数学物理方程模拟试卷
数学物理方程试卷
数学物理方程试卷一、选择题1.在一个匀速运动中,物体的速度v与物体的位移s的关系是:A.v=s/tB.v=s/t^2C.v=s*tD.v=s*t^22.以下哪个物理量属于标量?A.速度B.力C.加速度D.距离3.物体质量为m,重力加速度为g,物体所受重力的大小为:A. mgB. mg/2C. 2mgD. mg^24.物体自由落体下落t秒后的位移s与时间t的关系为:A. s=gtB. s=gt^2C. s=gt^3D. s=1/gt5.以下哪个物理量属于矢量?A.面积B.速度C.力D.质量二、填空题1.一辆车以10m/s的速度匀速行驶了20秒,那么它的位移是_____________米。
2.物体在一个小时内匀速运动40千米,速度为_____________米每秒。
3.物体在水平地面上受到10牛的推力,质量为2千克,加速度为_____________。
4.一个物体从100米高的地方自由落体,下落10秒后的速度是_____________米每秒。
5.物体质量为5千克,重力加速度为10米每秒的平方,所受重力的大小是_____________牛。
三、解答题1.用物理公式解释为什么月亮绕地球运动?答:根据万有引力定律,任意两个物体之间都存在引力。
月球的质量相对较小,在地球的引力作用下,它会受到向地心的引力,从而绕着地球进行运动。
2.一个物体以10m/s的速度沿水平方向运动,另一个物体以5m/s的速度沿同一方向追赶第一个物体,如果第二个物体和第一个物体质量相同,两个物体发生碰撞后,它们的速度是多少?答:根据动量守恒定律,两个物体的总动量在碰撞前后保持不变。
因此,第一个物体的动量为10 kg·m/s,第二个物体的动量为5 kg·m/s。
由于两个物体质量相同,碰撞后它们的速度将相等。
设碰撞后的速度为v,则第一个物体的动量为10v kg·m/s,第二个物体的动量为5v kg·m/s。
数学物理方程复习
一、填空题1、物理规律反映同一类物理现象的共同规律,称为___________。
2、在给定条件下求解数学物理方程,叫作____________________。
3、方程20tt xx u a u -=称为_________方程4、方程20t xx u a u -=称为_________方程5、静电场的电场强度E是无旋的,可用数学表示为_____________。
6、方程0j Ñ×=称为_____________的连续性方程。
7、第二类边界条件,就是______________________________________。
8、第一类边界条件,就是______________________________________。
9、00(0,)(0,)x x u x t u x t -=+称为所研究物理量u 的_____________。
10、00(0,)(0,)u x t u x t -=+称为所研究物理量u 的_____________。
11、对于两个自变量的偏微分方程,可分为双曲型、________和椭圆型。
12、对于两个自变量的偏微分方程,可分为双曲型、抛物线型和________。
13、分离变数过程中所引入的常数l 不能为_____________。
14、方程中,特定的数值l 叫作本征值,相应的解叫作_____________。
15、分离变数法的关键是________________________代入微分方程。
16、非齐次振动方程可采用______________和冲量定理法求解。
17、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
18、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
数学物理方程练习题
σf 4dSdt.
根据热量平衡有 故所求边界条件为
−k
∂u ∂n
dSdt
=
σu4dSdt
−
σf
4dSdt.
−k
∂u ∂n
=
σ(u4
− f 4).
齐海涛 (SDU)
数学物理方程
2012-10-3 12 / 49
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
dQ = −βQ, dt Q(0) = Q0,
⇒ Q(t) = Q0e−βt.
易知 t1 到 t2 时刻, 砼内任一区域 Ω 中的热量的增加等于从 Ω 外部流入 Ω 的热量及砼中的水化热之和, 即
齐海涛 (SDU)
数学物理方程
2012-10-3 7 / 49
热传导方程及其定解问题的导出
∫ t2 cρ ∂u dtdxdydz =
.
热传导方程
.
Heat Equations
齐海涛
山东大学(威海)数学与统计学院
htqisdu@
齐海涛 (SDU)
数学物理方程
2012-10-3 1 / 49
目录
1. 热传导方程及其定解问题的导出 2. 初边值问题的分离变量法 3. 柯西问题 4. 极值原理、定解问题解的唯一性和稳定性 5. 解的渐近性态
热传导方程及其定解问题的导出
.E.xample 1.2
.试直接推导扩散过程所满足的微分方程.
解: 设 N(x, y, z, t) 表示在时刻 t, (x, y, z) 点处扩散物质的浓度, D(x, y, z) 为 扩散系数, 在无穷小时间段 dt 内, 通过无穷小曲面块 dS 的质量为
数学物理方程考试试题及解答
数学物理方程试题(一)一、填空题(每小题5分,共20分)1.长为π的两端固定的弦的自由振动,如果初始位移为x sin 2x ,初始速度为cos2x 。
则其定解条件是2.方程∂u ∂u -3=0的通解为∂t ∂x⎧X "(x )+λX (x )=03.已知边值问题⎨',则其固有函数X n(x )=⎩X (0)=X (π)=04.方程x y +xy +(αx -n )y =0的通解为2"'222二.单项选择题(每小题5分,共15分)∂2u ∂2u1.拉普拉斯方程2+2=0的一个解是()∂x ∂y (A )u (x ,y )=e sin xy (B )u (x ,y )=(C )u (x ,y )=x x 2+y 2x 2+y 21x 2+y 2(D )u (x ,y )=ln2.一细杆中每点都在发散热量,其热流密度为F (x ,t ),热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是()∂2u F (x ,t )∂u ∂2u F (x ,t )2(A )(B )=a 2+=a +22∂t c ρc ρ∂x ∂t ∂x 2222∂F∂F u (x ,t )∂F ∂F u (x ,t )(其中2k )22(C )(D)=a +=a +a =222c ρ∂t c ρc ρ∂t ∂x ∂x 2⎧∂2u 2∂u =a ⎪⎪∂t 2∂x 23.理想传输线上电压问题⎨⎪u (x ,0)=A cos ωx ,∂u ⎪∂t ⎩∂2ut =0=aA ωsin ωx(其中a 2=1)的解为()L C(A )u (x ,t )=A cos ω(x +at )(B )u (x ,t )=A cos ωx cos a ωt(C )u (x ,t )=A cos ωx sin a ωt (D )u (x ,t )=A cos ω(x -at )三.解下列问题1.∂u ⎧∂u+3=0⎪(本题8分)求问题⎨∂x 的解∂y3x⎪⎩u (x ,0)=8e ⎧∂2u=6x 2y ⎪⎪∂x ∂y(本题8分)⎨⎪u (x ,0)=1-cos x ,u (0,y )=y 2⎪⎩2⎧∂2u 2∂u ⎪2=a 2⎪∂t ∂x 3 . (本题8分)求问题⎨⎪u (x ,0)=sin 2x ,∂u ⎪∂t ⎩2.的解t =0=3x 2四.用适当的方法解下列问题2⎧∂u 2∂u=a ⎪(本题8分)解问题⎨∂t ∂x 2⎪u (x ,0)=1-2x +3x 2⎩2⎧∂2u ∂2u ∂2u2∂u =a (2+2+2)⎪2⎪∂t ∂x ∂y ∂z (本题8分)解问题⎨2∂u 2⎪u t =0=2y +3xz ,=6y t =0⎪∂t 2⎩1. 2.2⎧∂u2∂u⎪∂t =a 2∂x ⎪⎪五.(本题10分)解混合问题:⎨u (0,t )=u (1,t )=0⎪u (x ,0)=2sin πx⎪⎪⎩六.(本题15分)用分离变量法解下列混合问题:2⎧∂2u 2∂u =a ⎪2∂x 2⎪∂t ⎪⎨u (0,t )=u (π,t )=0⎪∂u ⎪u (x ,0)=2x (π-x ),∂t ⎪⎩t =0=3sin 2x一.单项选择题(每小题4分,共20分)1.(D )2.(B )3.(D )4.(D )二.填空题(每空4分,共24分)⎧u (0,t )=u (2π,t )=0⎪1.x +y =C 1,2x +y =C22.⎨,∂u (x ,0)=x ,t =0=2x ⎪∂t ⎩3.u (x ,t )=x +f (3x +2y ),4.X n (x )=B n cos n πx,(n =0,1,2,3,)25.通解为u (x ,t )=322x y +f (x )+g (y )2三.解下列问题(本题7分)∂u ⎧∂u+3=0⎪1.求问题⎨∂x的解∂y 3x⎪⎩u (x ,0)=8e 解:设u (x ,t )代入方程,(8e =8e 3x +m y(2分))⨯3+3⋅(8e 3x +m y )⨯m=03x +m y 3m +3=0,m =-1(6分)所以解为u (x ,t )=8e 3x -y(7分)2.2⎧∂2u ∂u 2⎪2=a 2⎪∂t ∂x (本题7分)求问题⎨⎪u (x ,0)=sin 2x ,∂u ⎪∂t ⎩的解t =0=3x 2解:由达朗贝尔公式,得11x +at2u (x ,t )=[sin 2(x +at )+sin 2(x -at )]+3ξd ξ(3分)⎰x -at22a =cos 2at sin 2x +3x 2t +a 2t 3(7分)四.用适当的方法解下列问题2⎧∂u 2∂u=a ⎪1.(本题7分)解问题⎨∂t ∂x 2⎪u (x ,0)=1-2x +3x 2⎩解:设u (x ,t )=1-2x +3x 2+At代入方程,A =a 2[0-0+6+A ''t ]+6x⎧A ''=0令⎨显然成立2⎩A =6a +6x解为u (x ,t )=1-2x +3x 2+6a 2t +6xt2∂2u ∂2u ∂2u2∂u =a (2+2+2)2∂t ∂x ∂y ∂z 2∂u2=6y t =0=x +2y +3yz ,t =0∂t 22.⎧⎪⎪(本题7分)解问题⎨⎪u ⎪⎩解:设u=[x 2+2y 2+3yz +At 2]+[6x 2t +Bt 3](2分)代入方程2A +6Bt =a 2[(2+12y +∆At 2)+(12t +∆Bt 3)](4分)⎧∆B =0令,⎨显然成立,解为2⎩6B =12a u (x ,t )=x +2y +3yz +a 2t 2+6y 2t +2a 2t 3五.(本题7分)解混合问题:2⎧∂u 2∂u ⎪∂t =a ∂x 2⎪⎪⎨u (0,t )=u (1,t )=0⎪u (x ,0)=2sin πx ⎪⎪⎩解u (x ,t )=L -1{U (x ,s )}=2e -a πt sin πx22六.(本题15分)用分离变量法解下列混合问题:2⎧∂2u 2∂u=a ⎪22∂t ∂x ⎪⎪⎨u (0,t )=u (π,t )=0⎪∂u ⎪u (x ,0)=2x (π-)x ,∂t ⎪⎩t =0=3sin 2x解:设u (x ,t )=X (x )T (t )代入方程及边界⎧T ''+λa 2T =0n π2⎪λ=()=n 2,X n=sin nx''⎨X +λX =0nπ⎪X (0)=X (π)=0⎩u n=(C ncos ant +D nsin ant )sin nxu (x ,t )=∑(C ncos ant +D nsin ant )sin nxn =1∞其中C n =2π⎰π08[1-(-1)n ]x (π-x )sin nxdx =n 3πD n =2π⎰π0⎧0(n ≠2)⎪3sin 2x sin nxdx =⎨3(n =2)⎪⎩a∞38[1-(-1)n ]cos ant sin nx 所以解为u (x ,t )=sin 2at sin 2x +∑3a n πn =12009-2010学年第一学期数学物理方程试题一、填空题(每小题4分,共24分)∂2u ∂2u ∂2u 1.方程2-3+22=sin(x 2+y 2)的特征线为∂x ∂y ∂x ∂y 2.长为l 的弦做微小的横振动,x =0、x =l 两端固定,且在初始时刻处于水平状态,初始速度为2x ,则其定解条件是3.方程∂u ∂u +3=2x 的通解为∂x ∂y⎧X "(x )+λX (x )=04.已知边值问题⎨,则其固有函数⎩X '(0)=X '(2)=0X n(x )=5.方程x y +xy +(25x -64)y =0的通解为6.2⎰x J 1(x )dx = .2"'2二.单项选择题(每小题4分,共20分)1.微分方程uxxx+uxyy-sin u =ln(1+x 2)是()(A )三阶线性偏微分方程(B )三阶非线性偏微分方程(C )三阶线性齐次常微分方程(D )三阶非线性常微分方程∂2u ∂2u2.拉普拉斯方程2+2=0的一个解是()∂x ∂y (A )u (x ,y )=e sin xy (B )u (x ,y )=(C )u (x ,y )=x x 2+y 2x 2+y 21x 2+y 2(D )u (x ,y )=ln3.一细杆中每点都在发散热量,其热流密度为F (x ,t ),热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是()∂2u F (x ,t )∂u ∂2u F (x ,t )2(A )(B )=a 2+=a +22∂t c ρc ρ∂x ∂t ∂x 2222∂F∂F u (x ,t )∂F ∂F u (x ,t )(其中2k )22(C )(D)=a +=a +a =222c ρ∂t c ρc ρ∂t ∂x ∂x 2⎧∂2u 2∂u=a ⎪2⎪∂t ∂x 24.理想传输线上电压问题⎨⎪u (x ,0)=A cos ωx ,∂u ⎪∂t ⎩∂2ut =0=aA ωsin ωx(A )u (x ,t )=A cos ω(x +at )(B )u (x ,t )=A cos ωx cos a ωt(C )u (x ,t )=A cos ωx sin a ωt (D )u (x ,t )=A cos ω(x -at )5.单位半径的圆板的热传导混合问题2⎧∂u 1∂u2∂u =a (2+)(ρ<1)⎪⎨有形如()的级数解。
数学物理方程 第四章练习题
齐海涛 (SDU)
数学物理方程
2012-10-3 10 / 39
二阶线性方程的分类
.E.xample 1.4
证明: 两个自变量的二阶常系数双曲型方程或椭圆型方程一定可以经过自变量 及未知函数的可逆变换
u = eλξ+µηv,
将它化成
vξξ ± vηη + cv = f
.的形式.
齐海涛 (SDU)
数学物理方程
在椭圆型时, 取 λ = A1/2, µ = −B1/2 就可将方程化成 vξξ ± vηη + cv = f 的简 单形式.
齐海涛 (SDU)
数学物理方程
2012-10-3 12 / 39
1. 二阶线性方程的分类 2. 二阶线性方程的特征理论 3. 三类方程的比较 4. 先验估计
齐海涛 (SDU)
齐海涛 (SDU)
数学物理方程
2012-10-3 5 / 39
二阶线性方程的分类
.E.xample 1.2
判定下列方程的类型: 1. x2uxx − y2uyy = 0; 2. uxx + (x + y)2uyy = 0; 3. uxx + xyuyy = 0; 4. sgn yuxx + 2uxy + sgn xuyy = 0;
(1) ∂x21 + ∂x22 = ∂x23 + ∂x24
齐海涛 (SDU)
数学物理方程
2012-10-3 13 / 39
二阶线性方程的特征理论
.E.xample 2.1
.求下列方程的特征方程和特征方向:
∂2u ∂2u ∂2u ∂2u (1) ∂x21 + ∂x22 = ∂x23 + ∂x24
数学物理方程作业
习题2.12. 长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆做自由振动。
试写出方程的定解条件。
解:边界条件:u(x,t)|0=x =0自由端x=L ,u x |L x ==0初始条件:u(x,t)|0=t =x Lbu t |0=t =0 习题2.21. 一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。
试导出杆上温度u 满足的方程。
解:热传导的热量=温度升高吸收的热量+侧面热交换的热量rdxdtu u k t x u dt t x u dx r c dt t x u t dx x u r k x x πρππ2)()],(),([)],(),([1122-+-+=-+即为:rdxdt u u k dt dxu r c dxdt u r k t xx πρππ2)(1122-+=)(211u u k ru c kru t xx -+=ρ所以温度u 满足的方程为r c u u k u c ku xx t ρρ)(211--=-习题2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=∙VdV dS E ρε1,求证:ερ=∙∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰∙S dS E =⎰⎰⎰⎰⎰⎰=∙∇VVdV EdV ρε 1所以ερ=∙∇E 又因为ερϕϕϕ=-∇=-∇∙∇=∙∇⇒∙-∇=2)(E E 习题2.4 2.(2)032=-+yy xy xx u u u 解: 特征方程:032)(2=--dx dy dx dy ,则有1-3或=dxdy即为 13c x y += 2c x y +-= 令x y +=η x y 3-=ξ 则由:ηηξηξξu u u u xx +-=69 ηηξηξξu u u u xy +--=23 ηηξηξξu u u u yy ++=2 推得 0=ξηu则解得 )()3()()(x y g x y f g f u ++-=+=ηξ (5)031616=++yy xy xx u u u 解:由特征方程:0316)(162=+-dxdydxdy解得4143或=dx dy 则可令 x y -=4ξ x y 34-=η所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=4431y x y x Q ηηξξ 因此=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T Q a a a a Q a a a a 2212121122121211⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡03232022121211a a a a 即032=-ξηu所以)34()4(x y g x y f u -+-= 习题2.6 1.(3).证明)0(||)()(≠=a a x ax δδ证明:当0>a 时a dx x a ax d ax a dx ax 1)(1)()(1)(===⎰⎰⎰+∞∞-+∞∞-+∞∞-δδδ所以)0()()(≠=a ax ax δδ 当0<a 时adx x a ax d ax adx ax dx ax 1)(1)()(1)()(-=-=---=-=⎰⎰⎰⎰∞+∞-+∞∞-+∞∞-+∞∞-δδδδ所以)0()()(≠-=a ax ax δδ 综上:)0(||)()(≠=a a x ax δδ习题3.13.(4)求解边值问题的固有值和固有函数⎩⎨⎧=+'==+''==0][,0|002L x x hX X X X X β解:当0=β时,B Ax x X +=)(代入边值条件得:B X x ===0|00100)(][=+=⇒=+=+'=hL A AL h A hX X L x 或 所以当010=+≠hL A 且时Ax x X =)(当010≠+=hL A 且时0)(=x X 当0>β时,)sin()cos()(x B x A x X ββ+= 代入边值条件得:A X x ===0|00)sin()cos(][=+=+'=L hB L B hX X L x βββ 解得:L hn βββtan -=为的正根所以)sin()(x x X n n β= 当0<β时,无解。
数学物理方程 第三章练习题
齐海涛
(SDU)
数学物理方程
2012-10-3
11 / 69
建立方程、定解条件
方法二: 同上题, 在柱面坐标系下 q1 = r, q2 = θ, q3 = z, 则 ds2 = dr2 + r2 dθ2 + dz2 , H1 = 1, H2 = r, H3 = 1,
代入 (1.4) 即得柱面坐标下 Laplace 算子的表达式.
.
第三章
.
调和方程
Laplace Equations
齐 海 涛
山东大学(威海)数学与统计学院
htqisdu@
齐海涛
(SDU)
数学物理方程
2012-10-3
1 / 69
目录
. 1 . 2 . 3 . 4
建立方程、定解条件 格林公式及其应用 格林函数 强极值原理、第二边值问题解的唯一性
对上式两边积分即得结论.
齐海涛
(SDU)
数学物理方程
2012-10-3
4 / 69
建立方程、定解条件
.
Example 1.2
. 证明: 拉普拉斯算子在球面坐标 (r, θ, φ) 下可以写成 ( ) ( ) 1 ∂ 2 ∂u 1 ∂ ∂u 1 ∂2 u △u = 2 r + 2 sin θ + . r ∂r ∂r r sin θ ∂θ ∂θ r2 sin2 θ ∂φ2 .
∂2 u ∂2 u ∂2 u sin θ cos θ ∂2 u sin2 θ ∂u sin2 θ ∂u sin 2θ = 2 cos2 θ − 2 · + 2 2 + + , 2 ∂x ∂r ∂r∂θ r ∂θ r ∂r r ∂θ r2 ∂2 u ∂2 u 2 ∂2 u sin θ cos θ ∂2 u cos2 θ ∂u cos2 θ ∂u sin 2θ · + 2 2 + − = sin θ + 2 , ∂y2 ∂r2 ∂r∂θ r ∂θ r ∂r r ∂θ r2 将最后两式相加, 并加以整理, 即得到所需结果.
数学物理方程第三章练习题
∂u ∂r
−
sin θ r
∂u ∂θ
,
∂u ∂R
=
sin
θ
∂u ∂r
+
cos θ r
∂u ∂θ
.
R2 + z2 = r2,
tan θ
=
R z
,
(1.1) (1.2)
齐海涛 (SDU)
数学物理方程
2012-10-3 6 / 69
建立方程、定解条件
故有
∂r ∂z
=
cos θ,
∂θ ∂z
=
−
sin r
θ
H1
=
√( ∂x )2 ∂q1
( ∂y )2 + ∂q1
+
(
∂z ∂q1
)2 ,
H2
=
√( ∂x )2 ∂q2
( ∂y )2 + ∂q2
+
(
∂z ∂q2
)2 ,
H3
=
√( ∂x )2 ∂q3
( ∂y )2 + ∂q3
+
(
∂z ∂q3
)2 ,
齐海涛 (SDU)
数学物理方程
2012-10-3
8 / 69
数学物理方程
2012-10-3 2 / 69
1. 建立方程、定解条件 2. 格林公式及其应用 3. 格林函数 4. 强极值原理、第二边值问题解的唯一性
齐海涛 (SDU)
数学物理方程
2012-10-3 3 / 69
建立方程、定解条件
.E.xample 1.1
√
设 u(x1, . . . , xn) = f(r) (其中 r = x21 + · · · + x2n ) 是 n 维调和函数, 试证明
数学物理方法考试模拟试题
5.ii
的数值为( )
A. ?
??2n?
?
e
2
B. e
???2n?
C. ?2n?
e2 D. e
??2n?
6. 在复平面上,下列关于正弦函数cosz的命题中,错误..的是( ) A.cosz是周期函数 B.cosz是解析函数 C.|cosz|?1
9. ln(?1)?( )
A. i?2k?1?? B. ?i?2k?1?? C. i2k? D. ?i2k?
10. 当z?1
时,函数 f(z)?1 可以展开为以z?0为中心的级数( )
z(z?1) ?
A.f?z???zn ?
D.件f(0)’=f(L)’=0 把函数f(x) 展为傅里叶级数为( )
?A.偶延拓,f(x)??ak?x?
k?x
kcosB.奇延拓,f(x)??1?aksin
kLk?1
L
??
c.奇延拓,f(x)??ak?x k?x
A. 在解析区域内任意闭和路径积分可能为0.; B. 在解析区域内处处不可导 C.在解析区域内有些点可导,有些点不可导;D. 在解析区域内处处可导
4. 幂级数f(z)??(?1)k(k?1)z2k的收敛半径是( ) k?0
A. -1 B. 2 C. 1 D. (k?1)
kcosB.偶延拓,f(x)?k?1L?aksin
k?1
L
8.关于柯西定理说法错误..的是( ) A.闭单通区域上的解析函数沿境界线积分为0。B. 闭复通区域上的解析函数沿所有境界线正方向积分为0。 C. 闭复通区域上的解析函数沿外境界线逆时针方向积分等于沿所有内境界线逆时针方向积分之和。D. 闭复通区域上的解析函数沿外境界线逆时针方向积分等于沿所有内境界线顺时针方向积分之和。
数学物理方程练习题第九版(学生用)
u(r, π=) 2
0,
0 < r < 1,
u(1,θ )=
θ (π −θ ), 2
0<θ < π . 2
练习六
3
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
2.求解如下定解问题:
《数学物理方程与特殊函数》习题
练习一
1.写出长为 L 的弦振动的边界条件和初始条件:
(1)端点 x = 0, x = L 是固定的;
(2)初始状态为 f (x) ;
(3)初始速度为 g(x) ; (4)在任何一点上,在时刻 t 时位移是有界的. 2.写出弦振动的边界条件:(1)在端点 x = 0 处,弦是移动的,由 g(t) 给出;(2) 在端点 x = L 处,弦不固定地自由移动. 3. 验证函数 u = f (xy) 是方程 xux − yu y = 0 的解,其中 f 是任意连续可微函数.
保持零度,而外圆温度保持 u0 (u0 > 0) 度,试求稳恒状态下该导热版的温度分布
规律 u(r,θ ) . 问题归结为在稳恒状态下,求解拉普拉斯方程 ∆u= uxx + uy问题:
u1r (∂r∂1r,θ= )r
∂u ∂r
0,
+ 1 ∂2=u r 2 ∂θ 2 u(r2 ,θ=)
= u(0, t) s= in t, ux (π ,t) 0,
u(x,0) = 0.
4
3. 求解以下定解问题:
= uu= (t0,tu) xx
+2ux , u= (1, t )
华南理工大学期末考试数学物理方程卷a及答(08[1]6
ìï dU (l, t) í dt
=
-a2l 2U (l, t) ,
ïî U (l, 0) = F(l).
U (l, t) = F(l)e-a2l2t .
ò u(x, t) = sin x *
1
e = -
x2 4 a2t
1
+¥
sin
x
e
-
(
x-x 4a2
) t
2
d
x
=
sin xe-a2t .
2a p t
òò ìDu = 0,
í î
u |G =
(x, y, z) Î f (x, y, z)
W
的解可表示为(
u( M 0
)
=
-
G
f (x, y, z) ¶G dS )。 ¶n
8. 贝塞尔方程 x2 y¢¢ + xy¢ + ( x2 - 5) y = 0 的通解是( y( x) = AJ (x) + BJ ( x) )。
wn
分别为(
np l
),(
(2n + 1)p 2l
),(
(2n + 1)p 2l
),(
np l
)。
3.
表达波动方程初值问题
ìíutt îu(
= x,
a2uxx , -¥ 0) = j (x),
< ut
x < +¥,t (x,0) =y
>0 ( x)
的解的达朗贝尔公式是
ò ( u(x,t) = j ( x - at) + j (x + at) + 1
=
¥ m=1
4J 2 (mm(0) )
数学物理方程试卷
数学物理方程试卷一、常微分方程(1)证明椭圆线方程$x^2+y^2=1$的曲率半径是无穷的证明:曲线的曲率半径R为曲线点处的法线与曲率半径的夹角$\frac{1}{R}$的反正切值,其表达式为$\frac{,y',}{\sqrt{1+y'^2}}$,其中$y'$为曲线其中一点处的导数值。
而椭圆线方程$x^2+y^2=1$的一阶导数分别为$\frac{dy}{dx}=\frac{-x}{y}$以及$\frac{dx}{dy}=\frac{x}{y}$,这里可以得到$y' = \frac{-x}{y}=\frac{-1}{x}$。
此时曲率半径表达式变为$\frac{x}{,x,\sqrt{1+\frac{1}{x^2}}}$,表达式中的$,x,$可以去掉,并且$x$取任意值,故椭圆线方程$x^2+y^2=1$的曲率半径是无穷的。
(2)证明球面$x^2+y^2+z^2=a^2$的曲率、曲率半径一致证明:根据曲线曲率的定义可知,球面$x^2+y^2+z^2=a^2$的曲率为$\kappa=\frac{,R_1\cdot R_2,}{R^3}$,其中$R_1$、$R_2$分别为曲线其中一点处的两个切线的曲率半径,$R$为曲线其中一点处的曲率半径。
而对于球面,它的两个曲率半径$R_1$和$R_2$是完全一样的,这是因为在球面其中一点的法线方向没有区别,故$R_1=R_2$。
此时曲率可以表示为$\kappa=\frac{R_1^2}{R^3}=\frac{R^2}{R^3}=\frac{1}{R}$,即曲率等于其曲率半径的倒数,也就是说球面$x^2+y^2+z^2=a^2$的曲率和曲率半径是一致的。
二、偏微分方程。
成都理工大学数学物理方程题库
《数学物理方程》模拟试题一、填空题(3分10=30分)1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ).2.三维热传导齐次方程的一般形式是:( ) .3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) .4.边界条件 是第 ( )类边界条件,其中为边界.5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) .6.由贝塞尔函数的递推公式有 ( ) .7.根据勒让德多项式的表达式有= ( ).8.计算积分 ( ).9.勒让德多项式的微分表达式为( ) .10.二维拉普拉斯方程的基本解是( ) .⨯f u nuS=+∂∂)(σS ),(t x u ),(t U ω22222x u a t u ∂∂=∂∂=)(0x J dxd)(31)(3202x P x P +=⎰-dx x P 2112)]([)(1x P二、试用分离变量法求以下定解问题(30分):1.2.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂== =><<∂∂=∂∂====30,0,3,0 0,30,2322222,0xtuxxtxxututtxuuu⎪⎪⎪⎩⎪⎪⎪⎨⎧===><<∂∂=∂∂===xtxxutuuuutxx2,0,0,40,4223.⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=∂∂===><<+∂∂=∂∂====20,0,8,00,20,162002022222x t u t x x ut u t t x x u u u三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分)四、用积分变换法求解下列定解问题(10分):⎪⎩⎪⎨⎧=∂∂=>+∞<<-∞+∂∂=∂∂==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u ⎪⎪⎩⎪⎪⎨⎧=+=>>=∂∂∂==,1,10,0,1002y x u y u y x y x u五、利用贝赛尔函数的递推公式证明下式(10分):)(1)()('0''02x J xx J x J -=六、在半径为1的球内求调和函数,使它在球面上满足,即所提问题归结为以下定解问题(10分):(本题的只与有关,与无关)u θ21cos ==r u .0,12cos 3,0,10,0)(sin sin 1)(11222πθθπθθθθθ≤≤+=≤≤<<=∂∂∂∂+∂∂∂∂=r u r ur r u r r r u θ,r ϕ《数学物理方程》模拟试题参考答案一、 填空题:1.初始条件,边值条件,定解条件.2. 3.. 4. 三.5..6..7..8..9.. 10..二、试用分离变量法求以下定解问题1.解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为2. 解 令,代入原方程中得到两个常微分方程:,,由边界条件得到,对的情况讨论,只有当时才有非零解,令,得到)(2222222zu y u x u a t u ∂∂+∂∂+∂∂=∂∂01)(1222=∂∂+∂∂∂∂θρρρρρu u U a dt U d 2222ω-=)(1x J -2x 52)1(212-x dxd 2020)()(1lny y x x u -+-=)()(),(t T x X t x u =0)()(2''=+t T a t T λ0)()(''=+x X x X λ0)3()0(==X X λ0>λ2βλ=22223πβλn ==3s i n )(πn B x X n n =)(t T 32s i n32c o s )(;;t n D t n C t T n n n ππ+=,3s i n )32s i n 32c o s (),(1xn t n D t n C t x u n n n πππ+=∑∞=0,)1(183sin 332130=-==+⎰n n n D n xdx n x C ππ,3s i n )32c o s )1(18(),(11xn t n n t x u n n πππ+∞=-=∑)()(),(t T x X t x u =0)()('=+t T t T λ0)()(''=+x X x X λ0)4()0(==X X λ0>λ2βλ=为特征值,特征函数,再解,得到,于是再由初始条件得到,所以原定解问题的解为 3.解 由于边界条件和自由项均与t 无关,令,代入原方程中,将方程与边界条件同时齐次化。
数学物理方程题库
1
2) x 2 u xx + 2 xy u xy + y 2 u yy = 0 解 : 方 程 的 判 别 式 ∆ = a12 2 − a11 a 22 = ( xy ) − x 2 y 2 = 0. 所以方程为抛物型。 该方程的一组特征微分方程为 dy a12 y = = ,解 这 个 微 分 方 程 得 到 : dx a11 x
x
' 对上式积分得,a ⎡ f x − f x = − a ϕ ⎤ ( ) ( ) 1 2 ⎣ ⎦ ∫ ( x) dξ + c
x0
⎧ ϕ ( x) 1 x ' c − ∫ ϕ ( x) dξ + ⎪ f1 ( x) = 2 2 x0 2a ⎪ 于是得到, ⎨ x ⎪ f x = ϕ ( x) + 1 ϕ' x dξ − c ( ) ∫ ⎪ 2( ) 2 2 2a x0 ⎩ ⎧ ϕ ( x + at ) 1 x+at ' c f x + at = − ϕ x d ξ + ) ( ) ⎪ 1( ∫ 2 2 2a x0 ⎪ ⇒⎨ x0 c ⎪ f x − at = ϕ ( x − at ) + 1 ' ϕ x d ξ − ( ) ( ) ∫at ⎪ 2 2 2 2a x − ( ) ⎩ ⇒ u ( x,t) = f1 ( x + at ) + f2 ( x − at ) 1 1 = ⎡ ϕ x + at + ϕ x − at ⎤ − ϕ ' (ξ ) dξ ( ) ( ) ⎣ ⎦ ∫ 2 2 x−at = ϕ ( x − at )
2 ⎧ ⎪utt = a uxx ( −∞ < x < ∞) ⎨ ' u x ,0 = ϕ x , u x ,0 = − a ϕ ( ) ( ) ( ) ( x) ⎪ t ⎩ 根据题意,令u( x,t) = f1 ( x + at ) + f2 ( x − at )
物理方程测试题及答案
物理方程测试题及答案一、选择题(每题2分,共20分)1. 光在真空中传播的速度是多少?A. 299,792,458 m/sB. 299,792,458 km/hC. 299,792,458 km/sD. 299,792,458 m/h答案:A2. 以下哪个是牛顿第二定律的表达式?A. F = maB. F = mvC. F = m/aD. F = ma^2答案:A3. 一个物体的质量为2kg,受到的力为10N,它的加速度是多少?A. 5 m/s^2B. 10 m/s^2C. 20 m/s^2D. 40 m/s^2答案:A4. 根据动能定理,一个物体的动能与其速度的平方成正比,与其质量成什么关系?A. 正比B. 反比C. 无关D. 无法确定答案:A5. 以下哪个选项是描述电磁波的方程?A. E = mc^2B. E = hνC. F = G*(m1*m2)/r^2D. F = ma答案:B6. 一个物体从静止开始自由下落,其加速度是多少?A. 9.8 m/s^2B. 10 m/s^2C. 0 m/s^2D. 无法确定答案:A7. 以下哪个是描述理想气体状态方程的?A. PV = nRTB. P = ρghC. F = maD. E = mc^2答案:A8. 以下哪个是描述欧姆定律的方程?A. V = IRB. I = V/RC. R = V/ID. A. B. C. 都是答案:D9. 以下哪个是描述电磁感应定律的方程?A. E = F/qB. E = hνC. E = -dΦ/dtD. E = mc^2答案:C10. 以下哪个是描述库仑定律的方程?A. F = G*(m1*m2)/r^2B. F = k*(q1*q2)/r^2C. F = maD. E = mc^2答案:B二、填空题(每题2分,共20分)1. 根据牛顿第三定律,作用力和反作用力大小________,方向________。
答案:相等;相反2. 光年是光在一年内通过的距离,其值约为________光年。
数学物理方程 练习题
数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2
−
∂2u ∂y2
齐海涛 (SDU)
数学物理方程
2012-10-3 15 / 39
二阶线性方程的特征理论
(3)
∂u ∂t
=
∂2u ∂x2
−
∂2u ∂y2
解: 特征方程:
α21 − α22 = 0.
特征方向 l 满足:
2012-10-3 13 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
齐海涛 (SDU)
数学物理方程
2012-10-3 14 / 39
二阶线性方程的特征理论
∂2u ∂2u ∂2u ∂2u (2) ∂t2 = ∂x21 + ∂x22 + ∂x23
解: 特征方程:
α20 = α21 + α22 + α23.
特征方向 l 满足:
α20 = α21 + α22 + α23,
α20 + α21 + α22 + α23 = 1.
√√
√
√
解得:
l
=
(±
2 2
,
2 2
sin
θ
sin
β,
2 2
sin
θ
cos
β,
2 2
cos
θ),
其中
θ,
β
为任意参数.
齐海涛 (SDU)
(1.2)
ξ = α1x + α2y, η = α3x + α4y,
初三数学物理模拟试卷
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -32. 若方程2x-3=5的解为x,则x的值为()A. 2B. 3C. 4D. 53. 下列各图中,表示y=2x-1的函数图像的是()A.B.C.D.4. 一个长方形的长是8cm,宽是6cm,则它的周长是()A. 28cmB. 32cmC. 36cmD. 40cm5. 下列关于光的折射现象的说法正确的是()A. 光从空气斜射入水中时,折射角大于入射角B. 光从水中斜射入空气中时,折射角小于入射角C. 光从空气垂直射入水中时,折射角为0D. 光从水中垂直射入空气中时,折射角为06. 下列关于牛顿第一定律的说法正确的是()A. 物体在不受力时,会保持静止状态或匀速直线运动状态B. 物体在受到平衡力时,会保持静止状态或匀速直线运动状态C. 物体在受到非平衡力时,会保持静止状态或匀速直线运动状态D. 物体在受到摩擦力时,会保持静止状态或匀速直线运动状态7. 下列关于浮力的说法正确的是()A. 浮力的大小与物体受到的重力成正比B. 浮力的大小与物体排开的液体体积成正比C. 浮力的大小与物体的密度成正比D. 浮力的大小与物体的质量成正比8. 下列关于电流的说法正确的是()A. 电流的方向与正电荷的运动方向相同B. 电流的方向与负电荷的运动方向相同C. 电流的方向与电荷的定向移动方向相同D. 电流的方向与电荷的定向移动方向相反9. 下列关于电路的说法正确的是()A. 串联电路中,电流处处相等B. 并联电路中,电压处处相等C. 串联电路中,电阻处处相等D. 并联电路中,电阻处处相等10. 下列关于热力学第一定律的说法正确的是()A. 物体吸收热量时,温度会升高B. 物体吸收热量时,内能会增大C. 物体放出热量时,内能会减小D. 物体放出热量时,温度会降低二、填空题(每题5分,共50分)11. 已知函数y=3x+2,当x=2时,y的值为______。
初三数学物理考试模拟试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 0.101001D. 2√22. 已知a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a² > b²3. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = 2x³5. 一个等边三角形的边长为a,则它的面积S是()A. S = (√3/4)a²B. S = (1/2)a²C. S = (1/4)a²D. S = (1/8)a²6. 下列物理量中,属于标量的是()A. 力B. 速度C. 动能D. 力矩7. 在匀速直线运动中,速度v与时间t的关系是()A. v = atB. v = t²C. v = gtD. v = kt8. 一个物体在水平面上受到两个相互垂直的力F1和F2,若F1 = 10N,F2 = 5N,则合力的大小是()A. 15NB. 10NC. 5ND. 3N9. 在匀加速直线运动中,初速度为v0,加速度为a,则物体在t时间内的位移s 是()A. s = v0t + (1/2)at²B. s = v0t - (1/2)at²C. s = v0t + at²D. s = v0t - at²10. 下列关于光的折射现象的说法正确的是()A. 光从空气进入水中,速度会变快B. 光从水中进入空气,速度会变慢C. 光从空气进入水中,折射角小于入射角D. 光从水中进入空气,折射角大于入射角二、填空题(每题5分,共20分)11. 完成下列各数的有理数平方根:√4 = ______;√(-9) = ______。
2023年衡水一中高三物理模拟真题及答案解析
2023年衡水一中高三物理模拟真题及答案解析【题目一】某物体在水平地面上以2 m/s的速度做匀减速直线运动,在第3秒末静止。
求物体的加速度和初速度。
【解析】设物体的初速度为v0,加速度为a,根据物体匀减速直线运动的运动学公式:v = v0 + at由题意可得:0 = v0 + 3a (1)v = v0 + 2a (2)将公式(1)代入公式(2),得出a = -1 m/s²。
将a代入公式(1),可以解得到v0 = 3 m/s。
【答案】物体的加速度为-1 m/s²,初速度为3 m/s。
【题目二】一架质量为500 kg的电梯从静止开始上升,绳速不变,在1.8 s内上升4 m。
求电梯上升时的绳速和绳拉力的大小。
【解析】设绳速为v,绳拉力的大小为T,电梯的加速度为a。
根据电梯上升运动的运动学公式:s = v0t + (1/2)at²v = v0 + at由题意可得:4 = 0 + (1/2)a(1.8)²(3)v = 0 + a(1.8) (4)将公式(4)代入公式(3),可以解得a = 4 m/s²。
将a代入公式(4),可以解得v = 7.2 m/s。
绳拉力的大小等于电梯的重力,即T = mg = 500 kg × 9.8 m/s² = 4900 N。
【答案】电梯上升时的绳速为7.2 m/s,绳拉力的大小为4900 N。
【题目三】一辆汽车以10 m/s的速度匀减速来到距离目的地100 m处停车,已知减速度大小为2 m/s²。
求汽车的停车时间和需要的减速距离。
【解析】设汽车的初速度为v0,减速度为a,停车时间为t,减速距离为s。
根据汽车匀减速直线运动的运动学公式:v = v0 + ats = v0t + (1/2)at²由题意可得:0 = 10 + 2t (5)100 = 10t + (1/2)(-2)t²(6)将公式(5)代入公式(6),可以解得t = 5 s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方程模拟试卷
一、写出定解问题(10分)
设枢轴长为l ,建立枢轴纵振动在下列情形下的运动方程:
(a ) 在x=0固定,在x=l 作用力F ,在t=0时刻作用力突然停止
(b ) 在x=l 一端是平衡位置,而从t=0时刻作用力
F(t)
解:(a )()
()()()
⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥='=≤≤==><<∂∂=∂∂0,0,,0),0(0,0)0,(,)0,(0,0,22
222t t l u t u l x x u E
F x u t l
x x u a t u x t
(b) ()
()()()
()
⎪⎪⎩⎪⎪⎨⎧≥='=≤≤==><<∂∂=∂∂0,,,0),0(0,0)0,(,0)0,(0,
0,22
222t E t F t l u t u l x x u x u t l x x u a
t u x t
其中E 为扬氏系数。
二、判定方程的类型并化简(20分)
例. 化简 0623222222=∂∂+∂∂+∂∂-∂∂∂+∂∂y u
x u y y x u x u
(1) 解:已知3,1,1-===c b a
特征方程为
12
12±=-±=a ac
b b dx dy
11c x y dx dy
+-=→-=∴
,13c x y dx
dy +-=→= 令⎩⎨⎧-=+=y
x y x 3ηξ ⎩⎨⎧===-=======∴0,1,30,1,1yy xy xx y x
yy xy xx y x ηηηηηξξξξξ (2) ⎪⎪⎩
⎪⎪⎨⎧++++=+++++=++++=+=+=yy yy y y y y yy xy xy y x x y y x y x xy
xx xx x x x xx y y y x x x u u u u u u u u u u u u u u u u u u u u u u u u ηξηηξξηξηηηξηξξξηξηηξξηξηξηξηηξηξξηξηηξηξξηξηηξηξξηξηξ22222)(2, (3) 将(2)代入(3),可得
⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=-+=++=-=+=ηη
ξηξξηηξηξξηηξηξξηξηξu u u u u u u u u u u u u u u u u u yy xy
xx y 2329632 (4)
把(4)代入(1),可得
0666236364296=-+++-+--++++ηξηξηηξηξξηηξηξξηηξηξξu u u u u u u u u u u u u 0816=+∴ξξηu u
即 02
1=+ξξηu u 这就是我们所求的标准的双曲型方程。
三、(每小题10分,共20分)
①证明:)52()52(),(t x G t x F t x y -++=为方程2222254x
y t y ∂∂=∂∂的通解。
②求满足条件:0),(),0(==t y t y π,x x y 2sin )0,(=,0)0,(=x y t 的特解。
解:①设v t x u t x =-=+52,52,得
)()(v G u F y +=,
)5()('5)('-⋅+⋅=∂∂∂∂+∂∂∂∂=∂∂v G u F t
v v G t u u F t y )('5)('5v G u F -=, (1)
t v v G t u u F v G u F t t
y ∂∂∂∂-∂∂∂∂=-∂∂=∂∂'5'5)]('5)('5[22 )("25)("25v G u F +=。
(2)
2)('2)('⋅+⋅=∂∂∂∂+∂∂∂∂=∂∂v G u F x
v v G x u u F x y )('2)('2v G u F +=, (3)
x v v G x u u F v G u F x
x y ∂∂∂∂+∂∂∂∂=+∂∂=∂∂'2'2)]('2)('2[22 )("4)("4v G u F +=,(4)
由(2)与(4),可得
2222254x
y t y ∂∂=∂∂。
故满足方程,因为原方程为二阶方程,所以含有二个任意函数的解是通解。
②由:),52()52(),(t x G t x F t x y -++=
)52('5)52('5),('t x G t x F t
y t x y t --+=∂∂=。
可得
x x G x F x y 2sin )2()2()0,(=+=, (5)
0)2('5)2('5)2('5)0,('=--=x G x G x F x y t (6) 故 )2(')2('x G x F =。
x x G x F 2cos 21)2(')2('=
=∴, 12sin 2
1)2(c x x F +=∴, 22sin 2
1)2(c x x G +=, 即 21)52sin(2
1)52sin(21),(c c t x t x t x y ++-++=。
利用 00),(0),0(21=+==c c t y t y 知或π。
故 )52sin(2
1)52sin(21),(t x t x t x y -++=
t x 5cos 2sin ⋅=。
代入可验证这是所求的解。
四.求方程的一般解(20分)
1、 022222222
=∂∂+∂∂+∂∂+∂∂∂-∂∂y u y x u x y u y y x u xy x u x , 解:特征方程为
x
y dx dy -=,c xy =∴。
令⎩⎨⎧==.
,y xy ηξ, 代入方程得 ηηη∂∂-=∂∂u u 122, )(ln ln ln ξϕηη+-=∂∂∴u , η
ξϕη)(=∂∂∴u 。
)(ln )(ξψηξϕ+=u ,)(ln )(),(xy y xy y x u ψϕ+=∴。
(一般解)
2、求下面方程的初值问题的解:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧===∂∂-∂∂∂+∂∂==0303202
022222y y y u x u y u y x u x u 解:作变换: ⎩⎨⎧-=+=.
3,y x y x ηξ 可得方程 ,02=∂∂∂η
ξu ),3()()()(),(y x y x u -++=+=∴ψϕηψξϕηξ
⎪⎭
⎪⎬⎫=-=∂∂=+===.0)3(')(',3)3()(020x x y u x x x u y y ψϕψϕ ⎪⎩⎪⎨⎧=-=+.)3(31)(,3)3()(2c x x x x x ψϕψϕ ⎪⎩
⎪⎨⎧-=+=∴,449)3(,443)(22c x x c x x ψϕ ⎪⎩
⎪⎨⎧-=+=.44)(443)(22c c ηηψξξϕ .)3(41)(43)()(),(22y x y x y x u -++=+=∴ηϕξψ .3),(2
2y x y x u +=∴
五、用分离变量法求解(30分)
⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤==≥====).
0().()0,(),()0,()0(,0),(,0),0().(,''22l x x F x u x f x u t t l u t u E a u a u t x
xx tt ρ 其中u 是坐标为x 的截面的位移,l 是杆长,ρ为单位长度的质量,E 是杨氏系数。
解:应用分离变量法:
令 ),()(),(t T x X t x u ⋅=
即得 .sin cos )(x D x C x X λλ+=
.sin cos )(at B at A t T λλ+=
由边条件:
,0,0)0(=⇒=C X
πλl n l X 212,0)('+=
⇒=。
∑∞=++++=
∴02)12(sin )212sin 2)12(cos (),(n n n x l n at l n b at l n a t x u πππ。
由初条件:
∑∞===+=00),(212sin
n n t x f x l
n a u π )(212sin )212(10x F x l
n a l n b u n n t t
=++=∑∞==ππ, 故得: ⎰+⋅=l n xdx l
n x f l a 0212sin )(2π, ⎰++=l n xdx l
n x F a n b 0212sin )()12(4ππ, 代入),(t x u 中,即得我们所要求的解。