固体物理学答案(朱建国版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体物理学·习题指导配合《固体物理学(朱建国等编著)》使用

2022年4月24日

第1章晶体结构 (1)

第2章晶体的结合 (12)

第3章晶格振动和晶体的热学性质 (20)

第4章晶体缺陷 (33)

第5章金属电子论 (37)

第1章 晶体结构

1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于 多少?

答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于 面心的原子与顶角原子的距离为:R f =

22

a 对于体心立方,处于体心的原子与顶角原子的距离为:R

b =

32

a 那么,

Rf Rb =23a

a

=63

1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,

a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?

答:晶面族(123)截a 1,a 2,a 3分别为1,2,3等份,ABC 面是离原点O 最近的晶面,OA 的长度等于a 1的长度,OB 的长度等于a 2长度的1/2,OC 的长度等于a 3长度的1/3,所以只有A 点是格点。若ABC 面的指数为(234)的晶面族,则A 、B 和C 都不是格点。 1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型,两晶轴b a 、,夹角ϕ,如下表所示。 序号 晶系 基矢长度与夹角

关系 布拉维晶胞类型 所属点群 1 斜方 任意2

ϕ≠

b a 、

简单斜方(图中1所示) 1,2 2 正方 2,π

ϕ=

=b a

简单正方(图中2所示) 4,4mm 3 六角 32,π

ϕ==b a

简单六角(图中3所示) 3,3m ,6,6mm 4

长方

2

ϕ=

≠b a

简单长方(图中4所示) 有心长方(图中5所示)

1mm ,2mm

1 简单斜方

2 简单正方

3 简单六角

4 简单长方

5 有心长方 二维布拉维点阵

1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)

(010)(213) 答:证明

设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此

123o o o a n hd

a n kd a n id

=== ……… (1) 由于a 3=–(a 1+ a 2)

313()o o a n a a n =-+

把(1)式的关系代入,即得

()id hd kd =-+ ()i h k =-+

根据上面的证明,可以转换晶面族为

(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)

1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:

6

π

(23π32π(42π(5)金刚石:

。 答:令Z 表示一个立方晶胞中的硬球数,Ni 是位于晶胞内的球数,Nf 是在晶胞面上的球数,Ne 是在晶胞棱上的球数,Nc 是在晶胞角隅上的球数。于是有:

111248

i f e c Z N N N N =+

++

边长为a 的立方晶胞中堆积比率为

3

34*3r F Z a

π=

假设硬球的半径都为r ,占据的最大面积与总体积之比为θ,依据题意 (1)对于简立方,晶胞中只含一个原子,简立方边长为2r ,那么:

θ= 33

4/3(2)

r r π= 6π (2)对于体心立方,晶胞中有两个原子,其体对角线的长度为4r

,那么: θ

= 3

= (3)对于面心立方,晶胞中有四个原子,面对角线的长度为4r

,则其边长为r ,那么:

θ

= 3

= 6

(4)对于六方密堆积

一个晶胞有两个原子,其坐标为(000)(1/3,2/3,1/2),在理想的密堆积情况下,密排六方结构中点阵常数与原子半径的关系为a=2r ,因此

θ

342()

r π⨯

=6 (5)对于金刚石结构

Z=8 8r =

那么33

344*8(338

r F Z a ππ==⨯⨯

=16.

1.6 有一晶格,每个格点上有一个原子,基失(以nm 为单位)a=3i ,b=3j ,c=1.5(i+j+k ),

此处i ,j ,k 为笛卡儿坐标系中x ,y ,z 方向的单位失量.问: (1)这种晶格属于哪种布拉维格子?

(2)原胞的体积和晶胞的体积各等于多少? 答:(1)因为a=3i ,b=3j ,而c=1.5(i+j+k )=1/2(3i+3j+3k )=1/2(a+b+c ′)式中c ′=3c 。

显然,a 、b 、c ′构成一个边长为3*10-10m 的立方晶胞,基矢c 正处于此晶胞的体心上。因此,所述晶体属于体心立方布喇菲格子。

(2)晶胞的体积= c (a b)'⨯= 3k (3i 3j)⨯=27*10-30(m 3) 原胞的体积=c (a b)⨯=

1

(333)(33)2

i j k i j +++=13.5*10-30(m 3) 1.7

六方晶胞的基失为:2a a ai j =

+

,2

a b j =+,c ck =

相关文档
最新文档