lingo与建模
数学建模中的优秀软件——LINGO
第9卷第3期2007年6月黄山学院学报JOurnal0fHuangshanUniVefsityVo】.9.NO.3Jun.2007数学建模中的优秀软件——LINGO周甄川(黄山学院数学系,安徽黄山245041)摘要:介绍了数学建模的相关概念、数学建模竞赛概况,探讨了LINGo系统的功能与特点,以及它在数学建模中的应用。
关键词:数学模型;数学建模;LlNGo系统中图分类号:TP319:0141.4文献标识码:A文章编号:1672—447x(2007)03—0112—03在对自然科学与社会科学许多课题的研究中,科学工作者常将事物的变化规律用特定的数学表达式的形式加以描述。
将寻求这种确定事物变化规律的过程称为“数学建模”。
而在数学建模以及全国大学生数学建模竞赛中,最常碰到的是一类决策问题,即在一系列限制条件下,寻求使某个或多个指标达到最大或最小,这种决策问题通常称为最优化问题【1】。
最优化理论是近几十年发展和形成的一门新兴的应用性学科。
它主要解决最优生产计划、最优分配、最优设计、最优决策、最佳管理等最优化问题。
主要研究方法是定量化、系统化和模型化方法,特别是运用各种数学模型和技术来解决问题。
它主要由决策变量、目标函数、约束条件三个要素组成。
当遇到的实际问题时即使建立了模型,找到了解的方法,对于较大的计算量也是望而却步,LINGo系列优化软件包就给我们提供了理想的选择。
1什么是数学建模数学建模(MatheImticalModelin曲‘11顾名思义就是建立数学模型以解决实际问题的过程。
它利用数学和计算机对实际问题进行分析研究,抽象出反映事物内在活动规律的数学关系表达式,通过对这些数学关系表达式的求解和反复验证,最终解决实际问题。
数学是所有自然科学的基础,随着计算机软硬件技术的迅速发展,数学建模和与之相伴的计算已逐渐成为工程设计的关键工具,并在人类社会实践活动中的众多领域内发挥着越来越重要的作用。
那么,什么是数学模型?如何建立数学模型?如何用数学模型解决实际问题呢?模型就是对事物的一种抽象。
优化建模与lingo优化软件
Teaching Plan on Optimization in Lingo
• 2007年: (A)中国人口增长预测问题 (B)“乘公交,看奥运”问题 (C)“手机套餐”优惠几何问题 (D)体能测试时间的安排问题
Teaching Plan on Optimization in Lingo
• 2008年: (A) 数码相机定位
Teaching Plan on Optimization in Lingo
• 1998年: (A)投资的收益和风险问题 (B)灾情的巡视路线问题(社会问题 即时性)
• 1999年: (A)自动化机床控制管理问题 (B)地质堪探钻井布局问题 (C)煤矸石堆积问题 (D)钻井布局
Teaching Plan on Optimization in Lingo
2003年A题再次体现关注社会热点 问题
Teaching Plan on Optimization in Lingo
• 2004年: (A)奥运会临时超市网点设计问题 (B)电力市场的输电阻塞管理问题 (C)酒后开车问题 (D)公务员的招聘问题 • 2004年5月在上海召开的命题工 作会议
Teaching Plan on Optimization in Lingo
• 2005年: (A)长江水质的评价与预测问题 (B)DVD在线租赁问题 (C) 雨量预报方法的评价问题 (D) DVD在线租赁
Teaching Plan on Optimization in Lingo
• 2006年: (A)出版社的资源管理问题 (B)艾滋病疗法的评价及预测问题 (C)易拉罐形状和尺寸的设计问题 (D)煤矿瓦斯和煤尘的监测与控制 问题
• 重要新闻、重大事件与赛题设计: 2000年6月26日各国新闻机构发布人类 基因组草图绘就的重要消息。顺应这 一世纪科学大事,当年7月组委会构造 与此相关赛题,引导学生关注世界科 技热点,投身科学重大问题的研究, 培养应用能力。
Lingo软件与数学建模
变量数目:变量总数 (Total)、非线型变量 数(Nonlinear)、整数 变量数(Integer)
约束变量:约束总数 ( Total )、非线性约束 个数(Nonlinear)
非线性系数数量:总数 ( Total )、非线性项的 系数个数(Nonlinear)
内存使用量:单位为千字节
数据多,咋办?
value=1,1.2,0.9,1.1;
enddata
max=@sum(goods:weight*value);
@for(goods:@bin(x));
end
游泳
四名同学的混合泳接 力赛的四种成绩如左 表所示,确定如何分 配使成绩最佳。
蛙蝶自仰 泳泳由泳
泳
甲 99 60 59 73
线性规划
二次规划
非线性规划
LINGO软件的基本操作
双击快捷方式 即可计入程序编辑界面
Lingo软件介绍
➢解决一个简单的线性规划(LP)问题
max z 2x 3y 4x 3y 10
s.t. 3x 5y 12 x, y 0
LINGO软件介绍
点击图标
运行,屏幕上显示运行状态窗口如下: 对于LINGO运行状态窗口,
基 @EXP(X):指数函数(以自然对数e为底),返回eX的值
本 数 学
@ LOG(X):自然对数函数,返回X的自然对数值; @POW(X,Y):指数函数,返回XY的值;
函 @SQR(X):平方函数,返回X2的值;
数 @SQRT( X ):平方根函数,返回X的平方根;
@FLOOR(X):取整函数,返回X的整数部分(向靠近0 的方向取);
@GIN(X):限制X为整数.
0-1规划(线性规划)
优化建模与LINGO第07章
MODEL: 1]! 3 Warehouse, 4 Customer Transportation Problem; 2]sets: 3] Warehouse /1..3/: a; 4] Customer /1..4/: b;
优化建模
5] Routes( Warehouse, Customer) : c, x; 6]endsets 7]! Here are the parameters; 8]data: 9] a = 30, 25, 21 10] b = 15, 17, 22, 12; 11] c = 6, 2, 6, 7, 12] 4, 9, 5, 3, 13] 8, 8, 1, 5; 14]enddata 15]! The objective; 16][OBJ] min = @sum( Routes: c * x);
优化建模
LINDO软件虽然给出最优解,但上述模型还存在 软件虽然给出最优解, 软件虽然给出最优解 着缺点,例如,上述方法不便于推广的一般情况, 着缺点,例如,上述方法不便于推广的一般情况,特 别是当产地和销地的个数较多时,情况更为突出. 别是当产地和销地的个数较多时,情况更为突出 下面写出求解该问题的LINGO程序,并在程序中 程序, 下面写出求解该问题的 程序 用到在第三章介绍的集与数据段, 用到在第三章介绍的集与数据段,以及相关的循环函 数. 写出相应的LINGO程序,程序名: exam0702.lg4 程序, 写出相应的 程序 程序名:
数学建模-(货机装运Lingo)
约束条件
在货机装运问题中,通常需要考虑 多个约束条件,如货机的载重限制、 货物的体积限制、货物的装卸顺序 等。
优化目标
优化目标可以是最大化货机的装载 量、最小化装载成本、最大化利润 等。
数据分析与预处理
数据收集
数据清洗
收集与货机装运问题相关的数据,包括货 物的重量、体积、价值等信息,以及货机 的载重、容积等限制条件。
数据输入输出
介绍如何使用Lingo进行数据输入和 结果输出,包括数据文件的读写、图 形化界面的使用等。
Lingo在货机装运问题中的应用
问题描述
阐述货机装运问题的背景和实际意义,明确问题的目标和约束条件。
建模过程
详细讲解如何使用Lingo对货机装运问题进行数学建模,包括定义变 量、建立目标函数和约束条件等步骤。
货机装运是物流领域的重要问题,涉 及到如何有效利用货机容量,将不同 规格、重量的货物进行合理搭配,以 达到最优的装载方案。
提高运输效率
通过数学建模对货机装运问题进行优 化,可以提高货物的运输效率,减少 运输成本,为企业带来经济效益。
建模的重要性和应用
重要性
数学建模是一种将实际问题抽象化、形式化的方法,通过建立数学模型,可以对问题进行深入分析,找出问题的 本质和规律,为解决问题提供科学依据。
应用
数学建模在物流、交通、金融、工程等领域有着广泛的应用。在货机装运问题中,数学建模可以帮助企业制定最 优的装载方案,提高运输效率,降低成本。同时,数学建模也可以应用于其他类似的问题,如车辆路径问题、背 包问题等。
02 问题描述与数据分析
02 问题描述与数据分析
货机装运问题描述
货机装运问题
货机装运问题是一个经典的优化 问题,涉及到如何有效地将货物 装入货机以最大化利润或最小化
数学建模lingo作业-习题讲解
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
优化建模与LINGO第05章
优化建模
§5.1.3 求解模型
3种解法
的采购量x分解为三个量 第1种解法 将原油 的采购量 分解为三个量,即用 1, 种解法 将原油A的采购量 分解为三个量,即用x x2,x3分别表示以价格 、8、6千元 吨采购的原油 的吨 分别表示以价格10、 、 千元 吨采购的原油A的吨 千元/吨采购的原油 总支出为c(x) = 10x1+8x2+6x3,且 数,总支出为 x = x1 + x2 + x3 (9) 这时目标函数(2)变为线性函数: 这时目标函数( )变为线性函数:
500 y 2 ≤ x1 ≤ 500 y1
500 y 3 ≤ x 2 ≤ 500 y 2 x3 ≤ 500 y 3
(14) (15) (16) (17)
y1,y2,y3 =0或1 或
优化建模
(3)~(10),(13)~(17)构成混合整数线性 10),(13) ),(13 17) 规划模型,将它输入LINDO软件: LINDO软件 规划模型,将它输入LINDO软件:
优化建模
优化建模与LINDO/LINGO软件 优化建模与LINDO/LINGO软件 LINDO/LINGO
第5 章 生产与服务运作管理中的优化问题
优化建模
内容提要
§5.1 生产与销售计划问题 §5.2 有瓶颈设备的多级生产计划问题 §5.3 下料问题 §5.4 面试顺序与消防车调度问题 §5.5 飞机定位和飞行计划问题
优化建模
第2种解法: 种解法: 引入0 变量将(11) 12) 引入0-1变量将(11)和(12)转化为线性约束 分别表示以10千元 令y1=1,y2=1,y3=1分别表示以 千元 吨、8千元 , , 分别表示以 千元/吨 千元 /吨、6千元 吨的价格采购原油 ,则约束(11) 千元/吨的价格采购原油 吨 千元 吨的价格采购原油A,则约束( ) 和(12)可以替换为 )
数学建模优化模型与Lingo Lindo软件
型
表二 :5名队员4中泳姿百米平均成绩
队员
甲
乙
丙
丁
戊
蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
例-1 某服务部门一周中每天需要不同数目的
雇员:周一到周四每天至少需要50人,周五
需要80人,周六和周日需要90人。现规定应
聘者需连续工作5天,试确定聘用方案,即周
线
一到周日每天聘用多少人,是5在满足需要的 前况下聘用总人数最少?
性
优化模型
规
决策变量:记周一到周日每天聘用的人数分别为X1,
划
X2,X3,X4,X5,X6 ,X7,这就是问题的决策变量。
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
目标函数:当队员队员 i 入选泳姿 j 的比赛时,
cij xij表示他的成绩,否则cij xij=0。于是接力队的成绩
可以表示为:
45
f
cij xij
j1 i1
约束条件:根据组成接力队的要求, xij 应该满足下面
方案。显然这不是解决问题的最好方法,随着问题
线
规模的变大,穷举法的计算量是无法接受的。
性
可以用0-1变量表示一个队员是否入选接力队, 从而建立这个问题的0-1规划模型.
数学建模Lingo软件简介
版本类型 总变量数 整数变量数 非线性变量数 约束数
演示版 求解包 高级版 超级版 工业版 扩展版
300 500 2000 8000 32000 无限
30 50 200 800 3200 无限
30 50 200 800 3200 无限
150 250 1000 4000 16000 无限
Lingo(Linear Interactive and General Optimizer),即交互 式的线性和通用优化求解器,可求解线性规划,也可以求解非 线性规划,还可以用于一些线性和非线性方程组的求解等。 Lingo软件的最大特),而且执行速度很快。Lingo实际上还是最 优化问题的一种建模语言,包括许多常用的数学函数共建立优 化模型时调用,并可以接受其它数据文件。
2. 建立LINDO/LINGO优化模型需要注意的几个基本问题
1. 尽量使用实数优化模型,尽量减少证书约束和整数变 量的个数;
2. 尽量使用光滑优化模型,尽量避免使用非光滑函数; 3. 尽量使用线性优化模型,尽量减少非线性约束和非线 性变量的个数; 4. 合理设定变量的上下界,尽可能给出变量的初始值; 5. 模型中使用的单位的数量级要适当。
演示版和正式版的基本功能是类似的,只是试用版能够
求解问题的规模受到严格限制,对于规模稍微大些的问题就不 能求解。即使对于正式版,通常也被分成求解包(solver suite)、 高级版(super)、超级版(hyper)、工业版(industrial)、扩展版 (extended)等不同档次的版本,不同档次的版本的区别也在于 能够求解的问题的规模大小不同,下表给出了不同版本 LINGO程序对求解规模的限制:
LINDO,LINGO,LINDO API 和 What’s Best! 在最优化软件的市场上占有很大的份额,尤其在供微机上使用 的最优化软件的市场上,上述软件产品具有绝对的优势。根据 LINDO公司主页()上提供的信息,位列 全球《财富》杂志500强的企业中一半以上使用上述产品,其 中位列全球《财富》杂志25强企业中有23家使用上述产品。读 者可以从上述主页下载上面4种软件的演示版和大量应用例子。
Lingo与优化建模
4
➢ 运行状态窗口
Variables(变量数量): 变量总数(Total)、 非线性变量数(Nonlinear)、 整数变量数(Integer)。
Constraints(约束数量): 约束总数(Total)、 非线性约束个数(Nonlinear)。
Nonzeros(非零系数数量): 总数(Total)、 非线性项系数个数(Nonlinear)。
决策变量
x D n
目标函数
约 束 条 件
• 无约束优化(没有约束)与约束优化(有约束) • 可行解(只满足约束)与最优解(取到最优值)
局部最优解与整体最优解
f(x)
* x1
ox2 x
• 局部最优解 (Local Optimal Solution, 如 x1 ) • 整体最优解 (Global Optimal Solution, 如 x2 )
结构设计 资源分配 生产计划 运输方案
➢解决优化问题的手段:
• 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型,求解最优策略
➢数学模型一般形式:
优化问题三要素:决策变量;目标函数;约束条件
min f (x)
s.t. hi (x) 0, i 1,...,m g j (x) 0, j 1,...,l
扩展 的求 解器 (求解 程序) 状态 框
目前为止找到的可行 解的最佳目标函数值
有效步数
目标函数值的界
特殊求解程序当前运行步数: 分枝数(对B-and-B程序); 子问题数(对Global程序); 初始点数(对Multistart程序)
计算结果:
程序语句输入的备注:
•LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 而除注释语句和TITLE(标题)语句外的其他语句都是 约束条件,因此语句的顺序并不重要 。
优化建模与LINDO,LINGO优化软件
ROW SLACK OR SURPLUS DUAL PRICES
三
原料无剩余
2)
0.000000
种
时间无剩余
3)
0.000000
资 源
加工能力剩余40
4)
40.000000
48.000000 2.000000 0.000000
“资源” 剩余为零的约束为紧约束(有效约束)
结果解释
OBJECTIVE FUNCTION VALUE
1. 优化模型与优化软件简介
优化模型和优化软件的重要意义
(最)优化:在一定条件下,寻求使目标最大(小)的决策
最优化是工程技术、经济管理、科学研究、 社会生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案 解决优化问题的手段 • 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型(优化模型),求最优策略(决策) CUMCM赛题:约一半以上与优化有关,需用软件求解
2)
0.000000
48.000000
3)
0.000000
2.000000
4) 40.000000
0.000000
NO. ITERATIONS= 2
reduced cost值表 示当该非基变量 增加一个单位时 (其他非基变量 保持不变)目标 函数减少的量(对 max型问题)
也可理解为:
为了使该非基变 量变成基变量, 目标函数中对应 系数应增加的量
2
50.000000 10.000000
6.666667 90,在允许范
3 480.000000 53.333332
80.000000 围内
4 100.000000 INFINITY 40.000000
利用LINGO开发高级模型选讲课件
整数规划在解决组合优化问题时非常有用,例如排班问题、背包问题等。
01
02
03
03
CHAPTER
LINGO高级功能
LINGO中的集合类似于数学中的集合,用于表示一组元素。在LINGO中,可以使用集合来定义决策变量、约束条件等。
模型优化在许多领域都有广泛应用,如生产调度、物流运输、金融投资等。
通过将问题转化为线性方程组,寻找最优解,适用于资源分配、生产计划等问题。
线性规划
处理目标函数或约束条件中含有非线性项的问题,如最大化利润、最小化成本等。
非线性规划
在满足约束条件下,寻找整数解,常用于组合优化问题,如排班、选址等。
整数规划
利用LINGO开发高级模型选讲课件
目录
LINGO软件介绍LINGO建模基础LINGO高级功能LINGO求解算法LINGO模型优化LINGO软件应用案例
01
CHAPTER
LINGO软件介绍
高效求解器
LINGO内置了多种求解算法,可以快速求解各种类型的优化问题。
直观的建模语言
LINGO采用直观的建模语言,用户可以轻松地描述优化问题,无需编写复杂的算法代码。
线性规划问题可以通过单纯形法、椭球法等算法求解,LINGO内置了高效的求解器,可以快速找到最优解。
线性规划在生产计划、资源分配、投资决策等领域有广泛应用。
01
02
03
1
2
3
非线性规划求解算法用于解决目标函数或约束条件中包含非线性函数的问题。
LINGO支持采用梯度法、牛顿法、拟牛顿法等非线性规划求解算法,能够处理复杂的非线性问题。
lingo与建模
1、除具有LINDO 的全部功能外,还可用于求解非线性 规划问题,包括非线性整数规划问题 2、LINGO 包含了内置的建模语言,允许以简练、直观 的方式描述较大规模的优化问题,模型中所需的数据可 以以一定格式保存在独立的文件中
1. LINGO的主要功能特色: (1) 既能求解线性规划问题,也有较强的求解非线性规划 问题的能力; (2) 输入模型简练直观; (3) 运行速度快,计算能力强; (4) 内置建模语言,提供几十个内部函数,从而能以较少 语句,较直观的方式描述较大规模的优化模型; (5) 将集合的概念引入编程语言,很容易将实际问题转换 为LINGO模型; (6) 能方便地与Excel、数据库等其他软件交换数据;
(1) 每个系数与变量间增加了运算符“*”(即 乘号不能省略)
(2) 模型结束标志“END”也被删除了(LINGO
中只有当模型以“MODEL:”开始时才能以 “END” 结束)。 这是LINGO 模型的最基本特征
用LINGO 来解二次规划问题
MAXz 98 x1 277 x2 x12 0.3 x1 x2 2 x2 2 s.t.x1 x2 100 x1 2 x2 x1 , x2 0为整数
(4) 合理设定变量的上下界,尽可能给出变量的初始值;
(5) 模型中使用的单位的数量级要适当(如小于103);
在LINGO中使用LINDO模型
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 当前光标 的位置 • 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
Window|Send to Back (Ctrl+B) 窗口后置
关于数学建模与实验课堂上LINGO软件教学的几点体会
们高等 院校数学教育中的重要一部分 , 是一种新型的教学 模 式 。它 是经 过 多次 的实 验 和研 究 多种 实 际 问题 的特 点 , 通过提出各种假设性问题 , 并使得问题能够尽可能简单概 括, 得到合理解释 , 最终以建立数学模 型的形式( 建立数学
师“ 应该 具 有 一个健 全 的人 格 , 一 副 能够 鼓 动人 心 的 口才 、
、
问题 的专业软件包 , 它的创始人是来 自 美 国芝加哥大学 的 L i n u s S c h r a g e 教授 ,这 是 他在 十 九世纪 八 十年代 经 过 多次
种“ 亲 自” 实 践 的精 神 , 真 正有 一 片 “ 亲 自” 飞翔 的天 空 , 真 正 的体 验 收 获 知识 的成 就 感 ,使 学 生 的 个性 得 到 全 面 发 展, 健 康成 长 。
四、 小 结
丰富的专业知识 , 有一颗热情的心 、 年轻 的心 , 温和的性 格; 有强烈的责任心等。 但是 , 现在有些教师思想政治素质 并不十分乐观 , 甚至出现误导学生。为此 , 首先提高专业课 教师的政治思想素质和专业教学水平。 ( 三) 结合具体知识点 , 帮助学生树立 良好的职业素养 随着现代科学技术的迅速发展 ,交差科学发展迅猛 , 同样也 决 定生 产过 程 中 的合作 性 不断 增 强 , 任 何一 项 生产 基本都不能单独完成 , 一个企业 内部的生产需要多个工序 的严密配合 , 才能生产出质量优 良的零件 , 实现高效率 、 低 消耗 的生产 , 一个行业需要资源和技术的优化配合 , 才能 促 进行 业 的 良性 发展 。 很多的专业课本身就是各个行业生产经验的集合 , 因 此在专业课教学过程 中, 不仅是传授专业理论 、 专业技能 , 我们还可 以抓住具体 的知识点 ,培养学生合作互助精神 , 讲诚信 、 讲信誉 的良好的职业道德 。利用具体的知识点帮 助学生分析专业技能所具有的职 在教 学 的各 个 环节 和 各个 方 面, 不是哪一 门课程能单独奏效 , 但是通过专业课程教学 中渗透思想道德教育 , 对学生 的综合素质 、 价值 观念 、 工作
lingo-多目标规划模型
在生产系统、工程系统、社会经济系统中, 多目标决策问题更是屡见不鲜。比如在炼油厂的 生产计划中,基本的决策问题是如何根据企业的 外部环境与内部条件,制定出具体的作业计划。 该计划应能使企业的各种主要的经济指标达到预 定的目标。这些指标包括:利润、原油量、成本、 能耗等。其他企业一般也有类似的多目标计划决 策问题。 多目标决策问题有两个共同的特点,即各目 标的不可公度性和相互之间的矛盾性。所谓目标 的不可公度性指各目标之间没有统一的量纲,因 此难以作相互比较。
多目标决策问题的案例及特点 我们介绍两个日常生活中常见的决策问题。第 一个是顾客到商店购买衣服。对于顾客而言,购买 衣服就是一个决策问题,顾客本人是决策者,各种 各样的衣服是行动方案集。该决策问题的解就是顾 客最终买到一件合适的衣服(或选择一个满意的方 案)。那么,一件衣服(即一个方案)合适否(满 意否)应该根据几个指标来评价,比如衣服的质量、 价格、大小、式样、颜色等。 因此,顾客购买衣服的问题是多目标决策问题。 又如,公务人员外出办事总要乘某种交通工具。这 也是一个决策问题,决策者是公务员,备选方案是 可利用的交通工具。公务员为了选择合适的交通工 具,需要考虑几个指标,比如:时间、价格、舒适 性、方便程度等。显然这也是一个多目标决策问题。
图5
d 对应于第三优先等级,将 1 =0,d 2 6 作为约束条件,建立
线性规划问题:
min z d 3 10x1 15x2 d1 d1 40 x x d d 1 2 2 2 10 x2 d 3 d 3 7 s.t. d1 0, d 2 6 x , x , d , d 1 2 j j 0, j 1,2,3
由于模型的不准确性和单一目标的片面性,这 种所谓最优的方案并不一定是决策者满意的。自然, 用这种最优方案作为决策者的最终决策具有强迫性 质,往往难以为决策者接受。另一方面,多目标方 法向决策者提供经过仔细选择的备选方案(多种方 案)。这样使得决策者有可能利用自己的知识和经 验对这些方案进行评价和判断,从中找出满意方案 或给出偏好信息以及寻找更多的备选方案。 概括起来,多目标决策方法处理实际决策问题 有三个方面的优点:(1)加强了决策者在决策过程 中的作用;(2)可以得到范围更为广泛的备选决策 方案;(3)决策问题的模型和分析者对问题的直觉 将更加现实。
优化建模与LINGOa
• filename为存放数据的文件名(可以包含完整的 路径名,或表示在当前目录下寻找这个文件)
• 数据文件中记录之间必须用“~”分开
优化建模
例:
数据文件myfile.ldt的内容: Seattle,Detroit,Chicago,Denver~
COST,NEED,SUPPLY,ORDERED~
Lingo程序exam0402.LG4 : MODEL: SETS: MYSET / @FILE(myfile.ldt) / : @FILE(myfile.ldt); ENDSETS MIN = @SUM( MYSET( I): ORDERED( I) * COST( I)); @FOR( MYSET( I): ORDERED( I) > NEED( I); ORDERED( I) < SUPPLY( I)); DATA: COST = @FILE( myfile.ldt); NEED = @FILE( myfile.ldt); SUPPLY = @FILE( myfile.ldt); ENDDATA END
• LINGO中可以使用函数@ODBC,格式为 :
@ODBC(['data_source'[, 'table_name'[, 'col_1'[, 'col_2' ...]]]]) 其中data_source是数据库名, table_name是数据表名, col_1, col_2,...是数据列名(数据域名)。
优化建模
优化建模与LINDO/LINGO软件
第 4 章 LINGO软件与外部文件的接口
优化建模
通过文件输入输出数据
• 通过文件输入输出数据可以将LINGO程序和程 序处理的数据分离开来。 • “程序和数据的分离”是结构化程序设计、面 向对象编程的基本要求。 • 实际问题通常需要处理大规模的实际数据,而 这些数据通常都是在其它应用系统中生成的, 或者已经存放在其它应用系统中的某个文件或 数据库中。 • LINGO计算的结果需要以文件方式提供给其它 应用系统使用。
利用LINGO软件解决数学建模问题
LINDO:
Max x1+x2+x3+x4 ST(大写或写subject to) x5+x6+x7+x8>=250000 x1+x5<=380000 x2+x6<=265200 x3+x7<=408100 x4+x8<=130100 2.85*x1-1.42*x2+4.27*x318.49*x4>=0; 2.85*x5-1.42*x6+4.27*x718.49*x8>=0; 16.5*x1+2.0*x2-4.0*x3+17*x4>=0; 7.5*x5-7.0*x6-13.0*x7+8.0*x8>=0; end
2) 0.000000 3) 0.000000 4) 0.000000 5) 0.000000 6) 0.000000 7) 0.000000 8) 43454.000000 9) 3239024.250000 10) 1890675.875000
-1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000
表2
飞机汽油 1 2 辛烷数 >=91 >=100 蒸汽压力(g/cm^2) <=9.96*10^(-2) <=9.96*10^(-2) 产量需求(L) 越多越好 >=250000
建模过程略(详见《运筹学基础》P54—55) 目标函数:max z=x1+x2+x3+x4 约束条件:x5+x6+x7+x8>=250000 x1+x5<=380000 x2+x6<=265200 x3+x7<=408100 x4+x8<=130100 2.85x1-1.42x2+4.27x3-18.49x4>=0 2.85x5-1.42x6+4.27x7-18.49x8>=0 16.5x1+2.0x2-4.0x3+17x4>=0 7.5x5-7.0x6-13.0x7+8.0x8>=0 xj>=0(j=1,2...,8)
数学建模实验报告关于LINGO的解题方法及其思路分析
数学建模实验报告1.解析:此题属于0-1模型问题。
设队员序号为i ,泳姿为j ,记c ij 为队员i 第j 种泳姿的百米成绩,若选择队员i 参加泳姿j 的比赛,记x ij =1, 否则记xij =0;则有,目标函数为∑∑===4151j i ij ij x c Z Min ,每个人最多选泳姿为1,则有5,1,141=≤∑=i xj ij,每种泳姿有且仅有1人,则有4,1,151==∑=j xi ij。
若丁的蛙泳成绩退步及戊的自由泳成绩进步,则将c43的值和c54的值改变即可。
实验过程及运行结果如下:若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,计算结果如下:通过计算结果可知,在原数据的情况下,队伍的选择应该是甲参加自由泳,乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊不参加任何比赛,且最好的时间是253.2秒。
若丁的蛙泳成绩退步为1'15"2及戊的自由泳成绩进步57"5,则组成接力的比赛队伍调整为乙参加蝶泳,丙参加仰泳,丁参加蛙泳,戊参加自由泳,甲不参加任何比赛。
2.解析:此题属于线性规划问题。
已知某工厂用1A 、2A 两台机床加工1B 、2B 、3B 三种不同的零件,设1A 生产1B 、2B 、3B 的个数分别为1x 、2x 、3x ,2A 生产1B 、2B 、3B 的个数分别为4x 、5x 、6x ,则目标函数为min=1*2*1x +2*3*2x +3*5*3x +1*3*4x +1*3*5x +3*6*6x ;1A 加工的工时小于80小时,2A 加工的工时小于100小时,生产1B 、2B 、3B 的总数分别为70个、50个、20个。
实验过程及运行结果如下:通过计算结果可知,当1A 生产1B 、2B 、3B 的个数分别为68个、0个、4个,2A 生产1B 、2B 、3B 的个数分别为2个、50个、16个的时候,才能得到最低的成本640元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需要掌握的几个重要方面 •掌握集合(SETS)的应用; •正确阅读求解报告; •正确理解求解状态窗口; •学会设置基本的求解选项(OPTIONS) ; •应用实例
LINGO 8.0有两种命令模式
Windows 模式, 通过下拉式菜单命令驱动LINGO 运行
命令行(Command-Line) 模式,仅在命令窗口下操作
• 状态行(最左边显 示“Ready”,表示 “准备就绪”)
• 当前时间
工具栏
File|Open (F3) 打开文件 File|Print (F7) 打印文件 Edit|Copy (Ctrl+C) 复制 Edit|Undo (Ctrl+Z) 取消操作 Edit|Find (Ctrl+F) 查找 Edit|Match Parenthesis (Ctrl+P) 匹配括号
与LINDO 相比,LINGO 软件主要具有两大优点
1、除具有LINDO 的全部功能外,还可用于求解非线性 规划问题,包括非线性整数规划问题 2、LINGO 包含了内置的建模语言,允许以简练、直观 的方式描述较大规模的优化问题,模型中所需的数据可 以以一定格式保存在独立的文件中
1. LINGO的主要功能特色: (1) 既能求解线性规划问题,也有较强的求解非线性规划 问题的能力; (2) 输入模型简练直观; (3) 运行速度快,计算能力强; (4) 内置建模语言,提供几十个内部函数,从而能以较少 语句,较直观的方式描述较大规模的优化模型; (5) 将集合的概念引入编程语言,很容易将实际问题转换 为LINGO模型; (6) 能方便地与Excel、数据库等其他软件交换数据;
注意事项:
max=98*x1+277*x2-x1^20.3*x1*x2-2*x2^2; x1+x2<100; x1<2*x2; @gin(x1);@gin(x2);
1) 变量和行名可以超过8 个 字符,但不能超过32 个字符, 且必须以字母开头 2) LINGO 已假定各变量非 负(除非用函数@free或 @sub 或@slb 另行说明) 3) 变量可以放在约束条件的 右端(同时数字也可放在约束 条件的左端)。但为了提高效 率,应尽可能采用线性表达式 定义目标和约束(如果可能)
Байду номын сангаас
Window|Send to Back (Ctrl+B) 窗口后置
• LINGO的语法规定: (1)求目标函数的最大值或最小值分别用MAX=…或 MIN=…来表示; (2)每个语句必须以分号“;”结束,每行可以有许多 语句,语句可以跨行; (3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9) 和下划线所组成,长度不超过32个字符,不区分大小写; (4)可以给语句加上标号,例如 [OBJ]MAX=200*X1+300*X2; (5)以惊叹号“!”开头,以分号“;”结束的语句是注 释语句; (6)如果对变量的取值范围没有作特殊说明,则默认所有 决策变量都非负; (7)LINGO模型以语句“MODEL:”开头,以“END” 结束,对于比较简单的模型,这两个语句可以省略。
LINGO|Options (Ctrl+I) 选项设置
Window|Close All (Alt+X) 关闭所有窗口 Help|Co ntents (F1) 在线帮 助
LINGO|Solution (Alt+O)显示解答
File|Save (F4) 保存文件
Edit|Paste (Ctrl+V) 粘贴 Edit|Redo (Ctrl+Y) 恢复操作
模型 • min或max f(x)
• •
要素:
S.T. G(x)≤或≥或=0 L ≤x≤U
1.变量 (符号)
2.常量(数据) 3.关系(函数、方程)
max 2 x 3 y s.t. 4 x 3 y 10 3x 5 y 12
Lingo: max=2*x+3*y; 4*x+3*y<10; 3*x+5*y<12;
Edit | Go To Line (Ctrl+T) 定位某行 LINGO|Solve (Ctrl+S) 求解模型
LINGO|Picture (Ctrl+K) 模型图示
Window|Tile (Alt+T) 平铺窗口 上下文 相关的 帮助
File|New (F2) 新建文件
Edit|Cut (Ctrl+X) 剪切
建模时需要注意的几个基本问题:
(1) 尽量使用实数优化模型,减少整数约束和整数变量的 个数;
(2) 尽量使用光滑优化模型,减少非光滑约束的个数; 如:尽量少地使用绝对值函数、符号函数、多个变量求最 大(或最小)值、四舍五入函数、取整函数等. (3) 尽量使用线性优化模型,减少非线性约束和非线性变 量的个数(如x/y < 5改为x < 5y) ;
(4) 合理设定变量的上下界,尽可能给出变量的初始值;
(5) 模型中使用的单位的数量级要适当(如小于103);
在LINGO中使用LINDO模型
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 当前光标 的位置 • 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
(1) 每个系数与变量间增加了运算符“*”(即 乘号不能省略)
(2) 模型结束标志“END”也被删除了(LINGO
中只有当模型以“MODEL:”开始时才能以 “END” 结束)。 这是LINGO 模型的最基本特征
用LINGO 来解二次规划问题
MAXz 98 x1 277 x2 x12 0.3 x1 x2 2 x2 2 s.t.x1 x2 100 x1 2 x2 x1 , x2 0为整数
Lingo的不同保存类型
“LG4”表示LINGO 格式的 模型文件,是一种特殊的二 进制格式文件,保存了我们 在模型窗口中所能够看到的 所有文本和其他对象及其格 式信息,只有LINGO 能读 出它,用其他系统打开这种 文件时会出现乱码 “LNG”表示LINGO文本文 件,以这个格式保存模型时 系统 将给出警告,因为模 型中的格式信息(如字体、 颜色等)将会丢失 “LDT”表示数据文件 “LTF”表示 命令脚本文件 “LGR”表示 报告文件