计算方法解线性方程组的直接法
数值分析--解线性方程组的直接方法
值 为A的特征值,x为A对应的特征向量,A的全体特征值
分 析
称为A的谱,计作 ( A),即 ( A) {i ,i 1,2,, n}, 则称
》
( A)
max
1in
|
i
|
为矩阵A的谱 半 径.
三、特殊矩阵
第5章 解线性方程组的直接方法
1) 对角矩阵
2) 三对角矩阵
3) 上三角矩阵
4) 上海森伯(Hessenberg)阵
分 析
1.00x 1.00y 2.00
》 解法1: 1.00105 x 1.00 y 1.00
(1.00 1.00105) y (2.00 1.00105)
1.00105 x 1.00 y 1.00
1.00
105
y
1.00
105
x 0.00,
y 1.00
第5章 解线性方程组的直接方法
1
Ly b y 3,Ux y x 1.
2
1
第5章 解线性方程组的直接方法
§3 高斯主元素消去法
若ak(kk) 0,或ak(kk)很接近于0,会导致其他元素数量级严重 增长和舍入误差的扩散,使得计算结果不可靠.
《例3’采用3位十进制,用消元法求解
数 值
1.00105 x 1.00y 1.00
L21L1 U2U11
L21L1
U
U 1
21
I
(因为上式右边为上三角矩阵,左边为单位下三角矩阵
从而上式两边都必须等于单位矩阵)
《 数
L1 L2 , U1 U2
1 1 1
值分例2
析
.例1中,A
0
4
-1,将A作LU分解。
计算方法2线性方程组直接法
04
矩阵的三角分解法
LU分解法
定义:将系数矩阵A分解为一个下三角 矩阵L和一个上三角矩阵U的乘积,即 A=LU。
适用范围:适用于所有可逆矩阵,特别 适用于中小型稠密矩阵。
迭代法收敛性判断
在迭代法求解方程组时,可以通过观察迭代过程中解向量的范数的变化情况来判断迭代法 是否收敛。如果解向量的范数逐渐减小并趋于零,则表明迭代法收敛。
方程组性态分析
方程组的性态是指方程组解的存在性、唯一性和稳定性等方面的性质。通过分析方程组的 系数矩阵的范数,可以对方程组的性态进行初步的判断。例如,如果系数矩阵的谱半径( 即最大特征值的模)较小,则方程组往往具有较好的性态。
03
线性方程组在科学研究、工程技术和经济管理等领域具有广 泛的应用。
直接法的定义与分类
1
直接法是一种通过有限步四则运算求解线性方程 组的方法,具有计算精度高、稳定性好的特点。
2
直接法可分为高斯消元法、列主元消元法、全主 元消元法等多种方法,其中高斯消元法是最基本 的方法。
3
各种直接法的主要区别在于选主元和消元的过程 中采用不同的策略,以达到提高计算精度和稳定 性的目的。
对系数矩阵A进行Crout分解,得到下三角矩阵L和单位 上三角矩阵U。
利用后向代入法求解Ux=y,得到向量x。
求解步骤
利用前向代入法求解Ly=b,得到向量y。
适用范围:适用于所有可逆矩阵,特别适用于中小型稠 密矩阵。与LU分解法和Doolittle分解法相比,Crout 分解法在某些情况下具有更高的计算效率。
性质
数值分析第三章线性方程组解法
数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。
线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。
线性方程组的解法包括直接解法和迭代解法两种方法。
一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。
这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。
1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。
这种方法可以减少计算量,提高计算效率。
1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。
它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。
Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。
二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。
Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。
2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。
它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。
Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。
2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。
它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。
SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。
三、总结线性方程组解法是数值分析中的一个重要内容。
直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。
线性方程的概念与解法
线性方程的概念与解法线性方程是我们在数学中经常遇到的一类方程,其基本形式为ax + b = 0,其中a和b是已知的实数,x是未知数。
解线性方程的目标是找到满足方程的x的值。
解线性方程的方法有多种,下面将介绍常见的几种解法。
直接法:对于简单的线性方程,我们可以直接通过变量的运算来解得x的值。
例如,对于方程3x + 2 = 5,我们可以通过减去2,再除以3的操作来求解x,即x = (5-2)/3 = 1。
消元法:对于一般的线性方程组,我们可以通过消元法来求解。
消元法的基本思想是通过逐步的变换,使得方程组中的某个变量逐渐消失,从而简化方程组的解法。
我们可以通过适当的加减法来将方程组化为更简单的形式,直到最后得到只包含一个变量的方程,从而求解出该变量的值。
例如,考虑方程组:2x + 3y = 74x - y = 5我们可以通过消元法来求解该方程组。
首先,我们可以将第二个方程中的y的系数变为3,即将第二个方程乘以3,得到:12x - 3y = 15然后,我们可以将第一步得到的新方程与第一个方程相减,消去y 这个变量,得到新的方程:10x = 8最后,我们可以将方程两边同时除以10,求解出x的值为0.8。
将x的值代入方程2x + 3y = 7,可以求出y的值为2.2。
因此,该方程组的解为x = 0.8,y = 2.2。
矩阵法:对于包含多个方程的线性方程组,我们可以利用矩阵的方法求解。
矩阵法的基本思想是将线性方程组表示成矩阵的形式,然后通过矩阵的运算求解未知数。
考虑以下线性方程组:2x + 3y - z = 4x - 2y + 3z = 13x + y - 2z = 5我们可以将其表示为矩阵形式:⎡ 2 3 -1 ⎤⎡ x ⎤⎡ 4 ⎤⎢ 1 -2 3 ⎥ ·⎢ y ⎥ = ⎢ 1 ⎥⎣ 3 1 -2 ⎦⎣ z ⎦⎣ 5 ⎦然后,我们可以对这个矩阵进行行变换,将它化为上三角矩阵的形式。
通过适当的行变换操作,我们可以将第一列下方的元素变为0。
计算方法-解线性方程组的直接法实验报告
cout<<endl;
for(k=i+1;k<m;k++)
{
l[k][i]=a[k][i]/a[i][i];
for(r=i;r<m+1;r++) /*化成三角阵*/
a[k][r]=a[k][r]-l[k][i]*a[i][r];
}
}
x[m-1]=a[m-1][m]/a[m-1][m-1];
{
int i,j;
float t,s1,s2;
float y[100];
for(i=1;i<=n;i++) /*第一次回代过程开始*/
{
s1=0;
for(j=1;j<i;j++)
{
t=-l[i][j];
s1=s1+t*y[j];
}
y[i]=(b[i]+s1)/l[i][i];
}
for(i=n;i>=1;i--) /*第二次回代过程开始*/
s2=s2+l[i][k]*u[k][r];
l[i][r]=(a[i][r]-s2)/u[r][r];
}
}
printf("array L:\n");/*输出矩阵L*/ for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf("%7.3f ",l[i][j]);
printf("\n");
{
s2=0;
for(j=n;j>i;j--)
解线性方程组直接法
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫⎝⎛=⇔∈n n x x x 21x R x x 称为n 维列向量矩阵A 也可以写成其中 a i 为A 的第i 列。
同理 其中Ti b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m nm R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c .(2) 矩阵与标量的乘法 ij j a ci αα== ,A C(3) 矩阵与矩阵乘法 p nk kj ikb acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T n m a c ==∈⨯ , ,A C R A (5) 单位矩阵 ()nn ⨯∈=Re ,,e ,e I n 21 ,其中()T k e 0,0,1,0,0 = k=1,2,…,n(6) 非奇异矩阵 设n n ⨯∈R A ,n n ⨯∈R B 。
第三章 线性代数方程组的直接解法1
for
j = n : −1 : 2
y( j ) = y( j ) u( j , j )
y (1 : j − 1) = y (1 : j − 1) − y ( j )u(1 : j − 1, j )
end
y(1) = y(1) u(1,1)
加减乘除运算次数之和)均为 两种算法的工作量(加减乘除运算次数之和 两种算法的工作量 加减乘除运算次数之和 均为 n
高斯变换
a 0
(1) 11
取
L = I +l e 1
其中 l i 1
T 1 1
l1 = (0, l21,⋯, ln1)
a
(1) 11
T
=
−1 1
a
(1) i1
i = 2, 3,⋯ , n
−1 1 T 1 1
记
A
( 2)
=L A
(1)
L = I −l e
(1 a11) 0 I n−1 c1 T 1
(i ) ii
的各阶顺序主子式都不等于零 顺序主子式都不等于 A 的各阶顺序主子式都不等于零,即
−1 −1 1 2
1 4 7 0 −3 − 6 = U L2 L1 A = 0 0 1
∴ A = L L U = LU
其中
1 0 0 2 1 0 −1 − 1 L = L1 L2 = 3 2 1
Gauss消去法的矩阵表示 消去法的矩阵表示 设给定 n 阶矩阵 记
1 0 0 −2 1 0 L1 = −3 0 1
设给定矩阵
则有
7 1 4 0 −3 −6 L1 A = 0 −6 −11
线性方程组的直接解法
线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。
直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。
解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。
高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。
而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。
最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。
除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。
综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。
每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。
《计算方法》课程简介及教学大纲
《计算方法》课程简介及教学大纲一、课程简介1.课程编号:201100112.课程名称:计算方法3.开课学院:数学课程组4.学时:325.类别:公共选修课6.先修课程:高等数学,线性代数7.课程简介:《计算方法》全面地介绍科学与工程计算中常用的计算方法,具体介绍了这些计算方法的基本理论与实际应用,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。
内容包括引论、线性代数方程组求解方法、非线性方程求根、函数插值、函数拟合、数值积分与数值微分、常微分方程初值问题的数值解法、自治微分方程稳定区域的计算等。
本课程的任务是通过各个教学(和实践)环节,运用各种教学手段和方法,使学生掌握数值计算的基本原理和各种方法的基本思想,并藉此培养学生分析问题和解决问题的能力,为学习后续课程、从事工程技术研究工作打下坚实的基础。
Course Code:20110011Name of Course:Computational MethodFaculty: Mathematics Course GroupCredit Hours: 32Classification: Elective coursePrerequisite:Advanced Mathematics, Linear AlgebraCourse Outline:Computational Method induces the calculation methods used in Scientific and Engineering roundly,and makes specific introduction to the calculation method of basic theory and practical application of these methods. It also makes a brief analysis of the calculation of effectiveness, stability, convergence effect, scopeand characteristics of the advantages and disadvantages. It includes introduction, method for solving linear algebraic equations, finding roots of nonlinear equations, function interpolation, function fitting, numerical differentiation and numerical integration, numerical methods for initial value problem for ordinary differential equations, autonomous differential equation and stability calculations.Through various teaching and practice, students will master the basic principles and methods of numerical calculation of the basic idea. This course aims to develop students' ability to analyze and solve problems, and lay a solid foundation for follow-up courses and engagment in engineering work.二、课程教学大纲1. 课程编号:20110011 6. 先修课程:高等数学,线性代数2. 课程类别:公共选修课 7.课内总学时:323. 开课学期:第二学年一学期 8.实验/上机学时:04. 适用专业:全校各专业 9.执笔人:陈丙振5.考核方式:考查1.课程教学目的《计算方法》全面地介绍科学与工程计算中常用的计算方法,具体介绍了这些计算方法的基本理论与实际应用,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。
计算方法第三章线性方程组的直接解法
5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22
第3章 线性方程组求解的直接解法
线性方程组求解的直接法5.2线性方程组直接解法概述直接解法就是利用一系列公式进行有限步计算,直接得到方程组的精确解的方法.当然,实际计算结果仍有误差,譬如舍入误差,而且舍入误差的积累有时甚至会严重影响解的精度.这是一个众所周知的古老方法,但用在计算机上仍然十分有效.求解线性方程组最基本的一种直接法是消去法.消去法的基本思想是,通过将一个方程乘以或除以某个常数,以及将两个方程相加减这两种手段,逐步减少方程中的变元的数目,最终使每个方程仅含一个变元,从而得出所求的解.高斯(Gauss )消去法是其中广泛应用的方法,其求解过程分为消元过程和回代过程两个环节.消元过程将所给的方程组加工成上三角方程组,所归结的方程组再通过回代过程得出它的解.Gauss 消去法由于添加了回代的过程,算法结构稍复杂,但这种改进的算法明显减少了计算量.直接法比较适用于中小型方程组.对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足.5.3直接解法5.3.1Gauss 消去法Gauss 消去法是一个古老的求解线性方程组的方法,由它改进而来的选主元法是目前计算机上常用的有效的求解低阶稠密矩阵线性方程组的方法.例5.1用Gauss 消去法解方程组1231231232221(5.3.1)1324 (5.3.2)2539(5.3.3)2x x x x x x x x x ⎧++=⎪⎪++=⎨⎪++=⎪⎩解〖JP4〗第1步,式35.3.12⨯-()()加到式(5.3.2)上,式()15.3.1()2⨯-加到式(5.3.3)上,得到等价方程组123232322211(5.4.4)282(5.4.5)x x x x x x x ⎧++=⎪⎪-+=-⎨⎪⎪+=⎩第2步,式()2⨯5.3.4加到式(5.3.5)上得等价的方程组12323322211100(5.3.6)x x x x x x ++=⎧⎪-+=-⎨⎪=⎩第3步,回代法求解方程组(5.3.6),即可求得该方程组的解为32110,1,.2x x x ===-.用矩阵描述其约化过程即为233(2)22221011100100r r r ⨯+⇒⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦→[]122133(1)3()21()222212221,3241/201111395/20282r r r r r r A b ⨯-+⇒⨯-+⇒⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦→.这种求解过程称为具有回代的Gauss 消去法.由此例可见,Gauss 消去法的基本思想是:用矩阵的初等行变换将系数矩阵A 化为具有简单形式的矩阵(如上三角阵、单位矩阵等),而三角形方程组是很容易回代求解的.一般地,设有n 个未知数的线性方程组为11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪++=⎩L L MM M L (5.3.7)1212)(,,)(,,)T T ij n n n n A a X x x x b b b b ⨯===L L (,,,则方程组(5.3.7)化为AX b =.方便起见,记()(1)det 0A AA ==≠,(1)b b =,且()1A的元素记为()()11,ij a b ,的元素记为()1i b ,则消去法的步骤如下:第1步:1110a≠(),,计算(1)11(1)11(2,3,4),i i a m i n a ==L 用()1i m -乘方程组(5.3.7)中的第1个方程加到第i个方程中()2,3,i n =L ,即进行行初等变换()112,3,i i i R m R R i n -⋅→=L ,消去第2个到第n个方程中的未知数1,x ,得等价方程组111121(2)(2)(2)22222(2)(2)(2)2inn n n nn n x a a b x a a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMM LM M L (5.3.8)记为(2)(2)A X b =,其中(2)(1)(1)(2)(1)(1)1111(,2,3),2,3,ij ij i j i i i a a m a i j n b b m b i n =-==-=L L ,,第k 步()1,2,1k n =-L:继续上述消元过程.第1步到第1k -步计算已完成,且得到与原方程组等价的方程组(1)(1)(1)(1)1112111(2)(2)(2)222223()()()()()()nn k k k kkkn k n k k k nk nn n a a a b x a a b xx aa b x a a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦L L LLOM L M MMM L(5.3.9)记为()(()K k A X b =,进行第k 步消元:设()0k kka≠,计算乘数()()(1,)k ikk ik kka m k k n a ==+L ,用ik m -乘方程组(5.3.9)中第k 个方程加到第i 1)i k n =+L (,,,个方程上消去方程组(5.3.9)中第i 1)i k n =+L (,,个方程的未知数k x ,得到与原方程组等价的方程组:(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.10) 记为(1)(1)k k A X b ++=其中(1)(1,k k A b ++)中元素计算公式为(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.11)重复上述过程,且设()0(1,2,1)k kk a k n ≠=-L ,共完成1n -步消元计算,得到与方程组(5.3.7)等价的三角形方程组1111211(2)(2)(2)22222()()n n n n n nn n x a a b x a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMOM M (5.3.12)再用回代法求方程组(5.3.12)的解,计算公式为()()()()1()(),(1,2,1)n n n nn n i i i ij j j i i i ii b x a b a x x i n n a =+⎧=⎪⎪⎨-⎪==--⎪⎩∑L (5.3.13)元素()k kka 称为约化的主元素.将方程组(5.3.7)化为方程组(5.3.12)的过程称为消元过程.方程组(5.3.12)的求解过程(5.3.13)称为回代过程.由消元过程和回代过程求解线性方程组的方法称为Gauss 消去法.定理5.1(Gauss 消去法)设AX b =。
第二章 解线性代数方程组的直接法(DOC)
第二章 解线性方程组的直接法本章研究的对象是n 阶线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a .........22112222212111212111 (2.1)其矩阵形式为b AX = (2.1)′其中,)(ij a A =是方程组的系数矩阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X ...21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b b ...21分别为方程组的未知向量和常数向量。
所谓直接法,就是在不计舍入误差时,经过有限步运算能求得方程组精确解的方法。
下面介绍几种较实用的直接法。
2.1 Gauss 消去法 2.1.1 Gauss 顺序消去法高斯(Gauss )消去法实质是消元法,只是步骤规范,便于编程。
它的基本做法是把方程组(2.1)转化成一个等价的三角方程组⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n g x b g x b x b g x b x b x b 2222211212111 (2.2) 这个过程称为消元。
然后,逐个求出11,,,x x x n n -,这个过程称为回代。
(一) 高斯消去法的计算过程为了符号统一,把方程组(2.1)改写成下面形式⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++)1()1(2)1(1)1()1()1(2)1(1)1()1()1(2)1(1)1( (212)22221111211n nn n n n n b x a x a x a b x a x a x a b x a x a x a n n n(2.3)用矩阵表示为)1()1(b X A = (2.3)′其中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)1()1(2)1(1)1(2)1(22)1(21)1(1)1(12)1(11)1(nn n n nn a a a a aa a aa A, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)1()1()1()1(...21n b b b b 若0)1(11≠a ,用第二个方程减去第一个方程的)1(11)1(21/a a 倍,第三个方程减去第一个方程的)1(11)1(31/a a 倍,等等。
数值计算方法-第5章_解线性方程组的直接法
本章讲解直接法
5.1 消元法
我们知道,下面有3种方程的解我们可以直接求出:
①
n次运算
A
diag(a11, a22 ,
, ann )
xi
bi aii
,i
1,
,n
②
(n+1)n/2次运算
l11
A
l21 ln1
l22 ln2
(aik
k 1
liklkr ) r 1 lkk
,i k 1, , n
因此不常用
又 l11
1
l11
l21 l22
ln1
ln2
lnn
l '21 l 'n1
1 l'n2
1
l22
lnn
则有
A L~D~D~T L~T LDLT
L~
D~
1
L
l21 ln1
lnn
xi
bi
i 1
lij x j
j 1
lii
,i
1,
,n
③
(n+1)n/2次运算
u11
A
u12 u22
u1n
u2n unn
xi
bi
n
uij x j
j i 1
uii
,i
n,
,1
对方程组,作如下的变换,解不变 ①交换两个方程的次序 ②一个方程的两边同时乘以一个非0的数 ③一个方程的两边同时乘以一个非0数,加到另一个方程
1 ln2
1
d1
D
d2
dn
a11 a12
a21 a22
数值分析第五章解线性方程组的直接法
数值分析第五章解线性方程组的直接法解线性方程组是数值分析中的一个重要问题,对于大规模的线性方程组来说,直接法是一种常用的求解方法。
本文将介绍解线性方程组的直接法,包括高斯消元法和LU分解法,并对其稳定性和计算复杂度进行讨论。
高斯消元法是一种常用的直接法,用于求解非奇异线性方程组。
其基本思想是通过初等行变换将线性方程组转化为上三角方程组,然后通过回代求解得到方程的解。
高斯消元法的步骤如下:1.将线性方程组表示为增广矩阵[A,b],其中A是系数矩阵,b是常数向量。
2.从第一行开始,选择一个非零元素作为主元,通过行变换将主元下方的元素全部消为零。
3.重复第2步,直到矩阵变为上三角矩阵。
4.通过回代求解上三角矩阵,得到方程组的解。
高斯消元法的主要优点是简单直接,容易实现,但存在一些问题。
首先,如果系数矩阵A是奇异矩阵,即行列式为零,那么高斯消元法无法得到方程组的解。
其次,如果系数矩阵A的其中一行或几行接近于线性相关,那么在消元过程中会引入大量的舍入误差,导致计算结果不准确。
这也说明了高斯消元法的稳定性较差。
为了提高稳定性,可以使用LU分解法来解线性方程组。
LU分解法将系数矩阵A分解为两个矩阵L和U的乘积,其中L是下三角矩阵,U是上三角矩阵。
这样,原始的线性方程组可以表示为LUx=b,进而可以通过两个步骤来求解方程组:1.进行LU分解,将系数矩阵A分解为L和U。
2.分别用前代和回代的方法求解方程组Ly=b和Ux=y。
LU分解法相对于高斯消元法的优点是,可以在求解多个右端向量时,避免重复计算LU分解,从而提高计算效率。
同时,LU分解法的稳定性也较高,对于多个右端向量求解时,舍入误差的累积相对较小。
然而,LU分解法也存在一些问题。
首先,LU分解法的计算复杂度较高,需要进行两次矩阵乘法和一次矩阵向量乘法,而且LU分解过程中需要对系数矩阵A进行大量的行变换,增加了计算量。
其次,当系数矩阵A的一些元素非常小或非常大时,LU分解法容易出现数值不稳定的情况,即舍入误差的累积较大,导致计算结果不准确。
计算方法实验:解线性方程组的直接法
实验二解线性方程组的直接法一、实验目的用列主元素高斯消去法和三角分解法解线性方程组Ax=b。
式中,A为n阶非奇异方阵,x,b是n阶列向量,并分析选主元素的重要性。
二、实验方法(1)列主元素高斯消去法通过变换,将系数矩阵换成等价的上三角矩阵,在每步消元过程中,选列主元素。
对k=1,2,……n-1,逐次计算l ik=a ik(k-1)/a kk(k-1) (i=k+1,k+2,……,n)a ij(k)=a ij(k-1)-l ik a kj(k-1) (i,j=k+1,k+2,……,n)b i(k)=b i(k-1)-l ik b k(k-1) (i=k+1,k+2,……,n)逐步回代气的原方程组的解X n=b i(n-1)/a nn(n-1)X k=(b k(k-1)_a kj(k-1)x j)/a kk(k-1) (k=n-1,n-2, (1)(2)直接三角分解法由于两个矩阵相等就是它们的对应元素相等,因此通过比较A与LU的对应元素,即可得到直接计算L,U的元素的公式。
设A=L×U,其中U的第一行、L的第一列的元素分别为对(依次:U的第二行,L的第二列,U的第三行,L的第三列……),有由上述两种方法得到矩阵A的LU分解后,求解Ly=b与Ux=y的计算公式为∑+=n1kj三、实验内容解下列方程组·=四、实验程序(1)列主元素高斯消去法(2)直接三角分解法0147.06721.109998.42371.13142.17643.89217.44129.35435.15330.27875.15301.04017.31651.18326.31348.14321xxxx9237.164231.183941.65342.9五、实验结果(仅供参考)精确解为:(1,1,1,1)T六、结果分析实验的数学原理很容易理解,也容易上手。
把运算的结果带入原方程组,可以发现符合的还是比较好。
这说明列主元消去法计算这类方程的有效性。
计算方法二实验二 解方程组的直接法
山西大学计算机与信息技术学院实验报告
六、实验分析
1全主元计算量很大,只使用列主元就可,列主元是一列的最大的。
全主元就是所有元素找最大的放在顺序主子阵左上角。
2高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法。
问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试。
教师
评语。
线性代数方程组求解直接方法
LU分解法
将系数矩阵分解为一个下三角矩阵L和 一个上三角矩阵U的乘积,然后通过求 解LY=b和UX=Y两个三角形方程组得到 原方程组的解。LU分解法具有较高的数 值稳定性,适用于中小型方程组。
根据系数矩阵的第一行和最后一行元素, 计算出初始参数。
2. 追赶过程
3. 回代过程
从第二行开始,逐行进行消元,将系数矩 阵转化为上双对角矩阵。
从最后一行开始,逐行回代求解,得到方程 组的解。
平方根法的基本原理与计算步骤
基本原理
1. Cholesky分解
2. 前代过程
3. 回代过程
平方根法是一种适用于对称正 定矩阵线性方程组的求解方法 ,通过Cholesky分解将系数矩 阵分解为下三角矩阵和其转置 的乘积,进而简化计算。
收敛速度
在适当的条件下,雅可比迭代法的收敛速度可能比一般的 迭代法更快。
计算复杂度
雅可比迭代法需要计算雅可比矩阵及其逆矩阵,因此计算 量相对较大;而一般的迭代法只需要进行矩阵与向量的乘 法运算,计算量相对较小。
稳定性
雅可比迭代法的稳定性较好,对初始近似解的要求较低; 而一般的迭代法可能对初始近似解的要求较高,否则可能 导致迭代序列发散。
对系数矩阵进行Cholesky分解 ,得到下三角矩阵L。
通过下三角矩阵L,求解出中间 向量y。
利用中间向量y和下三角矩阵L 的转置,求解出方程组的解。
追赶法与平方根法的比较
适用范围
追赶法适用于三对角矩阵线性方程组, 而平方根法适用于对称正定矩阵线性方
计算方法矩阵直接法与迭代法
需要两份东西1﹑实验程序:输入﹑输出﹑注释2﹑实验报告:问题描述﹑方法描述﹑方案设计﹑结果分析﹑结论谢谢,麻烦写的详细些实验五 解线性方程组的直接方法实验5.1 (主元的选取与算法的稳定性)问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:考虑线性方程组n n n R b R A b Ax ∈∈=⨯,,编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。
实验要求:(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。
取n=10计算矩阵的条件数。
让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
(3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
(4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
1)首先编写gauss消元法代码;输入为矩阵A,向量b,精度ptol,输出为方程组的解x。
程序如下function [ out ] = gausle( A,b,flag,ptol )%UNTITLED 高斯消元法可选择的主元消去法% A n x n 矩阵% b n x 1% flag 标志主元为自动选取还是手动选取,% 0,自动(对角为主元)1,选取最小模为主元,% 2,选取模最大,(误差最小)3 ,次最小的模为主元% ptol 精度% out 输出值,为nx1的解Ax=b的解%%if nargin<4,ptol=50*eps;end[m,n]=size(A);if m~=n,error('A不是方阵');endout=zeros(n,1);% 预先设定解的维数nb=n+1;Ab=[A,b]; %扩维矩阵% disp('开始用扩维阵计算');% disp(Ab);RA=rank(A);RB=rank(Ab);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnend% 消元过程for i=1:n-1 ;i;if flag==0;pivot=Ab(i,i);ri=i;elseif flag==1;% 按照每列模最小的选取[pivot,min_index]=min(abs(A(i:n,i)));ri=i+min_index-1;elseif flag==2;% 按照模最大的选取[pivot,max_index]=max(abs(A(i:n,i)));ri=i+max_index-1;elseif flag==3 %方程最小非0数tA=A;[pivot,min_index]=min(abs(tA(i:n,i)));while pivot==0;tA(min_index+i-1,i)=inf;[pivot,min_index]=min(abs(tA(i:n,i)));endri=i+min_index-1;endif (pivot==0)||(pivot<ptol) ;warning('系数矩阵奇异!!');return;endif ri~=i; % 交换行tmp=A(i,:);A(i,:)=A(ri,:);A(ri,:)=tmp;t=b(i);b(i)=b(ri);b(ri)=t;endfor kk=i+1:nL(kk,i)=A(kk,i)/A(i,i);A(kk,i+1:n)=A(kk,i+1:n)-L(kk,i)*A(i,i+1:n);b(kk)=b(kk)-L(kk,i)*b(i);endendif A(n,n)==0warning('系数矩阵奇异!!');return;end% % 回代求解x=zeros(n,1)';for k=n:-1:1% k% A(k,k+1:n)% x(k+1:n)if k==nx(n)=b(n)/A(n,n);elsex(k)=(b(k)-sum( A(k,k+1:n).*x(k+1:n) ) )/(A(k,k));endendout=x';end主程序为N=10时,方程解为1.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000A 的条件数如下:1-条件数 2.5575e+0032-条件数 1.7276e+003无穷 条件数2.5575e+003代码在 里,运行计算即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 a12 (2) a 22 = 0
则当 akk 0 时,取
(k )
(k ) ank
(k ) ann
b1 (2) b2 bk( k ) (k ) bn
T Gk I k ak ek
7
计算方法 第一章解线性方程组的直接法 下面,按照上述思想推导消元法的一般算式 对于一般的矩阵A=[aij],设a11≠0,令
1 1/ a11 a1 (a11 , a21 ,
构造Gauss矩阵
用G1左乘a1得
, an1 )T a1 (0, a21,
, an1 )T e1 (1,0, 0)T
回代过程 3
计算方法 第一章解线性方程组的直接法
按照矩阵变换的观点来描绘消元的过程
Rn x | x ( x1, x2 ,, xn ), xi为实数(i 1,2,, n)
C n x | x ( x1, x2 ,, xn ), xi为复数(i 1,2,, n)
分别表示n维实和复向量空间,用R n×n 表示n×n阶实矩阵 空间 考虑线性方程组 Ax=b 其中
li1 ai1 , a11 i, j 2, , n.
(2) ann
b1 (2) b2 (2) bn
8
计算方法 第一章解线性方程组的直接法
一般地,如果已经利用Gauss矩阵G1, …,Gk-1得到
( A( k ) , b( k ) ) Gk 1
G1 ( A, b) a1n (2) a2 n
其增广矩阵为
2 4 2 6 ( A, b) 1 1 5 0 4 1 2 2
5
计算方法 第一章解线性方程组的直接法 第一步消元过程相当于用矩阵G1左乘增广矩阵,即
2 4 2 6 G1 ( A, b) 0 3 6 3 0 7 2 10 1 0 0 0 0 1 1 1 G1 1 0 I (1, 0, 0) I 1 (1, 0, 0) 2 2 2 4 2 0 1 2
A [aij ] Rnn , b (b1, b2 ,, bn )T Rn
4
计算方法 第一章解线性方程组的直接法
2 x1 4 x2 2 x3 6 x1 x2 5 x3 0 4 x x 2 x 2 2 3 1
矩阵形式为
2 4 2 x1 6 x 0 b Ax 1 1 5 2 4 1 2 x3 2
1 T G1 I e1 2 T 其中 0,1, 4 是将A中的第一列中的元素a11换成0而得到的列向量, T e1 1, 0, 0 是单位矩阵I的第一列所形成的列向量,1/2是a11的倒数。 这种形式的矩阵称为Gauss矩阵。
它可以记为
6
计算方法 第一章解线性方程组的直接法
T G1 I 1a1e1
G1a1 G1 (a11, a21, an1 )T (a11,0, 0)T
a1n
(2) a2 n
从而G1(A,b)具有下列形式,
(2) a 其中 ij
a11 a12 0 a (2) 22 ( A(2) , b(2) ) G1 ( A, b) (2) 0 an 2 aij li1a1 j , bi(2) bi li1b1
计算方法 第一章解线性方程组的直接法
第一章 解线性方程组的直接法
1
计算方法 第一章解线性方程组的直接法
求解Ax=b
直接法是指在无舍入误差存在的情况下,经 过有限步运算即可求得精确解的算法,因此 又称精确法. 因为舍入误差的存在,精确解也是不精确的. 直接法的典型代表是Gauss消元法
2
计算方法 第一章解线性方程组的直接法
2 x1 4 x2 2 x3 6 x1 x2 5 x3 0 4 x x 2 x 2 2 3 1
2 x1 4 x2 2 来自3 6 行 1行1 / 2 2 0 x1 3 x2 6 x3 3 3行 1行 2 0 x 7 x 2 x 10 2 3 1
2 x1 4 x2 2 x3 6 行 2 行7 / 3 3 0 x1 3 x2 6 x3 3 0 x 0 x 12x 3 2 3 1
消元过程
由( 3)式得x3 1 / 4
代入( 2)式得x2 3 / 2
再将x3和x2代入( 1 )式得x1 1/ 4
同样,若取Gauss矩阵为
0 1 G2 I 0 (0,1, 0) 3 7
2 4 2 6 G2G1 ( A, b) 0 3 6 3 0 0 12 3
则有
从上述讨论看出,消元过程等价于将方程组的增广矩阵依 次左乘相应的Gauss矩阵,将其化为上三角形式
(k ) (k ) lik aik / akk ,
a1k
(2) a2 k
a1,k 1
(2) a2, k 1
a1n
(2) a2 n
(k ) akk
(k ) T ank )
ak (0,
(k ) 0, ak 1,k ,
(k ) k 1/ akk
9
计算方法 第一章解线性方程组的直接法
( A( k 1) , b( k 1) ) Gk ( A( k ) , b( k ) ) a11 (2) a 22 = 0