二次函数的最值问题(典型例题)
二次函数的极值问题
③设总利润为W=Q-30000-400x=-10x2+500x =-10(x-25)2+6250 ∴当x=25时,总利润最大,最大利润为6250 元。
例题:学校要建一个生物花圃园,其中一边靠墙,另三边用 长为30米的篱笆围成,已知墙长为18米,设这个花圃垂直的 一边为x米. (1)平行于墙的一边为y米,直接写出y与x之间的函数关系 及自变量x的取值范围; (2)垂直于墙的一边的长为多少米时,这个花圃的面积最大, 并求这个最大值; (3)当这个花圃园的面积不小于88平米时,(结合图像)直 接写出x的取值范围。
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能 使利润最大了吗?
答:综合以上两种情况,定价为65元时 可获得最大利润为6250元.
2.某公司试销一种成本单价为500元的新产品 规定试销时的销售单价不低于成本单价,又不高于 800元/件,经市场调查,发现销售量y(件)与销售单价 x(元/件)可以近似看作一次函数的关系(如图). (1)根据图象,求y与x的函数关系式; (2)设公司获得的毛利润为s元,试求s与x的函数 关系式; (3)试问:销售单价定为多少时,该公司可获得最大 利润?最大毛利润是多少?此时的销售量是多少?
做一做
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少? 15 7 x x x x 解 : 1. 由4 y 7 x x 15. 得, y . 4 2 2 x 15 7 x x x
●
=-2x2+440x+158400 …… =-2(x-110)2+182600 所以,当x=110时,y有最大值182600 ……
专题74 二次函数在实际应用中的最值问题(解析版)
专题74 二次函数在实际应用中的最值问题1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】(1)10%;(2)217.7352(19){36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)0.5. 【详解】解:(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去). 答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,∴y =(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x +352,∴﹣17.7<0,∴y 随x 的增大而减小,∴当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元); 当9≤x <15时,第2次降价后的价格:8.1元,∴y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,∴﹣3<0,∴当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,∴当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用)【答案】(1)p =﹣30x +1500;(2)这批农产品的销售价格定为40元,才能使日销售利润最大;(3)a =2. 【详解】(1)假设P 与x 的一次函数关系,设函数关系式p kx b =+,则3060040300k b k b +=⎧⎨+=⎩,解得301500k b =-⎧⎨=⎩, ∴301500p x =-+,检验:当35,450x P ==,当45,150,x P ==当50,0x P ==,均符合一次函数解析式 ∴所求的函数关系式301500p x =-+,(2)设日销售利润()()()3030150030w P x x x =-=-+-,即()223024004500030403000w x x x =-+-=--+,当40x =时,w 有最大值为3000元,故这批农产口的销售价格定为40元,才能使日销售利润最大, (3)日获利()()()3030150030w p x a x x a =--=-+--, 即()()230240030150045000w x a x a =-++-+,对称轴这()2400301402302a x a +=-=+⨯-,若10a >,则当45x =时,w 有最大值,即22501502430w a =-<(不合题意), 若10a <,则当1402x a =+时,w 有最大值, 把1402x a =+代入,可得2130101004w a a ⎛⎫=-+ ⎪⎝⎭, 当2430w =时,21243030101004a a ⎛⎫=-+⎪⎝⎭, 解得12a =,238a =(舍去), 综上所述,a 的值为2.3、怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 【答案】(1)60;(2)316. 【详解】解:(1)、设该店每天卖出A 、B 两种菜品分别为x 、y 份,根据题意得:()()2018112020141814280x y x y +=⎧⎪⎨-+-=⎪⎩,解得:2040x y =⎧⎨=⎩,答:该店每天卖出这两种菜品共60份;(2)、设A 种菜品售价降0.5a 元,即每天卖(20+a )份,总利润为w 元,因为两种菜品每天销售总份数不变,所以B 种菜品卖(40﹣a )份,每份售价提高0.5a 元. 则w=(20﹣14﹣0.5a )(20+a )+(18﹣14+0.5a )(40﹣a )=(6﹣0.5a )(20+a )+(4+0.5a )(40﹣a )=(﹣0.5a 2﹣4a+120)+(﹣0.5a 2+16a+160) =﹣a 2+12a+280=﹣(a ﹣6)2+316, 当a=6,w 最大,w=316答:这两种菜品每天的总利润最多是316元.4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?【答案】(1)w=﹣4x 2+220x ﹣1000;(2)影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元. 【详解】(1)根据题意,得:w =(﹣4x +220)x ﹣1000=﹣4x 2+220x ﹣1000;(2)∴w =﹣4x 2+220x ﹣1000=﹣4(x ﹣27.5)2+2025,∴当x =27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围.【答案】(1)21m -;(2)22(2)44y x x x =--=-;(3)103a <≤或1a ≥或13a ≤- 【详解】解:(1)221:23(1)4C y ax ax a a x a =--=--顶点(1,4)a -围绕点(,0)P m 旋转180180°的对称点为(21,4)m a -,2:(21)24C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,故答案为:21m -; (2)1a =-时,21:(1)4C y x =--,∴当112t ≤<时, 12x =时,有最小值2154y =, x t =时,有最大值21(1)4y t =--+,则21215(1)414y y t -=--+-=,无解; ∴312t ≤≤时, 1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+, 12114y y -=≠(舍去); ∴当32t >时, 1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+, 212(1)1y y t -=-=,解得:0t =或2(舍去0), 故222:(2)44C y x x x =--=-; (3)0m =,22:(1)4C y a x a =-++,点'',,,,A B D A D 的坐标分别为(1,0),(3,0),(0,3),(0,1),(3,0)a a --, 当0a >时,a 越大,则OD 越大,则点'D 越靠左,当2C 过点'A 时,2(01)41y a a =-++=,解得:13a =, 当2C 过点'D 时,同理可得:1a =,故:103a <≤或1a ≥; 当0a <时,当2C 过点'D 时,31a -=,解得:13a =-,故:13a ≤-;综上,故:103a <≤或1a ≥或13a ≤-. 6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是万元,收购成本为万元,求和的值;(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.∴分别求出当和时,与的函数关系式;∴设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)【答案】(1)a的值为0.04,b的值为30(2)∴y=t+15,y=t+30∴当t为55天时,W最大,最大值为180250元【详解】(1)由题意得解得答:a的值为0.04,b的值为30.(2)∴当0≤t≤50时,设y与t的函数关系式为y=k1t+n1把点(0,15)和(50,25)的坐标分别代入y=k1t+n1,得解得∴y与t的函数关系式为y=t+15当50<t≤100时,设y与t的函数关系式为y=k2t+n2把点(50,25)和(100,20)的坐标分别代入y=k2t+n2,得解得∴y与t的函数关系式为y=t+30∴由题意得,当0≤t≤50时,W=20000×(t+15)-(400t+300000)=3600t∴3600>0,∴当t=50时,W最大值=180000(元)当50<t≤100时,W=(100t+15000)(t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250∴-10<0,∴当t=55时,W最大值=180250综上所述,当t为55天时,W最大,最大值为180250元.7、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50m .设饲养室为长为x(m),占地面积为.(1)如图,问饲养室为长x为多少时,占地面积y 最大?(2)如图,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【答案】(1)x=25;(2)小敏的说法不正确.【详解】(1)∴=,∴当x=25时,占地面积y最大;(2)=,∴当x=26时,占地面积y最大.即当饲养室长为26m时,占地面积最大.∴26-25=1≠2,∴小敏的说法不正确.8、铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【答案】(1)p=x+18;(2)第13天时当天的销售利润最大,最大销售利润是361元;(3)第7、8、9、10、11、12、13天共7天销售利润不低于325元.【详解】(1)设p=kx+b(k≠0),∴第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴321 725 k bk b+=⎧⎨+=⎩,解得:118kb=⎧⎨=⎩,所以p=x+18;(2)1≤x ≤6时,w =10[50﹣(x +18)]=﹣10x +320,6<x ≤15时,w =[50﹣(x +18)](x +6)=﹣x 2+26x +192,所以,w 与x 的函数关系式为210320(16)26192(615)x x w x x x -+≤≤⎧=⎨-++<≤⎩, 当1≤x ≤6时,∴﹣10<0,∴w 随x 的增大而减小,∴当x =1时,w 最大为﹣10+320=310,6<x ≤15时,w =﹣x 2+26x +192=﹣(x ﹣13)2+361,∴当x =13时,w 最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w =325时,﹣x 2+26x +192=325,x 2﹣26x +133=0,解得x 1=7,x 2=19,所以,7≤x ≤13时,即第7、8、9、10、11、12、13天共7天销售利润不低于325元.9、2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A 、B 两种“火龙果”促销,若买2件A 种“火龙果”和1件B 种“火龙果”,共需120元;若买3件A 种“火龙果”和2件B 种“火龙果”,共需205元.(1)设A ,B 两种“火龙果”每件售价分别为a 元、b 元,求a 、b 的值;(2)B 种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B 种“火龙果”100件;若销售单价每上涨1元,B 种“火龙果”每天的销售量就减少5件. ∴求每天B 种“火龙果”的销售利润y (元)与销售单价(x )元之间的函数关系?∴求销售单价为多少元时,B 种“火龙果”每天的销售利润最大,最大利润是多少?【详解】(1)根据题意得:2120{ 32205a b a b +=+= ,解得:a =35,b =50;(2)∴由题意得:y =(x ﹣40)[100﹣5(x ﹣50)]∴y =﹣5x 2+550x ﹣14000;∴∴y=﹣5x2+550x﹣14000=﹣5(x﹣55)2+1125,∴当x=55时,y最大=1125,∴销售单价为55元时,B商品每天的销售利润最大,最大利润是1125元.10、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.11、鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160;(2)5280元;(3)10000元.【详解】(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∴-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.12、某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y与x的函数解析式为()()20022006102001012x xyx⎧-+≤≤⎪=⎨<≤⎪⎩;(2)这一天销售西瓜获得利润的最大值为1250元.【详解】(1)当6≤x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200),∴1000620010k b k b =+⎧⎨=+⎩, 解得2002200k b =-⎧⎨=⎩, ∴当6≤x≤10时, y =-200x+2200,当10<x≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩; (2)设利润为w 元,当6≤x≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ∴-200<0,6∴x≤10,当x =172时,w 有最大值,此时w=1250; 当10<x≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200,∴200>0,∴w =200x -1200随x 增大而增大,又∴10<x≤12,∴当x =12时,w 最大,此时w=1200,1250>1200,∴w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.13、我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y (千克)与销售单价x (元)符合一次函数关系,如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?【答案】(1)2200(3060)y x x =-+≤≤;(2)每千克60元,最大获利为1950元【详解】解:(1)设一次函数关系式为(0)y kx b k =+≠由图象可得,当30x =时,140y =;50x =时,100y =∴1403010050k b k b =+⎧⎨=+⎩,解得k 2b 200=-⎧⎨=⎩∴y 与x 之间的关系式为2200(3060)y x x =-+≤≤.(2)设该公司日获利为W 元,由题意得2(30)(2200)4502(65)2000W x x x =--+-=--+∴20a =-<;∴抛物线开口向下;∴对称轴65x =;∴当65x <时,W 随着x 的增大而增大;∴3060x ≤≤,∴60x =时,W 有最大值;22(6065)200015=90W -⨯-+=最大值.即,销售单价为每千克60元时,日获利最大,最大获利为1950元.。
二次函数的最值问题(中考题)(含答案)
典型中考题(有关二次函数的最值)屠园实验 周前猛一、选择题1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( )A. a<bB.a=b C a>b D 不能确定答案:C2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( )A 、-74 B 、 C 、 2或 D 2或或- 74答案:C∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m.当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2765y x 416⎛⎫=-++ ⎪⎝⎭此时,它在-2≤x≤l 的最大值是6516,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符.当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在-2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符.综上所述,实数m 的值为2或. 故选C .3. 已知0≤x≤12,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6答案:C解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤12,∴当x=12时,y取最大值,y最大=-2(12-2)2+2=-2.5.故选:C.4、已知关于x的函数.下列结论:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。
真确的个数是()A,1个B、2个 C 3个D、4个答案:B分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,b5-=2a4,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最=224ac-b24k+1=-4a8k,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.二、填空题:1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是答案:122、已知直角三角形两直角边的和等于8,两直角边各为时,这个直角三角形的面积最大,最大面积是答案:4、4,8解:设直角三角形得一直角边为x,则,另一边长为8-x;设其面积为S.∴S= x·(8-x)(0<x<8). 配方得S=- (x2-8x)=- (x-4)2+8∴当x=4时,S最大=8.及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.-≤≤的最大值与最小值分别是3、函数y=2(0x4)答案:2,0最小值为0,当4x-x2最大,即x=2最大为4,所以,当x=0时,y最大值为2,当x=2时,y取最小值为04、已知二次函数y=x2+2x+a (0≤x≤1)的最大值是3,那么a的值为答案:0解:二次函数y=x 2+2x+a 对称轴为x=-1,当0≤x ≤1时y 随x 的增大而增大,当x=1时最大值为3,代入y=x 2+2x+a 得a=0.5、如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,则这样线段的最小长度 .三、解答题:1某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本的百分率为x⑴ 请用含x 的代数式表示第二季度每件产品的成本;⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值⑶ 该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)解:(1)()x -150 ⑵()5.9501502-=-x 解得1.0=x (3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x而()()2150160x x y ---==1040502++-x x=()184.0502+--x ∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x , ∴当2.0=x 时,y 最大值=18(元)说明:当自变量取值范围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值范围为某一区间时,二次函数的最值应注意下列两种情形:若抛物线顶点在该区间内,顶点的纵坐标就是函数的最值。
微专题2二次函数的最值问题 课件(14张)
微专题2 二次函数的最值问题
与二次函数有关的最值问题是高中教学的一个重难点,其可以较 全面的体现直观想象、逻辑推理及数学运算的素养.本专题主要训练 几种常见的二次函数最值的求解方法.
类型 1 不含参数的二次函数最值问题 【例 1】 已知函数 f(x)=3x2-12x+5,当自变量 x 在下列范围内 取值时,求函数的最大值和最小值. (1)R;(2)[0,3];(3)[-1,1].
t2+1,t&1, t2-2t+2,t>1.
类型 3 与二次函数有关的恒成立、能成立问题 【例 4】 已知二次函数 g(x)=mx2-2mx+n+1(m>0)在区间[0,3] 上有最大值 4,最小值 0. (1)求函数 g(x)的解析式; (2)设 f(x)=gxx-2x,若 f(x)-kx≤0 在 x∈81,8时恒成立,求实数 k 的取值范围.
图①
图②
(2)当 0≤a<1 时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)
=3-4a.
(3)当 1≤a≤2 时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0) =-1.
图③
图④
(4)当 a>2 时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)= -1.
[解] (1)∵g(x)=m(x-1)2-m+1+n, ∴函数 g(x)图象的对称轴方程为 x=1.又∵m>0, ∴依题意得gg13= =04, , 即3-mm++1+1+n=n=4,0, 解得mn==01., ∴g(x)=x2-2x+1.
(2)∵f(x)=gxx-2x,∴f(x)=x+1x-4. ∵f(x)-kx≤0 在 x∈18,8时恒成立,即 x+1x-4-kx≤0 在 x∈ 18,8时恒成立, ∴k≥1x2-4x+1 在 x∈81,8时恒成立.
最全二次函数区间的最值问题(中考数学必考题型)
二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。
例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。
二次函数—动点产生的线段最值问题典型例题
二次函数——动点产生的线段最值问题【例1】如图,在直角坐标系中,点A,B,C 的坐标分别为(-1,0),(3,0),(0,3),过A,B,C 三点的抛物线的对称轴为直线l .(1)求抛物线的解析式及顶点D 的坐标;(2)点E 是抛物线的对称轴上的一个动点,求当AE+CE 最小时点E 的坐标;(3)点P 是x 轴上的一个动点,求当PD+PC 最小时点P 的坐标;(4)点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QB QC-最大?并求出最大值.解:(1)设抛物线的解析式为:y=ax 2+bx+c ,∵抛物线经过A 、B 、C 三点, ∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:y=-x 2+2x+3.∵y=-x 2+2x+3= 2(1)4x --+, ∴该抛物线的对称轴为直线x=1,顶点D 的坐标为(1,4).(2)∵点A 关于抛物线的对称轴的对称点为B ,则AE=BE ,要使AE+CE 最小,即BE+CE 最小,则B 、E 、C 三点共线如图,连接BC 交抛物线的对称轴于点E ,解法一:设直线BC 的解析式为y=kx+n ,则303k n n +=⎧⎨=⎩,解得13k n =-⎧⎨=⎩∴3y x =-+.当x=1时,3132x -+=-+=,∴点E 的坐标为(1,2)解法二:设抛物线的对称轴交x 轴于点F .∵E F ∥y 轴,∴∠BEF =∠BCO ,∠BFE =∠BOC∴△BFE ∽△BOC ∴BF EF BO CO=, ∴3133EF -=, ∴2EF = ∴点E 的坐标为(1,2)(3)作出点C 关于x 轴的对称点为C′,则C′(0,-3),OC′=3,如图,连接C′D 交x 轴于点P ,∵点C 关于x 轴的对称点为C′,则PC=P C′,F E要使PD+PC 最小,即PD+P C′最小,则D 、P 、C′三点共线设直线C′D 的解析式为y=kx+n ,则43k n n +=⎧⎨=-⎩,解得73k n =⎧⎨=⎩∴73y x =-.当y=0时,073x =-,∴37x =∴点P 的坐标为(37,0) (4)∵点A 关于抛物线的对称轴的对称点为B ,则QB=QA , 要使QB QC -最大,即QA QC -最大,则A 、C 、Q 三点共线如图,连接AC 交抛物线的对称轴于点Q ,解法一:设直线AC 的解析式为y=kx+n ,则03k n n -+=⎧⎨=⎩,解得33k n =⎧⎨=⎩∴33y x =+.当x=1时,333136x +=⨯+=,∴点Q 的坐标为(1,6)解法二:设抛物线的对称轴交x 轴于点F .∵QF ∥y 轴,∴∠ACO =∠AQF ,∠AOC =∠AFQ∴△AOC ∽△AFQ ∴AO CO AF QF=, ∴1311QF=+, ∴6QF = ∴点Q 的坐标为(1,6)∴QB QC QA QC AC -=-===即当点Q 的坐标为(1,6)时,QB QC-【作业1】(2011菏泽)如图,抛物线y=21x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0). (1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.解:(1)∵点A (﹣1,0)在抛物线y=21x 2+bx ﹣2上, ∴21×(﹣1 )2+b×(﹣1)﹣2=0,解得b=-23 ∴抛物线的解析式为y=21x 2﹣23x ﹣2. QF -- C ′Py=21x 2﹣23x ﹣2=21( x 2﹣3x ﹣4 )=21(x ﹣23)2﹣825, ∴顶点D 的坐标为 (23,﹣825). (2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,21x 2﹣23x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0) ∴OA=1,OB=4,AB=5. ∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2,连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小.解法一:设抛物线的对称轴交x 轴于点E .∵ED∥y 轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM. ∴ED C O EM OM '=,∴825223=-m m , ∴m=4124 解法二:设直线C′D 的解析式为y=kx+n , 则⎪⎩⎪⎨⎧-=+=825232n k n ,解得n=2,1241-=k ∴21241+-=x y . ∴当y=0时,-4124,4124,021241=∴==+m x x 【作业2】2011四川广安)如图所示,在平面直角坐标系中,四边形ABCD 是直角梯形,BC ∥AD ,∠BAD = 90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A (-1,0),B ( -1,2),D ( 3,0),连接DM ,并把线段DM 沿DA 方向平移到ON ,若抛物线y =ax 2+bx +c 经过点D 、M 、N .(1)求抛物线的解析式.(2)抛物线上是否存在点P .使得PA =PC .若存在,求出点P 的坐标;若不存在.请说明理由.(3)设抛物线与x 轴的另—个交点为E .点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QE QC -最大?并求出最大值.解:(1)由题意可得M (0,2),N (-3,2), ∴ 2,293,093.c a b c a b c =⎧⎪=-+⎨⎪=++⎩ 解得:1,91,32.a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩E∴211293y x x =--+(2)∵PA =PC , ∴P 为AC 的垂直平分线上,依题意,AC 的垂直平分线经过(-1,2)、(1,0),其所在的直线为y =-x +1. 根据题意可列方程组21,11 2.93y x y x x =-+⎧⎪⎨=--+⎪⎩解得:1132x y ⎧=+⎪⎨=--⎪⎩2232x y ⎧=-⎪⎨=-+⎪⎩∴P 1(32+--)、P 2(32--+).(3)如图所示,延长DC 交抛物线的对称轴于点Q ,根据题意可知此时点Q 满足条件.由题意可知C (1,2),D (3,0),可求得CD 所在的直线的解析式为3y x =-+. 抛物线211293y x x =--+的对称轴为直线 1.5x =-. ∵点Q 在直线x =-1.5上,又在直线3y x =-+上. ∴Q (-1 .5,4.5),QE =QD . ∴QE QC QD QC CD -=-===.即当点Q 的坐标为(-1.5,4.5)时,QE QC -有最大值,最大值为。
最新二次函数的最值问题举例(附练习、答案)
二次函数的最值问题举例(附练习、答案)二次函数y = ax2bx c (a = 0)是初中函数的主要内容,也是高中学习的重要基础. 在初x取任意实数时的最值情况(当a ■ 0时,函数在本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.2【例1】当-2弐x玄2时,求函数y=x -2x-3的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x的值.解:作出函数的图象.当x=1时,y mi n =-4,当x=-2时,y max=5.【例2】当1^x^2时,求函数y =-X2「x T的最大值和最小值.X = 1 时,y min = T ,当X = 2 时,y max = 一5 .由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:【例3】当x - 0时,求函数y = -x(2 - x)的取值范围.中阶段大家已经知道:二次函数在自变量b2a处取得最小值4ac - b24a,无最大值;当 a c 0时,函数在x = -亠-处取得最大值2a4ac -b24a无最小值.解:作出函数的图象.当解:作出函数y =-x(2 - x) n x? — 2x在x_0内的图象.可以看出:当x = 1时,ymin - -1,无最大值.所以,当X _ 0时,函数的取值范围是y _ -1 .1 25【例4】当t <x <t 1时,求函数y x「x 的最小值(其中t为常数).2 2分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置.1 25解:函数y x2-X 的对称轴为x=1 .画出其草图.2 21 25(1)当对称轴在所给范围左侧•即t 1时:当X = t时,『min t -t-2 2⑵当对称轴在所给范围之间•即t乞1乞t • 1 = 0乞t乞1时:1 25当X=1 时,『min -1—? = 一3 ;⑶当对称轴在所给范围右侧.即t • 1 ::: 1= t ::: 0时:1 2 5 1 2当X=t 1 时,y min —(t 1) -(t 1)—?=?t -3 .1 2—t —3,t < 02综上所述:y二-3,0乞t乞1-1 -5,t A1.2 2在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量与每件的销售价x(元)满足一次函数m =162 -3x,30 _ x _ 54 .(1)写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1)由已知得每件商品的销售利润为(x-30)元,m (件)那么m件的销售利润为y = m(x - 30),又m = 162 - 3x .2y = (x - 30)(162 - 3x)二-3x 252x - 4860,30 - x - 54(2)由⑴知对称轴为x=42,位于x的范围内,另抛物线开口向下.当x=42 时,y max - -3 421 2252 42 -4860 =432•当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组21.抛物线y =x —(m —4)x +2m -3,当m = _________ 时,图象的顶点在y轴上;当m = _______ 时, 图象的顶点在x轴上;当m = _____ 时,图象过原点.2•用一长度为I米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 _______ .3.求下列二次函数的最值:2(1) y = 2x -4x 5 ;(2) y = (1 - x)(x 2).24.求二次函数y = 2x -3x - 5在-2 _ x _ 2上的最大值和最小值,并求对应的x的值.25•对于函数y =2x • 4x -3,当x _0时,求y的取值范围.6.求函数y = 3 —€5x —3x —2的最大值和最小值.7 .已知关于x的函数y = x2• (2t T)x • t2-1,当t取何值时,y的最小值为0 ?B 组21 当a - -1时,求函数的最大值和最小值;2 当a为实数时,求函数的最大值.2.函数y =x2• 2x 3在m^x乞0上的最大值为3,最小值为2,求m的取值范围.23 .设a • 0,当-1乞x乞1时,函数y x - ax b 1的最小值是-4,最大值是0,求a,b的值.4.已知函数y = x2 2ax 1在-1空x乞2上的最大值为4,求a的值.25.求关于x的二次函数y=x -2tx 1在-1辽x^1上的最大值(t为常数).1 .已知关于x的函数y =x2• 2ax • 2在-5辽x乞5上.第五讲二次函数的最值问题答案ymin- 0 •(1)当 X =1 时,Y min =1 ;当 X 「-5 时, ⑵当 a - 0 时,Y max =2710a ;当 a 0 时,Y max =27 —10a •一2空m 乞一1 • a =2,b 一2 •1a 或 a - -1.4123 4567123 44 14或 2,I 2 2 —m 16(1)有最小值 3, 无最大值;(2)有最大值9-,无最小值•4 --5时,Y min3 ;当x 「2时, 8Y max =19 •ymin2i 或 1 时,Ymaxymax- 37 •5.当t <0时,y max =2 —2t,此时X = 1 ;当t 0 时,y max =2 • 2t,此时X = -1 .。
二次函数的最值问题(典型例题)
二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :y =+BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 2y=-;(2) (2);(3)8练习一答案【例题精讲】答案:a =【拓展练习】答案:(1) k≤2;(2)①k值为-1;②y的最大值为32,最小值为-3.详解:(1)当k=1时,函数为一次函数y= -2x+3,其图象与x轴有一个交点. 当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1.由题意得(k-1)x12+(k+2)=2kx1(*),将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。
二次函数的最值与存在性问题(20题)(原卷版)
专题第03讲二次函数的最值与存在性问题(20题)1.(2023春•鼓楼区校级期末)在人教版八年级上册数学教材P53的数学活动中有这样一段描述:如图,四边形ABCD中,AD=CD,AB=BC,我们把这种两组邻边分别相等的四边形叫做“筝形”.(1)试猜想筝形的对角线有什么位置关系,然后用全等三角形的知识证明你的猜想;(2)已知筝形ABCD的对角线AC,BD的长度为整数值,且满足AC+BD=6.试求当AC,BD的长度为多少时,筝形ABCD的面积有最大值,最大值是多少?2.(2023•苏州一模)如图,在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点P从点A出发,以1cm/s 的速度沿AB运动:同时,点Q从点B出发,2cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设动点运动的时间为t(s).(1)当t为何值时,△PBQ的面积为2cm2;(2)求四边形PQCA的面积S的最小值.3.(2023春•汉寿县期中)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,﹣3),点D为直线OD与抛物线y=ax2+bx+c(a≠0)在x轴下方的一个交点,点P为此抛物线上的一个动点.(1)求此抛物线的解析式;(2)若直线OD为,求点D的坐标;(3)在(2)的条件下,当点P在直线OD下方时,求△POD面积的最大值.4.(2023•鄄城县一模)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数及直线BC的表达式.(2)过点P作PD∥y轴交直线BC于点D,求PD的最大值.(3)点M为抛物线对称轴上的点,问在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠NMO 为直角,若存在,请直接写出点N的坐标;若不存在,请说明理由.5.(2023春•铜梁区校级期中)如图,已知二次函数y=x2﹣3x﹣4的图象与x轴交于B,C两点,与y轴交于点D,点A为抛物线的顶点,连接CD.(1)求S△COD;(2)如图1,点P在直线CD下方抛物线上的一个动点,过点P作PQ⊥CD交于点Q,过点P作PE∥x 轴交CD于点E,求PE+PQ的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线沿着射线DC方向平移个单位长度得到新抛物线y1,点M在新抛物线对称轴上运动,点N是平面内一点,若以B、P、M、N为顶点的四边形是以BM为边的菱形,请直接写出所有符合条件的点N的坐标,并选择其中一个点的坐标写出求解过程.6.(2023•襄阳模拟)已知抛物线y=ax2+bx+c(a≠0)经过点M(﹣2,)和N(2,﹣)两点,且抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)若点M是抛物线y=ax2+bx+c的顶点,求抛物线解析式及A、B、C坐标;(2)在(1)的条件下,若点P是A、C之间抛物线上一点,求四边形APCN面积的最大值及此时点P 的坐标;(3)若B(m,0),且1≤m≤3,求a的取值范围.7.(2023•崇川区校级开学)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于A(﹣4,0)、B(2,0)两点,交y轴于点C,连接AC.(1)求抛物线的解析式;(2)点P为线段AC上方的抛物线上一动点,过P作PF⊥AC,当PF最大时,求出此时P点的坐标以及PF的最大值.8.(2023•平潭县模拟)如图,已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B(3,0)两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请求出点M的坐标.(3)如图1,P为直线BC上方的抛物线上一点,PD∥y轴交BC于D点,过点D作DE⊥AC于E点.设m=PD+DE,求m的最大值及此时P点坐标.9.(2023•荔城区校级开学)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值.10.(2023•阜新)如图,在平面直角坐标系中,二次函数y=﹣x2+bx﹣c的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC:y=x+3交于点D,若点M是直线AC上方抛物线上的一个动点,求△MCD面积的最大值.(3)如图2,点P是直线AC上的一个动点,过点P的直线l与BC平行,则在直线l上是否存在点Q,使点B与点P关于直线CQ对称?若存在,请直接写出点Q的坐标;若不存在,请说明理由.11.(2023•防城区二模)如图1,已知抛物线y=ax2+bx+6与轴交于点A(2,0)和点B,与y轴交于点C,∠ABC=45°.(1)求抛物线的解析式.(2)如图2,点E为第二象限抛物线上一动点,EF⊥x轴与BC交于F,求EF的最大值,并说明此时△BCE的面积是否最大.(3)已知点D(﹣3,10),E(2,10),连接DE.若抛物线y=ax2+bx+6向上平移k(k>0)个单位长度时,与线段DE只有一个公共点,请求出k的取值范围.12.(2023•明水县模拟)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0),点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP'C,那么是否存在点P,使四边形POP'C 为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,使△BPC的面积最大,求出点P的坐标和△BPC的面积最大值.13.(2023•晋中模拟)综合与探究如图1,抛物线与x轴交于点A(1,0),B(5,0),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,若P是直线BC下方抛物线上的一动点,连接PB,PC,过点P作PD⊥BC于点D,求△PBC面积的最大值,并求出此时点P的坐标和线段PD的长;(3)若E是抛物线上的任意一点,过点E作EQ∥y轴,交直线BC于点Q,抛物线上是否存在点E,使以E,Q,O,C为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.14.(2022秋•曲周县期末)如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.(1)求该抛物线的解析式;(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.15.(2022秋•云阳县期末)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线得解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求此时点P的坐标.(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上确定一点M,使得△ADM是直角三角形,写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.16.(2023•湟中区校级开学)如图1,抛物线经过A(﹣5,0),B(1,0),C(0,5)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;(3)如图2,点M是线段AC上的点(不与A、C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长,并求出MN的最大值.17.(2023•太平区二模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.18.(2023•昭平县二模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣3与x轴交于点A,B(点A 在点B的左侧),与y轴交于点C,且OB=3OA=3.(1)求这个二次函数的解析式;(2)若点M是线段BC下方抛物线上的一个动点(不与点B,点C重合),过点M作直线MN⊥x轴于点D,交线段BC于点N.是否存在点M使得线段MN的长度最大,若存在,求线段MN长度的最大值,若不存在,请说明理由;(3)当二次函数y=ax2+bx﹣3的自变量x满足t≤x≤t+1时,此函数的最大值与最小值的差为2,求出t的值.19.(2023•芝罘区一模)如图,抛物线y=ax2+x+c经过坐标轴上A、B、C三点,直线y=﹣x+4过点B和点C.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上一动点,连接BE、CE,求△BCE面积的最大值及此时点E的坐标;(3)Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、B、C为顶点的四边形是平行四边形?若存在,请求出所有满足条形的点P坐标;若不存在,请说明理由.20.(2023春•东莞市校级月考)如图,在平面直角坐标系中,抛物线与直线AB交于点A(0,﹣4),B(4,0).点P是直线AB下方抛物线上的一动点.(1)求该抛物线的函数表达式;(2)过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)连接P A、PB,是否存在点P,使得线段PC把△P AB的面积分成1:3两部分,如果存在,请求出点P的坐标;如果不存在,请说明理由.。
二次函数的最值问题(含答案)
---二次函数的最值问题一、内容概述对二次函数2(0)y ax bx c a =++≠,若自变量为任意实数,则取最值情况为:(1)当0,2b a x a >=-时,244ac b y a -=最小值(2)当0,2b a x a <=-时,244ac b y a-=最大值若自变量x 的取值范围为()x αβαβ≤≤≠,则取最值分0a >和0a <两种情况,由α、β与2b a-的大小关系确定。
1.对于0a >:(1)当2baαβ<≤-,因为对称轴左侧y 随x 的增大而减小,所以y 的最大值为()y α,最小值为()y β。
这里()y α、()y β分别是y 在x α=与x β=时的函数值。
(2)当2baαβ-≤≤,因为对称轴右侧y 随x 的增大而增大,所以y 的最大值为()y β,最小值为()y α。
(3)当2b a αβ≤-≤,y 的最大值为()y α、 ()y β中较大者,y 的最小值为()2b y a-. 2.对于0a <(1)当2baαβ<≤-,y 的最大值为()y β,最小值为()y α。
(2)当2baαβ-≤≤,y 的最大值为()y α,最小值为()y β。
(3)当2b a αβ≤-≤,y 的最小值为()y α、 ()y β中较大者,y 的最大值为()2b y a-. 综上所述,求函数的最大、最小值,需比较三个函数值:()y α、()y β、()2b y a- 二、例题解析例1 已知12,x x 是方程22(2)(35)0x k x k k --+++=的两个实数根,求2212x x +的最大值和最小值。
解:由于题给出的二次方程有实根,所以0∆≥,解得443k -≤≤- ∴y =2212x x +=21212()2x x x x +-=2106k k ---∵函数y 在443k -≤≤-随着k 的增大而减小 ∴当4k =-时,8y =最大值;当43k =-时,509y =最小值例2 (1)求函数243y x x =--在区间25x -≤≤中的最大值和最小值。
二次函数最值问题(包括有限制的)
二次函数最值问题1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大销售利润,每件商品的定价为多少最合适?最大销售利润为多少?2.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格。
经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件。
假定每月销售件数y(件)是价格x的一次函数.(1)试求y与x的之间的关系式.(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少?(总利润=总收入-总成本)3.某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元。
为了扩大销售,尽量减少库存,增加盈利,商场决定采取降价促销活动。
经市场调查发现,若每件衬衫每降价1元,商场平均每天可多售出2件。
⑴若商场平均每天要盈利1200元,则每件衬衫应降价多少元?⑵每件衬衫降价多少元时,商场平均每天的盈利最大,最大盈利是多少?4.东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:⑴以x 作为点的横坐标,p 作为纵坐标,把表中的 数据,在图8中的直角坐标系中描出相应的点,观察连结各点所得的图形,判断p 与x 的函数关系式; ⑵如果这种运动服的买入件为每件40元,试求销售利润y (元)与卖出价格x (元/件)的函数关系式(销售利润=销售收入-买入支出);⑶在(2)的条件下,当卖出价为多少时,能获得最大利润?5.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数y=kx+b 的关系(如图)。
二次函数—动点产生的线段最值问题典型例题
二次函数——动点产生的线段最值问题【例1】如图,在直角坐标系中,点A,B,C 的坐标分别为(-1,0),(3,0),(0,3),过A,B,C 三点的抛物线的对称轴为直线l . (1)求抛物线的解析式及顶点D 的坐标;(2)点E 是抛物线的对称轴上的一个动点,求当AE+CE 最小时点E 的坐标; (3)点P 是x 轴上的一个动点,求当PD+PC 最小时点P 的坐标;(4)点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QB QC -最大?并求出最大值.解:(1)设抛物线的解析式为:y=ax 2+bx+c , ∵抛物线经过A 、B 、C 三点,∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为:y=-x 2+2x+3. ∵y=-x 2+2x+3= 2(1)4x --+,∴该抛物线的对称轴为直线x=1,顶点D 的坐标为(1,4). (2)∵点A 关于抛物线的对称轴的对称点为B ,则AE=BE , 要使AE+CE 最小,即BE+CE 最小,则B 、E 、C 三点共线 如图,连接BC 交抛物线的对称轴于点E , 解法一:设直线BC 的解析式为y=kx+n ,则303k n n +=⎧⎨=⎩,解得13k n =-⎧⎨=⎩∴3y x =-+.当x=1时,3132x -+=-+=,∴点E 的坐标为(1,2) 解法二:设抛物线的对称轴交x 轴于点F . ∵E F ∥y 轴,∴∠BEF =∠BCO ,∠BFE =∠BOC ∴△BFE ∽△BOC∴BF EFBO CO =, ∴3133EF-=, ∴2EF =∴点E 的坐标为(1,2)(3)作出点C 关于x 轴的对称点为C′,则C′(0,-3),OC′=3,FE如图,连接C′D 交x 轴于点P ,∵点C 关于x 轴的对称点为C′,则PC=P C′,要使PD+PC 最小,即PD+P C′最小,则D 、P 、C′三点共线 设直线C′D 的解析式为y=kx+n , 则43k n n +=⎧⎨=-⎩,解得73k n =⎧⎨=⎩∴73y x =-.当y=0时,073x =-,∴37x = ∴点P 的坐标为(37,0) (4)∵点A 关于抛物线的对称轴的对称点为B ,则QB=QA , 要使QB QC-最大,即QA QC-最大,则A 、C 、Q 三点共线如图,连接AC 交抛物线的对称轴于点Q , 解法一:设直线AC 的解析式为y=kx+n ,则03k n n -+=⎧⎨=⎩,解得33k n =⎧⎨=⎩∴33y x =+.当x=1时,333136x +=⨯+=, ∴点Q 的坐标为(1,6)解法二:设抛物线的对称轴交x 轴于点F . ∵QF ∥y 轴,∴∠ACO =∠AQF ,∠AOC =∠AFQ ∴△AOC ∽△AFQ∴AO CO AF QF =, ∴1311QF =+, ∴6QF =∴点Q 的坐标为(1,6)∴QB QCQA QCAC -=-===即当点Q 的坐标为(1,6)时,QB QC -QF- - C ′P【作业1】(2011)如图,抛物线y=21x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.解:(1)∵点A (﹣1,0)在抛物线y=21x 2+bx ﹣2上, ∴21×(﹣1 )2+b×(﹣1)﹣2=0,解得b=-23 ∴抛物线的解析式为y=21x 2﹣23x ﹣2.y=21x 2﹣23x ﹣2=21( x 2﹣3x ﹣4 )=21(x ﹣23)2﹣825, ∴顶点D 的坐标为 (23,﹣825).(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2. 当y=0时,21x 2﹣23x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0) ∴OA=1,OB=4,AB=5.∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20, ∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2,连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小. 解法一:设抛物线的对称轴交x 轴于点E . ∵ED∥y 轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴EDC O EM OM '=,∴825223=-m m , ∴m=4124解法二:设直线C′D 的解析式为y=kx+n ,则⎪⎩⎪⎨⎧-=+=825232n k n ,解得n=2,1241-=k ∴21241+-=x y . ∴当y=0时,-4124,4124,021241=∴==+m x x E【作业2】2011)如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD =90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B( -1,2),D( 3,0),连接DM,并把线段DM沿DA方向平移到ON,若抛物线y=ax2+bx+c经过点D 、M 、N . (1)求抛物线的解析式.(2)抛物线上是否存在点P .使得PA =PC .若存在,求出点P 的坐标;若不存在.请说明理由. (3)设抛物线与x 轴的另—个交点为E .点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QE QC -最大?并求出最大值. 解:(1)由题意可得M (0,2),N (-3,2),∴ 2,293,093.c a b c a b c =⎧⎪=-+⎨⎪=++⎩ 解得:1,91,32.a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩∴211293y x x =--+(2)∵PA =PC , ∴P 为AC 的垂直平分线上,依题意,AC 的垂直平分线经过(-1,2)、(1,0),其所在的直线为y =-x +1.根据题意可列方程组21,112.93y x y x x =-+⎧⎪⎨=--+⎪⎩解得:1132x y ⎧=+⎪⎨=--⎪⎩2232x y ⎧=-⎪⎨=-+⎪⎩∴P 1(32+--)、P 2(32--+).(3)如图所示,延长DC 交抛物线的对称轴于点Q ,根据题意可知此时点Q 满足条件. 由题意可知C (1,2),D (3,0),可求得CD 所在的直线的解析式为3y x =-+.抛物线211293y x x =--+的对称轴为直线 1.5x =-. ∵点Q 在直线x =-1.5上,又在直线3y x =-+上.∴Q (-1 .5,4.5),QE =QD . ∴QE QC QD QC CD -=-===.即当点Q 的坐标为(-1.5,4.5)时,QE QC -有最大值, 最大值为。
2020二次函数的最值问题(典型中考题)(含答案)
2020二次函数的最值问题(典型中考题)(含答案)一、选择题1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( )A. a<bB.a=b C a>b D不能确定答案:C2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为()A、- 74B、3或-3C、2或-3D2或-3或-74答案:C∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m.当x=-2时,由y=-(x-m)2+m2+1解得m= - 74,2765y x416⎛⎫=-++⎪⎝⎭此时,它在-2≤x≤l的最大值是6516,与题意不符.当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符.当x= m时,由4=-(x-m)2+m2+1解得m=3m=-3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符.综上所述,实数m的值为2或-3.故选C.3.已知0≤x≤12,那么函数y=-2x2+8x-6的最大值是()A -10.5 B.2 C . -2.5 D. -6答案:C解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤12,∴当x=12时,y取最大值,y最大=-2(12-2)2+2=-2.5.故选:C.4、已知关于x的函数.下列结论:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。
真确的个数是()A,1个B、2个 C 3个D、4个答案:B分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,b5-=2a4,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最=224ac-b24k+1=-4a8k,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.二、填空题:1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是答案:122、已知直角三角形两直角边的和等于8,两直角边各为 时,这个直角三角形的面积最大,最大面积是答案:4、4,8解:设直角三角形得一直角边为x ,则,另一边长为8-x ;设其面积为S.∴S= x ·(8-x)(0<x<8). 配方得 S=- (x 2-8x)=- (x-4)2+8 ∴当x=4时,S 最大=8.及两直角边长都为4时,此直角三角形的面积最大,最大面积为8.3、函数2y=24x-x (0x 4)-≤≤的最大值与最小值分别是答案:2,024x-x 最小值为0,当4x-x 224x-x 最大,即x=224x-x 最大为4,所以,当x=0时,y 最大值为2,当x=2时,y 取最小值为04、已知二次函数y=x 2+2x+a (0≤x ≤1)的最大值是3,那么a 的值为 答案:0解:二次函数y=x 2+2x+a 对称轴为x=-1,当0≤x ≤1时y 随x 的增大而增大,当x=1时最大值为3,代入y=x 2+2x+a 得a=0.5、如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,则这样线段的最小长度 .三、解答题:1某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本的百分率为x⑴ 请用含x 的代数式表示第二季度每件产品的成本;⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值⑶ 该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)解:(1)()x -150 ⑵()5.9501502-=-x 解得1.0=x (3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x而()()2150160x x y ---==1040502++-x x=()184.0502+--x ∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x , ∴当2.0=x 时,y 最大值=18(元)说明:当自变量取值范围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值范围为某一区间时,二次函数的最值应注意下列两种情形:若抛物线顶点在该区间内,顶点的纵坐标就是函数的最值。
二次函数与最值问题练习题(含答案)
二次函数与最值 题集一、实际问题中的最值(1)(2)1.如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为米的篱笆围成,若墙长为米,设这个苗圃垂直于墙的一边长为米.苗圃园若苗圃园的面积为平方米,求的值.若平行于墙的一边长不小于米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.【答案】(1)(2).有,当时,取得最大值,最大值为.当时,取得最小值,最小值为.【解析】(1)(2)由题意,得:平行于墙的一边长为,根据题意,得:,解得:或,∵,∴.∴.∵矩形的面积,且,即,∴当时,取得最大值,最大值为.当时,取得最小值,最小值为.【标注】【知识点】二次函数的几何问题2.(1)(2)某校在基地参加社会实践活动中,基地计划新建一个矩形的生物园地,一边靠旧墙(墙的最大可用长度为米),另外三边用总长米的不锈钢栅栏围成,与墙平行的一边留一个宽为米的出入口.如图所示,设米.若这个生物园地的面积为平方米,求出与之间的函数关系式,并写出自变量的取值范围.当为多少米时,这个生物园地的面积最大,并求出这个最大面积.【答案】(1)(2).为米时面积最大,最大为平方米.【解析】(1)(2)由题意可知∴∴.当时有最大值平方米.故当为米时,生物园地面积最大,最大面积为平方米.【标注】【知识点】二次函数的几何问题3.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为,设两饲养室合计长,总占地面积为.(1)(2)求关于的函数表达式和自变量的取值范围. 若要使两间饲养室占地总面积达到,则各道墙的长度为多少?占地总面积有可能达到吗?【答案】(1)(2)总占地面积为,.占地总面积达到时,道墙长分别为米、米或米、米;占地面积不可能达到平方米.【解析】(1)(2)∵围墙的总长为米,间饲养室合计长米,∴饲养室的宽米,∴总占地面积为,.当两间饲养室占地总面积达到平方米时,则,解得:或.答:各道墙长分别为米、米或米、米.当占地面积达到平方米时,则,方程的,所以此方程无解,所以占地面积不可能达到平方米.【标注】【知识点】根据条件列二次函数关系式(1)(2)4.某果园有颗橙子树,平均每颗树结个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结个橙子,假设果园多种了棵橙子树.直接写出平均每棵树结的橙子个数(个)与之间的关系.果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)(2)().果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【解析】(1)(2)平均每棵树结的橙子个数(个)与之间的关系为:().设果园多种棵橙子树时,可使橙子的总产量为,则,则果园多种棵橙子树时,可使橙子的总产量最大,最大为个.【标注】【知识点】二次函数的利润问题(1)(2)(3)5.已知某商品每件的成本为元,第天的售价和销量分别为元/件和件,设第天该商品的销售利润为元,请根据所给图象解决下列问题:求出与的函数关系式.问销售该商品第几天时,当天销售利润最大?最大利润是多少.该商品在销售过程中,共有多少天当天的销售利润不低于元.【答案】(1)(2)(3)当时,,当时,.该商品第天时,当天销售利润最大,最大利润是元.共天每天销售利润不低于元.【解析】(1)当时,设与的函数关系式为,∵当时,,当,,∴,解得:∴,∴当时,;当时,.(2)(3),∴当时取得最大值元;∵;∴当时,随的增大而减小,当时,,综上所述,该商品第天时,当天销售利润最大,最大利润是元.当时,,解得,因此利润不低于元的天数是,共天;当时,,解得,因此利润不低于元的天数是,共天,所以该商品在销售过程中,共天每天销售利润不低于元.【标注】【知识点】函数图象与实际问题最大(1)(2)(3)6.某商场将进价为元的冰箱以元售出,平均每天能售出台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低元,平均每天就能多售出台.假设每台冰箱降价元,商场每天销售这种冰箱的利润是元,请写出与之间的函数表达式.(不要求写自变量的取值范围)商场要想在这种冰箱销售中每天盈利元,同时又要使百姓得到实惠,每台冰箱应降价多少元?每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?【答案】(1)(2)(3).每台冰箱应降价元.每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【解析】(1)(2)根据题意,得,即.由题意,得.整理,得.解这个方程,得,.(3)要使百姓得到实惠,取.所以,每台冰箱应降价元.对于,当时,.所以,每台冰箱的售价降价元时,商场的利润最大,最大利润是元.【标注】【知识点】二次函数的利润问题最大值(1)(2)7.在新型城镇化型过程中,为推进节能减排,发展低碳经济,我市某公司以万元购得某项节能产品的生产技术后,再投入万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件元.经过市场调研发现,该产品的销售单价定在元到元之间较为合理,并且该产品的年销售量(万件)与销售单价(元)之间的函数关系式为:(年获利年销售收入生产成本投资成本)当销售单价定为元时,该产品的年销售量为多少万件?求该公司第一年的年获利(万元)与销售单价(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?【答案】(1)(2)投资第一年,公司亏损,最少亏损万【解析】(1)(2)把代入,得(万件)当销售单价定为元时,该产品的年销售量为万件.①当时,故当时,最大为,即公司最少亏万.②当时,故当时,最大为,即公司最少亏万.综上,投资第一年,公司亏损,最少亏损万.【标注】【知识点】二次函数的利润问题二、几何问题中的最值(1)(2)1.已知,如图,抛物线与轴交于点,与轴交于,两点,点在点左侧.点的坐标为,.xyOxyO备用图求抛物线的解析式;若点是线段下方抛物线上的动点,求四边形面积的最大值.【答案】(1)(2)..【解析】(1)(2)∵∴∵∴∵过、∴解这个方程组,得∴抛物线的解析式为:.过点作轴分别交线段和轴于点、yOx在中,令得方程解这个方程,得,∴设直线的解析式为∴解这个方程组,得∴的解析式为:∵==设,当时,有最大值.此时四边形面积有最大值.【标注】【知识点】二次函数与面积四边形(1)(2)2.如图,二次函数的图象与轴交于点,,与轴交于点.xyO求二次函数表达式.若点是第一象限内的抛物线上的一个动点,且点的横坐标为,用含有的代数式表示的面积,并求出当为何值时,的面积最大,最大面积是多少?【答案】(1)(2).当时,的面积最大,最大面积是.【解析】(1)∵二次函数的图象与轴交于点,,∴二次函数的解析式为.(2)如图,连接,易得的解析式为.设点的坐标为,则点的坐标为,∴,,,当时,的面积最大,最大面积是.yO【标注】【知识点】二次函数与面积(1)(2)3.如图,已知经过原点的抛物线与轴的另一交点为,现将它向右平移()个单位,所得抛物线与轴交于、两点,与原抛物线交于点.求点的坐标,并判断存在时它的形状(不要求说理).在轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含的式子表示);若不存在,请说明理由.(3)设的面积为,求关于的关系式.【答案】(1)(2)(3)点的坐标为,是等腰三角形.存在,,..【解析】(1)(2)(3)令,得,.∴点的坐标为.是等腰三角形.存在.,.如图,当时,作轴于,设,∵,,∴.∴.∴.把代入,得.∵,∴.如图,当时,作轴于,设∵,,∴.∴.∴.把代入,得.∵,∴.综上可得:.【标注】【知识点】二次函数与面积(1)(2)4.已知抛物线与轴交于,两点,交轴于点,已知抛物线的对称轴为,点,点,为抛物线的顶点.求抛物线的解析式.在轴下方且在抛物线上有一动点,求四边形的面积最大值.【答案】(1)(2).【解析】(1)由、关于对称轴对称,对称轴为,点,得.将、、点的坐标代入函数解析式,得,解得.(2)故抛物线的解析式为.如图,过作轴于点,交于点.设,点坐标为,.,当时,.【标注】【知识点】二次函数与面积四边形最大(1)(2)(3)5.如图,二次函数(为非负整数)与轴交于、两点,与轴交于点.求抛物线的解析式.在直线上找一点,使的周长最小,并求出点的坐标.点在抛物线上,且在第二象限内,设点的横坐标为,问为何值时,四边形的面积最大?并求出这个最大面积.【答案】(1)(2)(3)时,四边形的面积最大,这个最大面积是.【解析】(1)(2)(3)由题意得,,解得:,∵是非负整数,∴或,当时,二次函数的解析式为,当时,二次函数的解析式为,∵图象与轴交于点和点,点、分别在原点的左、右两边,∴当时,二次函数的解析式为不符合题意,∴二次函数的解析式为.如图,作点关于的对称点连接交对称轴于点,.由得点坐标为.当时,.解得,,∴,.设的解析式为,图象过点,,得,解得,∴的解析式为,当时,,点坐标为 时,的周长最小.如图,设点坐标为(),作轴于点,由图可知:四边形梯形.因此时,四边形的面积最大,这个最大面积是.【标注】【知识点】二次函数与面积(1)(2)6.如图,已知抛物线经过,两点.x24y–22O 求该抛物线的解析式.在直线上方的该抛物线上是否存在一点,使得的面积最大?若存在,求出点的坐标及面积的最大值;若不存在,请说明理由.【答案】(1)(2).存在,,面积的最大值为.【解析】(1)(2)把,代入抛物线的解析式得:,解得:,则抛物线解析式为.存在,理由如下:设的横坐标为,则点的纵坐标为,过作轴的平行线交于,连接,,如图所示,x24y–22O 由题意可求得直线的解析式为,∴点的坐标为,∴,∴的面积,当时,,∴此时,面积的最大值为.【标注】【知识点】二次函数与面积最大(1)(2)(3)7.已知二次函数的图象和轴交于点、,与轴交于点,直线上方的抛物线上一动点,抛物线的顶点是点.图求直线的解析式.求面积的最大值及点的坐标.当的面积最大时,在直线上有一动点,使得的周长最小,求周长最小时点的坐标.图【答案】(1)(2)(3).,..【解析】(1)(2)(3)过抛物线上动点作轴的垂线,垂足是,线段交线段于,设,,,∵,∴当时,,此时.关于直线的对称点连接,∵,,∴,∴联立,解得,最大∴.【标注】【知识点】二次函数与动点问题(1)(2)(3)8.如图,抛物线与轴的两个交点分别为、,与轴交于点,顶点为,为线段的中点,的垂直平分线与轴、轴分别交于、.xyO 求抛物线的函数表达式,并写出顶点的坐标.在直线上是否存在一点,使周长最小,若存在,请求出最小周长和点的坐标;若不存在,请说明理由.若点在轴上方的抛物线上运动,当运动到什么位置时,面积最大?并求出最大面积.【答案】(1)(2)(3)抛物线的解析式为,顶点的坐标为.存在;的周长最小值为,.时,的面积最大,最大面积为.【解析】(1)(2)由题意,得,解得,,所以抛物线的解析式为,顶点的坐标为.设抛物线的对称轴与轴交于点,(3)∵垂直平分,∴关于直线的对称点为,连结交于于一点,xyO∴这一点为所求点,使最小,即最小为.而,∴的周长最小值为.设直线的解析式为,则,解得,,所以直线的解析式为.由于,,,得,所以,,.同理可求得直线的解析式为,联立直线与的方程,解得使的周长最小的点.设,.过作轴的垂线交于,xyO则,所以,即当时,的面积最大,最大面积为,此时.【标注】【知识点】二次函数的几何问题(1)(2)(3)9.如图,已知抛物线与一直线相交于、两点,与轴相交于点,其顶点为.求抛物线及直线的函数关系式.若是抛物线上位于直线上方的一个动点,求的面积的最大值及此时点的坐标.在对称轴上是否存在一点,使的周长最小.若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.备用图【答案】(1)(2);.;.(3)在对称轴上存在一点,使的周长最小,周长的最小值为.【解析】(1)(2)(3)将,代入,得:,解得:,∴抛物线的函数关系式为;设直线的函数关系式为,将,代入,得:,解得,∴直线的函数关系式为.过点作轴交轴于点,交直线于点,过点作轴交轴于点,如图所示.图设点的坐标为,则点的坐标为,点的坐标为,∴,,,∵点的坐标为,∴点的坐标为,∴,∴,∵,∴当时,的面积取最大值,最大值为,此时点的坐标为.当时,,∴点的坐标为,∵,∴抛物线的对称轴为直线,∵点的坐标为,∴点,关于抛物线的对称轴对称,令直线与抛物线的对称轴的交点为点,如图所示.图∵点,关于抛物线的对称轴对称,∴,∴,∴此时周长取最小值,当时,,∴此时点的坐标为,∵点的坐标为,点的坐标为,点的坐标为,∴,,∴,∴在对称轴上存在一点,使的周长最小,周长的最小值为.10.如图,已知抛物线经过、两点,与轴交于点.(1)(2)(3)求抛物线的解析式.点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值.点为抛物线上一点,若,求出此时点的坐标.【答案】(1)(2)(3).点为,周长的最小值为.点的坐标为或或.【解析】(1)(2)(3)根据题意,将、代入抛物线,可得:,解得:,所以,抛物线为:.点为,周长的最小值为.∵抛物线为:,∴抛物线的对称轴为直线,点、关于直线对称,当的周长最小时,则需要最小,根据利用轴对称且最小值的方法,可知点是与对称轴的交点,令,则,所以,点坐标为,设为直线,把,代入直线解析式,可得:,解得:,所以,直线为,将代入,可得:,∴点为,此时,,,∴周长的最小值为:.∵,,∴,∵,,∴点的纵坐标为或,令,解得:,,∴点的坐标为:或,令,解得:,∴点的坐标为:.综上所述:点的坐标为:或或.【标注】【知识点】二次函数与轴对称问题。
二次函数的最值问题(典型例题)
二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数232y x bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333y x =+交BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 222y x =--;(2) (2);(3)8练习一答案 【例题精讲】答案:a = .【拓展练习】答案:(1) k ≤2;(2)①k 值为-1;②y 的最大值为32,最小值为-3. 详解:(1)当k =1时,函数为一次函数y = -2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.综上所述,k 的取值范围是k ≤2.(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.由题意得(k -1)x 12+(k +2)=2kx 1(*),将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。
二次函数中的最值问题(解析版)
二次函数中的最值问题1.(2023•巴中模拟)如图1,已知抛物线y =ax 2+bx +1经过点A (-1,0)和点B ,且与y 轴交于点C ;直线y =-12x +m 经过B 点和点C .(1)求直线和抛物线的解析式.(2)若点P 为直线BC 上方的抛物线上一点,过点P 作PE ⊥BC 于点E ,作PF ⎳y 轴,交直线BC 于点F ,当ΔPEF 的周长最大时,求点P 的坐标.(3)在第(2)问的条件下,直线CP 上有一动点Q ,连接BQ ,求BQ +55CQ 的最小值.【解答】解:(1)∵抛物线y =ax 2+bx +1与y 轴交于点C ,∴C (0,1),∵直线y =-12x +m 经过点B 和点C ,∴m =1,∴直线的解析式为y =-12x +1,令y =0,则0=-12x +1,解得x =2,∴B (2,0),∵抛物线y =ax 2+bx +1经过点A (-1,0)和点B ,∴a -b +1=04a +2b +1=0 ,解得a =-12b =12,∴抛物线的解析式为y =-12x 2+12x +1;(2)如图1,设点P p ,-12p 2+12p +1 ,则F p ,-12p +1 ,∴PF =-12p 2+12p +1--12p +1 =-12p 2+p =-12(p -1)2+12,∵PE ⊥BC ,PF ⎳y 轴,∴∠PEF=∠BOC=90°,∠PFE=∠BCO,∴ΔPFE∽ΔBCO,∴PE BO =EFOC=PFBC,∴PE2=EF1=PF12+22,∴PE=255PF,EF=55PF,∴ΔPEF的周长为:PF+PE+EF=PF+255PF+55PF=5+355PF=5+355-12(p-1)2+12=-5+3510(p-1)2+5+3510,∴当p=1时,ΔPEF的周长有最大值,此时,点P的坐标为(1,1);(3)如图2,作点B关于CP的对称点M,作MN⊥BC于N,交CP于Q,∴MQ=BQ,∵点P的坐标为(1,1),C(0,1),B(2,0),∴CP⎳x轴,M(2,2),∴∠QCN=∠CBO,∵MN⊥BC,∴∠QNC=∠COB∠=90°,∴ΔQNC∽ΔCOB,∴QNCQ=COBC=112+22=15=55,∴QN=55CQ,∴BQ+55CQ的最小值为MQ+QN,即MN的值,∵CP⎳x轴,BM⊥CP,∴BM⎳y轴,∴∠MBN=∠BCO,∵∠MNB=∠BOC=90°,∴MNBO =BMCB,∴MN2=212+22,∴MN=455,∴BQ+55CQ的最小值为455.2.(2023•海宁市校级一模)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B 两点,与y轴交于点C,其中点A的坐标为(-1,0),点C的坐标为(0,-3).(1)求抛物线的解析式;(2)如图1,E为ΔABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,-2),求ΔDEF 周长的最小值.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(-1,0),点C(0,-3).∴1-b+c=0 c=-3,∴b=-2 c=-3 ,∴抛物线的解析式为y=x2-2x-3;(2)如图,设D1为D关于直线AB的对称点,D2为D关于直线BC的对称点,连接D1E,D2F,D1 D2.由对称性可知DE=D1E,DF=D2F,ΔDEF的周长=D1E+EF+D2F,∴当D1,E.F.D2共线时,ΔDEF的周长最小,最小值为D1D2的长,令y=0,则x2-2x-3=0,解得x=-1或3,∴B(3,0),∴OB=OC=3,∴ΔBOC是等腰直角三角形,∵BC垂直平分DD2,且D(0,-2),∴D2(1,-3),∵D,D1关于x轴对称,∴D1(0,2),∴D1D2=D2C2+D1C2=52+12=26,∴ΔDEF的周长的最小值为26.3.(2023•庐阳区校级一模)已知抛物线y=x2-(m+1)x+m2-2.(1)当m=1时,求此抛物线的对称轴和顶点坐标;(2)若该抛物线y=x2-(m+1)x+m2-2与直线y1=x+2m+1的一个交点P在y轴正半轴上.①求此抛物线的解析式;②当n≤x≤n+1时,求y的最小值(用含n的式子表示).【解答】解:(1)当m=1时,y=x2-2x-1=(x-1)2-2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,-2);(2)①将x=0代入y1=x+2m+1得y1=2m+1,∴点P坐标为(0,2m+1),将(0,2m+1)代入y=x2-(m+1)x+m2-2得2m+1=m2-2,解得m=3或m=-1,当m=-1时,2m+1=-1,点P在y轴负半轴,不符合题意,当m=3时,2m+1=7,点P在y轴正半轴,符合题意.∴抛物线的解析式为y=x2-4x+7.②∵y=x2-4x+7=(x-2)2+3,∴抛物线开口向上,顶点坐标为(2,3),将x=n代入y=x2-4x+7得y=n2-4n+7,将x=n+1代入y=x2-4x+7得y=n2-2n+4,当n+1<2时,n<1,y=n2-2n+4为函数最小值;当n>2时,y=n2-4n+7为函数最小值;当1≤n≤2时,y=3为函数最小值.4.(2023•连云港一模)如图,已知抛物线y=12x2+bx+c经过点A(-6,0),B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一动点.①当点P在直线AC下方时,过点P作PE⎳x轴,交直线AC于点E,作PF⎳y轴.交直线AC于点F,求EF的最大值;②若∠PCB=3∠OCB,求点P的横坐标.【解答】解:(1)设抛物线的表达式为:y=a(x-x1)(x-x2),则y=12(x+6)(x-2)=12x2+2x-6①;(2)由抛物线的表达式知,点C (0,-6),由A 、C 的表达式知,直线AC 的表达式为:y =-x -6,设点F (x ,-x +6),点P x ,12x 2+2x -6 ,则PF =(-x +6)-12x 2+2x -6 =-12(x -3)2+92≤92,即PF 的最大值为92,由直线AC 的表达式知,其和x 轴负半轴的夹角为45°,即∠OAC =45°=∠PEF ,则PE =PF ,则EF =2PF ,则EF 的最大值为922;(3)作点B 关于y 轴的对称点N ,则∠NCB =2∠OCB ,∵∠PCB =3∠OCB ,∴∠PCO =∠NCB ,则ON =OB =2,BN =CB =62+22=40,过点B 作BM ⊥NC 于点M ,则S ΔCBN =12×BN ×CO =12×CN ×BM ,即4×6=40×BM ,则BM =2440,则sin ∠NCB =BM CB =244040=35,则tan ∠NCB =34=tan ∠PCO ,故直线PC 的表达式为:y =-34x -6②,联立①②得:12x 2+2x -6=-34x -6,解得:x =-112,即点P 的横坐标为-112.5.(2023•东港区校级一模)如图1.抛物线y =ax 2+2x +c ,交x 轴于A 、B 两点,交y 轴于点C .当y ≥0时-1≤x ≤3.(1)求抛物线的表达式;(2)若点D 是抛物线上第一象限的点.①如图1连接AD ,交线段BC 于点G ,若DG AG=12时,求D 点的坐标;②如图2,在①条件下,当点D 靠近抛物线对称轴时,过点D 作DP ⊥x 轴,点H 是DP 上一点,连接AH ,求AH +1010DH 的最小值;(3)如图3,点D 是抛物线上第一象限的点,F 为抛物线顶点,直线EF 垂直于x 轴于点E ,直线AD,BD分别与抛物线对称轴交于M、N两点试问,EM+EN是否为定值?如果是,请直接写出这个定值:如果不是,请说明理由.【解答】解:(1)当y≥0时,-1≤x≤3,则抛物线和x轴的交点坐标为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),即-2a=2,则a=-1,则抛物线的表达式为:y=-x2+2x+3;(2)①如图1,分别过点A、D作y轴的平行线分别交B、C于点R、T,由点C、B的坐标得,直线CB的表达式为:y=-x+3,当x=-1时,y=4,即AR=4,∵AP⎳y轴⎳DT,∴ΔRGA∽ΔTGD,∴DG AG =DTAR=12=DTAR=DT4,则DT=2,设点D的坐标为:(x,-x2+2x+3),点T(x,-x+3),则DT=(-x2+2x+3)-(-x+3)=2,解得:x=1或2,即点D的坐标为:(1,4)或(2,3);②如图2,∵点D靠近抛物线对称轴,则点D(2,3),在RtΔPBD中,PB=3-2=1,PD=3,则sin∠PDB=132+12=1010,则sin∠PBD=310,过点H作HN⊥BD于点N,则HN=DH sin∠PD=10DH 10,故当A、H、N共线时,AH+1010DH=AH+NH最小,则AN=AB sin∠PBD=4×310=6105;(3)设点D(m,-m2+2m+3),由A、D的坐标得,直线AD的表达式为:y=-(m-3)(x+1),当x=1时,y=-2(m-3)=-2m+6=EM;由点B、D的坐标得,直线BD的表达式为:y=-(m+1)(x-3),当x=1时,y=2m+2=EN,则EM+EN=8为定值.6.(2023•灞桥区校级模拟)已知抛物线L:y=ax2+bx+c(a≠0)经过点A(1,0)、B(-3,0)、C(0, 3).(1)求抛物线L的表达式;(2)将抛物线L绕原点旋转180度后,得到抛物线L ,点N是抛物线L 第一象限的点,其横坐标为4,点M是抛物线L 的顶点,点D是抛物线L 与y轴的交点,过点D作直线l⎳x轴,动点P(m,-3)在直线上,点Q(m,0)在x轴上,连接PM,PQ,NQ,请问当m为何值时,PM+PQ+QN的和有最小值,并求出这个最小值.【解答】解:(1)∵抛物线L:y=ax2+bx+c(a≠0)经过点A(1,0)、B(-3,0)、C(0,3),∴a+b+c=09a-3b+c=0 c=3,解得:a=-1 b=-2 c=3,∴抛物线L的表达式为y=-x2-2x+3;(2)∵y=-x2-2x+3=-(x+1)2+4,∴抛物线L的顶点坐标为(-1,4),∵将抛物线L绕原点旋转180度后,得到抛物线L′:y=(x -1)2-4=x2-2x-3,∴抛物线L 的顶点M(1,-4),当x=0时,y=-3,∴D(0,-3),当x=4时,y=16-8-3=5,∴N(4,5),如图,过点N作NH⊥x轴于点H,则NH=5,OH=4,∴ON=NH2+OH2=52+42=41,则O′N′=ON=41,∵P(m,-3),Q(m,0),∴PQ=3,∴PM+PQ+ON=PM+3+41,当且仅当PM最小时,PM+PQ+ON的和最小,∵PM⊥直线l时,PM的最小值为1,此时m=1,∴PM+PQ+ON=PM+3+41=4+41,∴当m=1时,PM+PQ+ON的和最小,最小值为4+41.7.(2023•香洲区校级一模)如图,在平面直角坐标系中,抛物线y=ax2+bx-5与x轴交于A,B 两点,与y轴交于C点,连接AC,D是直线AC下方抛物线上一动点,连接DB,分别交AC和对称轴于点E、F.其中a,b是方程组2a-b=-2a+2b=9的解.(1)求抛物线的解析式;(2)求DEBE的最大值;(3)连接CF,BC.是否存在点D,使得ΔBCF为直角三角形,若存在,求出点P的坐标,若不存在,请说明理由.【解答】解:(1)解方程组2a-b=-2a+2b=9得:a=1b=4,故抛物线的表达式为:y=x2+4x-5;(2)对于y=x2+4x-5,当x=0时,y=-5,即点C(0,-5),令y=x2+4x-5=0,则x=-5或1,即点A、B的坐标分别为:(-5,0)、(1,0),由点A、C的坐标得,直线AC的表达式为:y=-x-5,分别过点B、D作y轴的平行线分别交AC于点G、H,当x=1时,y=-x-5=-6,即BH=6,设点G(x,-x-1),则点D(x,x2+4x-5),则GD=(-x-1)-(x2+4x-5)=-x2-5x,∵DG⎳y轴⎳BH,∴ΔGED∽ΔHEB,∴DE BE =DGBH=16DG=16(-x2-5x)=-16(x2+5x),∵-16<0,故DEBE有最大值,当x=-52时,DEBE的最大值为:2524;(3)存在,理由:由抛物线的表达式知,其对称轴为x=-2,故设点F(-2,m),由点B、C、F的坐标得:BC2=1+25=26,BF2=(1+2)2+m2=m2+9,CF2=(m+5)2+4,当BC是斜边时,则26=m2+9+(m+5)2+4,解得:m=-2或-3,即点F的坐标为:(-2,-2)或(-2,-3);当BF是斜边时,则m2+9=(m+5)2+4+26,解得:m=-4.6,即点F(-2,-4.6);当CF为斜边时,则26+m2+9=(m+5)2+4,解得:m=0.6,即点F(-2,0.6),综上,点F的坐标为:(-2,-2)或(-2,-3)或(-2,-4.6)或(-2,0.6).8.(2023•遵义模拟)如图,二次函数y=ax2-2ax+c的图象与x轴交于A、B(3,0)两点,与y轴相交于点C(0,-3).(1)求二次函数的解析式;(2)若点P是对称轴上一动点,当|PB-PC|有最大值时,求点P的坐标.【解答】解:(1)∵二次函数y=ax2-2ax+c的图象经过B(3,0)和C(0,-3),∴9a-6a+c=0 c=-3,解得a=1c=-3 ,∴二次函数的解析式为y=x2-2x-3;(2)令y=0,则x2-2x-3=0,解得x1=-1,x2=3,∴A(-1,0),B(3,0),∴对称轴为x=-1+32=1,∵点P在x=1上,A,B关于直线x=1对称,∴PA=PB,∴求|PB-PC|有最大值就是求|PA-PC|的最大值,∵PA-PC≤AC,即当A,C,P在同一条直线上时取等号,连接AC并延长交对称轴x=1于点P,设直线AC的解析式为y=kx+b,把A(-1,0),C(0,-3)代入解析式得:-k+b=0 b=-3,解得k=-3 b=-3 ,∴直线AC的解析式为y=-3x-3,∴当x=1时,y=-3-3=-6,∴P(1,-6).9.(2023•浠水县一模)如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(不与点C、B重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把ΔBDF的面积分成两部分,若SΔBDE:SΔBEF=3:2,请求出点D的坐标.【解答】解:(1)将A(-1,0),B(5,0)代入y=-x2+bx+c,得:-1-b+c=0-25+5b+c=0,解得:b=4 c=5,∴抛物线的解析式为y=-x2+4x+5;(2)∵抛物线的对称轴为直线x=-42×(-1)=2,点B是点A关于函数对称轴的对称点,∴PA+PC=PB+PC,∴当点P在BC上时,PA+PC的值最小,连接BC交抛物线对称轴于点P,则点P为所求点,令x=0,则y=5,∴点C的坐标为(0,5),∵B(5,0),设直线BC的解析式为y=kx+5,∴5k+5=0,解得:k=-1,∴直线BC的解析式为y=-x+5,当x=2时,y=-x+5=3,∴点P(2,3);(3)如图,设点D(m,-m2+4m+5),则点E(m,-m+5),∵SΔBDE:SΔBEF=3:2,∴DE DF =35,即-x2+4x+5-(-x+5)-x2+4x+5=35,解得:x=32或5(舍去),经检验,x=32是原方程的解,∴点D32,35 4.10.(2023•济阳区一模)如图1,在平面直角坐标系中,抛物线y=a(x-3)2+4过原点,与x轴的正半轴交于点A,已知B点为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求a的值,并直接写出A、B两点的坐标;(2)若P点是该抛物线对称轴上一点,且∠BOP=45°,求点P的坐标;(3)如图2,若C点为线段BD上一点,求3BC+5AC的最小值.【解答】解:(1)将点O的坐标代入抛物线表达式得:0=a(0-3)2+4,解得:a=-9,则抛物线的表达式为:y=-49(x-3)2+4,则点B(3,4),由抛物线的对称性知,点A(6,0);(2)过点P作PH⊥OB于点H,在RtΔOBD中,由点B的坐标得,OB=5,则tan∠OBD=ODBD=34=tanα,则sinα=35,设PH=3x,则BH=4x,PB=5x,∵∠BOP=45°,则PH=OH=3x,则OB=5=BH+OH=3x+4x,则x=5 7,则PD=BD-BP=4-5x=3 7,即点P的坐标为:3,3 7;(3)由(2)知,sin∠OBD=sinα=35,如图2,过点C作CN⊥OB于点N,则CN=BC sinα=35 BC,则AC+35BC=AC+CN,即当A、C、N共线时,AC+35BC最小,则3BC+5AC=5AC+35 BC最小,∵SΔOAB=12×OA⋅BD=12×OB×AN,即6×4=5×AN,解得:AN=5,故3BC+5AC最小值=5AC+35 BC=5AN=24.11.(2023•甘井子区校级模拟)如图抛物线y=ax2+bx-4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线解析式.(2)连接BC,点P为BC下方上一动点,连接BP,CP.当ΔPBC的面积最大时,求点P的坐标和ΔPBC面积的最大值.(3)点N为线段OC上一点,连接AN,求AN+12CN的最小值.【解答】解:(1)∵抛物线y=ax2+bx-4与x轴交于A(-1,0),B(4,0)两点,∴a-b-4=016a+4b-4=0 ,解得:a=1 b=-3,所以抛物线的解析式为:y=x2-3x-4;(2)y=x2-3x-4,当x=0时,y=-4,∴C(0,-4),设直线BC的解析式为:y=kx+m(k≠0),则:m=-44k+m=0,解得:m=-4 k=1,∴直线BC的解析式为:y=x-4,过点P作PD⊥x轴于点D,交BC于点E,设P(t,t2-3t-4),则:E(t,t -4),∴PE=t-4-(t2-3t-4)=-t2+4t,∴SΔBPC=12PE⋅|x B-x C|=12(-t2+4t)×4=2(-t2+4t)=-2(t-2)2+8;∵-2<0,∵点P为BC下方抛物线上一动点,∴0<t<4,∴当t=2时,SΔBPC的面积最大为8,此时P(2,4-6-4),即:P(2,-6);(3)过点C在y轴右侧作直线CF交x轴于点F,使∠OCF=30°,过点N作NM⊥CF于点M,则:MN=12 CN,∴AN+12CN=AN+MN≥AM,∴当A,N,M三点共线时,AN+12CN的值最小,即为AM的长,如图:∵A(-1,0),C(0,-4),∴OA=1,OC=4,∵∠FCO=30°,∴∠AFM=60°,CF=OCcos30°=833,OF=12CF=433,∴AF=OA+OF=1+433,∴AM=AF⋅sin60°=1+433×32=32+2;∴AN+12CN的最小值为32+2.12.(2023•历下区一模)已知抛物线y=ax2+bx+4过A(-1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式和对称轴;(2)如图1,若点P是线段OC上的一动点,连接AP、BP,将ΔABP沿直线BP翻折,得到△A′BP,当点A′落在该抛物线的对称轴上时,求点P的坐标;(3)如图2,点M在直线BC上方的抛物线上,过点M作直线BC的垂线,分别交直线BC、线段AC于点N、点E,过点E作EH⊥x轴,求EH+2EM的最大值.【解答】解:(1)设抛物线的表达式为:y=a(x-x1)(x-x2),则y=a(x+1)(x-4)=a(x2-3x-4),则-4a=4,解得:a=-1,故抛物线的表达式为:y=-x2+3x+4①,其对称轴为:x=3 2;(2)将ΔABP沿直线BP翻折,得到△A′BP,则AB=AB′=5,PA= PA′,由抛物线的对称轴为:x=32知,BH=AH=4-32=52=12A′B,则∠HA′B=30°,则∠A′BH=60°,∴A′H=A′B sin60°=532,则点A′32,532,设点P的坐标为(0,y),点A(-1,0),由PA=PA′得:1+y2=322+y-5322,解得:y=43 3,即点P的坐标为:0,43 3;(3)由B、C的坐标知,BC和x轴负半轴的夹角为45°,∵MN⊥BC,则直线MN和x轴的夹角为45°,设点M的坐标为:(m,-m2+3m+4),则设直线MN的表达式为:y=(x-m)-m2+3m+4=x-m2+2m+4②,联立①②得:-x2+3x+4x-m2+2m+4=0,整理得:(x-1)2=(m-1)2,解得:x=m或x=2-m,即点E的横坐标为:2-m,EH即为点E的纵坐标;∵直线MN和x轴的夹角为45°,则EM=2(x M-x E)=2(m-2+m)=(2m-2)2,则EH+2EM=EH+2(2m-2)=-(2-m)2+3(2-m)+4+2(2m-2)=-m2+5m+2=-(m-2.5)2+334≤334,故EH+2EM有最大值为33 4.13.(2023•莱芜区一模)抛物线y=-12x2+(a-1)x+2a与x轴交于A(b,0),B(4,0)两点,与y轴交于点C(0,c),点P是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a,b,c的值;(2)如图1,连接BC、AP,交点为M,连接PB,若SΔPMBSΔAMB=14,求点P的坐标;(3)如图2,在(2)的条件下,过点P作x轴的垂线交x轴于点E,将线段OE绕点O逆时针旋转得到OE,旋转角为α(0°<α<90°),连接EB,E′C,求E B+34E C的最小值.【解答】解:(1)将B(4,0)代入y=-12x2+(a-1)x+2a,得-8+4(a-1)+2a=0,∴a=2,∴抛物线的解析式为y=-12x2+x+4,令x=0,则y=4,∴c=4,令y=0,则0=-12x2+x+4,∴x1=4,x2=-2,∴A(-2,0),即b=-2;(2)过点P作PD⊥x轴,交BC于点D,过点A作y轴的平行线交BC的延长线于H,设l BC:y=kx+b,将(0,4),(4,0)代入得b=4,k=-1,∴l BC:y=-x+4,设P m,-12m2+m+4,则D(m,-m+4),PD=y P-y D=-12m2+m+4-(-m+1)=-12m2+2m,∵PD⎳HA,∴ΔAMH∽ΔPMD,∴PM MA =PD HA,将x=-2代入y=-x+4,∴HA=6,∵S1S2=12PM⋅h12AM⋅h=PMAM=14,∴S1S2=PDHA=PD6=14,∴PD=32,∴3 2=12m2+2m,∴m1=1(舍),m2=3,∴P3,52;(3)在y轴上取一点F,使得OF=94,连接BF,在BF上取一点E′,使得OE′=OE,∵OE′=3,OF⋅OC=94×4=9,∴OE2=OF⋅OC,∴OE′OF =OC OE′,∵∠COE′=∠FOE,∴ΔFOE ′∽△E ′OC ,∴FE ′CE ′=OE ′OC =34,∴FE ′=34CE ′,∴E ′B +34E ′C =BE ′+E ′F =BF ,此时E B +34E C 最小,最小值为:BF =42+94 2=3374.14.(2023•福安市二模)如图①,y =-14(x +2)(x -t )交x 轴于A 、B 两点,交y 轴的正半轴于C ,S ΔABC =12,D 为抛物线的顶点,E 是线段AB 上异于A ,B 一个动点,F 在BD 上.(1)直接写出t =6,∠DAB =;(2)若∠ADE =∠DEF 时,求S ΔDEF 的最大值;(3)如图②,CE 的延长线交AG 于G ,若tan ∠BAG =12,记S ΔBCE =S 1,S ΔAEG =S 2,求S 1+S 2的最小值.【解答】解:(1)∵y =-14(x +2)(x -t )交x 轴于AB 两点,交y 轴的正半轴于C ,∴A (-2,0),B (t ,0),C 0,12t ,∴AB =t -(-2)=t +2,OC =12t ,∵S ΔABC =12,∴12AB ⋅OC =12,即12(t +2)×12t =12,解得:t 1=6,t 2=-8,∵点C 在y 轴的正半轴上,∴12t >0,∴t >0,∴t =6,∵y =-14(x +2)(x -6)=-14(x -2)2+4,∴抛物线的顶点D (2,4),如图1,过点D 作DH ⊥x 轴于点H ,则DH =4,AH =2-(-2)=4,∴tan ∠DAB =DH AH =44=1,∴∠DAB =45°,故答案为:6,45°;(2)设E (x ,0),且-2<x <6,则AE =x +2,BE =6-x ,如图2,过点D 作DH ⊥AB 于点H ,则DH =4,∵AH =BH =4=DH ,∴ΔADH 、ΔBDH 、ΔABD 都是等腰直角三角形,∴BD =42,∠ABD =45°,∵∠ADE =∠DEF ,∴AD ⎳EF ,∴∠BFE =∠BDA =90°,∴ΔBEF 是等腰直角三角形,∴EF =BF =22BE =22(6-x ),∴DF =BD -BF =42-22(6-x )=22x +2,∴S ΔDEF =12DF ⋅EF =12×22x +2 ×22(6-x )=-14(x -2)2+4,∵-14<0,∴当x =2时,S ΔDEF 取得最大值4;(3)设E (x ,0),且-2<x <6,则AE =x +2,BE =6-x ,∴S 1=12BE ⋅OC =32(6-x ),∵tan ∠CBO =OC OB =36=12,tan ∠BAG =12,∴∠CBO =∠BAG ,∵AG ⎳BC ,∴ΔAEG ∽ΔBEC ,∴S 2S 1=SΔAEG S ΔBEC =AE BE 2=x +26-x 2,∴S 2=x +26-x 2⋅S 1=x +26-x 2×32(6-x )=3(x +2)22(6-x ),∴S 1+S 2=32(6-x )+3(x +2)22(6-x )=-24+3(6-x )+966-x ,∵当a >0,b >0时,a +b ≥2ab ,当且仅当a =b 时,a +b =2ab ,∴3(6-x)+966-x ≥23(6-x)×966-x=242,∴S1+S2=-24+3(6-x)+966-x≥-24+242,∴当且仅当3(6-x)=966-x,即x=6-42时,S1+S2=242-24为最小值.15.(2023•江油市模拟)抛物线y=ax2+114x-6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求二次函数与一次函数的解析式;(2)如图1,连接AC,AP,PC,若ΔAPC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.【解答】解:(1)将B(8,0)代入y=ax2+114x-6,∴64a+22-6=0,∴a=-14,∴y=-14x2+114x-6;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P m,-14m2+114m-6,∴PM=14m2-114m+6,AM=m-3,在RtΔCOA和RtΔAMP中,∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,∴∠OAC=∠APM,∴ΔCOA∽ΔAMP,∴OA OC =PMAM,即OA⋅MA=CO⋅PM,3(m-3)=614m2-114m+6,解得m=3(舍)或m=10,∴P10,-72;(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=-14m2+114m-6-34m-6=-14m2+2m,∵PN⊥x轴,∴PN⎳OC,∴∠PNQ=∠OCB,∴RtΔPQN∽RtΔBOC,∴PN BC =NQOC=PQOB,∵OB=8,OC=6,BC=10,∴QN=35PN,PQ=45PN,由ΔCNE∽ΔCBO,∴CN=54EN=54m,∴CQ+12PQ=CN+NQ+12PQ=CN+PN,∴CQ+12PQ=54m-14m2+2m=-14m2+134m=-14m-1322+16916,当m=132时,CQ+12PQ的最大值是16916.16.(2023•乳山市模拟)抛物线y=-x2+bx+c与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴、x轴、y轴分别交于点G,N,H,设点D的横坐标为m.①当DF+2HF取最大值时,求点F的坐标;②连接EG,若∠GEH=45°,求m的值.【解答】解:(1)由题意得,-1-b +c =0-9+3b +c =0 ,∴b =2c =3 ,∴抛物线的解析式为:y =-x 2+2x +3;(2)如图1,作FM ⊥CH 于M ,∵点C (0,3),B (3,0),∴OC =OB =3,∵∠BOC =90°,∴∠OCB =∠OBC =45°,∵HF ⊥BC ,DE ⊥AB ,∴∠CFH =∠BEF =90°,∴∠CHF =90°-∠OCB =45°,∠EFB =90°-∠OBC =45°,∴CF =FH ,EF =BE =3-m ,∴CH =2FM =2m ,CH =2FH ,∵DF =DE -EF =(-m 2+2m +3)-(3-m )=-m 2+3m ,∴DF +2HF =-m 2+3m +2m =-m 2+5m =-m -52 2+254,∴当m =52时,DF +2HF 取最大值254,∴点F 的横坐标为52,∵过点C (0,3),B (3,0)的直线的解析式为y =-x +3,点F 在直线CB上,∴点F 的纵坐标为12,∴点F 的坐标为52,12;②如图2,作FM ⊥CH 于M ,作HN ⊥抛物线的对称轴:x =1,可得:ΔGHN 是等腰直角三角形,∴GH =2HN =2,∵OM =EF =BE =3-m ,HM =FM =m ,∴OH =HM -OM =2m -3,∴EH 2=OE 2+OH 2=m 2+(2m -3)2=5m 2-12m +9,∵∠CFH =90°,∠BFE =45°,∴∠HFE =45°,∴∠HEG =∠HFE =45°,∵∠EHG =∠FHE ,∴ΔEHG ∽ΔFHE ,∴EH FH =GH EH,∴EH2=GH⋅FH,∵GH=2,FH=2m,∴5m2-12m+9=2m,∴m1=1(舍去),m2=95,∴当∠GEF=45°时,m=95.17.(2023•姑苏区校级模拟)如图(1),二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y 轴交于C点,点B的坐标为(3,0),点C的坐标为(0,-3),直线l经过B,C两点.(1)求二次函数的表达式;(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图象相交于点M,再过点M作y 轴的垂线与该二次函数的图象相交于另一点N,当PM=MN时,求点P的横坐标;(3)如图(2),点C关于x轴的对称点为点D,点P为线段上BC的一个动点,连接AP;点Q为线段AP上一点,且AQ=3PQ,连接DQ,求3AP+4DQ的最小值 810 (直接写出答案).【解答】解:(1)把B(3,0),C(0,-3)代入y=x2+bx+c得:9+3b+c=0c=-3,解得b=-2 c=-3 ,∴二次函数的表达式为y=x2-2x-3;(2)如图:由B(3,0),C(0,-3)得直线BC解析式为y=x-3,∵y=x2-2x-3=(x-1)2-4,∴抛物线对称轴为直线x=1,设P(m,m-3),则M(m,m2-2m-3),N(2-m,m2-2m-3),∴PM=|m2-3m|,MN=|2-2m|,∵PM=MN,∴|m2-3m|=|2-2m|,解得m=2或m=-1或m=5+172或m=5-172;∴点P的横坐标为2或-1或5+172或5-172;(3)过Q作QG⎳BC交x轴于G,作A关于QG的对称点A ,连接A Q,A A,A D,A G,如图:∵C(0,-3),C,D关于x轴对称,∴D(0,3),在y=x2-2x-3中,令y=0得x=-1或x=3,∴A(-1,0),B(3,0),∴AB=4,∵AQ=3PQ,QG⎳BC,∴AG=3BG,∴AG=3,BG=1,∴G(2,0),∴AG=3,∵OB=OC,∴∠OBC=45°,∵A关于QG的对称点为A ,∴AQ=A Q,∴DQ+AQ=DQ+A Q≥A D,∴3AP+4DQ=434AP+DQ=4(AQ+DQ)≥4A D,∵∠QGA=∠CBO=45°,AA ⊥QG,∴∠A AG=45°,∵AG=A G=3,∴∠AA G=45°,∴∠AGA =90°,∴A (2,-3),∴A D=22+(-3-3)2=210,又3AP+4DQ≥4A D,∴3AP+4DQ≥810,∴3AP+4DQ的最小值为810.故答案为:810.18.(2023•宿迁模拟)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴相交于点A,B(A在B的左边),与y轴相交于点C,已知A(1,0)、B(3,0),C(0,3),M是y轴上的动点(M位于点C下方),过点M的直线l垂直于y轴,与抛物线相交于两点P、Q(P在Q的左边),与直线BC交于点N.(1)求抛物线的表达式;(2)如图1,四边形PMGH是正方形,连接CP,ΔPNC的面积为S1,正方形PMGH的面积为S2,求S1S2的取值范围;(3)如图2,以点O为圆心,OA为半径作⊙O.①动点F在⊙O上,连接BF、CF,请直接写出BF+13CF的最小值为 823 ;②点P是y轴上的一动点,连接PA、PB,当sin∠APB的值最大时,请直接写出P的坐标.【解答】解:(1)把A(1,0)、B(3,0),C(0,3)代入y=ax2+bx+c得:a+b+c=09a+3b+c=0c=3,解得a=1b=-4 c=3 ,∴抛物线的表达式为y=x2-4x+3;(2)设M(0,m),m<3,由B(3,0),C(0,3)可得直线BC表达式为y=-x+3,∵MN⎳x轴,∴N(3-m,m),∴MN=3-m.设点P(t,t2-4t+3),则t2-4t+3=m,即3-m=-t2+4t,∴PM=t,PN=MN-PM=3-m-t=-t2+3t,CM=3-m=-t2+4t.∴S1=12PN⋅CM=12(-t2+3t)(-t2+4t),S2=PM2=t2,∴S1S2=12(t2-7t+12)=12t-722-18,∵y=x2-4x+3=(x+2)2-1,∴抛物线的顶点坐标为(2,-1),∵m<3,∴-1<m<3.∴0<t <2.∵12>0,∴当t <72时,S 1S 2的值随t 的增大而减小,∴当t =0时,S 1S 2的值最大=6,当t =2时,S 1S 2的值最小=1,∴S 1S 2的取值范围为1<S 1S 2<6;(3)①连接OF ,在y 轴上取点W 0,13,连接WF ,BW ,如图:∵⊙O 的半径OA =1,∴OF =1,∴OF OC =13,OW OF =131=13,∴OF OC =OW OF,∵∠COF =∠FOW ,∴ΔCOF ∽ΔFOW ,∴WF CF =OF OC =13,∴WF =13CF ,∴BF +13CF =BF +WF ,∵当W ,F ,B 共线时,BF +WF 最小,∴当W ,F ,B 共线时,BF +13CF 最小,最小值即为BW 的长度,∵W 0,13,B (3,0),∴BW =32+13 2=823,∴BF +13CF 的最小值为823,故答案为:823;②作ΔABP 的外接圆T ,作TK ⊥x 轴于K ,连接AT ,BT ,PT ,则AK =BK =1,则∠APB =12∠ATB ,∴当∠ATB 最大时,∠APB 最大,sin ∠APB 也最大;∵AT =BT =PT ,∴当AT 最小时,PT 最小,此时∠APB 最大,∵当PT ⊥y 轴时,PT 最小,∴此时∠APB 最大,sin ∠APB 最大,∵PT=OK=OA+AK=2,∴AT=2,∴TK=AT2-AK2=22-12=3,∴P(0,3).19.(2023•浠水县二模)如图1,抛物线y=ax2+3x-6与x轴交于A、B(6,0)两点,与y轴交于点C,直线y=x+b经过点B.点P在抛物线上,设点P的横坐标为m.(1)①求抛物线的表达式和b的值;②连接AC、AP、PC,若ΔAPC是以CP为斜边的直角三角形,求点P的坐标;(2)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.【解答】解:(1)①将B(6,0)代入y=ax2+3x-6,∴36a+18-6=0,∴a=-13,∴y=-13x2+3x-6,∵直线y=x+b经过点B(6,0),∴6+b=0,∴b=-6;②作PM⊥x轴交于M,∵y=-13x2+3x-6,令x=0,则y=-6,即C(0,-6),令y=0,则-13x2+3x-6=0,解得:x1=3,x2=6,∴A(3,0),∴OA=3,OC=6,设点P的横坐标为m,∴P m,-13m2+3m-6,∴PM=13m2-3m+6,AM=m-3,∵ΔAPC是以CP为斜边的直角三角形,∴∠CAP=90°,∴∠OAC+∠PAM=90°,∵∠APM+∠PAM=90°,∴∠OAC=∠APM,∵∠AOC=∠AMP=90°,∴ΔCOA∽ΔAMP,∴OA MP =OC MA,∴OA⋅MA=OC⋅MP,∴3(m-3)=6×13m2-3m+6,整理得:2m2-21m+45=0,解得:m1=152,m2=3(舍)∴P152,-94;(2)作PN⊥x轴交BC于N,过点N作NE⊥y轴于E,设直线BC的解析式为y=kx+b0,由题意得:6k+b0=0b0=-6,解得:k=1 b0=?6,∴直线BC的解析式为y=x-6,设点P的横坐标为m,则P m,-13m2+3m-6,N(m,m-6),∴PN=-13m2+3m-6-(m-6)=-13m2+2m,∵PN⊥x轴,∴PN⎳OC,∴∠PNQ=∠OCB,∵∠PQN=∠BOC=90°,∴RtΔPQN∽RtΔBOC,∴PN BC =NQOC=PQOB,∵OB=6,OC=6,由勾股定理的:BC=OB2+OC2=62,∴PN 62=NQ6=PQ6,∴NQ=22PN,PQ=22PN,∴NQ=PQ=22×-13m2+2m=-26m2+2m,∵∠CEN=∠BOC=90°,∠ECN=∠OCB,∴ΔCNE∽ΔCBO,∴CN BC =EN OB,∴CN 62=m6,∴CN=2m,∴CQ+PQ=CN+NQ+PQ=2m+-26m2+2m+-26m2+2m=-23m2+32m=-23(m2-9m)=-23m-922+2724,当m=92时,CQ+PQ的最大值是2724.20.(2023•杏花岭区校级模拟)综合与探究:如图1,经过原点O的抛物线y=-2x2+8x与x轴的另一个交点为A,直线l与抛物线交于A,B 两点,已知点B的横坐标为1,点M为抛物线上一动点.(1)求出A,B两点的坐标及直线l的函数表达式.(2)如图2,若点M是直线l上方的抛物线上的一个动点,直线OM交直线l于点C,设点M的横坐标为m,求MCOC的最大值.(3)如图3,连接OB,抛物线上是否存在一点M,使得∠MAO=∠BOA,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)在y=-2x2+8x中,令y=0得0=-2x2+8x,解得x=0或x=4,∴A(4,0),在y=-2x2+8x中,令x=1得y=6,∴B(1,6),设直线AB函数表达式为y=kx+b,把A(4,0),B(1,6)代入得:4k +b =0k +b =6 ,解得k =-2b =8,∴直线AB 函数表达式为y =-2x +8;∴A 的坐标为(4,0),B 的坐标为(1,6),直线AB 函数表达式为y =-2x +8;(2)过M 作MK ⊥x 轴于K ,过C 作CT ⊥x 轴于T ,如图:∵点M 的横坐标为m ,∴M (m ,-2m 2+8m ),K (m ,0),设直线OM 函数表达式为y =k x ,把M (m ,-2m 2+8m )代入得:k m =-2m 2+8m ,解得k =-2m +8,∴直线OM 函数表达式为y =(-2m +8)x ,由y =(-2m +8)x y =-2x +8 得x =8-2m +10y =-16m +64-2m +10,∴C 8-2m +10,-16m +64-2m +10,∴OT =8-2m +10,KT =m -8-2m +10=-2m 2+10m -8-2m +10,∵MK ⎳CT ,∴MC OC =KT OT=-2m 2+10m -8-2m +108-2m +10=-2m 2+10m -88=-14m -52 2+916,∵-14<0,∴当m =52时,MC OC取最大值,最大值为916;(3)抛物线上存在一点M ,使得∠MAO =∠BOA ,理由如下:过B 作BR ⊥x 轴于R ,过M 作MS ⊥x 轴于S ,连接AM ,如图:∵B (1,6),∴BR =6,OR =1,∴tan ∠BOA =BR OR=6,∵∠MAO =∠BOA ,∴tan ∠MOA =tan ∠BOA =6,∴MS AS=6,设M (t ,-2t 2+8t ),则MS =|-2t 2+8t |,AS =4-t ,∴|-2t 2+8t |4-t=6,解得t =3或t =4(舍去)或t =-3,∴M (3,6)或(-3,-42).。
类型6 二次函数的最值问题(精选20题)2020年中考数学三轮冲刺 难点题型突破(含答案)
二次函数的最值问题1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.43.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值88.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值39.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为.10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.11.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为cm.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x=;(3)设△ABC的面积的平方为W,求W的最大值.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.试题解析1.菱形ABCD边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,AE+CF=4,则△BEF面积的最小值为()A.B.C.D.解:连接BD,AC,∵菱形ABCD边长为4,∠BAD=60°;∴△ABD与△BCD为正三角形,∴∠FDB=∠EAB=60°,∵AE+CF=4,DF+CF=4,∴AE=DF,∵AB=BD,∴△BDF≌△BAE,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形,∴当BE⊥AD时,△BEF的面积最小,此时BE=2△BEF面积的最小值=3.故选:B.2.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.B.C.3D.4解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故选:A.3.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.5.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3B.3C.D.解:如图,作HM⊥AB于M,∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°,∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH,∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则BD=2﹣x,∴S△BDH==BD•AD=x(2﹣x)=﹣(x﹣)2+,∴△BDH面积的最大值是,故选:C.6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.解:设菱形的高为h,∵在边长为1的菱形ABCD中,∠ABC=120°,∴∠A=60°,∴h=,若设AP=x,则PB=1﹣x,∵PQ⊥AB,AQ=2x,PQ=x,∴DQ=1﹣2x,∴S△CPQ=S菱形ABCD﹣S△PBC﹣S△P AQ﹣S△CDQ=1×﹣(1﹣x)•﹣x•x﹣(1﹣2x)•=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴△CPQ面积有最大值为,故选:D.7.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是()A.有最小值9B.有最大值9C.有最小值8D.有最大值8解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2﹣7x,∵A(7,0),B(0,﹣7),∴直线AB为:y=x﹣7,设C(x,x﹣7),则D(x,x2﹣7x),∴CD=x﹣7﹣(x2﹣7x)=﹣x2+8x﹣7=﹣(x﹣4)2+9,∴1<x<7范围内,有最大值9,故选:B.8.已知二次函数y=x2+mx+n的图象经过点(﹣1,﹣3),则代数式mn+1有()A.最小值﹣3B.最小值3C.最大值﹣3D.最大值3解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.9.二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为5或.解:分三种情况:当﹣a<﹣1,即a>1时,二次函数y=x2+2ax+a在﹣1≤x≤2上为增函数,所以当x=﹣1时,y有最小值为﹣4,把(﹣1,﹣4)代入y=x2+2ax+a中解得:a=5;当﹣a>2,即a<﹣2时,二次函数y=x2+2ax+a在﹣1≤x≤2上为减函数,所以当x=2时,y有最小值为﹣4,把(2,﹣4)代入y=x2+2ax+a中解得:a=﹣>﹣2,舍去;当﹣1≤﹣a≤2,即﹣2≤a≤1时,此时抛物线的顶点为最低点,所以顶点的纵坐标为=﹣4,解得:a=或a=>1,舍去.综上,a的值为5或.故答案为:5或10.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S四边形EFGH=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;1811.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D是边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE 和矩形HEBF的面积和最小时,AD的长度为.解:在Rt△ABC中,∠C=90°,BC=4,BA=5,∴AC==3,设DC=x,则AD=3﹣x,∵DF∥AB,∴=,即=,∴CE=∴BE=4﹣,∵矩形CDGE和矩形HEBF,∴AD∥BF,∴四边形ABFD是平行四边形,∴BF=AD=3﹣x,则S阴=S矩形CDGE+S矩形HEBF=DC•CE+BE•BF=x•x+(3﹣x)(4﹣x)=x2﹣8x+12,∵>0,∴当x=﹣=时,有最小值,∴DC=,有最小值,即AD=3﹣=时,矩形CDGE和矩形HEBF的面积和最小,故答案为12.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为15cm.解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15cm时,S取最大值.故答案为:15.13.已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是.解:设PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高为h,∵AD=3,BC=4,梯形ABCD面积为7,∴解得∵PE∥DQ,∴∠PEF=∠QFE,∠EPF=∠PFD,又∵PF∥AQ,∴∠PFD=∠EQF,∴∠EPF=∠EQF,∵EF=FE,∴△PEF≌△QFE(AAS),∵PE∥DQ,∴△AEP∽△AQD,同理,△DPF∽△DAQ,∴=,=()2,∵S△AQD=3,∴S△DPF=x2,S△APE=(3﹣x)2,∴S△PEF=(S△AQD﹣S△DPF﹣S△APE)÷2,∴y=[3﹣x2﹣(3﹣x)2]×=﹣x2+x,∵y最大值==,即y最大值=.∴△PEF面积最大值是.14.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.15.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.16.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.17.如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.解:(1)∵CD∥AB,∴∠BAC=∠DCA又∵AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC.(2)Rt△ABC中,AC==8cm,∵△ACD∽△BAC,∴=,即,解得:DC=6.4cm.(3)过点E作AB的垂线,垂足为G,∵∠ACB=∠EGB=90°,∠B公共,∴△ACB∽△EGB,∴,即,故;y=S△ABC﹣S△BEF==;故当t=时,y的最小值为19.18.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.解:(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.∵S△ABC=48,BC=12,∴AM=8,∵DE∥BC,△ADE∽△ABC,∴,而AN=AM﹣MN=AM﹣DE,∴,解之得DE=4.8.∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,(2)分两种情况:①当正方形DEFG在△ABC的内部时,如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,∵DE=x,∴y=x2,此时x的范围是0<x≤4.8,②当正方形DEFG的一部分在△ABC的外部时,如图(3),设DG与BC交于点Q,EF与BC交于点P,△ABC的高AM交DE于N,∵DE=x,DE∥BC,∴△ADE∽△ABC,即,而AN=AM﹣MN=AM﹣EP,∴,解得EP=8﹣x.所以y=x(8﹣x),即y=﹣x2+8x,由题意,x>4.8,且x<12,所以4.8<x<12;因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,当4.8<x<12时,因为,所以当时,△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大=﹣×62+8×6=24;因为24>23.04,所以△ABC与正方形DEFG重叠部分的面积的最大值为24.19.如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD,AD于点E,B,连接BC,AC,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,则x= 2.4或2.6;(3)设△ABC的面积的平方为W,求W的最大值.解:(1)∵AD=5,AB=x,BE垂直平分CD,∴BC=BD=5﹣x,在△ABC中,AC=1,∴(5﹣x)﹣1<x<1+(5﹣x),解得:2<x<3;(2)∵△ABC为直角三角形,若AB是斜边,则AB2=AC2+BC2,即x2=(5﹣x)2+1,∴x=2.6;若BC是斜边,则BC2=AB2+AC2,即(5﹣x)2=x2+1,∴x=2.4.故答案为:2.4或2.6.(3)在△ABC中,作CF⊥AB于F,设CF=h,AF=m,则W=(xh)2=x2h2,①如图,当2.4<x<3时,AC2﹣AF2=BC2﹣BF2,则1﹣m2=(5﹣x)2﹣(x﹣m)2,得:m=,∴h2=1﹣m2=,∴W=x2h2=﹣6x2+30x﹣36,即W=﹣6(x﹣)2+,当x=2.5时(满足2.4<x<3),W取最大值1.5;②当2<x≤2.4时,同理可得:W=﹣6x2+30x﹣36=﹣6(x﹣)2+,当x=2.4时,W取最大值1.44<1.5,综合①②得,W的最大值为1.5.20.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=4cm,OC=3cm,D为OA上一动点,点D以1cm/s的速度从O点出发向A点运动,E为AB上一动点,点E以1cm/s的速度从A点出发向点B 运动.(1)试写出多边形ODEBC的面积S(cm2)与运动时间t(s)之间的函数关系式;(2)在(1)的条件下,当多边形ODEBC的面积最小时,在坐标轴上是否存在点P,使得△PDE为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)在某一时刻将△BED沿着BD翻折,使得点E恰好落在BC边的点F处.求出此时时间t的值.若此时在x轴上存在一点M,在y轴上存在一点N,使得四边形MNFE的周长最小,试求出此时点M,点N的坐标.解:(1)设OD=t,AD=4﹣t,AE=t,S△ODEBC=S△ABCD﹣S△DAE===(0≤t≤3)(2)∵∴∴当t=2时,S有最小值;此时:D(2,0)、E(4,2),①当P在x轴上时,设P(a,0),此时:DE2=AD2+EA2=22+22=8,EP2=(a﹣4)2+22=a2﹣8a+20,DP2=(a﹣2)2=a2﹣4a+4,∴当DE2=EP2时,8=a2﹣8a+20,∴a2﹣8a+12=0,(a﹣2)(a﹣6)=0,∴P(2,0),P1(6,0),∵P(2,0)与D重合∴舍去,当EP2=DP2时,a2﹣8a+20=a2﹣4a+4,16=4a,a=4,∴P2(4,0),当DE2=DP2时,8=a2﹣4a+4a2﹣4a﹣4=0,∴,②当P在y轴上时,设P(0,b),则DP2=22+b2=b2+4EP2=42+(b﹣2)2=16+b2﹣4b+4=b2﹣4b+20 DE2=8,∴当DP2=EP2时,b2+4=b2﹣4b+204b=16,b=4,∴P5(0,4),当EP2=DE2时,b2﹣4b+20=8b2﹣4b+12=0b2﹣4ac<0,∴无解.当DP2=DE2时,b2+4=8,b2=4,∴b=±2,∴P6(0,﹣2)(DEP三点共线,舍去),∴综上共有6个这样的P点,使得△PDE为等腰三角形.即P1(6,0),P2(4,0),,,P5(0,4),P6(0,2).(3)设AE=t,则BE=3﹣t.BF=BE=3﹣t,AD=4﹣t,∴CF=4﹣BF=t+1,过D作DP⊥BC于P.则:CP=OD=t,∴PF=1,又DP=3,∴,∴,∴在Rt△DAE中,AD2+AE2=DE2,∴(4﹣t)2+t2=10,∴t2﹣8t+16+t2=10,2t2﹣8t+6=0,t2﹣4t+3=0,∴t1=1,t2=3(舍),∴t=1(9分),∴E(4,1),F(2,3),∵E关于x轴的对称点E′(4,﹣1),F关于y轴的对称点F′(﹣2,3),则E′F′与x轴,y轴的交点即为M点,N点.设直线E′F′的解析式为y=kx+b(k≠0),则,∴,∴y=﹣x+.(10分)∴M(,0),N(0,).(12分)。
二次函数的最大值与最小值
当a>0时,二次函数有最小值 当a<0时,二次函数有最大值
例1、如图,一边靠学校院墙,其他三边用12 m长 的篱笆围成一个矩形花圃,设矩形ABCD的边 AB=x m,面积为S㎡。 (1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?
(1) S=x(12-2x)即S=-2x² +12x (2) S=-2x² +12x A D
BP=12-2t,BQ=4t P △PBQ的面积: S=1/2(12-2t) •4t 即S=- 4t² +24t=- 4(t-3)² +36 B
Q丝围成一个矩形,一边长为xcm.,面 积为ycm2,问何时矩形的面积最大? 解: ∵周长为12cm, 一边长为xcm , ∴ 另一边为(6-x)cm ∴ y=x(6-x)=-x2+6x (0< x<6) =-(x-3) 2+9 ∵ a=-1<0, ∴ y有最大值 当x=3cm时,y最大值=9 cm2,此时矩形的另一边也为3cm 答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。
(2)一个商品所获利润可以表示为 (50+x-40)元 (3)销售量可以表示为 (500-10x) 个
(4)共获利润可以表示为 (50+x-40)(500-10x)元
解: 设每个商品涨价x元, 那么 y=(50+x-40)(500-10x) =-10 x2 +400x+5000
=-10[ (x-20)2 -900]
2
y
x=1
x R
1
ymin 当 x=1时,
2
0 -2
x
例2、求下列函数的最大值与最小值
( 1 ) y x 3 x 2 (3 x 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的最值问题
【例题精讲】
题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值.
【拓展练习】
如图,在平面直角坐标系xOy 中,二次函数232y x bx c =
++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C .
(1)求此二次函数解析式;
(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333
y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.
练习一
【例题精讲】
若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值.
【拓展练习】
题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2.
①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.
练习二
金题精讲
题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值.
【拓展练习】
题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.
讲义参考答案
【例题精讲】
答案:3--0或2或4
【拓展练习】
答案:(1) 222
y x =
-;(2) (2
练习一答案 【例题精讲】
答案:a = 或.
【拓展练习】
答案:(1) k ≤2;(2)①k 值为1;②y 的最大值为32
,最小值为3. 详解:(1)当k =1时,函数为一次函数y = 2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点, 令y =0得(k 1)x 22kx +k +2=0.
△=(2k )24(k 1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.
综上所述,k 的取值范围是k ≤2.
(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.
由题意得(k 1)x 12+(k +2)=2kx 1(*),
将(*)代入(k 1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2.
又∵x1+x2=
2k
k1
-
,x1x2=
k+2
k1
-
,∴2k
2k
k1
-
=4
k+2
k1
-
,
解得:k1= 1,k2=2(不合题意,舍去).∴所求k值为1.
②如图,∵k1= 1,y= 2x2+2x+1= 2(x 1
2
)2+
3
2
,且1≤x≤1,
由图象知:当x= 1时,y最小= 3;当x=1
2
时,y最大=
3
2
.
∴y的最大值为3
2
,最小值为3.
练习二答案
课后练习详解【例题精讲】
答案:2或5.
详解:配方y=(x+a)21,
函数的对称轴为直线x= a,
顶点坐标为(a,1).
①当0≤a≤3即3≤a≤0时,
函数最小值为1,不合题意;
②当a<0即a>0时,
∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 1=24,a2 1=3,解得a=2;
③当a>3即a<3时,
∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 1=24,9+6a+a2 1=3,
解得a= 5.
∴实数a的值为2或5.
【拓展练习】
答案:有最大值,为8.
详解:∵当开口向下时函数y=(k1)x2 4x+5k取最大值
∴k1<0,解得k<1.
∴当k= 1时函数y=(k1)x2 4x+5k有最大值,当k=1,2时函数没有最大值.∴当k= 1时,函数y= 2x24x+6= 2(x+1)2+8.
∴最大值为8.。