,OM、ON分别是∠AOB、∠COD的平分线,求∠MON的度数。

解题过程如下:∵∠AOB=40°,∠COD=70°,所以∠AOM=1/2×∠AOB=1/2×40°=20°,∠DON=1/2×∠COD=1/2×70°=35°。

七年级数学角平分线的定义

七年级数学角平分线的定义

七年级数学角平分线的定义
一、角平分线的定义(人教版七年级数学)
1. 定义内容。

- 从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的角平分线。

- 例如,在∠AOB中,若射线OC是∠AOB的角平分线,那么∠AOC = ∠BOC,且∠AOC=(1)/(2)∠AOB,∠BOC=(1)/(2)∠AOB。

2. 角平分线的表示方法。

- 通常用符号“OC平分∠AOB”来表示射线OC是∠AOB的角平分线。

3. 角平分线的性质在几何图形中的应用。

- 在三角形中,如果有角平分线,会涉及到一些角度关系的计算。

- 例:在△ABC中,∠BAC的角平分线AD交BC于点D。

若∠BAC = 80°,那么∠BAD=(1)/(2)∠BAC = 40°。

- 角平分线还与三角形的其他线段(如中线、高线)共同构成三角形中的重要线段关系,在解决三角形全等、相似等问题时也经常用到角平分线的性质。

4. 角平分线的实际应用。

- 在建筑设计、工程测量等领域,角平分线的概念也有应用。

- 比如在规划一块三角形的土地时,要将某个角平分成相等的两部分,就会用到角平分线的知识来确定分割线的位置。

人教版七年级上册角(第2课时)课件

人教版七年级上册角(第2课时)课件

F E
类比线段长短的比较,你认为该如何比较两个角的大小? 1. 度量法 用量角器量出角的度数,然后比较它们的大小.
类比线段长短的比较,你认为该如何比较两个角的大小? 2. 叠合法
把两个角的顶点和一条边叠合在一起,通过视察另一
条边的位置来比较两个角的大小.
B'
B (B' )
B
B B'
O(O' ) A(A' ) O(O' ) A(A' ) O(O' ) A(A' ) ∠AOB<∠A'O'B' ∠AOB =∠A'O'B' ∠AOB>∠A'O'B'
新知探究 知识点3 角平分线
动手做一做:在纸上画∠AOB,然后将其剪下来,再将
其沿经过顶点的线对折,使边OA与OB重合.将角展开,
折痕上任取一点记作点C.类比线段中点的定义,填空:
B
∠AOC__=___∠COB;
∠AOB=___2__∠AOC.
C
O
A
一般地,从一个角的顶点出发,把这个角分成两个相
2.如图,∠l=∠2,∠3=∠4,则下列结论: ① AD 平分∠BAF;② AF 平分∠DAC; ③ AE 平分∠DAF;④ AF 平分∠BAC; ⑤ AE 平分∠BAC. 其中,正确的是( B ) A. ①③ B. ③⑤ C. ②④ D. ③④ 解:因为∠1 =∠2,所以 AE 平分∠DAF,所以③正确; 因为∠l =∠2,∠3= ∠4,所以∠1 +∠3=∠2 +∠4, 即∠BAE=∠CAE,所以 AE 平分∠BAC,所以⑤正确.
如图所示,OB,OC 是∠AOD 内的 任意两条射线,OM 平分∠AOB, ON 平分∠COD,若∠MON=α, ∠BOC=β,求∠AOD 的度数.

角的平分线的性质的教学设计

角的平分线的性质的教学设计

角的平分线的性质的教学设计角的平分线的性质的教学设计1教材分析1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。

所以本节内容在初中数学知识体系中起到承上启下的作用。

学情分析1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。

2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的性质定理的证明和运用性质定理证明线段相等。

3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等教学目标1、知识与技能:角平分线定理及定理的证明及应用。

2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。

3、情感、态度与价值观:通过自主学习的`发展体验获取数学知识的感受。

教学重点和难点教学重点:角平分线的性质定理的探究、证明、运用。

教学难点:角平分线的作图方法、角平分线的性质的运用。

角的平分线的性质的教学设计2【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.【教学方法】启发探究式.【教学手段】多媒体(投影仪,计算机).【教学过程】一、复习引入:1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.表达方式:如图1,∵OC是∠AOB的平分线,∴∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2=∠AOB).2.角平分线的画法:你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.3.创设探究角平分线性质的情境:用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:(拼法1)(拼法2)(拼法3)选择第三种拼法(如图2)提出问题:(1)P是∠DOE平分线上一点,PD、PE与∠DOE的边有怎样的位置关系?(2)点P到∠DOE两边的距离可以用哪些线段来表示?(3)PD、PE有怎样的数量关系?(投影)二、探究新知:(一)探索并证明角平分线的性质定理:1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的'距离.通过度量、观察并比较,猜想它们有怎样的数量关系?用TI图形计算器实验的结果:(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).引导学生用语言阐述自己的观点,得出猜想:命题1在角平分线上的点,到这个角的两边的距离相等.2.证明与应用:(学生写在笔记本上)已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE⊥OB于E.求证:PD=PE.(投影)证明:∵OC是∠AOB的平分线,∴∠1=∠2.∵PD⊥OA于D,PE⊥OB于E,∴∠ODP=∠OEP=90.又∵OP=OP,∴△ODP≌△OEP(AAS).∴PD=PE三、作业设计反思:一、重视情境创设,让学生经历求知过程。

人教版七年级数学上册第四章角复习题二(含答案) (26)

人教版七年级数学上册第四章角复习题二(含答案) (26)

人教版七年级数学上册第四章角复习题二(含答案) 如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,76AOC ∠=︒,OF OD ⊥.求EOF ∠的度数.【答案】52︒.【解析】【分析】根据对顶角的性质可得∠BOD=∠AOC=76°,然后根据角平分线的定义即可求出∠EOD ,再根据垂直的定义和互余的定义即可求出EOF ∠.【详解】解:∠∠AOC 与∠BOD 是对顶角,∴∠BOD=∠AOC=76°∠OE 平分∠BOD ,∴∠EOD=∠BOD=12×76°=38° ∠OF ∠OD ,∴∠DOF=90°∠∠FOE+∠EOD=90°∠∠FOE=90°-∠EOD=90°-38°=52°.【点睛】此题考查的是角的和与差,掌握对顶角的性质、垂直的定义和角平分线的定义是解决此题的关键.52.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=38°,求∠COD的度数.【答案】19°【解析】【分析】根据题意,两角和和角平分线定义很容易求解.【详解】解:∠∠BOC=2∠AOC,∠AOC=38°∠∠BOC=2×38°=76°∠∠AOB=∠BOC+∠AOC=76°+38°=114°∠OD平分∠AOB∠∠AOD=12∠AOB=12×114°=57°∠∠COD=∠AOD﹣∠AOC=57°-38°=19°.【点睛】本题考查了两角和的计算,及角平分线的定义,认准角之间的关系是解题关键.53.如图,已知∠AOB=150º,∠AOC=40º,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.(1)若∠EOB=10º,求∠COF的度数;(2)若∠COF=20º,求∠EOB的度数;(3)若∠COF=nº,求∠EOB的度数(用含n的式子表示).【答案】(1)∠COF=30°;(2)∠EOB=30°;(3)∠EOB=70°-2n°【解析】【分析】(1)先求出∠AOE,再根据角平分线的定义求出∠AOF,然后根据∠COF=∠AOF-∠AOC代入数据计算即可得解;(2)先求出∠AOF,再根据角平分线的定义求出∠AOE,然后根据∠EOB=∠AOB-∠AOE代入数据计算即可得解;(3)先表示出∠AOF,再根据角平分线的定义表示出∠AOE,然后根据∠EOB=∠AOB-∠AOE代入计算即可得解.【详解】(1)∵∠AOB=150°,∠EOB=10°,∴∠AOE=∠AOB-∠EOB=150°-10°=140°,∵OF平分∠AOE,∴∠AOF=12∠AOE=12×140°=70°,∴∠COF=∠AOF-∠AOC=70°-40°=30°;(2)∵∠AOC=40°,∠COF=20°,∴∠AOF=∠AOC+∠COF=40°+20°=60°,∵OF 平分∠AOE ,∴∠AOE=2∠AOF=2×60°=120°,∴∠EOB=∠AOB-∠AOE=150°-120°=30°;(3)∵∠AOC=40°,∠COF=n °,∴∠AOF=∠AOC+∠COF=40°+n °,∵OF 平分∠AOE ,∴∠AOE=2∠AOF=2(40°+n °)=80°+2n °,∴∠EOB=∠AOB-∠AOE=150°-(80°+2n °)=70°-2n °.【点睛】本题考查了角的计算,主要利用了角平分线的定义,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键,也是本题的难点.54.如图,已知直线AB ,CD 相交于点O ,OE 平分∠AOB ,∠EOC=2825︒'.(1)求∠AOD 的度数;(2)判断∠AOD 与∠COB 的大小关系,并说明理由.【答案】(1) 6135'AOD ∠=︒;(2)AOD COB ∠=∠,理由见解析. 【解析】【分析】(1)根据两直线相交可得∠AOB=∠COD=180°,由OE 平分∠AOB ,知∠AOE=∠BOE=90°,于是∠AOD=180°-∠AOE-∠COE 计算即可;(2)因为∠COB 与∠AOD 是对顶角所以相等.【详解】(1)直线,AB CD 相交于点O ,180COD AOB ∴∠=∠=︒, OE 平分AOB ∠,1902AOE AOB ∴∠=∠=︒, 180902825'AOD COD AOE COE ∴∠=∠-∠-∠=︒-︒-︒6135'=;(2)∠AOD=∠COB ,∵∠BOC 与∠AOD 是对顶角,∴∠BOC=∠AOD .【点睛】本题考查了对顶角的性质、度分秒的换算以及角平分线的性质,熟练掌握性质是解题的关键.55.如图,A 地和B 地都是海上观测站,B 地在A 地正东方向,且A 、B 两地相距2海里. 从A 地发现它的北偏东60°方向有一艘船C ,同时,从B 地发现船C 在它的北偏东30°方向.(1)在图中画出船C 所在的位置;(要求用直尺与量角器作图,保留作图痕迹)(2)已知三角形的内角和等于180°,求∠ACB 的度数.(3)此时船C与B地相距______海里.(只需写出结果,不需说明理由)【答案】(1)见解析;(2)∠ACB=30°;(2)2.【解析】【分析】(1)根据方向角的概念,分别过A、B作射线,两条射线的交点即为船C 的位置;(2)首先求出∠CAB和∠ABC的度数,再根据三角形内角和是180°求出∠ACB的度数;(3)由(2)中得出∠ACB=30°可知△ABC为等腰三角形,所以BC=AB.【详解】(1)如图所示,C点即为船C所在的位置;(2)在△ABC中,∠CAB=90°-60°=30°,∠ABC=90°+30°=120°∵∠ACB+∠CAB+∠ABC=180°∴∠ACB=180°-30°-120°=30°(3)∵∠ACB=∠CAB=30°∴△ABC 为等腰三角形∴BC=AB=2海里所以船C 与B 地相距2海里,故答案为:2.【点睛】本题考查了方位角问题,熟练掌握方位角的定义与角度的和差计算是解题的关键.56.已知150AOB ∠=︒,OC 为AOB ∠内部的一条射线,60BOC ∠=︒.(1)如图1,若OE 平分AOB ∠,OD 为BOC ∠内部的一条射线,12COD BOD ∠=∠,求DOE ∠的度数;(2)如图2,若射线OE 绕着O 点从OA 开始以每秒15︒的速度顺时针旋转至OB 结束、OF 绕着O 点从OB 开始以每秒5︒的速度逆时针旋转至OA 结束,当一条射线到达终点时另一条射线也停止运动.若运动时间为t 秒,当EOC FOC ∠=∠时,求t 的值;(3)若射线OM 绕着O 点从OA 开始以每秒15︒的速度逆时针旋转至OB 结束,在旋转过程中,ON 平分AOM ∠,试问2BON BOM ∠-∠在某时间段内是否为定值;若不是,请说明理由;若是,请补全图形,并直接写出这个定值以及t 相应所在的时间段.(本题中的角均为大于0︒且小于180︒的角)【答案】(1)35︒;(2)t 的值为3或7.5;(3)当02t ≤≤或412t ≤≤时,2BON BOM ∠-∠为定值,此时补全的图形见解析.【解析】【分析】(1)先根据角平分线的定义求出∠BOE 的度数,再根据角的倍差求出BOD ∠的度数,最后根据角的和差即可;(2)先求出AOC ∠的度数和t 的最大值,从而可知停止运动时,OF 在OC 的右侧,因此,分OE 在OC 左侧和右侧两种情况,再根据EOC FOC ∠=∠列出等式求解即可;(3)因本题中的角均为大于0︒且小于180︒的角,则需分OM 与OB 在一条直线上、ON 与OB 在一条直线上、OM 与OA 在一条直线上三个临界位置,从而求出此时t 的取值范围,并求出各范围内BON ∠和BOM ∠的度数,即可得出答案.【详解】(1)OE 平分AOB ∠,150AOB ∠=︒7512AO OE B B ∠∴=∠=︒ 160,2BOC COD BOD ∠=︒∠=∠2403BOD BOC ∴∠=∠=︒ 754035BOE BO DOE D ∴∠-∠=︒-︒=∠=︒;(2)15060,A C O BO B ∠=︒∠=︒90AOC AOB BOC ∠∴∠-=∠=︒由题意知,当OE 转到OB 时,两条射线均停止运动 此时150101515AOB t ︒==∠=︒︒(秒) 则OF 停止转动时,55060BOF t ∠=︒=︒<︒即OF 从开始旋转至停止运动,始终在OC 的右侧因此,分以下2种情况:①当OE 在OC 左侧时,9015605EOC AOC AOE t FOC BOC BOF t ∠=∠-∠=︒-︒⎧⎨∠=∠-∠=︒-︒⎩则由EOC FOC ∠=∠得9015605t t ︒-︒=︒-︒,解得3t =②当OE 在OC 右侧时,1590605EOC AOE AOC t FOC BOC BOF t ∠=∠-∠=︒-︒⎧⎨∠=∠-∠=︒-︒⎩则由EOC FOC ∠=∠得1590605t t ︒-︒=︒-︒,解得7.5t =综上,t 的值为3或7.5;(3)射线OM 从开始转动至OB 结束时,转动时间为3601501415t ︒-︒==︒(秒) 由题意,分OM 与OB 在一条直线上(180150215t ︒-︒==︒)、ON 与OB 在一条直线上(2(180150)415t ⨯︒-︒==︒)、OM 与OA 在一条直线上(1801215t ︒==︒)三个临界位置①当02t ≤≤时,如图1所示 此时,1151501502215015t BON AOB AON AOM BOM AOB AOM t︒⎧∠=∠+∠=︒+∠=︒+⎪⎨⎪∠=∠+∠=︒+︒⎩则1522(150)(15015)1502t BON BOM t ︒∠-∠=⨯︒+-︒+︒=︒为定值 ②当24t <<时,如图2所示 此时,11515015022360()360(15015)21015t BON AOB AON AOM BOM AOB AOM t t︒⎧∠=∠+∠=︒+∠=︒+⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(150)(21015)90302t BON BOM t t ︒∠-∠=⨯︒+-︒-︒=︒+︒不为定值 ③当412t ≤≤时,如图3所示 此时,1515360()360(150)21022360()360(15015)21015t t BON AOB AON BOM AOB AOM t t︒︒⎧∠=︒-∠+∠=︒-︒+=︒-⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(210)(21015)2102t BON BOM t ︒∠-∠=⨯︒--︒-︒=︒为定值 ④当1214t <<时,如图4所示 此时,1360151515030222360()360(15015)21015t t BON AOB AOM BOM AOB AOM t t︒-︒︒⎧∠=∠-∠=︒-=-︒⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(30)(21015)302702t BON BOM t t ︒∠-∠=⨯-︒-︒-︒=︒-︒不为定值 综上,当02t ≤≤或412t ≤≤时,2BON BOM ∠-∠为定值.【点睛】本题考查了角平分线的定义、角的和差倍分,较难的是题(3),正确找出三个临界位置是解题关键.57.如图, 已知∠AOB=∠EOF=90°,OM 平分∠AOE ,ON 平分∠BOF .(1)求证∠AOE=∠BOF(2)求∠MON的度数;【答案】(1)见解析;(2)90°.【解析】【分析】(1)根据同角的余角相等可得∠AOE=∠BOF;(2)由OM平分∠AOE,ON平分∠BOF,可得∠AOM=∠EOM=∠BON=∠FON,进而得出∠MON=∠AOB=90°.【详解】(1)∵∠AOB=∠EOF=90°,∴∠AOB-∠BOE=∠EOF-∠BOE,∴∠AOE=∠BOF.(2)∵OM平分∠AOE,ON平分∠BOF.∴∠BON=∠FON,∠AOM=∠EOM,由(1)得:∠AOE=∠BOF,∴∠AOM=∠EOM=∠BON=∠FON,∴∠MON=∠EOM+∠BOE+∠BON=∠AOM+∠EOM+∠BOE=∠AOB =90°.【点睛】考查同角的余角相等,等式的性质、角平分线的意义,根据图形直观得出各个角的和或差,是解决问题的前提,等量代换在得出结论的过程中,起到至关重要的作用.58.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,231∠=∠.(1)若118∠=°,求COE ∠的度数;(2)若70COE ∠=°,求2∠的度数;【答案】(1)72°;(2)60°.【解析】【分析】(1)依据∠1=18°,∠2=3∠1,可得∠2=54°,进而得出∠AOD 的度数,再根据OC 平分∠AOD ,可得∠3=54°,进而得到∠COE 的度数;(2)根据角平分线的定义和平角的定义,借助于图形得到:x °+∠2+2(70°-x °)=180°,则∠2=40°+x °,进而得到40°+x °=3x °,则易求∠2的度数.【详解】解:(1)∵118∠=°,231∠=∠,∴254∠=°,∠180AOD ∠=°-12180∠-∠=°-18°-54°=108°,∠OC 平分AOD ∠,∴354∠=°, ∠COE=∠1+∠3=18°+54°=72°(2)设∠1=x °,∵OC 平分AOD ∠,COE ∠=∠1+∠3=70°,∠∠3=∠4=70°-x °,又∵∠1+∠2+∠3+∠4=180°,∠x °+∠2+2(70°-x °)=180°,∠∠2=40°+x °∠231∠=∠,∴ 40°+x °=3x °,解得x =20,∠231∠=∠=3×20°=60°,即∠2的度数为60°.【点睛】本题考查了角的计算,角平分线的定义.本题隐含的知识点为:这4个角组成一个平角.应设出和所求角有关的较小的量为未知数.59.如图所示,AB 为一条直线,OC 是AOD ∠的平分线,OE 在BOD ∠内,:2:5DOE BOD ∠∠=,80COE ∠=︒,求EOB ∠的度数.【答案】60°【解析】【分析】由OC 是AOD ∠的平分线及:2:5DOE BOD ∠∠=设未知数后,根据80COE ∠=︒、180AOC COD DOB ∠+∠+∠=︒列出方程组,解方程组即可.【详解】解:∵OC 是AOD ∠的平分线∴设∠AOC=∠COD=x∵:2:5DOE BOD ∠∠=∴设=2y,5DOE BOD y ∠∠=∴3BOE y ∠=∵80COE ∠=︒,=2COE COD DOE x y ∠∠+∠=+∴x+2y 80=∵180AOC COD DOB ∠+∠+∠=︒,∴x+x+5y 180=∴x+y=80x+x+5y 180⎧⎨=⎩解得:x=40y 20⎧⎨=⎩∴=60EOB ︒∠【点睛】本题考查了角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,掌握角平分线及角的和差关系是解题的关键.60.如图,已知COB 2BOD ∠∠=,OA 平分COD ∠,且BOD 42∠=︒,求AOB ∠的度数.【答案】21°.【解析】【分析】先通过条件算出∠COB,进而求出∠COD,由平分得∠AOD,用∠AOD 减去∠BOD 即可得出∠AOB 的度数.【详解】∵∠BOD=42°,∠COB=2∠BOD,∴∠COB=84°,∵OA 平分∠COD,∴∠AOD=()11(8442)6322COB BOD +=︒+︒=︒∠∠, ∴∠AOB=∠AOD-∠BOD=63°-42°=21°.【点睛】本题考查角度的计算,关键在于理解题意,由图中得到信息.。

《角平分线性质》说课稿

《角平分线性质》说课稿

《角的平分线的性质》说课稿尊敬的各位评委、老师:大家好!今天,我说课的题目是《角的平分线的性质》第一课时,下面,我从教材分析、教学内容、教学目标、学情分析、教法与学法、教学过程的设计等六个方面对我的教学设计加以说明.一、教材分析本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二.教学内容本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.内容解析:教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.三、教学目标1、基本知识:了解尺规作图的原理及角的平分线的性质.2、基本技能(1)会用尺规作图作角的平分线。

(2)会利用全等三角形证明角平分线的性质。

(3)能运用角的平分线性质定理解决简单的几何问题3、数学思想方法:从特殊到一般4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验5、目标解析:通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.四、学情分析刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.五、教法和学法本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.六.教学过程的设计活动1.创设情景[教学内容1]生活中有很多数学问题:小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.问题1:怎样修建管道最短?问题2:新修的两条管道长度有什么关系,画来看一看.[整合点1]利用多媒体渲染气氛,激发情感.教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。

人教版数学七年级上第四单元几何图形初步《角的比较与运算》说课稿

人教版数学七年级上第四单元几何图形初步《角的比较与运算》说课稿

§4.3.2 角的比较与运算说课稿一、说教材一)说课内容:我说课的内容是初中数学课本七年级上册第四单元《几何图形初步》第三节。

二)教材分析《角的比较与运算》第一课时是初中数学课本七年级上册第四单元《几何图形初步》第三节,角的比较、角的和与差、角的平分线,这三个内容是本章重要的基础知识,也是后续学习图形与几何必备的基础。

比较两角的大小是本节知识的起点,角的和与差是问题的延伸,等分问题又是角的和与差的特殊化,这三个知识点相互之间是紧密联系的,而且与生活息息相关。

三)学情分析在前面已经学过线段的大小比较、线段的和与差,线段的中点,本节课可以采用类比的学习方法,便于理解与掌握。

这是学生的有利条件。

然而学生处于几何的启蒙阶段,如何正确的用图形语言、文字语言、符号语言综合描述所研究的对象将是他们的难处。

四)教学目标根据学生的年龄特点,认知规律及对教材的剖析与学生的分析,我确立了本课教学目标及重难点。

1、会比较角的大小,理解两个角的和、差、倍、分的意义,掌握角平分线的概念,培养学生归纳、分析能力。

2、学生经历“观察——对比——归纳”的学习过程,培养用数学语言描述图形的能力及类比的数学思想方法。

3、培养学生爱思考的习惯,通过对角大小的比较,使学生体会数学的形象直观美,向学生渗透团结协作的合作精神,培养勇于探索的精神和解决问题的优化意识。

五)教学重难点重点:角的大小的比较方法,角平分线的定义难点:角的加减运算,角的平分线的运用六)教学具为了突出重点,突破难点,加大课堂练习密度,我采用了多媒体教学与教具。

二、说教学法教法:学生在前面学习过线段的大小比较,线段的和与差,线段的中点基础上,教师采用启发式教学,引导学生自主探索,合作交流,体会类比的数学思想。

学法:初一学生仍以形象思维能力为主,因此要充分利用学生已有的认知基础和他们已掌握的操作方法和方式,结合“观察、比较、操作、发现”的学法指导,引导学生在自己动手的过程中,利用知识的迁移,把新旧知识联系在一起,使学生抽象思维能力得到发展.三、教学流程(一)情景导入:以登山的情景导入新课,学生在选择登山路径的过程中,若考虑路径的长短,则是对线段的大小比较,若是考虑坡度的陡与缓,则是对角的大小比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《角的比较与运算2--角平分线》教学设计
【教材】人教版数学七年级上册4.3.2 角的比较与运算
【课时安排】第2课时
【教学对象】初一学生
【授课教师】东莞长安实验中学郑健微
【教材分析】
本节课是人教版数学七年级上册 4.3.2 角的比较与运算的第二课时,在本节课学习之前,学生已经认识了角,并学会角的表示方法以及角的和差,这为本节课的教学做了知识和思维上的准备,本节课不仅是对角基本概念的进一步研究,更是解决以后有关的几何问题的基础,鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

【学情分析】
七年级学生逻辑思维正迅速发展,但同时,又好动,注意力易分散,爱发表见解,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生上台发表见解,发挥学生学习的主动性。

从认知状况来说,学生在小学的时候已经认识了角,对角的计算已经有了初步的认识,但是,由于初中要求学生能够运用文字语言、图形语言和几何语言对问题进行综合描述,而几何语言表达具有一定的抽象性,学生写起来较为吃力,为了化解本难点,让学生有充足的时间掌握几何语言的表达,本节课大胆将教材中角的和差放在第一课时上,对教材进行加工。

【教学目标】
✧知识与技能
(1)认识角平分线,理解角平分线的几何意义及其数量关系,
(2)学会用文字语言、图形语言和符号语言进行综合描述。

✧过程与方法
(1)经历类比线段中点来学习角平分线的过程,体会类比思想;
(2)经历探究角平分线运用的过程,学会结合图形分析数量关系,体会数形结合思想。

✧情感态度价值观
(1)通过对角平分线性质的探究应用,引导学生在独立思考的基础上积极参与课堂,培养学生的口头表达能力与小组合作意识。

(2)通过学习几何语言的表达,体会数学的合理性和严谨性
【教学重点】角平分线性质的探究应用
【教学难点】学会用几何语言书写几何证明过程
【教学方法】引导探究、小组合作讨论交流。

【教学手段】计算机、PPT。

【教学设计】
一、创设问题情境,引入新知
1.引语:类比线段AB 的中点C ,射线OB 在AOC ∠有没有特殊位置?
2.播放微课视频,用动画生动形象引出了角平分线的定义:
从一个角的顶点出发,把这个角分成相等的角的射线,叫做这个角的平分线。

3.三点注意:①它是一条射线 ②它的端点是角的顶点 ③ 它把角分成相等的两个角
【设计意图】教师引语引发学生思考,创设问题情境,借助生动形象的微课视频,从“线段的中点”类比“角的平分线”,引出角平分线的定义,培养学生的类比能力,激发学生学习兴趣。

二、探究新知
1. 角平分线的定义:从一个角的顶点出发,把这个角分成相等的角的射线,叫做这个角的平分线。

2.角平分线的几何语言: AOB
BOC AOC AOC AOB BOC AOC OB ∠=∠=∠∠=∠=∠∴∠222
1或的角平分线
是 教师总结:该定义中涉及“一大二小”,知道最大的角和角平分线,可以知道其他的两个较小的角,知道一个小角和角平分线,可以求出最大的角。

(一大二小,知一求二)
例1.如图,OB 平分AOC ∠,︒=∠251,求2∠.
解: OB 平分AOC ∠,︒=∠251
∴︒
=∠=∠2512
【巩固练习】1.(1)如图,OM 是∠AOB 的平分线且∠AOM =30°,则∠BOM=______°; ∠AOB =______°.
(2)如图,OM 是∠AOB 的平分线且∠AOB =50°,则∠BOM =_____°;∠AOM =______°.
【设计意图】对于初一的学生而言,角的平分线定义不难理解,通过“一大二小,知一求二”可以帮助学生准确记忆,但是,初一的学生刚接触几何语言,引导学生正确表达几何语言是
这节课的重难点,教学过程中,教师反复强调几何语言的正确表达,并解释如何用数字或阿拉伯字母来代替三个字母表示角度,有注意培养学生的逻辑推理能力。

例2. ∠AOC=80°,∠DOC =40°, OB 平分∠AOD,求∠BOC.
【设计意图】通过板书和PPT 投影了同种解法的两种表示法,让学生初步体会利用∠1,∠2∠3来代替三个字母表示角的简洁性,进一步体会数学的简洁美。

【巩固练习】2. 如图,∠DOB=80°,∠DOA =20°, OC 平分∠AOB,
求(1)∠AOC 的度数;(2)∠DOC 的度数
学生分析思路:已知∠DOB=80°和∠DOA =20°,利用角的减法可以求出∠AOB ,已知 OC 平分∠AOB,则∠AOC 为∠AOB 的一半,利用角的加法知道∠DOC 等于∠DOA 与∠AOC 的和,第一步求得∠AOC ,而∠DOA 的度数已知,所以可以求出∠DOC 的度数.
教师肯定了学生的思路,并拿学生的练习进行投影,并提出该练习几何语言表达过程中的瑕疵.
【设计意图】此题为例题的变式,让学生通过学生思考,上台讲解,培养学生的口头表达能力,并通过投影练习指出应该如何表达好几何语言,再次突出本节课的重难点。

例3.如图,OD 、OE 分别是∠AOC 和∠BOC 的平分线, 2
解:∵∠AOC=80°,∠DOC =40° ∴∠AOD=∠AOC+∠DOC =120° ∵OB 平分∠AOD ∴∠AOB= 21∠AOD=60° ∵∠AOC=80° ∴∠BOC=∠AOC-∠AOB =20 1 3 解:∵∠AOC=80°,∠3=40° ∴∠AOD=∠AOC+∠3=120° ∵OB 平分∠AOD ∴∠1=
2
1∠AOD=60° ∵∠AOC=80° ∴∠2=∠AOC-∠1=20
∠AOD=40°,∠BOE=25°,求∠AOB的度数.
解:∵OD 平分∠AOC,∠AOD=40°
∴∠AOC=2∠AOD= 2×______ = ____
∵ OE 平分∠BOC,∠BOE=25°
∴∠BOC=2∠______=2×______ = ____
∴∠AOB= ____ +____ = ____
【设计意图】从一条角平分线到两条角平分线,例题的难度上升了一个级别,为了化解这个难度,设置了填空,通过填空引导学生思考,并让学生上台讲解,加深印象,培养学生的语言表达能力。

4、如上图,OD、OE分别是∠AOC 和∠BOC 的平分线,∠AOC=80°,∠BOC=50°,
求∠DOE的度数.
思路一:OD、OE分别是∠AOC 和∠BOC 的平分线,∠AOC 和∠BOC的度数已知,∠AOC 和∠BOC 分别为它们度数的一半,即为40°和25°,因此∠DOE为∠AOC 和∠BOC 的和
思路二:∠AOC 和∠BOC的度数已知,则∠AOB可求,∠AOD 和∠BOE 分别为∠AOC 和∠BOC 度数的一半,则∠DOE=∠AOB-∠AOD -∠BOE.
【设计意图】此题是例3的变式,通过不同思路的讲解,拓宽学生的思路,让学生能利用所学知识解决问题。

三、拓展提升
例5、如图,已知,∠AOB=1200,OD平分∠BOC,OE平分∠AOC,
(1)求∠DOE 的度数;
(2)若∠AOB=m0,则∠DOE 是多少度?
【设计意图】让学生通过思考,解答,探究、讨论发现规律。

四、归纳提升
1、本节课的思路
2、本节课所用的数学思想:类比思想,数形结合思想
【设计意图】通过思维导图归纳本节的内容,完善学生已有的知识结构。

六、当堂小测
1、如图,点 A、O、B在同一条直线上,OC、OE是∠BOD、∠AOD的平分线,且∠BOD=80°,
则∠COD =______°.∠AOE =____°; ∠COE =_____°.
2. 如图,已知30BOC ∠=︒,AOC ∠是直角,OD 平分BOC ∠,OE 平分AOC ∠,
求DOE ∠的度数。

【设计意图】通过组内成员的互改、互评,加深对所学内容的理解,也促进小组内成员的合作交流意识。

教学点评:
本节课采用启发式、讨论式以及讲练结合的教学方法,以角平分线为主线,从一条角平分线到两条角平分线,始终在学生知识的“最近发展区”设置问题,倡导学生积极主动参与到课堂教学中来,创设机会让学生上台讲课。

在分析引导时,教师留给学生足够的思考时间与空间,让学生通过自己思考,交流来解决问题,在全程教学中,教师通过多媒体辅助教学,直观呈现教学素材,投影学生的练习,通过例题的对比,及时点拨,提醒,强化教学的重难点,提高教学的效率。

相关文档
最新文档